LCOV - code coverage report
Current view: top level - pebble - iterator.go (source / functions) Hit Total Coverage
Test: 2023-10-23 08:17Z babd592d - tests only.lcov Lines: 1561 1708 91.4 %
Date: 2023-10-23 08:18:00 Functions: 0 0 -

          Line data    Source code
       1             : // Copyright 2011 The LevelDB-Go and Pebble Authors. All rights reserved. Use
       2             : // of this source code is governed by a BSD-style license that can be found in
       3             : // the LICENSE file.
       4             : 
       5             : package pebble
       6             : 
       7             : import (
       8             :         "bytes"
       9             :         "context"
      10             :         "io"
      11             :         "sync"
      12             :         "unsafe"
      13             : 
      14             :         "github.com/cockroachdb/errors"
      15             :         "github.com/cockroachdb/pebble/internal/base"
      16             :         "github.com/cockroachdb/pebble/internal/bytealloc"
      17             :         "github.com/cockroachdb/pebble/internal/fastrand"
      18             :         "github.com/cockroachdb/pebble/internal/humanize"
      19             :         "github.com/cockroachdb/pebble/internal/invariants"
      20             :         "github.com/cockroachdb/pebble/internal/keyspan"
      21             :         "github.com/cockroachdb/pebble/internal/manifest"
      22             :         "github.com/cockroachdb/pebble/internal/rangekey"
      23             :         "github.com/cockroachdb/pebble/sstable"
      24             :         "github.com/cockroachdb/redact"
      25             : )
      26             : 
      27             : // iterPos describes the state of the internal iterator, in terms of whether it
      28             : // is at the position returned to the user (cur), one ahead of the position
      29             : // returned (next for forward iteration and prev for reverse iteration). The cur
      30             : // position is split into two states, for forward and reverse iteration, since
      31             : // we need to differentiate for switching directions.
      32             : //
      33             : // There is subtlety in what is considered the current position of the Iterator.
      34             : // The internal iterator exposes a sequence of internal keys. There is not
      35             : // always a single internalIterator position corresponding to the position
      36             : // returned to the user. Consider the example:
      37             : //
      38             : //      a.MERGE.9 a.MERGE.8 a.MERGE.7 a.SET.6 b.DELETE.9 b.DELETE.5 b.SET.4
      39             : //      \                                   /
      40             : //        \       Iterator.Key() = 'a'    /
      41             : //
      42             : // The Iterator exposes one valid position at user key 'a' and the two exhausted
      43             : // positions at the beginning and end of iteration. The underlying
      44             : // internalIterator contains 7 valid positions and 2 exhausted positions.
      45             : //
      46             : // Iterator positioning methods must set iterPos to iterPosCur{Foward,Backward}
      47             : // iff the user key at the current internalIterator position equals the
      48             : // Iterator.Key returned to the user. This guarantees that a call to nextUserKey
      49             : // or prevUserKey will advance to the next or previous iterator position.
      50             : // iterPosCur{Forward,Backward} does not make any guarantee about the internal
      51             : // iterator position among internal keys with matching user keys, and it will
      52             : // vary subtly depending on the particular key kinds encountered. In the above
      53             : // example, the iterator returning 'a' may set iterPosCurForward if the internal
      54             : // iterator is positioned at any of a.MERGE.9, a.MERGE.8, a.MERGE.7 or a.SET.6.
      55             : //
      56             : // When setting iterPos to iterPosNext or iterPosPrev, the internal iterator
      57             : // must be advanced to the first internalIterator position at a user key greater
      58             : // (iterPosNext) or less (iterPosPrev) than the key returned to the user. An
      59             : // internalIterator position that's !Valid() must also be considered greater or
      60             : // less—depending on the direction of iteration—than the last valid Iterator
      61             : // position.
      62             : type iterPos int8
      63             : 
      64             : const (
      65             :         iterPosCurForward iterPos = 0
      66             :         iterPosNext       iterPos = 1
      67             :         iterPosPrev       iterPos = -1
      68             :         iterPosCurReverse iterPos = -2
      69             : 
      70             :         // For limited iteration. When the iterator is at iterPosCurForwardPaused
      71             :         // - Next*() call should behave as if the internal iterator is already
      72             :         //   at next (akin to iterPosNext).
      73             :         // - Prev*() call should behave as if the internal iterator is at the
      74             :         //   current key (akin to iterPosCurForward).
      75             :         //
      76             :         // Similar semantics apply to CurReversePaused.
      77             :         iterPosCurForwardPaused iterPos = 2
      78             :         iterPosCurReversePaused iterPos = -3
      79             : )
      80             : 
      81             : // Approximate gap in bytes between samples of data read during iteration.
      82             : // This is multiplied with a default ReadSamplingMultiplier of 1 << 4 to yield
      83             : // 1 << 20 (1MB). The 1MB factor comes from:
      84             : // https://github.com/cockroachdb/pebble/issues/29#issuecomment-494477985
      85             : const readBytesPeriod uint64 = 1 << 16
      86             : 
      87             : var errReversePrefixIteration = errors.New("pebble: unsupported reverse prefix iteration")
      88             : 
      89             : // IteratorMetrics holds per-iterator metrics. These do not change over the
      90             : // lifetime of the iterator.
      91             : type IteratorMetrics struct {
      92             :         // The read amplification experienced by this iterator. This is the sum of
      93             :         // the memtables, the L0 sublevels and the non-empty Ln levels. Higher read
      94             :         // amplification generally results in slower reads, though allowing higher
      95             :         // read amplification can also result in faster writes.
      96             :         ReadAmp int
      97             : }
      98             : 
      99             : // IteratorStatsKind describes the two kind of iterator stats.
     100             : type IteratorStatsKind int8
     101             : 
     102             : const (
     103             :         // InterfaceCall represents calls to Iterator.
     104             :         InterfaceCall IteratorStatsKind = iota
     105             :         // InternalIterCall represents calls by Iterator to its internalIterator.
     106             :         InternalIterCall
     107             :         // NumStatsKind is the number of kinds, and is used for array sizing.
     108             :         NumStatsKind
     109             : )
     110             : 
     111             : // IteratorStats contains iteration stats.
     112             : type IteratorStats struct {
     113             :         // ForwardSeekCount includes SeekGE, SeekPrefixGE, First.
     114             :         ForwardSeekCount [NumStatsKind]int
     115             :         // ReverseSeek includes SeekLT, Last.
     116             :         ReverseSeekCount [NumStatsKind]int
     117             :         // ForwardStepCount includes Next.
     118             :         ForwardStepCount [NumStatsKind]int
     119             :         // ReverseStepCount includes Prev.
     120             :         ReverseStepCount [NumStatsKind]int
     121             :         InternalStats    InternalIteratorStats
     122             :         RangeKeyStats    RangeKeyIteratorStats
     123             : }
     124             : 
     125             : var _ redact.SafeFormatter = &IteratorStats{}
     126             : 
     127             : // InternalIteratorStats contains miscellaneous stats produced by internal
     128             : // iterators.
     129             : type InternalIteratorStats = base.InternalIteratorStats
     130             : 
     131             : // RangeKeyIteratorStats contains miscellaneous stats about range keys
     132             : // encountered by the iterator.
     133             : type RangeKeyIteratorStats struct {
     134             :         // Count records the number of range keys encountered during
     135             :         // iteration. Range keys may be counted multiple times if the iterator
     136             :         // leaves a range key's bounds and then returns.
     137             :         Count int
     138             :         // ContainedPoints records the number of point keys encountered within the
     139             :         // bounds of a range key. Note that this includes point keys with suffixes
     140             :         // that sort both above and below the covering range key's suffix.
     141             :         ContainedPoints int
     142             :         // SkippedPoints records the count of the subset of ContainedPoints point
     143             :         // keys that were skipped during iteration due to range-key masking. It does
     144             :         // not include point keys that were never loaded because a
     145             :         // RangeKeyMasking.Filter excluded the entire containing block.
     146             :         SkippedPoints int
     147             : }
     148             : 
     149             : // Merge adds all of the argument's statistics to the receiver. It may be used
     150             : // to accumulate stats across multiple iterators.
     151           1 : func (s *RangeKeyIteratorStats) Merge(o RangeKeyIteratorStats) {
     152           1 :         s.Count += o.Count
     153           1 :         s.ContainedPoints += o.ContainedPoints
     154           1 :         s.SkippedPoints += o.SkippedPoints
     155           1 : }
     156             : 
     157             : // LazyValue is a lazy value. See the long comment in base.LazyValue.
     158             : type LazyValue = base.LazyValue
     159             : 
     160             : // Iterator iterates over a DB's key/value pairs in key order.
     161             : //
     162             : // An iterator must be closed after use, but it is not necessary to read an
     163             : // iterator until exhaustion.
     164             : //
     165             : // An iterator is not goroutine-safe, but it is safe to use multiple iterators
     166             : // concurrently, with each in a dedicated goroutine.
     167             : //
     168             : // It is also safe to use an iterator concurrently with modifying its
     169             : // underlying DB, if that DB permits modification. However, the resultant
     170             : // key/value pairs are not guaranteed to be a consistent snapshot of that DB
     171             : // at a particular point in time.
     172             : //
     173             : // If an iterator encounters an error during any operation, it is stored by
     174             : // the Iterator and surfaced through the Error method. All absolute
     175             : // positioning methods (eg, SeekLT, SeekGT, First, Last, etc) reset any
     176             : // accumulated error before positioning. All relative positioning methods (eg,
     177             : // Next, Prev) return without advancing if the iterator has an accumulated
     178             : // error.
     179             : type Iterator struct {
     180             :         // The context is stored here since (a) Iterators are expected to be
     181             :         // short-lived (since they pin memtables and sstables), (b) plumbing a
     182             :         // context into every method is very painful, (c) they do not (yet) respect
     183             :         // context cancellation and are only used for tracing.
     184             :         ctx       context.Context
     185             :         opts      IterOptions
     186             :         merge     Merge
     187             :         comparer  base.Comparer
     188             :         iter      internalIterator
     189             :         pointIter internalIterator
     190             :         // Either readState or version is set, but not both.
     191             :         readState *readState
     192             :         version   *version
     193             :         // rangeKey holds iteration state specific to iteration over range keys.
     194             :         // The range key field may be nil if the Iterator has never been configured
     195             :         // to iterate over range keys. Its non-nilness cannot be used to determine
     196             :         // if the Iterator is currently iterating over range keys: For that, consult
     197             :         // the IterOptions using opts.rangeKeys(). If non-nil, its rangeKeyIter
     198             :         // field is guaranteed to be non-nil too.
     199             :         rangeKey *iteratorRangeKeyState
     200             :         // rangeKeyMasking holds state for range-key masking of point keys.
     201             :         rangeKeyMasking rangeKeyMasking
     202             :         err             error
     203             :         // When iterValidityState=IterValid, key represents the current key, which
     204             :         // is backed by keyBuf.
     205             :         key    []byte
     206             :         keyBuf []byte
     207             :         value  LazyValue
     208             :         // For use in LazyValue.Clone.
     209             :         valueBuf []byte
     210             :         fetcher  base.LazyFetcher
     211             :         // For use in LazyValue.Value.
     212             :         lazyValueBuf []byte
     213             :         valueCloser  io.Closer
     214             :         // boundsBuf holds two buffers used to store the lower and upper bounds.
     215             :         // Whenever the Iterator's bounds change, the new bounds are copied into
     216             :         // boundsBuf[boundsBufIdx]. The two bounds share a slice to reduce
     217             :         // allocations. opts.LowerBound and opts.UpperBound point into this slice.
     218             :         boundsBuf    [2][]byte
     219             :         boundsBufIdx int
     220             :         // iterKey, iterValue reflect the latest position of iter, except when
     221             :         // SetBounds is called. In that case, these are explicitly set to nil.
     222             :         iterKey             *InternalKey
     223             :         iterValue           LazyValue
     224             :         alloc               *iterAlloc
     225             :         getIterAlloc        *getIterAlloc
     226             :         prefixOrFullSeekKey []byte
     227             :         readSampling        readSampling
     228             :         stats               IteratorStats
     229             :         externalReaders     [][]*sstable.Reader
     230             : 
     231             :         // Following fields used when constructing an iterator stack, eg, in Clone
     232             :         // and SetOptions or when re-fragmenting a batch's range keys/range dels.
     233             :         // Non-nil if this Iterator includes a Batch.
     234             :         batch            *Batch
     235             :         newIters         tableNewIters
     236             :         newIterRangeKey  keyspan.TableNewSpanIter
     237             :         lazyCombinedIter lazyCombinedIter
     238             :         seqNum           uint64
     239             :         // batchSeqNum is used by Iterators over indexed batches to detect when the
     240             :         // underlying batch has been mutated. The batch beneath an indexed batch may
     241             :         // be mutated while the Iterator is open, but new keys are not surfaced
     242             :         // until the next call to SetOptions.
     243             :         batchSeqNum uint64
     244             :         // batch{PointIter,RangeDelIter,RangeKeyIter} are used when the Iterator is
     245             :         // configured to read through an indexed batch. If a batch is set, these
     246             :         // iterators will be included within the iterator stack regardless of
     247             :         // whether the batch currently contains any keys of their kind. These
     248             :         // pointers are used during a call to SetOptions to refresh the Iterator's
     249             :         // view of its indexed batch.
     250             :         batchPointIter    batchIter
     251             :         batchRangeDelIter keyspan.Iter
     252             :         batchRangeKeyIter keyspan.Iter
     253             :         // merging is a pointer to this iterator's point merging iterator. It
     254             :         // appears here because key visibility is handled by the merging iterator.
     255             :         // During SetOptions on an iterator over an indexed batch, this field is
     256             :         // used to update the merging iterator's batch snapshot.
     257             :         merging *mergingIter
     258             : 
     259             :         // Keeping the bools here after all the 8 byte aligned fields shrinks the
     260             :         // sizeof this struct by 24 bytes.
     261             : 
     262             :         // INVARIANT:
     263             :         // iterValidityState==IterAtLimit <=>
     264             :         //  pos==iterPosCurForwardPaused || pos==iterPosCurReversePaused
     265             :         iterValidityState IterValidityState
     266             :         // Set to true by SetBounds, SetOptions. Causes the Iterator to appear
     267             :         // exhausted externally, while preserving the correct iterValidityState for
     268             :         // the iterator's internal state. Preserving the correct internal validity
     269             :         // is used for SeekPrefixGE(..., trySeekUsingNext), and SeekGE/SeekLT
     270             :         // optimizations after "no-op" calls to SetBounds and SetOptions.
     271             :         requiresReposition bool
     272             :         // The position of iter. When this is iterPos{Prev,Next} the iter has been
     273             :         // moved past the current key-value, which can only happen if
     274             :         // iterValidityState=IterValid, i.e., there is something to return to the
     275             :         // client for the current position.
     276             :         pos iterPos
     277             :         // Relates to the prefixOrFullSeekKey field above.
     278             :         hasPrefix bool
     279             :         // Used for deriving the value of SeekPrefixGE(..., trySeekUsingNext),
     280             :         // and SeekGE/SeekLT optimizations
     281             :         lastPositioningOp lastPositioningOpKind
     282             :         // Used for determining when it's safe to perform SeekGE optimizations that
     283             :         // reuse the iterator state to avoid the cost of a full seek if the iterator
     284             :         // is already positioned in the correct place. If the iterator's view of its
     285             :         // indexed batch was just refreshed, some optimizations cannot be applied on
     286             :         // the first seek after the refresh:
     287             :         // - SeekGE has a no-op optimization that does not seek on the internal
     288             :         //   iterator at all if the iterator is already in the correct place.
     289             :         //   This optimization cannot be performed if the internal iterator was
     290             :         //   last positioned when the iterator had a different view of an
     291             :         //   underlying batch.
     292             :         // - Seek[Prefix]GE set flags.TrySeekUsingNext()=true when the seek key is
     293             :         //   greater than the previous operation's seek key, under the expectation
     294             :         //   that the various internal iterators can use their current position to
     295             :         //   avoid a full expensive re-seek. This applies to the batchIter as well.
     296             :         //   However, if the view of the batch was just refreshed, the batchIter's
     297             :         //   position is not useful because it may already be beyond new keys less
     298             :         //   than the seek key. To prevent the use of this optimization in
     299             :         //   batchIter, Seek[Prefix]GE set flags.BatchJustRefreshed()=true if this
     300             :         //   bit is enabled.
     301             :         batchJustRefreshed bool
     302             :         // Used for an optimization in external iterators to reduce the number of
     303             :         // merging levels.
     304             :         forwardOnly bool
     305             :         // closePointIterOnce is set to true if this point iter can only be Close()d
     306             :         // once, _and_ closing i.iter and then i.pointIter would close i.pointIter
     307             :         // twice. This is necessary to track if the point iter is an internal iterator
     308             :         // that could release its resources to a pool on Close(), making it harder for
     309             :         // that iterator to make its own closes idempotent.
     310             :         //
     311             :         // TODO(bilal): Update SetOptions to always close out point key iterators when
     312             :         // they won't be used, so that Close() doesn't need to default to closing
     313             :         // point iterators twice.
     314             :         closePointIterOnce bool
     315             :         // Used in some tests to disable the random disabling of seek optimizations.
     316             :         forceEnableSeekOpt bool
     317             :         // Set to true if NextPrefix is not currently permitted. Defaults to false
     318             :         // in case an iterator never had any bounds.
