LCOV - code coverage report
Current view: top level - pebble - range_keys.go (source / functions) Hit Total Coverage
Test: 2023-10-14 08:17Z bbbf3df1 - tests only.lcov Lines: 250 288 86.8 %
Date: 2023-10-14 08:17:44 Functions: 0 0 -

          Line data    Source code
       1             : // Copyright 2021 The LevelDB-Go and Pebble Authors. All rights reserved. Use
       2             : // of this source code is governed by a BSD-style license that can be found in
       3             : // the LICENSE file.
       4             : 
       5             : package pebble
       6             : 
       7             : import (
       8             :         "github.com/cockroachdb/pebble/internal/base"
       9             :         "github.com/cockroachdb/pebble/internal/invariants"
      10             :         "github.com/cockroachdb/pebble/internal/keyspan"
      11             :         "github.com/cockroachdb/pebble/internal/manifest"
      12             :         "github.com/cockroachdb/pebble/sstable"
      13             : )
      14             : 
      15             : // constructRangeKeyIter constructs the range-key iterator stack, populating
      16             : // i.rangeKey.rangeKeyIter with the resulting iterator.
      17           1 : func (i *Iterator) constructRangeKeyIter() {
      18           1 :         i.rangeKey.rangeKeyIter = i.rangeKey.iterConfig.Init(
      19           1 :                 &i.comparer, i.seqNum, i.opts.LowerBound, i.opts.UpperBound,
      20           1 :                 &i.hasPrefix, &i.prefixOrFullSeekKey, true /* onlySets */, &i.rangeKey.rangeKeyBuffers.internal)
      21           1 : 
      22           1 :         // If there's an indexed batch with range keys, include it.
      23           1 :         if i.batch != nil {
      24           1 :                 if i.batch.index == nil {
      25           0 :                         i.rangeKey.iterConfig.AddLevel(newErrorKeyspanIter(ErrNotIndexed))
      26           1 :                 } else {
      27           1 :                         // Only include the batch's range key iterator if it has any keys.
      28           1 :                         // NB: This can force reconstruction of the rangekey iterator stack
      29           1 :                         // in SetOptions if subsequently range keys are added. See
      30           1 :                         // SetOptions.
      31           1 :                         if i.batch.countRangeKeys > 0 {
      32           1 :                                 i.batch.initRangeKeyIter(&i.opts, &i.batchRangeKeyIter, i.batchSeqNum)
      33           1 :                                 i.rangeKey.iterConfig.AddLevel(&i.batchRangeKeyIter)
      34           1 :                         }
      35             :                 }
      36             :         }
      37             : 
      38             :         // Next are the flushables: memtables and large batches.
      39           1 :         if i.readState != nil {
      40           1 :                 for j := len(i.readState.memtables) - 1; j >= 0; j-- {
      41           1 :                         mem := i.readState.memtables[j]
      42           1 :                         // We only need to read from memtables which contain sequence numbers older
      43           1 :                         // than seqNum.
      44           1 :                         if logSeqNum := mem.logSeqNum; logSeqNum >= i.seqNum {
      45           1 :                                 continue
      46             :                         }
      47           1 :                         if rki := mem.newRangeKeyIter(&i.opts); rki != nil {
      48           1 :                                 i.rangeKey.iterConfig.AddLevel(rki)
      49           1 :                         }
      50             :                 }
      51             :         }
      52             : 
      53           1 :         current := i.version
      54           1 :         if current == nil {
      55           1 :                 current = i.readState.current
      56           1 :         }
      57             :         // Next are the file levels: L0 sub-levels followed by lower levels.
      58             :         //
      59             :         // Add file-specific iterators for L0 files containing range keys. This is less
      60             :         // efficient than using levelIters for sublevels of L0 files containing
      61             :         // range keys, but range keys are expected to be sparse anyway, reducing the
      62             :         // cost benefit of maintaining a separate L0Sublevels instance for range key
      63             :         // files and then using it here.
      64             :         //
      65             :         // NB: We iterate L0's files in reverse order. They're sorted by
      66             :         // LargestSeqNum ascending, and we need to add them to the merging iterator
      67             :         // in LargestSeqNum descending to preserve the merging iterator's invariants
      68             :         // around Key Trailer order.
      69           1 :         iter := current.RangeKeyLevels[0].Iter()
      70           1 :         for f := iter.Last(); f != nil; f = iter.Prev() {
      71           1 :                 spanIter, err := i.newIterRangeKey(f, i.opts.SpanIterOptions())
      72           1 :                 if err != nil {
      73           0 :                         i.rangeKey.iterConfig.AddLevel(&errorKeyspanIter{err: err})
      74           0 :                         continue
      75             :                 }
      76           1 :                 i.rangeKey.iterConfig.AddLevel(spanIter)
      77             :         }
      78             : 
      79             :         // Add level iterators for the non-empty non-L0 levels.
