Physics 253c Problem set 3

Due Tuesday October 24, 2023

The 3D O(N) model is a quantum field theory defined by the Euclidean action

$$S[\phi_i,\sigma] = \int d^3x \left[\frac{1}{2} \sum_{i=1}^N (\partial^\mu \phi_i)(\partial_\mu \phi_i) + \frac{i}{2}\sigma \left(\sum_{i=1}^N \phi_i^2 - \frac{N}{g} \right) \right],\tag{1}$$

where ϕ_1, \dots, ϕ_N and σ are real scalar field variables, and g a (dimensionful) bare coupling parameter.¹

(a) Deduce an effective action $S_{\text{eff}}[\sigma]$ by performing the (Gaussian) functional integration over the fields $\phi_i(x)$,

$$e^{-S_{\text{eff}}[\sigma]} = \int [D\phi_i] e^{-S[\phi_i,\sigma]},\tag{2}$$

defined with dimensional regularization scheme. You should find that $S_{\text{eff}}[\sigma]$ is proportional to N, and thus in the large N limit the path integral $Z = \int [D\sigma] e^{-S_{\text{eff}}[\sigma]}$ can be evaluated by a saddle point approximation. Assuming that the dominant saddle point is translationinvariant i.e. $\sigma(x) = \overline{\sigma}$ a constant independent of spacetime coordinates x^{μ} , determine $\overline{\sigma}$ in terms of g.

(b) One can generalize (2) by introducing source terms for ϕ_i and evaluate the Gaussian functional integral

$$e^{-S_{\text{eff}}[\sigma,J_i]} = \int [D\phi_i] e^{-S[\phi_i,\sigma] + \int d^3x \sum_{i=1}^N J_i \phi_i},$$
(3)

where $J_i(x)$ are arbitrary functions, and from the generating functional

$$e^{-W[J_i]} \equiv \int [D\sigma] e^{-S_{\text{eff}}[\sigma, J_i]}$$
(4)

extract correlation functions of ϕ_i in a 1/N expansion. Calculate the two-point function $\langle \phi_i(x)\phi_j(0)\rangle$ at the leading order in the large N limit. For what value of $\bar{\sigma}$ or g is the theory gapless?

¹The appearance of the factor *i* in the second term may seem unusual, but in fact the underlying quantum field theory is unitary (reflection positive); indeed, σ plays the role of a Lagrangian multiplier, and the effect of performing the Gaussian functional integral over $\sigma(x)$ restricts (ϕ_1, \dots, ϕ_N) to take value on an (N-1)-sphere of radius $\sqrt{N/g}$.

(c) The critical O(N) model is defined by (1) at the special value of g such that the theory is gapless.² In this theory, calculate the two-point function $\langle \sigma'(x)\sigma'(0)\rangle$, where $\sigma(x) \equiv \langle \sigma \rangle + \sigma'(x)$, at the leading order in the large N limit. In particular, determine the scaling dimensions of the operators ϕ_i and σ' as $N \to \infty$.

(d) In the critical O(N) model, calculate the three-point functions

$$\langle \phi_i(x_1)\phi_j(x_2)\sigma'(x_3)\rangle$$
 and $\langle \sigma'(x_1)\sigma'(x_2)\sigma'(x_3)\rangle$ (5)

at the leading nontrivial order in the large N limit. In particular, show that the result is compatible with the expectations from conformal invariance.

(e) Extend your calculation of $\langle \phi_i(x)\phi_j(0)\rangle$ and $\langle \sigma'(x)\sigma'(0)\rangle$ to the next-to-leading order in the 1/N expansion, and extract from your result the scaling dimensions of the operators ϕ_i and σ' in the critical O(N) model at order N^{-1} .

²Note that this critical value of g is generally regularization scheme dependent.