     319             :         nextPrefixNotPermittedByUpperBound bool
     320             : }
     321             : 
     322             : // cmp is a convenience shorthand for the i.comparer.Compare function.
     323           1 : func (i *Iterator) cmp(a, b []byte) int {
     324           1 :         return i.comparer.Compare(a, b)
     325           1 : }
     326             : 
     327             : // split is a convenience shorthand for the i.comparer.Split function.
     328           1 : func (i *Iterator) split(a []byte) int {
     329           1 :         return i.comparer.Split(a)
     330           1 : }
     331             : 
     332             : // equal is a convenience shorthand for the i.comparer.Equal function.
     333           1 : func (i *Iterator) equal(a, b []byte) bool {
     334           1 :         return i.comparer.Equal(a, b)
     335           1 : }
     336             : 
     337             : // iteratorRangeKeyState holds an iterator's range key iteration state.
     338             : type iteratorRangeKeyState struct {
     339             :         opts  *IterOptions
     340             :         cmp   base.Compare
     341             :         split base.Split
     342             :         // rangeKeyIter holds the range key iterator stack that iterates over the
     343             :         // merged spans across the entirety of the LSM.
     344             :         rangeKeyIter keyspan.FragmentIterator
     345             :         iiter        keyspan.InterleavingIter
     346             :         // stale is set to true when the range key state recorded here (in start,
     347             :         // end and keys) may not be in sync with the current range key at the
     348             :         // interleaving iterator's current position.
     349             :         //
     350             :         // When the interelaving iterator passes over a new span, it invokes the
     351             :         // SpanChanged hook defined on the `rangeKeyMasking` type,  which sets stale
     352             :         // to true if the span is non-nil.
     353             :         //
     354             :         // The parent iterator may not be positioned over the interleaving
     355             :         // iterator's current position (eg, i.iterPos = iterPos{Next,Prev}), so
     356             :         // {keys,start,end} are only updated to the new range key during a call to
     357             :         // Iterator.saveRangeKey.
     358             :         stale bool
     359             :         // updated is used to signal to the Iterator client whether the state of
     360             :         // range keys has changed since the previous iterator position through the
     361             :         // `RangeKeyChanged` method. It's set to true during an Iterator positioning
     362             :         // operation that changes the state of the current range key. Each Iterator
     363             :         // positioning operation sets it back to false before executing.
     364             :         //
     365             :         // TODO(jackson): The lifecycle of {stale,updated,prevPosHadRangeKey} is
     366             :         // intricate and confusing. Try to refactor to reduce complexity.
     367             :         updated bool
     368             :         // prevPosHadRangeKey records whether the previous Iterator position had a
     369             :         // range key (HasPointAndRage() = (_, true)). It's updated at the beginning
     370             :         // of each new Iterator positioning operation. It's required by saveRangeKey to
     371             :         // to set `updated` appropriately: Without this record of the previous iterator
     372             :         // state, it's ambiguous whether an iterator only temporarily stepped onto a
     373             :         // position without a range key.
     374             :         prevPosHadRangeKey bool
     375             :         // rangeKeyOnly is set to true if at the current iterator position there is
     376             :         // no point key, only a range key start boundary.
     377             :         rangeKeyOnly bool
     378             :         // hasRangeKey is true when the current iterator position has a covering
     379             :         // range key (eg, a range key with bounds [<lower>,<upper>) such that
     380             :         // <lower> ≤ Key() < <upper>).
     381             :         hasRangeKey bool
     382             :         // start and end are the [start, end) boundaries of the current range keys.
     383             :         start []byte
     384             :         end   []byte
     385             : 
     386             :         rangeKeyBuffers
     387             : 
     388             :         // iterConfig holds fields that are used for the construction of the
     389             :         // iterator stack, but do not need to be directly accessed during iteration.
     390             :         // This struct is bundled within the iteratorRangeKeyState struct to reduce
     391             :         // allocations.
     392             :         iterConfig rangekey.UserIteratorConfig
     393             : }
     394             : 
     395             : type rangeKeyBuffers struct {
     396             :         // keys is sorted by Suffix ascending.
     397             :         keys []RangeKeyData
     398             :         // buf is used to save range-key data before moving the range-key iterator.
     399             :         // Start and end boundaries, suffixes and values are all copied into buf.
     400             :         buf bytealloc.A
     401             :         // internal holds buffers used by the range key internal iterators.
     402             :         internal rangekey.Buffers
     403             : }
     404             : 
     405           1 : func (b *rangeKeyBuffers) PrepareForReuse() {
     406           1 :         const maxKeysReuse = 100
     407           1 :         if len(b.keys) > maxKeysReuse {
     408           0 :                 b.keys = nil
     409           0 :         }
     410             :         // Avoid caching the key buf if it is overly large. The constant is
     411             :         // fairly arbitrary.
     412           1 :         if cap(b.buf) >= maxKeyBufCacheSize {
     413           1 :                 b.buf = nil
     414           1 :         } else {
     415           1 :                 b.buf = b.buf[:0]
     416           1 :         }
     417           1 :         b.internal.PrepareForReuse()
     418             : }
     419             : 
     420           1 : func (i *iteratorRangeKeyState) init(cmp base.Compare, split base.Split, opts *IterOptions) {
     421           1 :         i.cmp = cmp
     422           1 :         i.split = split
     423           1 :         i.opts = opts
     424           1 : }
     425             : 
     426             : var iterRangeKeyStateAllocPool = sync.Pool{
     427           1 :         New: func() interface{} {
     428           1 :                 return &iteratorRangeKeyState{}
     429           1 :         },
     430             : }
     431             : 
     432             : // isEphemeralPosition returns true iff the current iterator position is
     433             : // ephemeral, and won't be visited during subsequent relative positioning
     434             : // operations.
     435             : //
     436             : // The iterator position resulting from a SeekGE or SeekPrefixGE that lands on a
     437             : // straddling range key without a coincident point key is such a position.
     438           1 : func (i *Iterator) isEphemeralPosition() bool {
     439           1 :         return i.opts.rangeKeys() && i.rangeKey != nil && i.rangeKey.rangeKeyOnly &&
     440           1 :                 !i.equal(i.rangeKey.start, i.key)
     441           1 : }
     442             : 
     443             : type lastPositioningOpKind int8
     444             : 
     445             : const (
     446             :         unknownLastPositionOp lastPositioningOpKind = iota
     447             :         seekPrefixGELastPositioningOp
     448             :         seekGELastPositioningOp
     449             :         seekLTLastPositioningOp
     450             :         // invalidatedLastPositionOp is similar to unknownLastPositionOp and the
     451             :         // only reason to distinguish this is for the wider set of SeekGE
     452             :         // optimizations we permit for the external iterator Iterator.forwardOnly
     453             :         // case. Most code predicates should be doing equality comparisons with one
     454             :         // of the seek* enum values, so this duplication should not result in code
     455             :         // of the form:
     456             :         //  if unknownLastPositionOp || invalidLastPositionOp
     457             :         invalidatedLastPositionOp
     458             : )
     459             : 
     460             : // Limited iteration mode. Not for use with prefix iteration.
     461             : //
     462             : // SeekGE, SeekLT, Prev, Next have WithLimit variants, that pause the iterator
     463             : // at the limit in a best-effort manner. The client should behave correctly
     464             : // even if the limits are ignored. These limits are not "deep", in that they
     465             : // are not passed down to the underlying collection of internalIterators. This
     466             : // is because the limits are transient, and apply only until the next
     467             : // iteration call. They serve mainly as a way to bound the amount of work when
     468             : // two (or more) Iterators are being coordinated at a higher level.
     469             : //
     470             : // In limited iteration mode:
     471             : // - Avoid using Iterator.Valid if the last call was to a *WithLimit() method.
     472             : //   The return value from the *WithLimit() method provides a more precise
     473             : //   disposition.
     474             : // - The limit is exclusive for forward and inclusive for reverse.
     475             : //
     476             : //
     477             : // Limited iteration mode & range keys
     478             : //
     479             : // Limited iteration interacts with range-key iteration. When range key
     480             : // iteration is enabled, range keys are interleaved at their start boundaries.
     481             : // Limited iteration must ensure that if a range key exists within the limit,
     482             : // the iterator visits the range key.
     483             : //
     484             : // During forward limited iteration, this is trivial: An overlapping range key
     485             : // must have a start boundary less than the limit, and the range key's start
     486             : // boundary will be interleaved and found to be within the limit.
     487             : //
     488             : // During reverse limited iteration, the tail of the range key may fall within
     489             : // the limit. The range key must be surfaced even if the range key's start
     490             : // boundary is less than the limit, and if there are no point keys between the
     491             : // current iterator position and the limit. To provide this guarantee, reverse
     492             : // limited iteration ignores the limit as long as there is a range key
     493             : // overlapping the iteration position.
     494             : 
     495             : // IterValidityState captures the state of the Iterator.
     496             : type IterValidityState int8
     497             : 
     498             : const (
     499             :         // IterExhausted represents an Iterator that is exhausted.
     500             :         IterExhausted IterValidityState = iota
     501             :         // IterValid represents an Iterator that is valid.
     502             :         IterValid
     503             :         // IterAtLimit represents an Iterator that has a non-exhausted
     504             :         // internalIterator, but has reached a limit without any key for the
     505             :         // caller.
     506             :         IterAtLimit
     507             : )
     508             : 
     509             : // readSampling stores variables used to sample a read to trigger a read
     510             : // compaction
     511             : type readSampling struct {
     512             :         bytesUntilReadSampling uint64
     513             :         initialSamplePassed    bool
     514             :         pendingCompactions     readCompactionQueue
     515             :         // forceReadSampling is used for testing purposes to force a read sample on every
     516             :         // call to Iterator.maybeSampleRead()
     517             :         forceReadSampling bool
     518             : }
     519             : 
     520           1 : func (i *Iterator) findNextEntry(limit []byte) {
     521           1 :         i.iterValidityState = IterExhausted
     522           1 :         i.pos = iterPosCurForward
     523           1 :         if i.opts.rangeKeys() && i.rangeKey != nil {
     524           1 :                 i.rangeKey.rangeKeyOnly = false
     525           1 :         }
     526             : 
     527             :         // Close the closer for the current value if one was open.
     528           1 :         if i.closeValueCloser() != nil {
     529           0 :                 return
     530           0 :         }
     531             : 
     532           1 :         for i.iterKey != nil {
     533           1 :                 key := *i.iterKey
     534           1 : 
     535           1 :                 if i.hasPrefix {
     536           1 :                         if n := i.split(key.UserKey); !i.equal(i.prefixOrFullSeekKey, key.UserKey[:n]) {
     537           1 :                                 return
     538           1 :                         }
     539             :                 }
     540             :                 // Compare with limit every time we start at a different user key.
     541             :                 // Note that given the best-effort contract of limit, we could avoid a
     542             :                 // comparison in the common case by doing this only after
     543             :                 // i.nextUserKey is called for the deletes below. However that makes
     544             :                 // the behavior non-deterministic (since the behavior will vary based
     545             :                 // on what has been compacted), which makes it hard to test with the
     546             :                 // metamorphic test. So we forego that performance optimization.
     547           1 :                 if limit != nil && i.cmp(limit, i.iterKey.UserKey) <= 0 {
     548           1 :                         i.iterValidityState = IterAtLimit
     549           1 :                         i.pos = iterPosCurForwardPaused
     550           1 :                         return
     551           1 :                 }
     552             : 
     553             :                 // If the user has configured a SkipPoint function, invoke it to see
     554             :                 // whether we should skip over the current user key.
     555           1 :                 if i.opts.SkipPoint != nil && key.Kind() != InternalKeyKindRangeKeySet && i.opts.SkipPoint(i.iterKey.UserKey) {
     556           1 :                         // NB: We could call nextUserKey, but in some cases the SkipPoint
     557           1 :                         // predicate function might be cheaper than nextUserKey's key copy
     558           1 :                         // and key comparison. This should be the case for MVCC suffix
     559           1 :                         // comparisons, for example. In the future, we could expand the
     560           1 :                         // SkipPoint interface to give the implementor more control over
     561           1 :                         // whether we skip over just the internal key, the user key, or even
     562           1 :                         // the key prefix.
     563           1 :                         i.stats.ForwardStepCount[InternalIterCall]++
     564           1 :                         i.iterKey, i.iterValue = i.iter.Next()
     565           1 :                         continue
     566             :                 }
     567             : 
     568           1 :                 switch key.Kind() {
     569           1 :                 case InternalKeyKindRangeKeySet:
     570           1 :                         // Save the current key.
     571           1 :                         i.keyBuf = append(i.keyBuf[:0], key.UserKey...)
     572           1 :                         i.key = i.keyBuf
     573           1 :                         i.value = LazyValue{}
     574           1 :                         // There may also be a live point key at this userkey that we have
     575           1 :                         // not yet read. We need to find the next entry with this user key
     576           1 :                         // to find it. Save the range key so we don't lose it when we Next
     577           1 :                         // the underlying iterator.
     578           1 :                         i.saveRangeKey()
     579           1 :                         pointKeyExists := i.nextPointCurrentUserKey()
     580           1 :                         if i.err != nil {
     581           0 :                                 i.iterValidityState = IterExhausted
     582           0 :                                 return
     583           0 :                         }
     584           1 :                         i.rangeKey.rangeKeyOnly = !pointKeyExists
     585           1 :                         i.iterValidityState = IterValid
     586           1 :                         return
     587             : 
     588           1 :                 case InternalKeyKindDelete, InternalKeyKindSingleDelete, InternalKeyKindDeleteSized:
     589           1 :                         // NB: treating InternalKeyKindSingleDelete as equivalent to DEL is not
     590           1 :                         // only simpler, but is also necessary for correctness due to
     591           1 :                         // InternalKeyKindSSTableInternalObsoleteBit.
     592           1 :                         i.nextUserKey()
     593           1 :                         continue
     594             : 
     595           1 :                 case InternalKeyKindSet, InternalKeyKindSetWithDelete:
     596           1 :                         i.keyBuf = append(i.keyBuf[:0], key.UserKey...)
     597           1 :                         i.key = i.keyBuf
     598           1 :                         i.value = i.iterValue
     599           1 :                         i.iterValidityState = IterValid
     600           1 :                         i.saveRangeKey()
     601           1 :                         return
     602             : 
     603           1 :                 case InternalKeyKindMerge:
     604           1 :                         // Resolving the merge may advance us to the next point key, which
     605           1 :                         // may be covered by a different set of range keys. Save the range
     606           1 :                         // key state so we don't lose it.
     607           1 :                         i.saveRangeKey()
     608           1 :                         if i.mergeForward(key) {
     609           1 :                                 i.iterValidityState = IterValid
     610           1 :                                 return
     611           1 :                         }
     612             : 
     613             :                         // The merge didn't yield a valid key, either because the value
     614             :                         // merger indicated it should be deleted, or because an error was
     615             :                         // encountered.
     616           1 :                         i.iterValidityState = IterExhausted
     617           1 :                         if i.err != nil {
     618           0 :                                 return
     619           0 :                         }
     620           1 :                         if i.pos != iterPosNext {
     621           0 :                                 i.nextUserKey()
     622           0 :                         }
     623           1 :                         if i.closeValueCloser() != nil {
     624           0 :                                 return
     625           0 :                         }
     626           1 :                         i.pos = iterPosCurForward
     627             : 
     628           0 :                 default:
     629           0 :                         i.err = base.CorruptionErrorf("pebble: invalid internal key kind: %d", errors.Safe(key.Kind()))
     630           0 :                         i.iterValidityState = IterExhausted
     631           0 :                         return
     632             :                 }
     633             :         }
     634             : }
     635             : 
     636           1 : func (i *Iterator) nextPointCurrentUserKey() bool {
     637           1 :         // If the user has configured a SkipPoint function and the current user key
     638           1 :         // would be skipped by it, there's no need to step forward looking for a
     639           1 :         // point key. If we were to find one, it should be skipped anyways.
     640           1 :         if i.opts.SkipPoint != nil && i.opts.SkipPoint(i.key) {
     641           1 :                 return false
     642           1 :         }
     643             : 
     644           1 :         i.pos = iterPosCurForward
     645           1 : 
     646           1 :         i.iterKey, i.iterValue = i.iter.Next()
     647           1 :         i.stats.ForwardStepCount[InternalIterCall]++
     648           1 :         if i.iterKey == nil || !i.equal(i.key, i.iterKey.UserKey) {
     649           1 :                 i.pos = iterPosNext
     650           1 :                 return false
     651           1 :         }
     652             : 
     653           1 :         key := *i.iterKey
     654           1 :         switch key.Kind() {
     655           0 :         case InternalKeyKindRangeKeySet:
     656           0 :                 // RangeKeySets must always be interleaved as the first internal key
     657           0 :                 // for a user key.
     658           0 :                 i.err = base.CorruptionErrorf("pebble: unexpected range key set mid-user key")
     659           0 :                 return false
     660             : 
     661           1 :         case InternalKeyKindDelete, InternalKeyKindSingleDelete, InternalKeyKindDeleteSized:
     662           1 :                 // NB: treating InternalKeyKindSingleDelete as equivalent to DEL is not
     663           1 :                 // only simpler, but is also necessary for correctness due to
     664           1 :                 // InternalKeyKindSSTableInternalObsoleteBit.