      80           1 :         for level := 1; level < len(current.RangeKeyLevels); level++ {
      81           1 :                 if current.RangeKeyLevels[level].Empty() {
      82           1 :                         continue
      83             :                 }
      84           1 :                 li := i.rangeKey.iterConfig.NewLevelIter()
      85           1 :                 spanIterOpts := i.opts.SpanIterOptions()
      86           1 :                 li.Init(spanIterOpts, i.cmp, i.newIterRangeKey, current.RangeKeyLevels[level].Iter(),
      87           1 :                         manifest.Level(level), manifest.KeyTypeRange)
      88           1 :                 i.rangeKey.iterConfig.AddLevel(li)
      89             :         }
      90             : }
      91             : 
      92             : // Range key masking
      93             : //
      94             : // Pebble iterators may be configured such that range keys with suffixes mask
      95             : // point keys with lower suffixes. The intended use is implementing a MVCC
      96             : // delete range operation using range keys, when suffixes are MVCC timestamps.
      97             : //
      98             : // To enable masking, the user populates the IterOptions's RangeKeyMasking
      99             : // field. The Suffix field configures which range keys act as masks. The
     100             : // intended use is to hold a MVCC read timestamp. When implementing a MVCC
     101             : // delete range operation, only range keys that are visible at the read
     102             : // timestamp should be visible. If a range key has a suffix ≤
     103             : // RangeKeyMasking.Suffix, it acts as a mask.
     104             : //
     105             : // Range key masking is facilitated by the keyspan.InterleavingIter. The
     106             : // interleaving iterator interleaves range keys and point keys during combined
     107             : // iteration. During user iteration, the interleaving iterator is configured
     108             : // with a keyspan.SpanMask, implemented by the rangeKeyMasking struct below.
     109             : // The SpanMask interface defines two methods: SpanChanged and SkipPoint.
     110             : //
     111             : // SpanChanged is used to keep the current mask up-to-date. Whenever the point
     112             : // iterator has stepped into or out of the bounds of a range key, the
     113             : // interleaving iterator invokes SpanChanged passing the current covering range
     114             : // key. The below rangeKeyMasking implementation scans the range keys looking
     115             : // for the range key with the largest suffix that's still ≤ the suffix supplied
     116             : // to IterOptions.RangeKeyMasking.Suffix (the "read timestamp"). If it finds a
     117             : // range key that meets the condition, the range key should act as a mask. The
     118             : // span and the relevant range key's suffix are saved.
     119             : //
     120             : // The above ensures that `rangeKeyMasking.maskActiveSuffix` always contains the
     121             : // current masking suffix such that any point keys with lower suffixes should be
     122             : // skipped.
     123             : //
     124             : // There are two ways in which masked point keys are skipped.
     125             : //
     126             : //   1. Interleaving iterator SkipPoint
     127             : //
     128             : // Whenever the interleaving iterator encounters a point key that falls within
     129             : // the bounds of a range key, it invokes SkipPoint. The interleaving iterator
     130             : // guarantees that the SpanChanged method described above has already been
     131             : // invoked with the covering range key. The below rangeKeyMasking implementation
     132             : // of SkipPoint splits the key into prefix and suffix, compares the suffix to
     133             : // the `maskActiveSuffix` updated by SpanChanged and returns true if
     134             : // suffix(point) < maskActiveSuffix.
     135             : //
     136             : // The SkipPoint logic is sufficient to ensure that the Pebble iterator filters
     137             : // out all masked point keys. However, it requires the iterator read each masked
     138             : // point key. For broad range keys that mask many points, this may be expensive.
     139             : //
     140             : //   2. Block property filter
     141             : //
     142             : // For more efficient handling of braad range keys that mask many points, the
     143             : // IterOptions.RangeKeyMasking field has an optional Filter option. This Filter
     144             : // field takes a superset of the block-property filter interface, adding a
     145             : // method to dynamically configure the filter's filtering criteria.
     146             : //
     147             : // To make use of the Filter option, the user is required to define and
     148             : // configure a block-property collector that collects a property containing at
     149             : // least the maximum suffix of a key within a block.
     150             : //
     151             : // When the SpanChanged method described above is invoked, rangeKeyMasking also
     152             : // reconfigures the user-provided filter. It invokes a SetSuffix method,
     153             : // providing the `maskActiveSuffix`, requesting that from now on the
     154             : // block-property filter return Intersects()=false for any properties indicating
     155             : // that a block contains exclusively keys with suffixes greater than the
     156             : // provided suffix.