     665           1 :                 return false
     666             : 
     667           1 :         case InternalKeyKindSet, InternalKeyKindSetWithDelete:
     668           1 :                 i.value = i.iterValue
     669           1 :                 return true
     670             : 
     671           1 :         case InternalKeyKindMerge:
     672           1 :                 return i.mergeForward(key)
     673             : 
     674           0 :         default:
     675           0 :                 i.err = base.CorruptionErrorf("pebble: invalid internal key kind: %d", errors.Safe(key.Kind()))
     676           0 :                 return false
     677             :         }
     678             : }
     679             : 
     680             : // mergeForward resolves a MERGE key, advancing the underlying iterator forward
     681             : // to merge with subsequent keys with the same userkey. mergeForward returns a
     682             : // boolean indicating whether or not the merge yielded a valid key. A merge may
     683             : // not yield a valid key if an error occurred, in which case i.err is non-nil,
     684             : // or the user's value merger specified the key to be deleted.
     685             : //
     686             : // mergeForward does not update iterValidityState.
     687           1 : func (i *Iterator) mergeForward(key base.InternalKey) (valid bool) {
     688           1 :         var iterValue []byte
     689           1 :         iterValue, _, i.err = i.iterValue.Value(nil)
     690           1 :         if i.err != nil {
     691           0 :                 return false
     692           0 :         }
     693           1 :         var valueMerger ValueMerger
     694           1 :         valueMerger, i.err = i.merge(key.UserKey, iterValue)
     695           1 :         if i.err != nil {
     696           0 :                 return false
     697           0 :         }
     698             : 
     699           1 :         i.mergeNext(key, valueMerger)
     700           1 :         if i.err != nil {
     701           0 :                 return false
     702           0 :         }
     703             : 
     704           1 :         var needDelete bool
     705           1 :         var value []byte
     706           1 :         value, needDelete, i.valueCloser, i.err = finishValueMerger(
     707           1 :                 valueMerger, true /* includesBase */)
     708           1 :         i.value = base.MakeInPlaceValue(value)
     709           1 :         if i.err != nil {
     710           0 :                 return false
     711           0 :         }
     712           1 :         if needDelete {
     713           1 :                 _ = i.closeValueCloser()
     714           1 :                 return false
     715           1 :         }
     716           1 :         return true
     717             : }
     718             : 
     719           1 : func (i *Iterator) closeValueCloser() error {
     720           1 :         if i.valueCloser != nil {
     721           0 :                 i.err = i.valueCloser.Close()
     722           0 :                 i.valueCloser = nil
     723           0 :         }
     724           1 :         return i.err
     725             : }
     726             : 
     727           1 : func (i *Iterator) nextUserKey() {
     728           1 :         if i.iterKey == nil {
     729           1 :                 return
     730           1 :         }
     731           1 :         trailer := i.iterKey.Trailer
     732           1 :         done := i.iterKey.Trailer <= base.InternalKeyZeroSeqnumMaxTrailer
     733           1 :         if i.iterValidityState != IterValid {
     734           1 :                 i.keyBuf = append(i.keyBuf[:0], i.iterKey.UserKey...)
     735           1 :                 i.key = i.keyBuf
     736           1 :         }
     737           1 :         for {
     738           1 :                 i.iterKey, i.iterValue = i.iter.Next()
     739           1 :                 i.stats.ForwardStepCount[InternalIterCall]++
     740           1 :                 // NB: We're guaranteed to be on the next user key if the previous key
     741           1 :                 // had a zero sequence number (`done`), or the new key has a trailer
     742           1 :                 // greater or equal to the previous key's trailer. This is true because
     743           1 :                 // internal keys with the same user key are sorted by Trailer in
     744           1 :                 // strictly monotonically descending order. We expect the trailer
     745           1 :                 // optimization to trigger around 50% of the time with randomly
     746           1 :                 // distributed writes. We expect it to trigger very frequently when
     747           1 :                 // iterating through ingested sstables, which contain keys that all have
     748           1 :                 // the same sequence number.
     749           1 :                 if done || i.iterKey == nil || i.iterKey.Trailer >= trailer {
     750           1 :                         break
     751             :                 }
     752           1 :                 if !i.equal(i.key, i.iterKey.UserKey) {
     753           1 :                         break
     754             :                 }
     755           1 :                 done = i.iterKey.Trailer <= base.InternalKeyZeroSeqnumMaxTrailer
     756           1 :                 trailer = i.iterKey.Trailer
     757             :         }
     758             : }
     759             : 
     760           1 : func (i *Iterator) maybeSampleRead() {
     761           1 :         // This method is only called when a public method of Iterator is
     762           1 :         // returning, and below we exclude the case were the iterator is paused at
     763           1 :         // a limit. The effect of these choices is that keys that are deleted, but
     764           1 :         // are encountered during iteration, are not accounted for in the read
     765           1 :         // sampling and will not cause read driven compactions, even though we are
     766           1 :         // incurring cost in iterating over them. And this issue is not limited to
     767           1 :         // Iterator, which does not see the effect of range deletes, which may be
     768           1 :         // causing iteration work in mergingIter. It is not clear at this time
     769           1 :         // whether this is a deficiency worth addressing.
     770           1 :         if i.iterValidityState != IterValid {
     771           1 :                 return
     772           1 :         }
     773           1 :         if i.readState == nil {
     774           1 :                 return
     775           1 :         }
     776           1 :         if i.readSampling.forceReadSampling {
     777           1 :                 i.sampleRead()
     778           1 :                 return
     779           1 :         }
     780           1 :         samplingPeriod := int32(int64(readBytesPeriod) * i.readState.db.opts.Experimental.ReadSamplingMultiplier)
     781           1 :         if samplingPeriod <= 0 {
     782           0 :                 return
     783           0 :         }
     784           1 :         bytesRead := uint64(len(i.key) + i.value.Len())
     785           1 :         for i.readSampling.bytesUntilReadSampling < bytesRead {
     786           1 :                 i.readSampling.bytesUntilReadSampling += uint64(fastrand.Uint32n(2 * uint32(samplingPeriod)))
     787           1 :                 // The block below tries to adjust for the case where this is the
     788           1 :                 // first read in a newly-opened iterator. As bytesUntilReadSampling
     789           1 :                 // starts off at zero, we don't want to sample the first read of
     790           1 :                 // every newly-opened iterator, but we do want to sample some of them.
     791           1 :                 if !i.readSampling.initialSamplePassed {
     792           1 :                         i.readSampling.initialSamplePassed = true
     793           1 :                         if fastrand.Uint32n(uint32(i.readSampling.bytesUntilReadSampling)) > uint32(bytesRead) {
     794           1 :                                 continue
     795             :                         }
     796             :                 }
     797           1 :                 i.sampleRead()
     798             :         }
     799           1 :         i.readSampling.bytesUntilReadSampling -= bytesRead
     800             : }
     801             : 
     802           1 : func (i *Iterator) sampleRead() {
     803           1 :         var topFile *manifest.FileMetadata
     804           1 :         topLevel, numOverlappingLevels := numLevels, 0
     805           1 :         mi := i.merging
     806           1 :         if mi == nil {
     807           1 :                 return
     808           1 :         }
     809           1 :         if len(mi.levels) > 1 {
     810           1 :                 mi.ForEachLevelIter(func(li *levelIter) bool {
     811           1 :                         l := manifest.LevelToInt(li.level)
     812           1 :                         if f := li.iterFile; f != nil {
     813           1 :                                 var containsKey bool
     814           1 :                                 if i.pos == iterPosNext || i.pos == iterPosCurForward ||
     815           1 :                                         i.pos == iterPosCurForwardPaused {
     816           1 :                                         containsKey = i.cmp(f.SmallestPointKey.UserKey, i.key) <= 0
     817           1 :                                 } else if i.pos == iterPosPrev || i.pos == iterPosCurReverse ||
     818           1 :                                         i.pos == iterPosCurReversePaused {
     819           1 :                                         containsKey = i.cmp(f.LargestPointKey.UserKey, i.key) >= 0
     820           1 :                                 }
     821             :                                 // Do nothing if the current key is not contained in f's
     822             :                                 // bounds. We could seek the LevelIterator at this level
     823             :                                 // to find the right file, but the performance impacts of
     824             :                                 // doing that are significant enough to negate the benefits
     825             :                                 // of read sampling in the first place. See the discussion
     826             :                                 // at:
     827             :                                 // https://github.com/cockroachdb/pebble/pull/1041#issuecomment-763226492
     828           1 :                                 if containsKey {
     829           1 :                                         numOverlappingLevels++
     830           1 :                                         if numOverlappingLevels >= 2 {
     831           1 :                                                 // Terminate the loop early if at least 2 overlapping levels are found.
     832           1 :                                                 return true
     833           1 :                                         }
     834           1 :                                         topLevel = l
     835           1 :                                         topFile = f
     836             :                                 }
     837             :                         }
     838           1 :                         return false
     839             :                 })
     840             :         }
     841           1 :         if topFile == nil || topLevel >= numLevels {
     842           1 :                 return
     843           1 :         }
     844           1 :         if numOverlappingLevels >= 2 {
     845           1 :                 allowedSeeks := topFile.AllowedSeeks.Add(-1)
     846           1 :                 if allowedSeeks == 0 {
     847           1 : 
     848           1 :                         // Since the compaction queue can handle duplicates, we can keep
     849           1 :                         // adding to the queue even once allowedSeeks hits 0.
     850           1 :                         // In fact, we NEED to keep adding to the queue, because the queue
     851           1 :                         // is small and evicts older and possibly useful compactions.
     852           1 :                         topFile.AllowedSeeks.Add(topFile.InitAllowedSeeks)
     853           1 : 
     854           1 :                         read := readCompaction{
     855           1 :                                 start:   topFile.SmallestPointKey.UserKey,
     856           1 :                                 end:     topFile.LargestPointKey.UserKey,
     857           1 :                                 level:   topLevel,
     858           1 :                                 fileNum: topFile.FileNum,
     859           1 :                         }
     860           1 :                         i.readSampling.pendingCompactions.add(&read, i.cmp)
     861           1 :                 }
     862             :         }
     863             : }
     864             : 
     865           1 : func (i *Iterator) findPrevEntry(limit []byte) {
     866           1 :         i.iterValidityState = IterExhausted
     867           1 :         i.pos = iterPosCurReverse
     868           1 :         if i.opts.rangeKeys() && i.rangeKey != nil {
     869           1 :                 i.rangeKey.rangeKeyOnly = false
     870           1 :         }
     871             : 
     872             :         // Close the closer for the current value if one was open.
     873           1 :         if i.valueCloser != nil {
     874           0 :                 i.err = i.valueCloser.Close()
     875           0 :                 i.valueCloser = nil
     876           0 :                 if i.err != nil {
     877           0 :                         i.iterValidityState = IterExhausted
     878           0 :                         return
     879           0 :                 }
     880             :         }
     881             : 
     882           1 :         var valueMerger ValueMerger
     883           1 :         firstLoopIter := true
     884           1 :         rangeKeyBoundary := false
     885           1 :         // The code below compares with limit in multiple places. As documented in
     886           1 :         // findNextEntry, this is being done to make the behavior of limit
     887           1 :         // deterministic to allow for metamorphic testing. It is not required by
     888           1 :         // the best-effort contract of limit.
     889           1 :         for i.iterKey != nil {
     890           1 :                 key := *i.iterKey
     891           1 : 
     892           1 :                 // NB: We cannot pause if the current key is covered by a range key.
     893           1 :                 // Otherwise, the user might not ever learn of a range key that covers
     894           1 :                 // the key space being iterated over in which there are no point keys.
     895           1 :                 // Since limits are best effort, ignoring the limit in this case is
     896           1 :                 // allowed by the contract of limit.
     897           1 :                 if firstLoopIter && limit != nil && i.cmp(limit, i.iterKey.UserKey) > 0 && !i.rangeKeyWithinLimit(limit) {
     898           1 :                         i.iterValidityState = IterAtLimit
     899           1 :                         i.pos = iterPosCurReversePaused
     900           1 :                         return
     901           1 :                 }
     902           1 :                 firstLoopIter = false
     903           1 : 
     904           1 :                 if i.iterValidityState == IterValid {
     905           1 :                         if !i.equal(key.UserKey, i.key) {
     906           1 :                                 // We've iterated to the previous user key.
     907           1 :                                 i.pos = iterPosPrev
     908           1 :                                 if valueMerger != nil {
     909           1 :                                         var needDelete bool
     910           1 :                                         var value []byte
     911           1 :                                         value, needDelete, i.valueCloser, i.err = finishValueMerger(valueMerger, true /* includesBase */)
     912           1 :                                         i.value = base.MakeInPlaceValue(value)
     913           1 :                                         if i.err == nil && needDelete {
     914           1 :                                                 // The point key at this key is deleted. If we also have
     915           1 :                                                 // a range key boundary at this key, we still want to
     916           1 :                                                 // return. Otherwise, we need to continue looking for
     917           1 :                                                 // a live key.
     918           1 :                                                 i.value = LazyValue{}
     919           1 :                                                 if rangeKeyBoundary {
     920           0 :                                                         i.rangeKey.rangeKeyOnly = true
     921           1 :                                                 } else {
     922           1 :                                                         i.iterValidityState = IterExhausted
     923           1 :                                                         if i.closeValueCloser() == nil {
     924           1 :                                                                 continue
     925             :                                                         }
     926             :                                                 }
     927             :                                         }
     928             :                                 }
     929           1 :                                 if i.err != nil {
     930           0 :                                         i.iterValidityState = IterExhausted
     931           0 :                                 }
     932           1 :                                 return
     933             :                         }
     934             :                 }
     935             : 
     936             :                 // If the user has configured a SkipPoint function, invoke it to see
     937             :                 // whether we should skip over the current user key.
     938           1 :                 if i.opts.SkipPoint != nil && key.Kind() != InternalKeyKindRangeKeySet && i.opts.SkipPoint(key.UserKey) {
     939           1 :                         // NB: We could call prevUserKey, but in some cases the SkipPoint
     940           1 :                         // predicate function might be cheaper than prevUserKey's key copy
     941           1 :                         // and key comparison. This should be the case for MVCC suffix
     942           1 :                         // comparisons, for example. In the future, we could expand the
     943           1 :                         // SkipPoint interface to give the implementor more control over
     944           1 :                         // whether we skip over just the internal key, the user key, or even
     945           1 :                         // the key prefix.
     946           1 :                         i.stats.ReverseStepCount[InternalIterCall]++
     947           1 :                         i.iterKey, i.iterValue = i.iter.Prev()
     948           1 :                         if limit != nil && i.iterKey != nil && i.cmp(limit, i.iterKey.UserKey) > 0 && !i.rangeKeyWithinLimit(limit) {
     949           1 :                                 i.iterValidityState = IterAtLimit
     950           1 :                                 i.pos = iterPosCurReversePaused
     951           1 :                                 return
     952           1 :                         }
     953           1 :                         continue
     954             :                 }
     955             : 
     956           1 :                 switch key.Kind() {
     957           1 :                 case InternalKeyKindRangeKeySet:
     958           1 :                         // Range key start boundary markers are interleaved with the maximum
     959           1 :                         // sequence number, so if there's a point key also at this key, we
     960           1 :                         // must've already iterated over it.
     961           1 :                         // This is the final entry at this user key, so we may return
     962           1 :                         i.rangeKey.rangeKeyOnly = i.iterValidityState != IterValid
     963           1 :                         i.keyBuf = append(i.keyBuf[:0], key.UserKey...)
     964           1 :                         i.key = i.keyBuf
     965           1 :                         i.iterValidityState = IterValid
     966           1 :                         i.saveRangeKey()
     967           1 :                         // In all other cases, previous iteration requires advancing to
     968           1 :                         // iterPosPrev in order to determine if the key is live and
     969           1 :                         // unshadowed by another key at the same user key. In this case,
     970           1 :                         // because range key start boundary markers are always interleaved
     971           1 :                         // at the maximum sequence number, we know that there aren't any
     972           1 :                         // additional keys with the same user key in the backward direction.
     973           1 :                         //
     974           1 :                         // We Prev the underlying iterator once anyways for consistency, so
     975           1 :                         // that we can maintain the invariant during backward iteration that
     976           1 :                         // i.iterPos = iterPosPrev.
     977           1 :                         i.stats.ReverseStepCount[InternalIterCall]++
     978           1 :                         i.iterKey, i.iterValue = i.iter.Prev()
     979           1 : 
     980           1 :                         // Set rangeKeyBoundary so that on the next iteration, we know to
     981           1 :                         // return the key even if the MERGE point key is deleted.
     982           1 :                         rangeKeyBoundary = true
     983             : 
     984           1 :                 case InternalKeyKindDelete, InternalKeyKindSingleDelete, InternalKeyKindDeleteSized:
     985           1 :                         i.value = LazyValue{}
     986           1 :                         i.iterValidityState = IterExhausted
     987           1 :                         valueMerger = nil
     988           1 :                         i.iterKey, i.iterValue = i.iter.Prev()
     989           1 :                         i.stats.ReverseStepCount[InternalIterCall]++
     990           1 :                         // Compare with the limit. We could optimize by only checking when
     991           1 :                         // we step to the previous user key, but detecting that requires a
     992           1 :                         // comparison too. Note that this position may already passed a
     993           1 :                         // number of versions of this user key, but they are all deleted, so
     994           1 :                         // the fact that a subsequent Prev*() call will not see them is
     995           1 :                         // harmless. Also note that this is the only place in the loop,
     996           1 :                         // other than the firstLoopIter and SkipPoint cases above, where we
     997           1 :                         // could step to a different user key and start processing it for
     998           1 :                         // returning to the caller.
     999           1 :                         if limit != nil && i.iterKey != nil && i.cmp(limit, i.iterKey.UserKey) > 0 && !i.rangeKeyWithinLimit(limit) {
    1000           1 :                                 i.iterValidityState = IterAtLimit
    1001           1 :                                 i.pos = iterPosCurReversePaused
    1002           1 :                                 return
    1003           1 :                         }
    1004           1 :                         continue
    1005             : 
    1006           1 :                 case InternalKeyKindSet, InternalKeyKindSetWithDelete:
    1007           1 :                         i.keyBuf = append(i.keyBuf[:0], key.UserKey...)
    1008           1 :                         i.key = i.keyBuf
    1009           1 :                         // iterValue is owned by i.iter and could change after the Prev()
    1010           1 :                         // call, so use valueBuf instead. Note that valueBuf is only used
    1011           1 :                         // in this one instance; everywhere else (eg. in findNextEntry),
    1012           1 :                         // we just point i.value to the unsafe i.iter-owned value buffer.
    1013           1 :                         i.value, i.valueBuf = i.iterValue.Clone(i.valueBuf[:0], &i.fetcher)
    1014           1 :                         i.saveRangeKey()
    1015           1 :                         i.iterValidityState = IterValid
    1016           1 :                         i.iterKey, i.iterValue = i.iter.Prev()
    1017           1 :                         i.stats.ReverseStepCount[InternalIterCall]++
    1018           1 :                         valueMerger = nil
    1019           1 :                         continue
    1020             : 
    1021           1 :                 case InternalKeyKindMerge:
    1022           1 :                         if i.iterValidityState == IterExhausted {
    1023           1 :                                 i.keyBuf = append(i.keyBuf[:0], key.UserKey...)
    1024           1 :                                 i.key = i.keyBuf
    1025           1 :                                 i.saveRangeKey()
    1026           1 :                                 var iterValue []byte
    1027           1 :                                 iterValue, _, i.err = i.iterValue.Value(nil)
    1028           1 :                                 if i.err != nil {
    1029           0 :                                         return
    1030           0 :                                 }
    1031           1 :                                 valueMerger, i.err = i.merge(i.key, iterValue)
    1032           1 :                                 if i.err != nil {
    1033           0 :                                         return
    1034           0 :                                 }
    1035           1 :                                 i.iterValidityState = IterValid
    1036           1 :                         } else if valueMerger == nil {
    1037           1 :                                 // Extract value before iterValue since we use value before iterValue
    1038           1 :                                 // and the underlying iterator is not required to provide backing
    1039           1 :                                 // memory for both simultaneously.
    1040           1 :                                 var value []byte
    1041           1 :                                 var callerOwned bool
    1042           1 :                                 value, callerOwned, i.err = i.value.Value(i.lazyValueBuf)
    1043           1 :                                 if callerOwned {
    1044           0 :                                         i.lazyValueBuf = value[:0]
    1045           0 :                                 }
    1046           1 :                                 if i.err != nil {
    1047           0 :                                         return
    1048           0 :                                 }
    1049           1 :                                 valueMerger, i.err = i.merge(i.key, value)
    1050           1 :                                 var iterValue []byte
    1051           1 :                                 iterValue, _, i.err = i.iterValue.Value(nil)
    1052           1 :                                 if i.err != nil {
    1053           0 :                                         return
    1054           0 :                                 }
    1055           1 :                                 if i.err == nil {
    1056           1 :                                         i.err = valueMerger.MergeNewer(iterValue)
    1057           1 :                                 }
    1058           1 :                                 if i.err != nil {
    1059           0 :                                         i.iterValidityState = IterExhausted
    1060           0 :                                         return
    1061           0 :                                 }
    1062           1 :                         } else {
    1063           1 :                                 var iterValue []byte
    1064           1 :                                 iterValue, _, i.err = i.iterValue.Value(nil)
    1065           1 :                                 if i.err != nil {
    1066           0 :                                         return
    1067           0 :                                 }
    1068           1 :                                 i.err = valueMerger.MergeNewer(iterValue)
    1069           1 :                                 if i.err != nil {
    1070           0 :                                         i.iterValidityState = IterExhausted
    1071           0 :                                         return
    1072           0 :                                 }
    1073             :                         }
    1074           1 :                         i.iterKey, i.iterValue = i.iter.Prev()
    1075           1 :                         i.stats.ReverseStepCount[InternalIterCall]++
    1076           1 :                         continue
    1077             : 
    1078           0 :                 default:
    1079           0 :                         i.err = base.CorruptionErrorf("pebble: invalid internal key kind: %d", errors.Safe(key.Kind()))
    1080           0 :                         i.iterValidityState = IterExhausted
    1081           0 :                         return
    1082             :                 }
    1083             :         }
    1084             : 
    1085             :         // i.iterKey == nil, so broke out of the preceding loop.
    1086           1 :         if i.iterValidityState == IterValid {
    1087           1 :                 i.pos = iterPosPrev
    1088           1 :                 if valueMerger != nil {
    1089           1 :                         var needDelete bool
    1090           1 :                         var value []byte
    1091           1 :                         value, needDelete, i.valueCloser, i.err = finishValueMerger(valueMerger, true /* includesBase */)
    1092           1 :                         i.value = base.MakeInPlaceValue(value)
    1093           1 :                         if i.err == nil && needDelete {
    1094           1 :                                 i.key = nil
    1095           1 :                                 i.value = LazyValue{}
    1096           1 :                                 i.iterValidityState = IterExhausted
    1097           1 :                         }
    1098             :                 }
    1099           1 :                 if i.err != nil {
    1100           0 :                         i.iterValidityState = IterExhausted
    1101           0 :                 }
    1102             :         }
    1103             : }
    1104             : 
    1105           1 : func (i *Iterator) prevUserKey() {
    1106           1 :         if i.iterKey == nil {
    1107           1 :                 return
    1108           1 :         }
    1109           1 :         if i.iterValidityState != IterValid {
    1110           1 :                 // If we're going to compare against the prev key, we need to save the
    1111           1 :                 // current key.
    1112           1 :                 i.keyBuf = append(i.keyBuf[:0], i.iterKey.UserKey...)
    1113           1 :                 i.key = i.keyBuf
    1114           1 :         }
    1115           1 :         for {
    1116           1 :                 i.iterKey, i.iterValue = i.iter.Prev()
    1117           1 :                 i.stats.ReverseStepCount[InternalIterCall]++
    1118           1 :                 if i.iterKey == nil {
    1119           1 :                         break
    1120             :                 }
    1121           1 :                 if !i.equal(i.key, i.iterKey.UserKey) {
    1122           1 :                         break
    1123             :                 }
    1124             :         }
    1125             : }
    1126             : 
    1127           1 : func (i *Iterator) mergeNext(key InternalKey, valueMerger ValueMerger) {
    1128           1 :         // Save the current key.
    1129           1 :         i.keyBuf = append(i.keyBuf[:0], key.UserKey...)
    1130           1 :         i.key = i.keyBuf
    1131           1 : 
    1132           1 :         // Loop looking for older values for this key and merging them.
    1133           1 :         for {
    1134           1 :                 i.iterKey, i.iterValue = i.iter.Next()
    1135           1 :                 i.stats.ForwardStepCount[InternalIterCall]++
    1136           1 :                 if i.iterKey == nil {
    1137           1 :                         i.pos = iterPosNext
    1138           1 :                         return
    1139           1 :                 }
    1140           1 :                 key = *i.iterKey
    1141           1 :                 if !i.equal(i.key, key.UserKey) {
    1142           1 :                         // We've advanced to the next key.
    1143           1 :                         i.pos = iterPosNext
    1144           1 :                         return
    1145           1 :                 }
    1146           1 :                 switch key.Kind() {
    1147           1 :                 case InternalKeyKindDelete, InternalKeyKindSingleDelete, InternalKeyKindDeleteSized:
    1148           1 :                         // We've hit a deletion tombstone. Return everything up to this
    1149           1 :                         // point.
    1150           1 :                         //
    1151           1 :                         // NB: treating InternalKeyKindSingleDelete as equivalent to DEL is not
    1152           1 :                         // only simpler, but is also necessary for correctness due to
    1153           1 :                         // InternalKeyKindSSTableInternalObsoleteBit.
    1154           1 :                         return
    1155             : 
    1156           1 :                 case InternalKeyKindSet, InternalKeyKindSetWithDelete:
    1157           1 :                         // We've hit a Set value. Merge with the existing value and return.
    1158           1 :                         var iterValue []byte
    1159           1 :                         iterValue, _, i.err = i.iterValue.Value(nil)
    1160           1 :                         if i.err != nil {
    1161           0 :                                 return
    1162           0 :                         }
    1163           1 :                         i.err = valueMerger.MergeOlder(iterValue)
    1164           1 :                         return
    1165             : 
    1166           1 :                 case InternalKeyKindMerge:
    1167           1 :                         // We've hit another Merge value. Merge with the existing value and
    1168           1 :                         // continue looping.
    1169           1 :                         var iterValue []byte
    1170           1 :                         iterValue, _, i.err = i.iterValue.Value(nil)
    1171           1 :                         if i.err != nil {
    1172           0 :                                 return
    1173           0 :                         }
    1174           1 :                         i.err = valueMerger.MergeOlder(iterValue)
    1175           1 :                         if i.err != nil {
    1176           0 :                                 return
    1177           0 :                         }
    1178           1 :                         continue
    1179             : 
    1180           0 :                 case InternalKeyKindRangeKeySet:
    1181           0 :                         // The RANGEKEYSET marker must sort before a MERGE at the same user key.
    1182           0 :                         i.err = base.CorruptionErrorf("pebble: out of order range key marker")
    1183           0 :                         return
    1184             : 
    1185           0 :                 default:
    1186           0 :                         i.err = base.CorruptionErrorf("pebble: invalid internal key kind: %d", errors.Safe(key.Kind()))
    1187           0 :                         return
    1188             :                 }
    1189             :         }
    1190             : }
    1191             : 
    1192             : // SeekGE moves the iterator to the first key/value pair whose key is greater
    1193             : // than or equal to the given key. Returns true if the iterator is pointing at
    1194             : // a valid entry and false otherwise.
    1195           1 : func (i *Iterator) SeekGE(key []byte) bool {
    1196           1 :         return i.SeekGEWithLimit(key, nil) == IterValid
    1197           1 : }
    1198             : 
    1199             : // SeekGEWithLimit moves the iterator to the first key/value pair whose key is
    1200             : // greater than or equal to the given key.
    1201             : //
    1202             : // If limit is provided, it serves as a best-effort exclusive limit. If the
    1203             : // first key greater than or equal to the given search key is also greater than
    1204             : // or equal to limit, the Iterator may pause and return IterAtLimit. Because
    1205             : // limits are best-effort, SeekGEWithLimit may return a key beyond limit.
    1206             : //
    1207             : // If the Iterator is configured to iterate over range keys, SeekGEWithLimit
    1208             : // guarantees it will surface any range keys with bounds overlapping the
    1209             : // keyspace [key, limit).
    1210           1 : func (i *Iterator) SeekGEWithLimit(key []byte, limit []byte) IterValidityState {
    1211           1 :         if i.rangeKey != nil {
    1212           1 :                 // NB: Check Valid() before clearing requiresReposition.
    1213           1 :                 i.rangeKey.prevPosHadRangeKey = i.rangeKey.hasRangeKey && i.Valid()
    1214           1 :                 // If we have a range key but did not expose it at the previous iterator
    1215           1 :                 // position (because the iterator was not at a valid position), updated
    1216           1 :                 // must be true. This ensures that after an iterator op sequence like:
    1217           1 :                 //   - Next()             → (IterValid, RangeBounds() = [a,b))
    1218           1 :                 //   - NextWithLimit(...) → (IterAtLimit, RangeBounds() = -)
    1219           1 :                 //   - SeekGE(...)        → (IterValid, RangeBounds() = [a,b))
    1220           1 :                 // the iterator returns RangeKeyChanged()=true.
    1221           1 :                 //
    1222           1 :                 // The remainder of this function will only update i.rangeKey.updated if
    1223           1 :                 // the iterator moves into a new range key, or out of the current range
    1224           1 :                 // key.
    1225           1 :                 i.rangeKey.updated = i.rangeKey.hasRangeKey && !i.Valid() && i.opts.rangeKeys()
    1226           1 :         }
    1227           1 :         lastPositioningOp := i.lastPositioningOp
    1228           1 :         hasPrefix := i.hasPrefix
    1229           1 :         // Set it to unknown, since this operation may not succeed, in which case
    1230           1 :         // the SeekGE following this should not make any assumption about iterator
    1231           1 :         // position.
    1232           1 :         i.lastPositioningOp = unknownLastPositionOp
    1233           1 :         i.requiresReposition = false
    1234           1 :         i.err = nil // clear cached iteration error
    1235           1 :         i.hasPrefix = false
    1236           1 :         i.stats.ForwardSeekCount[InterfaceCall]++
    1237           1 :         if lowerBound := i.opts.GetLowerBound(); lowerBound != nil && i.cmp(key, lowerBound) < 0 {
    1238           1 :                 key = lowerBound
    1239           1 :         } else if upperBound := i.opts.GetUpperBound(); upperBound != nil && i.cmp(key, upperBound) > 0 {
    1240           1 :                 key = upperBound
    1241           1 :         }
    1242           1 :         seekInternalIter := true
    1243           1 : 
    1244           1 :         var flags base.SeekGEFlags
    1245           1 :         if i.batchJustRefreshed {
    1246           1 :                 i.batchJustRefreshed = false
    1247           1 :                 flags = flags.EnableBatchJustRefreshed()
    1248           1 :         }
    1249           1 :         if lastPositioningOp == seekGELastPositioningOp {
    1250           1 :                 cmp := i.cmp(i.prefixOrFullSeekKey, key)
    1251           1 :                 // If this seek is to the same or later key, and the iterator is
    1252           1 :                 // already positioned there, this is a noop. This can be helpful for
    1253           1 :                 // sparse key spaces that have many deleted keys, where one can avoid
    1254           1 :                 // the overhead of iterating past them again and again.
    1255           1 :                 if cmp <= 0 {
    1256           1 :                         if !flags.BatchJustRefreshed() &&
    1257           1 :                                 (i.iterValidityState == IterExhausted ||
    1258           1 :                                         (i.iterValidityState == IterValid && i.cmp(key, i.key) <= 0 &&
    1259           1 :                                                 (limit == nil || i.cmp(i.key, limit) < 0))) {
    1260           1 :                                 // Noop
    1261           1 :                                 if !invariants.Enabled || !disableSeekOpt(key, uintptr(unsafe.Pointer(i))) || i.forceEnableSeekOpt {
    1262           1 :                                         i.lastPositioningOp = seekGELastPositioningOp
    1263           1 :                                         return i.iterValidityState
    1264           1 :                                 }
    1265             :                         }
    1266             :                         // cmp == 0 is not safe to optimize since
    1267             :                         // - i.pos could be at iterPosNext, due to a merge.
    1268             :                         // - Even if i.pos were at iterPosCurForward, we could have a DELETE,
    1269             :                         //   SET pair for a key, and the iterator would have moved past DELETE
    1270             :                         //   but stayed at iterPosCurForward. A similar situation occurs for a
    1271             :                         //   MERGE, SET pair where the MERGE is consumed and the iterator is
    1272             :                         //   at the SET.
    1273             :                         // We also leverage the IterAtLimit <=> i.pos invariant defined in the
    1274             :                         // comment on iterValidityState, to exclude any cases where i.pos
    1275             :                         // is iterPosCur{Forward,Reverse}Paused. This avoids the need to
    1276             :                         // special-case those iterator positions and their interactions with
    1277             :                         // TrySeekUsingNext, as the main uses for TrySeekUsingNext in CockroachDB
    1278             :                         // do not use limited Seeks in the first place.
    1279           1 :                         if cmp < 0 && i.iterValidityState != IterAtLimit && limit == nil {
    1280           1 :                                 flags = flags.EnableTrySeekUsingNext()
    1281           1 :                         }
    1282           1 :                         if invariants.Enabled && flags.TrySeekUsingNext() && !i.forceEnableSeekOpt && disableSeekOpt(key, uintptr(unsafe.Pointer(i))) {
    1283           1 :                                 flags = flags.DisableTrySeekUsingNext()
    1284           1 :                         }
    1285           1 :                         if !flags.BatchJustRefreshed() && i.pos == iterPosCurForwardPaused && i.cmp(key, i.iterKey.UserKey) <= 0 {
    1286           1 :                                 // Have some work to do, but don't need to seek, and we can
    1287           1 :                                 // start doing findNextEntry from i.iterKey.
    1288           1 :                                 seekInternalIter = false
    1289           1 :                         }
    1290             :                 }
    1291             :         }
    1292             :         // Check for another TrySeekUsingNext optimization opportunity, currently
    1293             :         // specifically tailored to external iterators. This case is intended to
    1294             :         // trigger in instances of Seek-ing with monotonically increasing keys with
    1295             :         // Nexts interspersed. At the time of writing, this is the case for
    1296             :         // CockroachDB scans. This optimization is important for external iterators
    1297             :         // to avoid re-seeking within an already-exhausted sstable. It is not always
    1298             :         // a performance win more generally, so we restrict it to external iterators
    1299             :         // that are configured to only use forward positioning operations.