     157             : //
     158             : // Note that unlike other block-property filters, the filter used for masking
     159             : // must not apply across the entire keyspace. It must only filter blocks that
     160             : // lie within the bounds of the range key that set the mask suffix. To
     161             : // accommodate this, rangeKeyMasking implements a special interface:
     162             : // sstable.BoundLimitedBlockPropertyFilter. This interface extends the block
     163             : // property filter interface with two new methods: KeyIsWithinLowerBound and
     164             : // KeyIsWithinUpperBound. The rangeKeyMasking type wraps the user-provided block
     165             : // property filter, implementing these two methods and overriding Intersects to
     166             : // always return true if there is no active mask.
     167             : //
     168             : // The logic to ensure that a mask block-property filter is only applied within
     169             : // the bounds of the masking range key is subtle. The interleaving iterator
     170             : // guarantees that it never invokes SpanChanged until the point iterator is
     171             : // positioned within the range key. During forward iteration, this guarantees
     172             : // that any block that a sstable reader might attempt to load contains only keys
     173             : // greater than or equal to the range key's lower bound. During backward
     174             : // iteration, it provides the analagous guarantee on the range key's upper
     175             : // bound.
     176             : //
     177             : // The above ensures that an sstable reader only needs to verify that a block
     178             : // that it skips meets the opposite bound. This is where the
     179             : // KeyIsWithinLowerBound and KeyIsWithinUpperBound methods are used. When an
     180             : // sstable iterator is configured with a BoundLimitedBlockPropertyFilter, it
     181             : // checks for intersection with the block-property filter before every block
     182             : // load, like ordinary block-property filters. However, if the bound-limited
     183             : // block property filter indicates that it does NOT intersect, the filter's
     184             : // relevant KeyIsWithin{Lower,Upper}Bound method is queried, using a block
     185             : // index separator as the bound. If the method indicates that the provided index
     186             : // separator does not fall within the range key bounds, the no-intersection
     187             : // result is ignored, and the block is read.
     188             : 
     189             : type rangeKeyMasking struct {
     190             :         cmp    base.Compare
     191             :         split  base.Split
     192             :         filter BlockPropertyFilterMask
     193             :         // maskActiveSuffix holds the suffix of a range key currently acting as a
     194             :         // mask, hiding point keys with suffixes greater than it. maskActiveSuffix
     195             :         // is only ever non-nil if IterOptions.RangeKeyMasking.Suffix is non-nil.
     196             :         // maskActiveSuffix is updated whenever the iterator passes over a new range
     197             :         // key. The maskActiveSuffix should only be used if maskSpan is non-nil.
     198             :         //
     199             :         // See SpanChanged.
     200             :         maskActiveSuffix []byte
     201             :         // maskSpan holds the span from which the active mask suffix was extracted.
     202             :         // The span is used for bounds comparisons, to ensure that a range-key mask
     203             :         // is not applied beyond the bounds of the range key.
     204             :         maskSpan *keyspan.Span
     205             :         parent   *Iterator
     206             : }
     207             : 
     208           1 : func (m *rangeKeyMasking) init(parent *Iterator, cmp base.Compare, split base.Split) {
     209           1 :         m.cmp = cmp
     210           1 :         m.split = split
     211           1 :         if parent.opts.RangeKeyMasking.Filter != nil {
     212           1 :                 m.filter = parent.opts.RangeKeyMasking.Filter()
     213           1 :         }
     214           1 :         m.parent = parent
     215             : }
     216             : 
     217             : // SpanChanged implements the keyspan.SpanMask interface, used during range key
     218             : // iteration.
     219           1 : func (m *rangeKeyMasking) SpanChanged(s *keyspan.Span) {
     220           1 :         if s == nil && m.maskSpan == nil {
     221           1 :                 return
     222           1 :         }
     223           1 :         m.maskSpan = nil
     224           1 :         m.maskActiveSuffix = m.maskActiveSuffix[:0]
     225           1 : 
     226           1 :         // Find the smallest suffix of a range key contained within the Span,
     227           1 :         // excluding suffixes less than m.opts.RangeKeyMasking.Suffix.
     228           1 :         if s != nil {
     229           1 :                 m.parent.rangeKey.stale = true
     230           1 :                 if m.parent.opts.RangeKeyMasking.Suffix != nil {
     231           1 :                         for j := range s.Keys {
     232           1 :                                 if s.Keys[j].Suffix == nil {
     233           0 :                                         continue
     234             :                                 }
     235           1 :                                 if m.cmp(s.Keys[j].Suffix, m.parent.opts.RangeKeyMasking.Suffix) < 0 {
     236           1 :                                         continue
     237             :                                 }
     238           1 :                                 if len(m.maskActiveSuffix) == 0 || m.cmp(m.maskActiveSuffix, s.Keys[j].Suffix) > 0 {
     239           1 :                                         m.maskSpan = s
     240           1 :                                         m.maskActiveSuffix = append(m.maskActiveSuffix[:0], s.Keys[j].Suffix...)