    1300             :         //
    1301             :         // TODO(jackson): This optimization should be obsolete once we introduce and
    1302             :         // use the NextPrefix iterator positioning operation.
    1303           1 :         if seekInternalIter && i.forwardOnly && lastPositioningOp != invalidatedLastPositionOp &&
    1304           1 :                 i.pos == iterPosCurForward && !hasPrefix && i.iterValidityState == IterValid &&
    1305           1 :                 i.cmp(key, i.iterKey.UserKey) > 0 {
    1306           1 :                 flags = flags.EnableTrySeekUsingNext()
    1307           1 :                 if invariants.Enabled && flags.TrySeekUsingNext() && !i.forceEnableSeekOpt && disableSeekOpt(key, uintptr(unsafe.Pointer(i))) {
    1308           0 :                         flags = flags.DisableTrySeekUsingNext()
    1309           0 :                 }
    1310             :         }
    1311           1 :         if seekInternalIter {
    1312           1 :                 i.iterKey, i.iterValue = i.iter.SeekGE(key, flags)
    1313           1 :                 i.stats.ForwardSeekCount[InternalIterCall]++
    1314           1 :         }
    1315           1 :         i.findNextEntry(limit)
    1316           1 :         i.maybeSampleRead()
    1317           1 :         if i.Error() == nil {
    1318           1 :                 // Prepare state for a future noop optimization.
    1319           1 :                 i.prefixOrFullSeekKey = append(i.prefixOrFullSeekKey[:0], key...)
    1320           1 :                 i.lastPositioningOp = seekGELastPositioningOp
    1321           1 :         }
    1322           1 :         return i.iterValidityState
    1323             : }
    1324             : 
    1325             : // SeekPrefixGE moves the iterator to the first key/value pair whose key is
    1326             : // greater than or equal to the given key and which has the same "prefix" as
    1327             : // the given key. The prefix for a key is determined by the user-defined
    1328             : // Comparer.Split function. The iterator will not observe keys not matching the
    1329             : // "prefix" of the search key. Calling SeekPrefixGE puts the iterator in prefix
    1330             : // iteration mode. The iterator remains in prefix iteration until a subsequent
    1331             : // call to another absolute positioning method (SeekGE, SeekLT, First,
    1332             : // Last). Reverse iteration (Prev) is not supported when an iterator is in
    1333             : // prefix iteration mode. Returns true if the iterator is pointing at a valid
    1334             : // entry and false otherwise.
    1335             : //
    1336             : // The semantics of SeekPrefixGE are slightly unusual and designed for
    1337             : // iteration to be able to take advantage of bloom filters that have been
    1338             : // created on the "prefix". If you're not using bloom filters, there is no
    1339             : // reason to use SeekPrefixGE.
    1340             : //
    1341             : // An example Split function may separate a timestamp suffix from the prefix of
    1342             : // the key.
    1343             : //
    1344             : //      Split(<key>@<timestamp>) -> <key>
    1345             : //
    1346             : // Consider the keys "a@1", "a@2", "aa@3", "aa@4". The prefixes for these keys
    1347             : // are "a", and "aa". Note that despite "a" and "aa" sharing a prefix by the
    1348             : // usual definition, those prefixes differ by the definition of the Split
    1349             : // function. To see how this works, consider the following set of calls on this
    1350             : // data set:
    1351             : //
    1352             : //      SeekPrefixGE("a@0") -> "a@1"
    1353             : //      Next()              -> "a@2"
    1354             : //      Next()              -> EOF
    1355             : //
    1356             : // If you're just looking to iterate over keys with a shared prefix, as
    1357             : // defined by the configured comparer, set iterator bounds instead:
    1358             : //
    1359             : //      iter := db.NewIter(&pebble.IterOptions{
    1360             : //        LowerBound: []byte("prefix"),
    1361             : //        UpperBound: []byte("prefiy"),
    1362             : //      })
    1363             : //      for iter.First(); iter.Valid(); iter.Next() {
    1364             : //        // Only keys beginning with "prefix" will be visited.
    1365             : //      }
    1366             : //
    1367             : // See ExampleIterator_SeekPrefixGE for a working example.
    1368             : //
    1369             : // When iterating with range keys enabled, all range keys encountered are
    1370             : // truncated to the seek key's prefix's bounds. The truncation of the upper
    1371             : // bound requires that the database's Comparer is configured with a
    1372             : // ImmediateSuccessor method. For example, a SeekPrefixGE("a@9") call with the
    1373             : // prefix "a" will truncate range key bounds to [a,ImmediateSuccessor(a)].
    1374           1 : func (i *Iterator) SeekPrefixGE(key []byte) bool {
    1375           1 :         if i.rangeKey != nil {
    1376           1 :                 // NB: Check Valid() before clearing requiresReposition.
    1377           1 :                 i.rangeKey.prevPosHadRangeKey = i.rangeKey.hasRangeKey && i.Valid()
    1378           1 :                 // If we have a range key but did not expose it at the previous iterator
    1379           1 :                 // position (because the iterator was not at a valid position), updated
    1380           1 :                 // must be true. This ensures that after an iterator op sequence like:
    1381           1 :                 //   - Next()             → (IterValid, RangeBounds() = [a,b))
    1382           1 :                 //   - NextWithLimit(...) → (IterAtLimit, RangeBounds() = -)
    1383           1 :                 //   - SeekPrefixGE(...)  → (IterValid, RangeBounds() = [a,b))
    1384           1 :                 // the iterator returns RangeKeyChanged()=true.
    1385           1 :                 //
    1386           1 :                 // The remainder of this function will only update i.rangeKey.updated if
    1387           1 :                 // the iterator moves into a new range key, or out of the current range
    1388           1 :                 // key.
    1389           1 :                 i.rangeKey.updated = i.rangeKey.hasRangeKey && !i.Valid() && i.opts.rangeKeys()
    1390           1 :         }
    1391           1 :         lastPositioningOp := i.lastPositioningOp
    1392           1 :         // Set it to unknown, since this operation may not succeed, in which case
    1393           1 :         // the SeekPrefixGE following this should not make any assumption about
    1394           1 :         // iterator position.
    1395           1 :         i.lastPositioningOp = unknownLastPositionOp
    1396           1 :         i.requiresReposition = false
    1397           1 :         i.err = nil // clear cached iteration error
    1398           1 :         i.stats.ForwardSeekCount[InterfaceCall]++
    1399           1 :         if i.comparer.Split == nil {
    1400           0 :                 panic("pebble: split must be provided for SeekPrefixGE")
    1401             :         }
    1402           1 :         if i.comparer.ImmediateSuccessor == nil && i.opts.KeyTypes != IterKeyTypePointsOnly {
    1403           0 :                 panic("pebble: ImmediateSuccessor must be provided for SeekPrefixGE with range keys")
    1404             :         }
    1405           1 :         prefixLen := i.split(key)
    1406           1 :         keyPrefix := key[:prefixLen]
    1407           1 :         var flags base.SeekGEFlags
    1408           1 :         if i.batchJustRefreshed {
    1409           1 :                 flags = flags.EnableBatchJustRefreshed()
    1410           1 :                 i.batchJustRefreshed = false
    1411           1 :         }
    1412           1 :         if lastPositioningOp == seekPrefixGELastPositioningOp {
    1413           1 :                 if !i.hasPrefix {
    1414           0 :                         panic("lastPositioningOpsIsSeekPrefixGE is true, but hasPrefix is false")
    1415             :                 }
    1416             :                 // The iterator has not been repositioned after the last SeekPrefixGE.
    1417             :                 // See if we are seeking to a larger key, since then we can optimize
    1418             :                 // the seek by using next. Note that we could also optimize if Next
    1419             :                 // has been called, if the iterator is not exhausted and the current
    1420             :                 // position is <= the seek key. We are keeping this limited for now
    1421             :                 // since such optimizations require care for correctness, and to not
    1422             :                 // become de-optimizations (if one usually has to do all the next
    1423             :                 // calls and then the seek). This SeekPrefixGE optimization
    1424             :                 // specifically benefits CockroachDB.
    1425           1 :                 cmp := i.cmp(i.prefixOrFullSeekKey, keyPrefix)
    1426           1 :                 // cmp == 0 is not safe to optimize since
    1427           1 :                 // - i.pos could be at iterPosNext, due to a merge.
    1428           1 :                 // - Even if i.pos were at iterPosCurForward, we could have a DELETE,
    1429           1 :                 //   SET pair for a key, and the iterator would have moved past DELETE
    1430           1 :                 //   but stayed at iterPosCurForward. A similar situation occurs for a
    1431           1 :                 //   MERGE, SET pair where the MERGE is consumed and the iterator is
    1432           1 :                 //   at the SET.
    1433           1 :                 // In general some versions of i.prefix could have been consumed by
    1434           1 :                 // the iterator, so we only optimize for cmp < 0.
    1435           1 :                 if cmp < 0 {
    1436           1 :                         flags = flags.EnableTrySeekUsingNext()
    1437           1 :                 }
    1438           1 :                 if invariants.Enabled && flags.TrySeekUsingNext() && !i.forceEnableSeekOpt && disableSeekOpt(key, uintptr(unsafe.Pointer(i))) {
    1439           1 :                         flags = flags.DisableTrySeekUsingNext()
    1440           1 :                 }
    1441             :         }
    1442             :         // Make a copy of the prefix so that modifications to the key after
    1443             :         // SeekPrefixGE returns does not affect the stored prefix.
    1444           1 :         if cap(i.prefixOrFullSeekKey) < prefixLen {
    1445           1 :                 i.prefixOrFullSeekKey = make([]byte, prefixLen)
    1446           1 :         } else {
    1447           1 :                 i.prefixOrFullSeekKey = i.prefixOrFullSeekKey[:prefixLen]
    1448           1 :         }
    1449           1 :         i.hasPrefix = true
    1450           1 :         copy(i.prefixOrFullSeekKey, keyPrefix)
    1451           1 : 
    1452           1 :         if lowerBound := i.opts.GetLowerBound(); lowerBound != nil && i.cmp(key, lowerBound) < 0 {
    1453           1 :                 if n := i.split(lowerBound); !bytes.Equal(i.prefixOrFullSeekKey, lowerBound[:n]) {
    1454           1 :                         i.err = errors.New("pebble: SeekPrefixGE supplied with key outside of lower bound")
    1455           1 :                         i.iterValidityState = IterExhausted
    1456           1 :                         return false
    1457           1 :                 }
    1458           0 :                 key = lowerBound
    1459           1 :         } else if upperBound := i.opts.GetUpperBound(); upperBound != nil && i.cmp(key, upperBound) > 0 {
    1460           1 :                 if n := i.split(upperBound); !bytes.Equal(i.prefixOrFullSeekKey, upperBound[:n]) {
    1461           1 :                         i.err = errors.New("pebble: SeekPrefixGE supplied with key outside of upper bound")
    1462           1 :                         i.iterValidityState = IterExhausted
    1463           1 :                         return false
    1464           1 :                 }
    1465           0 :                 key = upperBound
    1466             :         }
    1467           1 :         i.iterKey, i.iterValue = i.iter.SeekPrefixGE(i.prefixOrFullSeekKey, key, flags)
    1468           1 :         i.stats.ForwardSeekCount[InternalIterCall]++
    1469           1 :         i.findNextEntry(nil)
    1470           1 :         i.maybeSampleRead()
    1471           1 :         if i.Error() == nil {
    1472           1 :                 i.lastPositioningOp = seekPrefixGELastPositioningOp
    1473           1 :         }
    1474           1 :         return i.iterValidityState == IterValid
    1475             : }
    1476             : 
    1477             : // Deterministic disabling of the seek optimizations. It uses the iterator
    1478             : // pointer, since we want diversity in iterator behavior for the same key.  Used
    1479             : // for tests.
    1480           1 : func disableSeekOpt(key []byte, ptr uintptr) bool {
    1481           1 :         // Fibonacci hash https://probablydance.com/2018/06/16/fibonacci-hashing-the-optimization-that-the-world-forgot-or-a-better-alternative-to-integer-modulo/
    1482           1 :         simpleHash := (11400714819323198485 * uint64(ptr)) >> 63
    1483           1 :         return key != nil && key[0]&byte(1) == 0 && simpleHash == 0
    1484           1 : }
    1485             : 
    1486             : // SeekLT moves the iterator to the last key/value pair whose key is less than
    1487             : // the given key. Returns true if the iterator is pointing at a valid entry and
    1488             : // false otherwise.
    1489           1 : func (i *Iterator) SeekLT(key []byte) bool {
    1490           1 :         return i.SeekLTWithLimit(key, nil) == IterValid
    1491           1 : }
    1492             : 
    1493             : // SeekLTWithLimit moves the iterator to the last key/value pair whose key is
    1494             : // less than the given key.
    1495             : //
    1496             : // If limit is provided, it serves as a best-effort inclusive limit. If the last
    1497             : // key less than the given search key is also less than limit, the Iterator may
    1498             : // pause and return IterAtLimit. Because limits are best-effort, SeekLTWithLimit
    1499             : // may return a key beyond limit.
    1500             : //
    1501             : // If the Iterator is configured to iterate over range keys, SeekLTWithLimit
    1502             : // guarantees it will surface any range keys with bounds overlapping the
    1503             : // keyspace up to limit.
    1504           1 : func (i *Iterator) SeekLTWithLimit(key []byte, limit []byte) IterValidityState {
    1505           1 :         if i.rangeKey != nil {
    1506           1 :                 // NB: Check Valid() before clearing requiresReposition.
    1507           1 :                 i.rangeKey.prevPosHadRangeKey = i.rangeKey.hasRangeKey && i.Valid()
    1508           1 :                 // If we have a range key but did not expose it at the previous iterator
    1509           1 :                 // position (because the iterator was not at a valid position), updated
    1510           1 :                 // must be true. This ensures that after an iterator op sequence like:
    1511           1 :                 //   - Next()               → (IterValid, RangeBounds() = [a,b))
    1512           1 :                 //   - NextWithLimit(...)   → (IterAtLimit, RangeBounds() = -)
    1513           1 :                 //   - SeekLTWithLimit(...) → (IterValid, RangeBounds() = [a,b))
    1514           1 :                 // the iterator returns RangeKeyChanged()=true.
    1515           1 :                 //
    1516           1 :                 // The remainder of this function will only update i.rangeKey.updated if
    1517           1 :                 // the iterator moves into a new range key, or out of the current range
    1518           1 :                 // key.
    1519           1 :                 i.rangeKey.updated = i.rangeKey.hasRangeKey && !i.Valid() && i.opts.rangeKeys()
    1520           1 :         }
    1521           1 :         lastPositioningOp := i.lastPositioningOp
    1522           1 :         // Set it to unknown, since this operation may not succeed, in which case
    1523           1 :         // the SeekLT following this should not make any assumption about iterator
    1524           1 :         // position.
    1525           1 :         i.lastPositioningOp = unknownLastPositionOp
    1526           1 :         i.batchJustRefreshed = false
    1527           1 :         i.requiresReposition = false
    1528           1 :         i.err = nil // clear cached iteration error
    1529           1 :         i.stats.ReverseSeekCount[InterfaceCall]++
    1530           1 :         if upperBound := i.opts.GetUpperBound(); upperBound != nil && i.cmp(key, upperBound) > 0 {
    1531           1 :                 key = upperBound
    1532           1 :         } else if lowerBound := i.opts.GetLowerBound(); lowerBound != nil && i.cmp(key, lowerBound) < 0 {
    1533           1 :                 key = lowerBound
    1534           1 :         }
    1535           1 :         i.hasPrefix = false
    1536           1 :         seekInternalIter := true
    1537           1 :         // The following noop optimization only applies when i.batch == nil, since
    1538           1 :         // an iterator over a batch is iterating over mutable data, that may have
    1539           1 :         // changed since the last seek.
    1540           1 :         if lastPositioningOp == seekLTLastPositioningOp && i.batch == nil {
    1541           1 :                 cmp := i.cmp(key, i.prefixOrFullSeekKey)
    1542           1 :                 // If this seek is to the same or earlier key, and the iterator is
    1543           1 :                 // already positioned there, this is a noop. This can be helpful for
    1544           1 :                 // sparse key spaces that have many deleted keys, where one can avoid
    1545           1 :                 // the overhead of iterating past them again and again.
    1546           1 :                 if cmp <= 0 {
    1547           1 :                         // NB: when pos != iterPosCurReversePaused, the invariant
    1548           1 :                         // documented earlier implies that iterValidityState !=
    1549           1 :                         // IterAtLimit.
    1550           1 :                         if i.iterValidityState == IterExhausted ||
    1551           1 :                                 (i.iterValidityState == IterValid && i.cmp(i.key, key) < 0 &&
    1552           1 :                                         (limit == nil || i.cmp(limit, i.key) <= 0)) {
    1553           1 :                                 if !invariants.Enabled || !disableSeekOpt(key, uintptr(unsafe.Pointer(i))) {
    1554           1 :                                         i.lastPositioningOp = seekLTLastPositioningOp
    1555           1 :                                         return i.iterValidityState
    1556           1 :                                 }
    1557             :                         }
    1558           1 :                         if i.pos == iterPosCurReversePaused && i.cmp(i.iterKey.UserKey, key) < 0 {
    1559           1 :                                 // Have some work to do, but don't need to seek, and we can
    1560           1 :                                 // start doing findPrevEntry from i.iterKey.