     241           1 :                                 }
     242             :                         }
     243             :                 }
     244             :         }
     245             : 
     246           1 :         if m.maskSpan != nil && m.parent.opts.RangeKeyMasking.Filter != nil {
     247           1 :                 // Update the  block-property filter to filter point keys with suffixes
     248           1 :                 // greater than m.maskActiveSuffix.
     249           1 :                 err := m.filter.SetSuffix(m.maskActiveSuffix)
     250           1 :                 if err != nil {
     251           0 :                         m.parent.err = err
     252           0 :                 }
     253             :         }
     254             :         // If no span is active, we leave the inner block-property filter configured
     255             :         // with its existing suffix. That's okay, because Intersects calls are first
     256             :         // evaluated by iteratorRangeKeyState.Intersects, which considers all blocks
     257             :         // as intersecting if there's no active mask.
     258             : }
     259             : 
     260             : // SkipPoint implements the keyspan.SpanMask interface, used during range key
     261             : // iteration. Whenever a point key is covered by a non-empty Span, the
     262             : // interleaving iterator invokes SkipPoint. This function is responsible for
     263             : // performing range key masking.
     264             : //
     265             : // If a non-nil IterOptions.RangeKeyMasking.Suffix is set, range key masking is
     266             : // enabled. Masking hides point keys, transparently skipping over the keys.
     267             : // Whether or not a point key is masked is determined by comparing the point
     268             : // key's suffix, the overlapping span's keys' suffixes, and the user-configured
     269             : // IterOption's RangeKeyMasking.Suffix. When configured with a masking threshold
     270             : // _t_, and there exists a span with suffix _r_ covering a point key with suffix
     271             : // _p_, and
     272             : //
     273             : //      _t_ ≤ _r_ < _p_
     274             : //
     275             : // then the point key is elided. Consider the following rendering, where using
     276             : // integer suffixes with higher integers sort before suffixes with lower
     277             : // integers, (for example @7 ≤ @6 < @5):
     278             : //
     279             : //           ^
     280             : //        @9 |        •―――――――――――――――○ [e,m)@9
     281             : //      s  8 |                      • l@8
     282             : //      u  7 |------------------------------------ @7 RangeKeyMasking.Suffix
     283             : //      f  6 |      [h,q)@6 •―――――――――――――――――○            (threshold)
     284             : //      f  5 |              • h@5
     285             : //      f  4 |                          • n@4
     286             : //      i  3 |          •―――――――――――○ [f,l)@3
     287             : //      x  2 |  • b@2
     288             : //         1 |
     289             : //         0 |___________________________________
     290             : //            a b c d e f g h i j k l m n o p q
     291             : //
     292             : // An iterator scanning the entire keyspace with the masking threshold set to @7
     293             : // will observe point keys b@2 and l@8. The span keys [h,q)@6 and [f,l)@3 serve
     294             : // as masks, because cmp(@6,@7) ≥ 0 and cmp(@3,@7) ≥ 0. The span key [e,m)@9
     295             : // does not serve as a mask, because cmp(@9,@7) < 0.
     296             : //
     297             : // Although point l@8 falls within the user key bounds of [e,m)@9, [e,m)@9 is
     298             : // non-masking due to its suffix. The point key l@8 also falls within the user
     299             : // key bounds of [h,q)@6, but since cmp(@6,@8) ≥ 0, l@8 is unmasked.
     300             : //
     301             : // Invariant: The userKey is within the user key bounds of the span most
     302             : // recently provided to `SpanChanged`.
     303           1 : func (m *rangeKeyMasking) SkipPoint(userKey []byte) bool {
     304           1 :         m.parent.stats.RangeKeyStats.ContainedPoints++
     305           1 :         if m.maskSpan == nil {
     306           1 :                 // No range key is currently acting as a mask, so don't skip.
     307           1 :                 return false
     308           1 :         }
     309             :         // Range key masking is enabled and the current span includes a range key
     310             :         // that is being used as a mask. (NB: SpanChanged already verified that the
     311             :         // range key's suffix is ≥ RangeKeyMasking.Suffix).
     312             :         //
     313             :         // This point key falls within the bounds of the range key (guaranteed by
     314             :         // the InterleavingIter). Skip the point key if the range key's suffix is
     315             :         // greater than the point key's suffix.
     316           1 :         pointSuffix := userKey[m.split(userKey):]
     317           1 :         if len(pointSuffix) > 0 && m.cmp(m.maskActiveSuffix, pointSuffix) < 0 {
     318           1 :                 m.parent.stats.RangeKeyStats.SkippedPoints++
     319           1 :                 return true
     320           1 :         }
     321           1 :         return false
     322             : }
     323             : 
     324             : // The iteratorRangeKeyState type implements the sstable package's
     325             : // BoundLimitedBlockPropertyFilter interface in order to use block property
     326             : // filters for range key masking. The iteratorRangeKeyState implementation wraps
     327             : // the block-property filter provided in Options.RangeKeyMasking.Filter.