    1561           1 :                                 seekInternalIter = false
    1562           1 :                         }
    1563             :                 }
    1564             :         }
    1565           1 :         if seekInternalIter {
    1566           1 :                 i.iterKey, i.iterValue = i.iter.SeekLT(key, base.SeekLTFlagsNone)
    1567           1 :                 i.stats.ReverseSeekCount[InternalIterCall]++
    1568           1 :         }
    1569           1 :         i.findPrevEntry(limit)
    1570           1 :         i.maybeSampleRead()
    1571           1 :         if i.Error() == nil && i.batch == nil {
    1572           1 :                 // Prepare state for a future noop optimization.
    1573           1 :                 i.prefixOrFullSeekKey = append(i.prefixOrFullSeekKey[:0], key...)
    1574           1 :                 i.lastPositioningOp = seekLTLastPositioningOp
    1575           1 :         }
    1576           1 :         return i.iterValidityState
    1577             : }
    1578             : 
    1579             : // First moves the iterator the the first key/value pair. Returns true if the
    1580             : // iterator is pointing at a valid entry and false otherwise.
    1581           1 : func (i *Iterator) First() bool {
    1582           1 :         if i.rangeKey != nil {
    1583           1 :                 // NB: Check Valid() before clearing requiresReposition.
    1584           1 :                 i.rangeKey.prevPosHadRangeKey = i.rangeKey.hasRangeKey && i.Valid()
    1585           1 :                 // If we have a range key but did not expose it at the previous iterator
    1586           1 :                 // position (because the iterator was not at a valid position), updated
    1587           1 :                 // must be true. This ensures that after an iterator op sequence like:
    1588           1 :                 //   - Next()             → (IterValid, RangeBounds() = [a,b))
    1589           1 :                 //   - NextWithLimit(...) → (IterAtLimit, RangeBounds() = -)
    1590           1 :                 //   - First(...)         → (IterValid, RangeBounds() = [a,b))
    1591           1 :                 // the iterator returns RangeKeyChanged()=true.
    1592           1 :                 //
    1593           1 :                 // The remainder of this function will only update i.rangeKey.updated if
    1594           1 :                 // the iterator moves into a new range key, or out of the current range
    1595           1 :                 // key.
    1596           1 :                 i.rangeKey.updated = i.rangeKey.hasRangeKey && !i.Valid() && i.opts.rangeKeys()
    1597           1 :         }
    1598           1 :         i.err = nil // clear cached iteration error
    1599           1 :         i.hasPrefix = false
    1600           1 :         i.batchJustRefreshed = false
    1601           1 :         i.lastPositioningOp = unknownLastPositionOp
    1602           1 :         i.requiresReposition = false
    1603           1 :         i.stats.ForwardSeekCount[InterfaceCall]++
    1604           1 : 
    1605           1 :         i.iterFirstWithinBounds()
    1606           1 :         i.findNextEntry(nil)
    1607           1 :         i.maybeSampleRead()
    1608           1 :         return i.iterValidityState == IterValid
    1609             : }
    1610             : 
    1611             : // Last moves the iterator the the last key/value pair. Returns true if the
    1612             : // iterator is pointing at a valid entry and false otherwise.
    1613           1 : func (i *Iterator) Last() bool {
    1614           1 :         if i.rangeKey != nil {
    1615           1 :                 // NB: Check Valid() before clearing requiresReposition.
    1616           1 :                 i.rangeKey.prevPosHadRangeKey = i.rangeKey.hasRangeKey && i.Valid()
    1617           1 :                 // If we have a range key but did not expose it at the previous iterator
    1618           1 :                 // position (because the iterator was not at a valid position), updated
    1619           1 :                 // must be true. This ensures that after an iterator op sequence like:
    1620           1 :                 //   - Next()             → (IterValid, RangeBounds() = [a,b))
    1621           1 :                 //   - NextWithLimit(...) → (IterAtLimit, RangeBounds() = -)
    1622           1 :                 //   - Last(...)          → (IterValid, RangeBounds() = [a,b))
    1623           1 :                 // the iterator returns RangeKeyChanged()=true.
    1624           1 :                 //
    1625           1 :                 // The remainder of this function will only update i.rangeKey.updated if
    1626           1 :                 // the iterator moves into a new range key, or out of the current range
    1627           1 :                 // key.
    1628           1 :                 i.rangeKey.updated = i.rangeKey.hasRangeKey && !i.Valid() && i.opts.rangeKeys()
    1629           1 :         }
    1630           1 :         i.err = nil // clear cached iteration error
    1631           1 :         i.hasPrefix = false
    1632           1 :         i.batchJustRefreshed = false
    1633           1 :         i.lastPositioningOp = unknownLastPositionOp
    1634           1 :         i.requiresReposition = false
    1635           1 :         i.stats.ReverseSeekCount[InterfaceCall]++
    1636           1 : 
    1637           1 :         i.iterLastWithinBounds()
    1638           1 :         i.findPrevEntry(nil)
    1639           1 :         i.maybeSampleRead()
    1640           1 :         return i.iterValidityState == IterValid
    1641             : }
    1642             : 
    1643             : // Next moves the iterator to the next key/value pair. Returns true if the
    1644             : // iterator is pointing at a valid entry and false otherwise.
    1645           1 : func (i *Iterator) Next() bool {
    1646           1 :         return i.nextWithLimit(nil) == IterValid
    1647           1 : }
    1648             : 
    1649             : // NextWithLimit moves the iterator to the next key/value pair.
    1650             : //
    1651             : // If limit is provided, it serves as a best-effort exclusive limit. If the next
    1652             : // key  is greater than or equal to limit, the Iterator may pause and return
    1653             : // IterAtLimit. Because limits are best-effort, NextWithLimit may return a key
    1654             : // beyond limit.
    1655             : //
    1656             : // If the Iterator is configured to iterate over range keys, NextWithLimit
    1657             : // guarantees it will surface any range keys with bounds overlapping the
    1658             : // keyspace up to limit.
    1659           1 : func (i *Iterator) NextWithLimit(limit []byte) IterValidityState {
    1660           1 :         return i.nextWithLimit(limit)
    1661           1 : }
    1662             : 
    1663             : // NextPrefix moves the iterator to the next key/value pair with a key
    1664             : // containing a different prefix than the current key. Prefixes are determined
    1665             : // by Comparer.Split. Exhausts the iterator if invoked while in prefix-iteration
    1666             : // mode.
    1667             : //
    1668             : // It is not permitted to invoke NextPrefix while at a IterAtLimit position.
    1669             : // When called in this condition, NextPrefix has non-deterministic behavior.
    1670             : //
    1671             : // It is not permitted to invoke NextPrefix when the Iterator has an
    1672             : // upper-bound that is a versioned MVCC key (see the comment for
    1673             : // Comparer.Split). It returns an error in this case.
    1674           1 : func (i *Iterator) NextPrefix() bool {
    1675           1 :         if i.nextPrefixNotPermittedByUpperBound {
    1676           1 :                 i.lastPositioningOp = unknownLastPositionOp
    1677           1 :                 i.requiresReposition = false
    1678           1 :                 i.err = errors.Errorf("NextPrefix not permitted with upper bound %s",
    1679           1 :                         i.comparer.FormatKey(i.opts.UpperBound))
    1680           1 :                 i.iterValidityState = IterExhausted
    1681           1 :                 return false
    1682           1 :         }
    1683           1 :         if i.hasPrefix {
    1684           1 :                 i.iterValidityState = IterExhausted
    1685           1 :                 return false
    1686           1 :         }
    1687           1 :         return i.nextPrefix() == IterValid
    1688             : }
    1689             : 
    1690           1 : func (i *Iterator) nextPrefix() IterValidityState {
    1691           1 :         if i.rangeKey != nil {
    1692           1 :                 // NB: Check Valid() before clearing requiresReposition.
    1693           1 :                 i.rangeKey.prevPosHadRangeKey = i.rangeKey.hasRangeKey && i.Valid()
    1694           1 :                 // If we have a range key but did not expose it at the previous iterator
    1695           1 :                 // position (because the iterator was not at a valid position), updated
    1696           1 :                 // must be true. This ensures that after an iterator op sequence like:
    1697           1 :                 //   - Next()             → (IterValid, RangeBounds() = [a,b))
    1698           1 :                 //   - NextWithLimit(...) → (IterAtLimit, RangeBounds() = -)
    1699           1 :                 //   - NextWithLimit(...) → (IterValid, RangeBounds() = [a,b))
    1700           1 :                 // the iterator returns RangeKeyChanged()=true.
    1701           1 :                 //
    1702           1 :                 // The remainder of this function will only update i.rangeKey.updated if
    1703           1 :                 // the iterator moves into a new range key, or out of the current range
    1704           1 :                 // key.
    1705           1 :                 i.rangeKey.updated = i.rangeKey.hasRangeKey && !i.Valid() && i.opts.rangeKeys()
    1706           1 :         }
    1707             : 
    1708             :         // Although NextPrefix documents that behavior at IterAtLimit is undefined,
    1709             :         // this function handles these cases as a simple prefix-agnostic Next. This
    1710             :         // is done for deterministic behavior in the metamorphic tests.
    1711             :         //
    1712             :         // TODO(jackson): If the metamorphic test operation generator is adjusted to
    1713             :         // make generation of some operations conditional on the previous
    1714             :         // operations, then we can remove this behavior and explicitly error.
    1715             : 
    1716           1 :         i.lastPositioningOp = unknownLastPositionOp
    1717           1 :         i.requiresReposition = false
    1718           1 :         switch i.pos {
    1719           1 :         case iterPosCurForward:
    1720           1 :                 // Positioned on the current key. Advance to the next prefix.
    1721           1 :                 i.internalNextPrefix(i.split(i.key))
    1722           0 :         case iterPosCurForwardPaused:
    1723             :                 // Positioned at a limit. Implement as a prefix-agnostic Next. See TODO
    1724             :                 // up above. The iterator is already positioned at the next key.
    1725           1 :         case iterPosCurReverse:
    1726           1 :                 // Switching directions.
    1727           1 :                 // Unless the iterator was exhausted, reverse iteration needs to
    1728           1 :                 // position the iterator at iterPosPrev.
    1729           1 :                 if i.iterKey != nil {
    1730           0 :                         i.err = errors.New("switching from reverse to forward but iter is not at prev")
    1731           0 :                         i.iterValidityState = IterExhausted
    1732           0 :                         return i.iterValidityState
    1733           0 :                 }
    1734             :                 // The Iterator is exhausted and i.iter is positioned before the first
    1735             :                 // key. Reposition to point to the first internal key.
    1736           1 :                 i.iterFirstWithinBounds()
    1737           1 :         case iterPosCurReversePaused:
    1738           1 :                 // Positioned at a limit. Implement as a prefix-agnostic Next. See TODO
    1739           1 :                 // up above.
    1740           1 :                 //
    1741           1 :                 // Switching directions; The iterator must not be exhausted since it
    1742           1 :                 // paused.
    1743           1 :                 if i.iterKey == nil {
    1744           0 :                         i.err = errors.New("switching paused from reverse to forward but iter is exhausted")
    1745           0 :                         i.iterValidityState = IterExhausted
    1746           0 :                         return i.iterValidityState
    1747           0 :                 }
    1748           1 :                 i.nextUserKey()
    1749           1 :         case iterPosPrev:
    1750           1 :                 // The underlying iterator is pointed to the previous key (this can
    1751           1 :                 // only happen when switching iteration directions).
    1752           1 :                 if i.iterKey == nil {
    1753           1 :                         // We're positioned before the first key. Need to reposition to point to
    1754           1 :                         // the first key.
    1755           1 :                         i.iterFirstWithinBounds()
    1756           1 :                 } else {
    1757           1 :                         // Move the internal iterator back onto the user key stored in
    1758           1 :                         // i.key. iterPosPrev guarantees that it's positioned at the last
    1759           1 :                         // key with the user key less than i.key, so we're guaranteed to
    1760           1 :                         // land on the correct key with a single Next.
    1761           1 :                         i.iterKey, i.iterValue = i.iter.Next()
    1762           1 :                         if invariants.Enabled && !i.equal(i.iterKey.UserKey, i.key) {
    1763           0 :                                 i.opts.logger.Fatalf("pebble: invariant violation: Nexting internal iterator from iterPosPrev landed on %q, not %q",
    1764           0 :                                         i.iterKey.UserKey, i.key)
    1765           0 :                         }
    1766             :                 }
    1767             :                 // The internal iterator is now positioned at i.key. Advance to the next
    1768             :                 // prefix.
    1769           1 :                 i.internalNextPrefix(i.split(i.key))
    1770           1 :         case iterPosNext:
    1771           1 :                 // Already positioned on the next key. Only call nextPrefixKey if the
    1772           1 :                 // next key shares the same prefix.
    1773           1 :                 if i.iterKey != nil {
    1774           1 :                         currKeyPrefixLen := i.split(i.key)
    1775           1 :                         iterKeyPrefixLen := i.split(i.iterKey.UserKey)
    1776           1 :                         if bytes.Equal(i.iterKey.UserKey[:iterKeyPrefixLen], i.key[:currKeyPrefixLen]) {
    1777           1 :                                 i.internalNextPrefix(currKeyPrefixLen)
    1778           1 :                         }
    1779             :                 }
    1780             :         }
    1781             : 
    1782           1 :         i.stats.ForwardStepCount[InterfaceCall]++
    1783           1 :         i.findNextEntry(nil /* limit */)
    1784           1 :         i.maybeSampleRead()
    1785           1 :         return i.iterValidityState
    1786             : }
    1787             : 
    1788           1 : func (i *Iterator) internalNextPrefix(currKeyPrefixLen int) {
    1789           1 :         if i.iterKey == nil {
    1790           1 :                 return
    1791           1 :         }
    1792             :         // The Next "fast-path" is not really a fast-path when there is more than
    1793             :         // one version. However, even with TableFormatPebblev3, there is a small
    1794             :         // slowdown (~10%) for one version if we remove it and only call NextPrefix.
    1795             :         // When there are two versions, only calling NextPrefix is ~30% faster.
    1796           1 :         i.stats.ForwardStepCount[InternalIterCall]++
    1797           1 :         if i.iterKey, i.iterValue = i.iter.Next(); i.iterKey == nil {
    1798           1 :                 return
    1799           1 :         }
    1800           1 :         iterKeyPrefixLen := i.split(i.iterKey.UserKey)
    1801           1 :         if !bytes.Equal(i.iterKey.UserKey[:iterKeyPrefixLen], i.key[:currKeyPrefixLen]) {
    1802           1 :                 return
    1803           1 :         }
    1804           1 :         i.stats.ForwardStepCount[InternalIterCall]++
    1805           1 :         i.prefixOrFullSeekKey = i.comparer.ImmediateSuccessor(i.prefixOrFullSeekKey[:0], i.key[:currKeyPrefixLen])
    1806           1 :         i.iterKey, i.iterValue = i.iter.NextPrefix(i.prefixOrFullSeekKey)
    1807           1 :         if invariants.Enabled && i.iterKey != nil {
    1808           1 :                 if iterKeyPrefixLen := i.split(i.iterKey.UserKey); i.cmp(i.iterKey.UserKey[:iterKeyPrefixLen], i.prefixOrFullSeekKey) < 0 {
    1809           0 :                         panic(errors.AssertionFailedf("pebble: iter.NextPrefix did not advance beyond the current prefix: now at %q; expected to be geq %q",
    1810           0 :                                 i.iterKey, i.prefixOrFullSeekKey))
    1811             :                 }
    1812             :         }
    1813             : }
    1814             : 
    1815           1 : func (i *Iterator) nextWithLimit(limit []byte) IterValidityState {
    1816           1 :         i.stats.ForwardStepCount[InterfaceCall]++
    1817           1 :         if i.hasPrefix {
    1818           1 :                 if limit != nil {
    1819           1 :                         i.err = errors.New("cannot use limit with prefix iteration")
    1820           1 :                         i.iterValidityState = IterExhausted
    1821           1 :                         return i.iterValidityState
    1822           1 :                 } else if i.iterValidityState == IterExhausted {
    1823           1 :                         // No-op, already exhasuted. We avoid executing the Next because it
    1824           1 :                         // can break invariants: Specifically, a file that fails the bloom
    1825           1 :                         // filter test may result in its level being removed from the
    1826           1 :                         // merging iterator. The level's removal can cause a lazy combined
    1827           1 :                         // iterator to miss range keys and trigger a switch to combined
    1828           1 :                         // iteration at a larger key, breaking keyspan invariants.
    1829           1 :                         return i.iterValidityState
    1830           1 :                 }
    1831             :         }
    1832           1 :         if i.err != nil {
    1833           1 :                 return i.iterValidityState
    1834           1 :         }
    1835           1 :         if i.rangeKey != nil {
    1836           1 :                 // NB: Check Valid() before clearing requiresReposition.