     328             : //
     329             : // Using a block-property filter for range-key masking requires limiting the
     330             : // filter's effect to the bounds of the range key currently acting as a mask.
     331             : // Consider the range key [a,m)@10, and an iterator positioned just before the
     332             : // below block, bounded by index separators `c` and `z`:
     333             : //
     334             : //                c                          z
     335             : //         x      |  c@9 c@5 c@1 d@7 e@4 y@4 | ...
     336             : //      iter pos
     337             : //
     338             : // The next block cannot be skipped, despite the range key suffix @10 is greater
     339             : // than all the block's keys' suffixes, because it contains a key (y@4) outside
     340             : // the bounds of the range key.
     341             : //
     342             : // This extended BoundLimitedBlockPropertyFilter interface adds two new methods,
     343             : // KeyIsWithinLowerBound and KeyIsWithinUpperBound, for testing whether a
     344             : // particular block is within bounds.
     345             : //
     346             : // The iteratorRangeKeyState implements these new methods by first checking if
     347             : // the iterator is currently positioned within a range key. If not, the provided
     348             : // key is considered out-of-bounds. If the iterator is positioned within a range
     349             : // key, it compares the corresponding range key bound.
     350             : var _ sstable.BoundLimitedBlockPropertyFilter = (*rangeKeyMasking)(nil)
     351             : 
     352             : // Name implements the limitedBlockPropertyFilter interface defined in the
     353             : // sstable package by passing through to the user-defined block property filter.
     354           1 : func (m *rangeKeyMasking) Name() string {
     355           1 :         return m.filter.Name()
     356           1 : }
     357             : 
     358             : // Intersects implements the limitedBlockPropertyFilter interface defined in the
     359             : // sstable package by passing the intersection decision to the user-provided
     360             : // block property filter only if a range key is covering the current iterator
     361             : // position.
     362           1 : func (m *rangeKeyMasking) Intersects(prop []byte) (bool, error) {
     363           1 :         if m.maskSpan == nil {
     364           1 :                 // No span is actively masking.
     365           1 :                 return true, nil
     366           1 :         }
     367           1 :         return m.filter.Intersects(prop)
     368             : }
     369             : 
     370             : // KeyIsWithinLowerBound implements the limitedBlockPropertyFilter interface
     371             : // defined in the sstable package. It's used to restrict the masking block
     372             : // property filter to only applying within the bounds of the active range key.
     373           1 : func (m *rangeKeyMasking) KeyIsWithinLowerBound(key []byte) bool {
     374           1 :         // Invariant: m.maskSpan != nil
     375           1 :         //
     376           1 :         // The provided `key` is an inclusive lower bound of the block we're
     377           1 :         // considering skipping.
     378           1 :         return m.cmp(m.maskSpan.Start, key) <= 0
     379           1 : }
     380             : 
     381             : // KeyIsWithinUpperBound implements the limitedBlockPropertyFilter interface
     382             : // defined in the sstable package. It's used to restrict the masking block
     383             : // property filter to only applying within the bounds of the active range key.
     384           1 : func (m *rangeKeyMasking) KeyIsWithinUpperBound(key []byte) bool {
     385           1 :         // Invariant: m.maskSpan != nil
     386           1 :         //
     387           1 :         // The provided `key` is an *inclusive* upper bound of the block we're
     388           1 :         // considering skipping, so the range key's end must be strictly greater
     389           1 :         // than the block bound for the block to be within bounds.
     390           1 :         return m.cmp(m.maskSpan.End, key) > 0
     391           1 : }
     392             : 
     393             : // lazyCombinedIter implements the internalIterator interface, wrapping a
     394             : // pointIter. It requires the pointIter's the levelIters be configured with
     395             : // pointers to its combinedIterState. When the levelIter observes a file
     396             : // containing a range key, the lazyCombinedIter constructs the combined
     397             : // range+point key iterator stack and switches to it.
     398             : type lazyCombinedIter struct {
     399             :         // parent holds a pointer to the root *pebble.Iterator containing this
     400             :         // iterator. It's used to mutate the internalIterator in use when switching
     401             :         // to combined iteration.
     402             :         parent            *Iterator
     403             :         pointIter         internalIterator
     404             :         combinedIterState combinedIterState
     405             : }
     406             : 
     407             : // combinedIterState encapsulates the current state of combined iteration.
     408             : // Various low-level iterators (mergingIter, leveliter) hold pointers to the
     409             : // *pebble.Iterator's combinedIterState. This allows them to check whether or
     410             : // not they must monitor for files containing range keys (!initialized), or not.
     411             : //
     412             : // When !initialized, low-level iterators watch for files containing range keys.
     413             : // When one is discovered, they set triggered=true and key to the smallest
     414             : // (forward direction) or largest (reverse direction) range key that's been
     415             : // observed.
     416             : type combinedIterState struct {
     417             :         // key holds the smallest (forward direction) or largest (backward
     418             :         // direction) user key from a range key bound discovered during the iterator
     419             :         // operation that triggered the switch to combined iteration.
     420             :         //
     421             :         // Slices stored here must be stable. This is possible because callers pass
     422             :         // a Smallest/Largest bound from a fileMetadata, which are immutable. A key
     423             :         // slice's bytes must not be overwritten.
     424             :         key         []byte
     425             :         triggered   bool
     426             :         initialized bool
     427             : }
     428             : 
     429             : // Assert that *lazyCombinedIter implements internalIterator.
     430             : var _ internalIterator = (*lazyCombinedIter)(nil)
     431             : 
     432             : // initCombinedIteration is invoked after a pointIter positioning operation
     433             : // resulted in i.combinedIterState.triggered=true.
     434             : //
     435             : // The `dir` parameter is `+1` or `-1` indicating forward iteration or backward
     436             : // iteration respectively.
     437             : //
     438             : // The `pointKey` and `pointValue` parameters provide the new point key-value
     439             : // pair that the iterator was just positioned to. The combined iterator should
     440             : // be seeded with this point key-value pair and return the smaller (forward
     441             : // iteration) or largest (backward iteration) of the two.
     442             : //
     443             : // The `seekKey` parameter is non-nil only if the iterator operation that
     444             : // triggered the switch to combined iteration was a SeekGE, SeekPrefixGE or
     445             : // SeekLT. It provides the seek key supplied and is used to seek the range-key
     446             : // iterator using the same key. This is necessary for SeekGE/SeekPrefixGE
     447             : // operations that land in the middle of a range key and must truncate to the
     448             : // user-provided seek key.
     449             : func (i *lazyCombinedIter) initCombinedIteration(
     450             :         dir int8, pointKey *InternalKey, pointValue base.LazyValue, seekKey []byte,
     451           1 : ) (*InternalKey, base.LazyValue) {
     452           1 :         // Invariant: i.parent.rangeKey is nil.
     453           1 :         // Invariant: !i.combinedIterState.initialized.
     454           1 :         if invariants.Enabled {
     455           1 :                 if i.combinedIterState.initialized {
     456           0 :                         panic("pebble: combined iterator already initialized")
     457             :                 }
     458           1 :                 if i.parent.rangeKey != nil {
     459           0 :                         panic("pebble: iterator already has a range-key iterator stack")
     460             :                 }
     461             :         }
     462             : 
     463             :         // We need to determine the key to seek the range key iterator to. If
     464             :         // seekKey is not nil, the user-initiated operation that triggered the
     465             :         // switch to combined iteration was itself a seek, and we can use that key.
     466             :         // Otherwise, a First/Last or relative positioning operation triggered the
     467             :         // switch to combined iteration.
     468             :         //
     469             :         // The levelIter that observed a file containing range keys populated
     470             :         // combinedIterState.key with the smallest (forward) or largest (backward)
     471             :         // range key it observed. If multiple levelIters observed files with range
     472             :         // keys during the same operation on the mergingIter, combinedIterState.key
     473             :         // is the smallest [during forward iteration; largest in reverse iteration]
     474             :         // such key.
     475           1 :         if seekKey == nil {
     476           1 :                 // Use the levelIter-populated key.
     477           1 :                 seekKey = i.combinedIterState.key
     478           1 : 
     479           1 :                 // We may need to adjust the levelIter-populated seek key to the
     480           1 :                 // surfaced point key. If the key observed is beyond [in the iteration
     481           1 :                 // direction] the current point key, there may still exist a range key
     482           1 :                 // at an earlier key. Consider the following example:
     483           1 :                 //
     484           1 :                 //   L5:  000003:[bar.DEL.5, foo.RANGEKEYSET.9]
     485           1 :                 //   L6:  000001:[bar.SET.2] 000002:[bax.RANGEKEYSET.8]
     486           1 :                 //
     487           1 :                 // A call to First() seeks the levels to files L5.000003 and L6.000001.
     488           1 :                 // The L5 levelIter observes that L5.000003 contains the range key with
     489           1 :                 // start key `foo`, and triggers a switch to combined iteration, setting
     490           1 :                 // `combinedIterState.key` = `foo`.