    1837           1 :                 i.rangeKey.prevPosHadRangeKey = i.rangeKey.hasRangeKey && i.Valid()
    1838           1 :                 // If we have a range key but did not expose it at the previous iterator
    1839           1 :                 // position (because the iterator was not at a valid position), updated
    1840           1 :                 // must be true. This ensures that after an iterator op sequence like:
    1841           1 :                 //   - Next()             → (IterValid, RangeBounds() = [a,b))
    1842           1 :                 //   - NextWithLimit(...) → (IterAtLimit, RangeBounds() = -)
    1843           1 :                 //   - NextWithLimit(...) → (IterValid, RangeBounds() = [a,b))
    1844           1 :                 // the iterator returns RangeKeyChanged()=true.
    1845           1 :                 //
    1846           1 :                 // The remainder of this function will only update i.rangeKey.updated if
    1847           1 :                 // the iterator moves into a new range key, or out of the current range
    1848           1 :                 // key.
    1849           1 :                 i.rangeKey.updated = i.rangeKey.hasRangeKey && !i.Valid() && i.opts.rangeKeys()
    1850           1 :         }
    1851           1 :         i.lastPositioningOp = unknownLastPositionOp
    1852           1 :         i.requiresReposition = false
    1853           1 :         switch i.pos {
    1854           1 :         case iterPosCurForward:
    1855           1 :                 i.nextUserKey()
    1856           1 :         case iterPosCurForwardPaused:
    1857             :                 // Already at the right place.
    1858           1 :         case iterPosCurReverse:
    1859           1 :                 // Switching directions.
    1860           1 :                 // Unless the iterator was exhausted, reverse iteration needs to
    1861           1 :                 // position the iterator at iterPosPrev.
    1862           1 :                 if i.iterKey != nil {
    1863           0 :                         i.err = errors.New("switching from reverse to forward but iter is not at prev")
    1864           0 :                         i.iterValidityState = IterExhausted
    1865           0 :                         return i.iterValidityState
    1866           0 :                 }
    1867             :                 // We're positioned before the first key. Need to reposition to point to
    1868             :                 // the first key.
    1869           1 :                 i.iterFirstWithinBounds()
    1870           1 :         case iterPosCurReversePaused:
    1871           1 :                 // Switching directions.
    1872           1 :                 // The iterator must not be exhausted since it paused.
    1873           1 :                 if i.iterKey == nil {
    1874           0 :                         i.err = errors.New("switching paused from reverse to forward but iter is exhausted")
    1875           0 :                         i.iterValidityState = IterExhausted
    1876           0 :                         return i.iterValidityState
    1877           0 :                 }
    1878           1 :                 i.nextUserKey()
    1879           1 :         case iterPosPrev:
    1880           1 :                 // The underlying iterator is pointed to the previous key (this can
    1881           1 :                 // only happen when switching iteration directions). We set
    1882           1 :                 // i.iterValidityState to IterExhausted here to force the calls to
    1883           1 :                 // nextUserKey to save the current key i.iter is pointing at in order
    1884           1 :                 // to determine when the next user-key is reached.
    1885           1 :                 i.iterValidityState = IterExhausted
    1886           1 :                 if i.iterKey == nil {
    1887           1 :                         // We're positioned before the first key. Need to reposition to point to
    1888           1 :                         // the first key.
    1889           1 :                         i.iterFirstWithinBounds()
    1890           1 :                 } else {
    1891           1 :                         i.nextUserKey()
    1892           1 :                 }
    1893           1 :                 i.nextUserKey()
    1894           1 :         case iterPosNext:
    1895             :                 // Already at the right place.
    1896             :         }
    1897           1 :         i.findNextEntry(limit)
    1898           1 :         i.maybeSampleRead()
    1899           1 :         return i.iterValidityState
    1900             : }
    1901             : 
    1902             : // Prev moves the iterator to the previous key/value pair. Returns true if the
    1903             : // iterator is pointing at a valid entry and false otherwise.
    1904           1 : func (i *Iterator) Prev() bool {
    1905           1 :         return i.PrevWithLimit(nil) == IterValid
    1906           1 : }
    1907             : 
    1908             : // PrevWithLimit moves the iterator to the previous key/value pair.
    1909             : //
    1910             : // If limit is provided, it serves as a best-effort inclusive limit. If the
    1911             : // previous key is less than limit, the Iterator may pause and return
    1912             : // IterAtLimit. Because limits are best-effort, PrevWithLimit may return a key
    1913             : // beyond limit.
    1914             : //
    1915             : // If the Iterator is configured to iterate over range keys, PrevWithLimit
    1916             : // guarantees it will surface any range keys with bounds overlapping the
    1917             : // keyspace up to limit.
    1918           1 : func (i *Iterator) PrevWithLimit(limit []byte) IterValidityState {
    1919           1 :         i.stats.ReverseStepCount[InterfaceCall]++
    1920           1 :         if i.err != nil {
    1921           1 :                 return i.iterValidityState
    1922           1 :         }
    1923           1 :         if i.rangeKey != nil {
    1924           1 :                 // NB: Check Valid() before clearing requiresReposition.
    1925           1 :                 i.rangeKey.prevPosHadRangeKey = i.rangeKey.hasRangeKey && i.Valid()
    1926           1 :                 // If we have a range key but did not expose it at the previous iterator
    1927           1 :                 // position (because the iterator was not at a valid position), updated
    1928           1 :                 // must be true. This ensures that after an iterator op sequence like:
    1929           1 :                 //   - Next()             → (IterValid, RangeBounds() = [a,b))
    1930           1 :                 //   - NextWithLimit(...) → (IterAtLimit, RangeBounds() = -)
    1931           1 :                 //   - PrevWithLimit(...) → (IterValid, RangeBounds() = [a,b))
    1932           1 :                 // the iterator returns RangeKeyChanged()=true.
    1933           1 :                 //
    1934           1 :                 // The remainder of this function will only update i.rangeKey.updated if
    1935           1 :                 // the iterator moves into a new range key, or out of the current range
    1936           1 :                 // key.
    1937           1 :                 i.rangeKey.updated = i.rangeKey.hasRangeKey && !i.Valid() && i.opts.rangeKeys()
    1938           1 :         }
    1939           1 :         i.lastPositioningOp = unknownLastPositionOp
    1940           1 :         i.requiresReposition = false
    1941           1 :         if i.hasPrefix {
    1942           1 :                 i.err = errReversePrefixIteration
    1943           1 :                 i.iterValidityState = IterExhausted
    1944           1 :                 return i.iterValidityState
    1945           1 :         }
    1946           1 :         switch i.pos {
    1947           1 :         case iterPosCurForward:
    1948             :                 // Switching directions, and will handle this below.
    1949           1 :         case iterPosCurForwardPaused:
    1950             :                 // Switching directions, and will handle this below.
    1951           1 :         case iterPosCurReverse:
    1952           1 :                 i.prevUserKey()
    1953           1 :         case iterPosCurReversePaused:
    1954             :                 // Already at the right place.
    1955           1 :         case iterPosNext:
    1956             :                 // The underlying iterator is pointed to the next key (this can only happen
    1957             :                 // when switching iteration directions). We will handle this below.
    1958           1 :         case iterPosPrev:
    1959             :                 // Already at the right place.
    1960             :         }
    1961           1 :         if i.pos == iterPosCurForward || i.pos == iterPosNext || i.pos == iterPosCurForwardPaused {
    1962           1 :                 // Switching direction.
    1963           1 :                 stepAgain := i.pos == iterPosNext
    1964           1 : 
    1965           1 :                 // Synthetic range key markers are a special case. Consider SeekGE(b)
    1966           1 :                 // which finds a range key [a, c). To ensure the user observes the range
    1967           1 :                 // key, the Iterator pauses at Key() = b. The iterator must advance the
    1968           1 :                 // internal iterator to see if there's also a coincident point key at
    1969           1 :                 // 'b', leaving the iterator at iterPosNext if there's not.
    1970           1 :                 //
    1971           1 :                 // This is a problem: Synthetic range key markers are only interleaved
    1972           1 :                 // during the original seek. A subsequent Prev() of i.iter will not move
    1973           1 :                 // back onto the synthetic range key marker. In this case where the
    1974           1 :                 // previous iterator position was a synthetic range key start boundary,
    1975           1 :                 // we must not step a second time.
    1976           1 :                 if i.isEphemeralPosition() {
    1977           1 :                         stepAgain = false
    1978           1 :                 }
    1979             : 
    1980             :                 // We set i.iterValidityState to IterExhausted here to force the calls
    1981             :                 // to prevUserKey to save the current key i.iter is pointing at in
    1982             :                 // order to determine when the prev user-key is reached.
    1983           1 :                 i.iterValidityState = IterExhausted
    1984           1 :                 if i.iterKey == nil {
    1985           1 :                         // We're positioned after the last key. Need to reposition to point to
    1986           1 :                         // the last key.
    1987           1 :                         i.iterLastWithinBounds()
    1988           1 :                 } else {
    1989           1 :                         i.prevUserKey()
    1990           1 :                 }
    1991           1 :                 if stepAgain {
    1992           1 :                         i.prevUserKey()
    1993           1 :                 }
    1994             :         }
    1995           1 :         i.findPrevEntry(limit)
    1996           1 :         i.maybeSampleRead()
    1997           1 :         return i.iterValidityState
    1998             : }
    1999             : 
    2000             : // iterFirstWithinBounds moves the internal iterator to the first key,
    2001             : // respecting bounds.
    2002           1 : func (i *Iterator) iterFirstWithinBounds() {
    2003           1 :         i.stats.ForwardSeekCount[InternalIterCall]++
    2004           1 :         if lowerBound := i.opts.GetLowerBound(); lowerBound != nil {
    2005           1 :                 i.iterKey, i.iterValue = i.iter.SeekGE(lowerBound, base.SeekGEFlagsNone)
    2006           1 :         } else {
    2007           1 :                 i.iterKey, i.iterValue = i.iter.First()
    2008           1 :         }
    2009             : }
    2010             : 
    2011             : // iterLastWithinBounds moves the internal iterator to the last key, respecting
    2012             : // bounds.
    2013           1 : func (i *Iterator) iterLastWithinBounds() {
    2014           1 :         i.stats.ReverseSeekCount[InternalIterCall]++
    2015           1 :         if upperBound := i.opts.GetUpperBound(); upperBound != nil {
    2016           1 :                 i.iterKey, i.iterValue = i.iter.SeekLT(upperBound, base.SeekLTFlagsNone)
    2017           1 :         } else {
    2018           1 :                 i.iterKey, i.iterValue = i.iter.Last()
    2019           1 :         }
    2020             : }
    2021             : 
    2022             : // RangeKeyData describes a range key's data, set through RangeKeySet. The key
    2023             : // boundaries of the range key is provided by Iterator.RangeBounds.
    2024             : type RangeKeyData struct {
    2025             :         Suffix []byte
    2026             :         Value  []byte
    2027             : }
    2028             : 
    2029             : // rangeKeyWithinLimit is called during limited reverse iteration when
    2030             : // positioned over a key beyond the limit. If there exists a range key that lies
    2031             : // within the limit, the iterator must not pause in order to ensure the user has
    2032             : // an opportunity to observe the range key within limit.
    2033             : //
    2034             : // It would be valid to ignore the limit whenever there's a range key covering
    2035             : // the key, but that would introduce nondeterminism. To preserve determinism for
    2036             : // testing, the iterator ignores the limit only if the covering range key does
    2037             : // cover the keyspace within the limit.
    2038             : //
    2039             : // This awkwardness exists because range keys are interleaved at their inclusive
    2040             : // start positions. Note that limit is inclusive.
    2041           1 : func (i *Iterator) rangeKeyWithinLimit(limit []byte) bool {
    2042           1 :         if i.rangeKey == nil || !i.opts.rangeKeys() {
    2043           1 :                 return false
    2044           1 :         }
    2045           1 :         s := i.rangeKey.iiter.Span()
    2046           1 :         // If the range key ends beyond the limit, then the range key does not cover
    2047           1 :         // any portion of the keyspace within the limit and it is safe to pause.
    2048           1 :         return s != nil && i.cmp(s.End, limit) > 0
    2049             : }
    2050             : 
    2051             : // saveRangeKey saves the current range key to the underlying iterator's current
    2052             : // range key state. If the range key has not changed, saveRangeKey is a no-op.
    2053             : // If there is a new range key, saveRangeKey copies all of the key, value and
    2054             : // suffixes into Iterator-managed buffers.
    2055           1 : func (i *Iterator) saveRangeKey() {
    2056           1 :         if i.rangeKey == nil || i.opts.KeyTypes == IterKeyTypePointsOnly {
    2057           1 :                 return
    2058           1 :         }
    2059             : 
    2060           1 :         s := i.rangeKey.iiter.Span()
    2061           1 :         if s == nil {
    2062           1 :                 i.rangeKey.hasRangeKey = false
    2063           1 :                 i.rangeKey.updated = i.rangeKey.prevPosHadRangeKey
    2064           1 :                 return
    2065           1 :         } else if !i.rangeKey.stale {
    2066           1 :                 // The range key `s` is identical to the one currently saved. No-op.
    2067           1 :                 return
    2068           1 :         }
    2069             : 
    2070           1 :         if s.KeysOrder != keyspan.BySuffixAsc {
    2071           0 :                 panic("pebble: range key span's keys unexpectedly not in ascending suffix order")
    2072             :         }
    2073             : 
    2074             :         // Although `i.rangeKey.stale` is true, the span s may still be identical
    2075             :         // to the currently saved span. This is possible when seeking the iterator,
    2076             :         // which may land back on the same range key. If we previously had a range
    2077             :         // key and the new one has an identical start key, then it must be the same
    2078             :         // range key and we can avoid copying and keep `i.rangeKey.updated=false`.
    2079             :         //
    2080             :         // TODO(jackson): These key comparisons could be avoidable during relative
    2081             :         // positioning operations continuing in the same direction, because these
    2082             :         // ops will never encounter the previous position's range key while
    2083             :         // stale=true. However, threading whether the current op is a seek or step
    2084             :         // maybe isn't worth it. This key comparison is only necessary once when we
    2085             :         // step onto a new range key, which should be relatively rare.
    2086           1 :         if i.rangeKey.prevPosHadRangeKey && i.equal(i.rangeKey.start, s.Start) &&
    2087           1 :                 i.equal(i.rangeKey.end, s.End) {
    2088           1 :                 i.rangeKey.updated = false
    2089           1 :                 i.rangeKey.stale = false
    2090           1 :                 i.rangeKey.hasRangeKey = true
    2091           1 :                 return
    2092           1 :         }
    2093           1 :         i.stats.RangeKeyStats.Count += len(s.Keys)
    2094           1 :         i.rangeKey.buf.Reset()
    2095           1 :         i.rangeKey.hasRangeKey = true
    2096           1 :         i.rangeKey.updated = true
    2097           1 :         i.rangeKey.stale = false
    2098           1 :         i.rangeKey.buf, i.rangeKey.start = i.rangeKey.buf.Copy(s.Start)
    2099           1 :         i.rangeKey.buf, i.rangeKey.end = i.rangeKey.buf.Copy(s.End)
    2100           1 :         i.rangeKey.keys = i.rangeKey.keys[:0]
    2101           1 :         for j := 0; j < len(s.Keys); j++ {
    2102           1 :                 if invariants.Enabled {
    2103           1 :                         if s.Keys[j].Kind() != base.InternalKeyKindRangeKeySet {
    2104           0 :                                 panic("pebble: user iteration encountered non-RangeKeySet key kind")
    2105           1 :                         } else if j > 0 && i.cmp(s.Keys[j].Suffix, s.Keys[j-1].Suffix) < 0 {
    2106           0 :                                 panic("pebble: user iteration encountered range keys not in suffix order")
    2107             :                         }
    2108             :                 }
    2109           1 :                 var rkd RangeKeyData
    2110           1 :                 i.rangeKey.buf, rkd.Suffix = i.rangeKey.buf.Copy(s.Keys[j].Suffix)
    2111           1 :                 i.rangeKey.buf, rkd.Value = i.rangeKey.buf.Copy(s.Keys[j].Value)
    2112           1 :                 i.rangeKey.keys = append(i.rangeKey.keys, rkd)
    2113             :         }
    2114             : }
    2115             : 
    2116             : // RangeKeyChanged indicates whether the most recent iterator positioning
    2117             : // operation resulted in the iterator stepping into or out of a new range key.
    2118             : // If true, previously returned range key bounds and data has been invalidated.
    2119             : // If false, previously obtained range key bounds, suffix and value slices are
    2120             : // still valid and may continue to be read.
    2121             : //
    2122             : // Invalid iterator positions are considered to not hold range keys, meaning
    2123             : // that if an iterator steps from an IterExhausted or IterAtLimit position onto
    2124             : // a position with a range key, RangeKeyChanged will yield true.
    2125           1 : func (i *Iterator) RangeKeyChanged() bool {
    2126           1 :         return i.iterValidityState == IterValid && i.rangeKey != nil && i.rangeKey.updated
    2127           1 : }
    2128             : 
    2129             : // HasPointAndRange indicates whether there exists a point key, a range key or
    2130             : // both at the current iterator position.
    2131           1 : func (i *Iterator) HasPointAndRange() (hasPoint, hasRange bool) {
    2132           1 :         if i.iterValidityState != IterValid || i.requiresReposition {
    2133           1 :                 return false, false
    2134           1 :         }
    2135           1 :         if i.opts.KeyTypes == IterKeyTypePointsOnly {
    2136           1 :                 return true, false
    2137           1 :         }
    2138           1 :         return i.rangeKey == nil || !i.rangeKey.rangeKeyOnly, i.rangeKey != nil && i.rangeKey.hasRangeKey
    2139             : }
    2140             : 
    2141             : // RangeBounds returns the start (inclusive) and end (exclusive) bounds of the
    2142             : // range key covering the current iterator position. RangeBounds returns nil
    2143             : // bounds if there is no range key covering the current iterator position, or
    2144             : // the iterator is not configured to surface range keys.