     491           1 :                 //
     492           1 :                 // The L6 levelIter did not observe the true first range key
     493           1 :                 // (bax.RANGEKEYSET.8), because it appears in a later sstable. When the
     494           1 :                 // combined iterator is initialized, the range key iterator must be
     495           1 :                 // seeked to a key that will find `bax`. To accomplish this, we seek the
     496           1 :                 // key instead to `bar`. It is guaranteed that no range key exists
     497           1 :                 // earlier than `bar`, otherwise a levelIter would've observed it and
     498           1 :                 // set `combinedIterState.key` to its start key.
     499           1 :                 if pointKey != nil {
     500           1 :                         if dir == +1 && i.parent.cmp(i.combinedIterState.key, pointKey.UserKey) > 0 {
     501           1 :                                 seekKey = pointKey.UserKey
     502           1 :                         } else if dir == -1 && i.parent.cmp(seekKey, pointKey.UserKey) < 0 {
     503           1 :                                 seekKey = pointKey.UserKey
     504           1 :                         }
     505             :                 }
     506             :         }
     507             : 
     508             :         // An operation on the point iterator observed a file containing range keys,
     509             :         // so we must switch to combined interleaving iteration. First, construct
     510             :         // the range key iterator stack. It must not exist, otherwise we'd already
     511             :         // be performing combined iteration.
     512           1 :         i.parent.rangeKey = iterRangeKeyStateAllocPool.Get().(*iteratorRangeKeyState)
     513           1 :         i.parent.rangeKey.init(i.parent.comparer.Compare, i.parent.comparer.Split, &i.parent.opts)
     514           1 :         i.parent.constructRangeKeyIter()
     515           1 : 
     516           1 :         // Initialize the Iterator's interleaving iterator.
     517           1 :         i.parent.rangeKey.iiter.Init(
     518           1 :                 &i.parent.comparer, i.parent.pointIter, i.parent.rangeKey.rangeKeyIter,
     519           1 :                 keyspan.InterleavingIterOpts{
     520           1 :                         Mask:       &i.parent.rangeKeyMasking,
     521           1 :                         LowerBound: i.parent.opts.LowerBound,
     522           1 :                         UpperBound: i.parent.opts.UpperBound,
     523           1 :                 })
     524           1 : 
     525           1 :         // Set the parent's primary iterator to point to the combined, interleaving
     526           1 :         // iterator that's now initialized with our current state.
     527           1 :         i.parent.iter = &i.parent.rangeKey.iiter
     528           1 :         i.combinedIterState.initialized = true
     529           1 :         i.combinedIterState.key = nil
     530           1 : 
     531           1 :         // All future iterator operations will go directly through the combined
     532           1 :         // iterator.
     533           1 :         //
     534           1 :         // Initialize the interleaving iterator. We pass the point key-value pair so
     535           1 :         // that the interleaving iterator knows where the point iterator is
     536           1 :         // positioned. Additionally, we pass the seek key to which the range-key
     537           1 :         // iterator should be seeked in order to initialize its position.
     538           1 :         //
     539           1 :         // In the forward direction (invert for backwards), the seek key is a key
     540           1 :         // guaranteed to find the smallest range key that's greater than the last
     541           1 :         // key the iterator returned. The range key may be less than pointKey, in
     542           1 :         // which case the range key will be interleaved next instead of the point
     543           1 :         // key.
     544           1 :         if dir == +1 {
     545           1 :                 var prefix []byte
     546           1 :                 if i.parent.hasPrefix {
     547           1 :                         prefix = i.parent.prefixOrFullSeekKey
     548           1 :                 }
     549           1 :                 return i.parent.rangeKey.iiter.InitSeekGE(prefix, seekKey, pointKey, pointValue)
     550             :         }
     551           1 :         return i.parent.rangeKey.iiter.InitSeekLT(seekKey, pointKey, pointValue)
     552             : }
     553             : 
     554             : func (i *lazyCombinedIter) SeekGE(
     555             :         key []byte, flags base.SeekGEFlags,
     556           1 : ) (*InternalKey, base.LazyValue) {
     557           1 :         if i.combinedIterState.initialized {
     558           0 :                 return i.parent.rangeKey.iiter.SeekGE(key, flags)
     559           0 :         }
     560           1 :         k, v := i.pointIter.SeekGE(key, flags)
     561           1 :         if i.combinedIterState.triggered {
     562           1 :                 return i.initCombinedIteration(+1, k, v, key)
     563           1 :         }
     564           1 :         return k, v
     565             : }
     566             : 
     567             : func (i *lazyCombinedIter) SeekPrefixGE(
     568             :         prefix, key []byte, flags base.SeekGEFlags,
     569           1 : ) (*InternalKey, base.LazyValue) {
     570           1 :         if i.combinedIterState.initialized {
     571           0 :                 return i.parent.rangeKey.iiter.SeekPrefixGE(prefix, key, flags)
     572           0 :         }
     573           1 :         k, v := i.pointIter.SeekPrefixGE(prefix, key, flags)
     574           1 :         if i.combinedIterState.triggered {
     575           1 :                 return i.initCombinedIteration(+1, k, v, key)
     576           1 :         }
     577           1 :         return k, v
     578             : }
     579             : 
     580             : func (i *lazyCombinedIter) SeekLT(
     581             :         key []byte, flags base.SeekLTFlags,
     582           1 : ) (*InternalKey, base.LazyValue) {
     583           1 :         if i.combinedIterState.initialized {
     584           0 :                 return i.parent.rangeKey.iiter.SeekLT(key, flags)
     585           0 :         }
     586           1 :         k, v := i.pointIter.SeekLT(key, flags)
     587           1 :         if i.combinedIterState.triggered {
     588           1 :                 return i.initCombinedIteration(-1, k, v, key)
     589           1 :         }
     590           1 :         return k, v
     591             : }
     592             : 
     593           1 : func (i *lazyCombinedIter) First() (*InternalKey, base.LazyValue) {
     594           1 :         if i.combinedIterState.initialized {
     595           0 :                 return i.parent.rangeKey.iiter.First()
     596           0 :         }
     597           1 :         k, v := i.pointIter.First()
     598           1 :         if i.combinedIterState.triggered {
     599           1 :                 return i.initCombinedIteration(+1, k, v, nil)
     600           1 :         }
     601           1 :         return k, v
     602             : }
     603             : 
     604           1 : func (i *lazyCombinedIter) Last() (*InternalKey, base.LazyValue) {
     605           1 :         if i.combinedIterState.initialized {
     606           0 :                 return i.parent.rangeKey.iiter.Last()
     607           0 :         }
     608           1 :         k, v := i.pointIter.Last()
     609           1 :         if i.combinedIterState.triggered {
     610           1 :                 return i.initCombinedIteration(-1, k, v, nil)
     611           1 :         }
     612           1 :         return k, v
     613             : }
     614             : 
     615           1 : func (i *lazyCombinedIter) Next() (*InternalKey, base.LazyValue) {
     616           1 :         if i.combinedIterState.initialized {
     617           0 :                 return i.parent.rangeKey.iiter.Next()
     618           0 :         }
     619           1 :         k, v := i.pointIter.Next()
     620           1 :         if i.combinedIterState.triggered {
     621           1 :                 return i.initCombinedIteration(+1, k, v, nil)
     622           1 :         }
     623           1 :         return k, v
     624             : }
     625             : 
     626           1 : func (i *lazyCombinedIter) NextPrefix(succKey []byte) (*InternalKey, base.LazyValue) {
     627           1 :         if i.combinedIterState.initialized {
     628           0 :                 return i.parent.rangeKey.iiter.NextPrefix(succKey)
     629           0 :         }
     630           1 :         k, v := i.pointIter.NextPrefix(succKey)
     631           1 :         if i.combinedIterState.triggered {
     632           0 :                 return i.initCombinedIteration(+1, k, v, nil)
     633           0 :         }
     634           1 :         return k, v
     635             : }
     636             : 
     637           1 : func (i *lazyCombinedIter) Prev() (*InternalKey, base.LazyValue) {
     638           1 :         if i.combinedIterState.initialized {
     639           0 :                 return i.parent.rangeKey.iiter.Prev()
     640           0 :         }
     641           1 :         k, v := i.pointIter.Prev()
     642           1 :         if i.combinedIterState.triggered {
     643           1 :                 return i.initCombinedIteration(-1, k, v, nil)
     644           1 :         }
     645           1 :         return k, v
     646             : }
     647             : 
     648           1 : func (i *lazyCombinedIter) Error() error {
     649           1 :         if i.combinedIterState.initialized {
     650           0 :                 return i.parent.rangeKey.iiter.Error()
     651           0 :         }
     652           1 :         return i.pointIter.Error()
     653             : }
     654             : 
     655           1 : func (i *lazyCombinedIter) Close() error {
     656           1 :         if i.combinedIterState.initialized {
     657           0 :                 return i.parent.rangeKey.iiter.Close()
     658           0 :         }
     659           1 :         return i.pointIter.Close()
     660             : }
     661             : 
     662           1 : func (i *lazyCombinedIter) SetBounds(lower, upper []byte) {
     663           1 :         if i.combinedIterState.initialized {
     664           0 :                 i.parent.rangeKey.iiter.SetBounds(lower, upper)
     665           0 :                 return
     666           0 :         }
     667           1 :         i.pointIter.SetBounds(lower, upper)
     668             : }
     669             : 
     670           0 : func (i *lazyCombinedIter) String() string {
     671           0 :         if i.combinedIterState.initialized {
     672           0 :                 return i.parent.rangeKey.iiter.String()
     673           0 :         }
     674           0 :         return i.pointIter.String()
     675             : }

Generated by: LCOV version 1.14