    2145             : //
    2146             : // If valid, the returned start bound is less than or equal to Key() and the
    2147             : // returned end bound is greater than Key().
    2148           1 : func (i *Iterator) RangeBounds() (start, end []byte) {
    2149           1 :         if i.rangeKey == nil || !i.opts.rangeKeys() || !i.rangeKey.hasRangeKey {
    2150           0 :                 return nil, nil
    2151           0 :         }
    2152           1 :         return i.rangeKey.start, i.rangeKey.end
    2153             : }
    2154             : 
    2155             : // Key returns the key of the current key/value pair, or nil if done. The
    2156             : // caller should not modify the contents of the returned slice, and its
    2157             : // contents may change on the next call to Next.
    2158             : //
    2159             : // If positioned at an iterator position that only holds a range key, Key()
    2160             : // always returns the start bound of the range key. Otherwise, it returns the
    2161             : // point key's key.
    2162           1 : func (i *Iterator) Key() []byte {
    2163           1 :         return i.key
    2164           1 : }
    2165             : 
    2166             : // Value returns the value of the current key/value pair, or nil if done. The
    2167             : // caller should not modify the contents of the returned slice, and its
    2168             : // contents may change on the next call to Next.
    2169             : //
    2170             : // Only valid if HasPointAndRange() returns true for hasPoint.
    2171             : // Deprecated: use ValueAndErr instead.
    2172           1 : func (i *Iterator) Value() []byte {
    2173           1 :         val, _ := i.ValueAndErr()
    2174           1 :         return val
    2175           1 : }
    2176             : 
    2177             : // ValueAndErr returns the value, and any error encountered in extracting the value.
    2178             : // REQUIRES: i.Error()==nil and HasPointAndRange() returns true for hasPoint.
    2179             : //
    2180             : // The caller should not modify the contents of the returned slice, and its
    2181             : // contents may change on the next call to Next.
    2182           1 : func (i *Iterator) ValueAndErr() ([]byte, error) {
    2183           1 :         val, callerOwned, err := i.value.Value(i.lazyValueBuf)
    2184           1 :         if err != nil {
    2185           0 :                 i.err = err
    2186           0 :         }
    2187           1 :         if callerOwned {
    2188           1 :                 i.lazyValueBuf = val[:0]
    2189           1 :         }
    2190           1 :         return val, err
    2191             : }
    2192             : 
    2193             : // LazyValue returns the LazyValue. Only for advanced use cases.
    2194             : // REQUIRES: i.Error()==nil and HasPointAndRange() returns true for hasPoint.
    2195           0 : func (i *Iterator) LazyValue() LazyValue {
    2196           0 :         return i.value
    2197           0 : }
    2198             : 
    2199             : // RangeKeys returns the range key values and their suffixes covering the
    2200             : // current iterator position. The range bounds may be retrieved separately
    2201             : // through Iterator.RangeBounds().
    2202           1 : func (i *Iterator) RangeKeys() []RangeKeyData {
    2203           1 :         if i.rangeKey == nil || !i.opts.rangeKeys() || !i.rangeKey.hasRangeKey {
    2204           0 :                 return nil
    2205           0 :         }
    2206           1 :         return i.rangeKey.keys
    2207             : }
    2208             : 
    2209             : // Valid returns true if the iterator is positioned at a valid key/value pair
    2210             : // and false otherwise.
    2211           1 : func (i *Iterator) Valid() bool {
    2212           1 :         return i.iterValidityState == IterValid && !i.requiresReposition
    2213           1 : }
    2214             : 
    2215             : // Error returns any accumulated error.
    2216           1 : func (i *Iterator) Error() error {
    2217           1 :         if i.iter != nil {
    2218           1 :                 return firstError(i.err, i.iter.Error())
    2219           1 :         }
    2220           0 :         return i.err
    2221             : }
    2222             : 
    2223             : const maxKeyBufCacheSize = 4 << 10 // 4 KB
    2224             : 
    2225             : // Close closes the iterator and returns any accumulated error. Exhausting
    2226             : // all the key/value pairs in a table is not considered to be an error.
    2227             : // It is not valid to call any method, including Close, after the iterator
    2228             : // has been closed.
    2229           1 : func (i *Iterator) Close() error {
    2230           1 :         // Close the child iterator before releasing the readState because when the
    2231           1 :         // readState is released sstables referenced by the readState may be deleted
    2232           1 :         // which will fail on Windows if the sstables are still open by the child
    2233           1 :         // iterator.
    2234           1 :         if i.iter != nil {
    2235           1 :                 i.err = firstError(i.err, i.iter.Close())
    2236           1 : 
    2237           1 :                 // Closing i.iter did not necessarily close the point and range key
    2238           1 :                 // iterators. Calls to SetOptions may have 'disconnected' either one
    2239           1 :                 // from i.iter if iteration key types were changed. Both point and range
    2240           1 :                 // key iterators are preserved in case the iterator needs to switch key
    2241           1 :                 // types again. We explicitly close both of these iterators here.
    2242           1 :                 //
    2243           1 :                 // NB: If the iterators were still connected to i.iter, they may be
    2244           1 :                 // closed, but calling Close on a closed internal iterator or fragment
    2245           1 :                 // iterator is allowed.
    2246           1 :                 if i.pointIter != nil && !i.closePointIterOnce {
    2247           1 :                         i.err = firstError(i.err, i.pointIter.Close())
    2248           1 :                 }
    2249           1 :                 if i.rangeKey != nil && i.rangeKey.rangeKeyIter != nil {
    2250           1 :                         i.err = firstError(i.err, i.rangeKey.rangeKeyIter.Close())
    2251           1 :                 }
    2252             :         }
    2253           1 :         err := i.err
    2254           1 : 
    2255           1 :         if i.readState != nil {
    2256           1 :                 if i.readSampling.pendingCompactions.size > 0 {
    2257           1 :                         // Copy pending read compactions using db.mu.Lock()
    2258           1 :                         i.readState.db.mu.Lock()
    2259           1 :                         i.readState.db.mu.compact.readCompactions.combine(&i.readSampling.pendingCompactions, i.cmp)
    2260           1 :                         reschedule := i.readState.db.mu.compact.rescheduleReadCompaction
    2261           1 :                         i.readState.db.mu.compact.rescheduleReadCompaction = false
    2262           1 :                         concurrentCompactions := i.readState.db.mu.compact.compactingCount
    2263           1 :                         i.readState.db.mu.Unlock()
    2264           1 : 
    2265           1 :                         if reschedule && concurrentCompactions == 0 {
    2266           0 :                                 // In a read heavy workload, flushes may not happen frequently enough to
    2267           0 :                                 // schedule compactions.
    2268           0 :                                 i.readState.db.compactionSchedulers.Add(1)
    2269           0 :                                 go i.readState.db.maybeScheduleCompactionAsync()
    2270           0 :                         }
    2271             :                 }
    2272             : 
    2273           1 :                 i.readState.unref()
    2274           1 :                 i.readState = nil
    2275             :         }
    2276             : 
    2277           1 :         if i.version != nil {
    2278           1 :                 i.version.Unref()
    2279           1 :         }
    2280             : 
    2281           1 :         for _, readers := range i.externalReaders {
    2282           1 :                 for _, r := range readers {
    2283           1 :                         err = firstError(err, r.Close())
    2284           1 :                 }
    2285             :         }
    2286             : 
    2287             :         // Close the closer for the current value if one was open.
    2288           1 :         if i.valueCloser != nil {
    2289           1 :                 err = firstError(err, i.valueCloser.Close())
    2290           1 :                 i.valueCloser = nil
    2291           1 :         }
    2292             : 
    2293           1 :         if i.rangeKey != nil {
    2294           1 : 
    2295           1 :                 i.rangeKey.rangeKeyBuffers.PrepareForReuse()
    2296           1 :                 *i.rangeKey = iteratorRangeKeyState{
    2297           1 :                         rangeKeyBuffers: i.rangeKey.rangeKeyBuffers,
    2298           1 :                 }
    2299           1 :                 iterRangeKeyStateAllocPool.Put(i.rangeKey)
    2300           1 :                 i.rangeKey = nil
    2301           1 :         }
    2302           1 :         if alloc := i.alloc; alloc != nil {
    2303           1 :                 // Avoid caching the key buf if it is overly large. The constant is fairly
    2304           1 :                 // arbitrary.
    2305           1 :                 if cap(i.keyBuf) >= maxKeyBufCacheSize {
    2306           0 :                         alloc.keyBuf = nil
    2307           1 :                 } else {
    2308           1 :                         alloc.keyBuf = i.keyBuf
    2309           1 :                 }
    2310           1 :                 if cap(i.prefixOrFullSeekKey) >= maxKeyBufCacheSize {
    2311           0 :                         alloc.prefixOrFullSeekKey = nil
    2312           1 :                 } else {
    2313           1 :                         alloc.prefixOrFullSeekKey = i.prefixOrFullSeekKey
    2314           1 :                 }
    2315           1 :                 for j := range i.boundsBuf {
    2316           1 :                         if cap(i.boundsBuf[j]) >= maxKeyBufCacheSize {
    2317           0 :                                 alloc.boundsBuf[j] = nil
    2318           1 :                         } else {
    2319           1 :                                 alloc.boundsBuf[j] = i.boundsBuf[j]
    2320           1 :                         }
    2321             :                 }
    2322           1 :                 *alloc = iterAlloc{
    2323           1 :                         keyBuf:              alloc.keyBuf,
    2324           1 :                         boundsBuf:           alloc.boundsBuf,
    2325           1 :                         prefixOrFullSeekKey: alloc.prefixOrFullSeekKey,
    2326           1 :                 }
    2327           1 :                 iterAllocPool.Put(alloc)
    2328           1 :         } else if alloc := i.getIterAlloc; alloc != nil {
    2329           1 :                 if cap(i.keyBuf) >= maxKeyBufCacheSize {
    2330           0 :                         alloc.keyBuf = nil
    2331           1 :                 } else {
    2332           1 :                         alloc.keyBuf = i.keyBuf
    2333           1 :                 }
    2334           1 :                 *alloc = getIterAlloc{
    2335           1 :                         keyBuf: alloc.keyBuf,
    2336           1 :                 }
    2337           1 :                 getIterAllocPool.Put(alloc)
    2338             :         }
    2339           1 :         return err
    2340             : }
    2341             : 
    2342             : // SetBounds sets the lower and upper bounds for the iterator. Once SetBounds
    2343             : // returns, the caller is free to mutate the provided slices.
    2344             : //
    2345             : // The iterator will always be invalidated and must be repositioned with a call
    2346             : // to SeekGE, SeekPrefixGE, SeekLT, First, or Last.
    2347           1 : func (i *Iterator) SetBounds(lower, upper []byte) {
    2348           1 :         // Ensure that the Iterator appears exhausted, regardless of whether we
    2349           1 :         // actually have to invalidate the internal iterator. Optimizations that
    2350           1 :         // avoid exhaustion are an internal implementation detail that shouldn't
    2351           1 :         // leak through the interface. The caller should still call an absolute
    2352           1 :         // positioning method to reposition the iterator.
    2353           1 :         i.requiresReposition = true
    2354           1 : 
    2355           1 :         if ((i.opts.LowerBound == nil) == (lower == nil)) &&
    2356           1 :                 ((i.opts.UpperBound == nil) == (upper == nil)) &&
    2357           1 :                 i.equal(i.opts.LowerBound, lower) &&
    2358           1 :                 i.equal(i.opts.UpperBound, upper) {
    2359           1 :                 // Unchanged, noop.
    2360           1 :                 return
    2361           1 :         }
    2362             : 
    2363             :         // Copy the user-provided bounds into an Iterator-owned buffer, and set them
    2364             :         // on i.opts.{Lower,Upper}Bound.
    2365           1 :         i.processBounds(lower, upper)
    2366           1 : 
    2367           1 :         i.iter.SetBounds(i.opts.LowerBound, i.opts.UpperBound)
    2368           1 :         // If the iterator has an open point iterator that's not currently being
    2369           1 :         // used, propagate the new bounds to it.
    2370           1 :         if i.pointIter != nil && !i.opts.pointKeys() {
    2371           1 :                 i.pointIter.SetBounds(i.opts.LowerBound, i.opts.UpperBound)
    2372           1 :         }
    2373             :         // If the iterator has a range key iterator, propagate bounds to it. The
    2374             :         // top-level SetBounds on the interleaving iterator (i.iter) won't propagate
    2375             :         // bounds to the range key iterator stack, because the FragmentIterator
    2376             :         // interface doesn't define a SetBounds method. We need to directly inform
    2377             :         // the iterConfig stack.
    2378           1 :         if i.rangeKey != nil {
    2379           1 :                 i.rangeKey.iterConfig.SetBounds(i.opts.LowerBound, i.opts.UpperBound)
    2380           1 :         }
    2381             : 
    2382             :         // Even though this is not a positioning operation, the alteration of the
    2383             :         // bounds means we cannot optimize Seeks by using Next.
    2384           1 :         i.invalidate()
    2385             : }
    2386             : 
    2387             : // Initialization and changing of the bounds must call processBounds.
    2388             : // processBounds saves the bounds and computes derived state from those
    2389             : // bounds.
    2390           1 : func (i *Iterator) processBounds(lower, upper []byte) {
    2391           1 :         // Copy the user-provided bounds into an Iterator-owned buffer. We can't
    2392           1 :         // overwrite the current bounds, because some internal iterators compare old
    2393           1 :         // and new bounds for optimizations.
    2394           1 : 
    2395           1 :         buf := i.boundsBuf[i.boundsBufIdx][:0]
    2396           1 :         if lower != nil {
    2397           1 :                 buf = append(buf, lower...)
    2398           1 :                 i.opts.LowerBound = buf
    2399           1 :         } else {
    2400           1 :                 i.opts.LowerBound = nil
    2401           1 :         }
    2402           1 :         i.nextPrefixNotPermittedByUpperBound = false
    2403           1 :         if upper != nil {
    2404           1 :                 buf = append(buf, upper...)
    2405           1 :                 i.opts.UpperBound = buf[len(buf)-len(upper):]
    2406           1 :                 if i.comparer.Split != nil {
    2407           1 :                         if i.comparer.Split(i.opts.UpperBound) != len(i.opts.UpperBound) {
    2408           1 :                                 // Setting an upper bound that is a versioned MVCC key. This means
    2409           1 :                                 // that a key can have some MVCC versions before the upper bound and
    2410           1 :                                 // some after. This causes significant complications for NextPrefix,
    2411           1 :                                 // so we bar the user of NextPrefix.
    2412           1 :                                 i.nextPrefixNotPermittedByUpperBound = true
    2413           1 :                         }
    2414             :                 }
    2415           1 :         } else {
    2416           1 :                 i.opts.UpperBound = nil
    2417           1 :         }
    2418           1 :         i.boundsBuf[i.boundsBufIdx] = buf
    2419           1 :         i.boundsBufIdx = 1 - i.boundsBufIdx
    2420             : }
    2421             : 
    2422             : // SetOptions sets new iterator options for the iterator. Note that the lower
    2423             : // and upper bounds applied here will supersede any bounds set by previous calls
    2424             : // to SetBounds.
    2425             : //
    2426             : // Note that the slices provided in this SetOptions must not be changed by the
    2427             : // caller until the iterator is closed, or a subsequent SetBounds or SetOptions
    2428             : // has returned. This is because comparisons between the existing and new bounds
    2429             : // are sometimes used to optimize seeking. See the extended commentary on
    2430             : // SetBounds.
    2431             : //
    2432             : // If the iterator was created over an indexed mutable batch, the iterator's
    2433             : // view of the mutable batch is refreshed.
    2434             : //
    2435             : // The iterator will always be invalidated and must be repositioned with a call
    2436             : // to SeekGE, SeekPrefixGE, SeekLT, First, or Last.
    2437             : //
    2438             : // If only lower and upper bounds need to be modified, prefer SetBounds.
    2439           1 : func (i *Iterator) SetOptions(o *IterOptions) {
    2440           1 :         if i.externalReaders != nil {
    2441           1 :                 if err := validateExternalIterOpts(o); err != nil {
    2442           0 :                         panic(err)
    2443             :                 }
    2444             :         }
    2445             : 
    2446             :         // Ensure that the Iterator appears exhausted, regardless of whether we
    2447             :         // actually have to invalidate the internal iterator. Optimizations that
    2448             :         // avoid exhaustion are an internal implementation detail that shouldn't
    2449             :         // leak through the interface. The caller should still call an absolute
    2450             :         // positioning method to reposition the iterator.
    2451           1 :         i.requiresReposition = true
    2452           1 : 
    2453           1 :         // Check if global state requires we close all internal iterators.
    2454           1 :         //
    2455           1 :         // If the Iterator is in an error state, invalidate the existing iterators
    2456           1 :         // so that we reconstruct an iterator state from scratch.
    2457           1 :         //
    2458           1 :         // If OnlyReadGuaranteedDurable changed, the iterator stacks are incorrect,
    2459           1 :         // improperly including or excluding memtables. Invalidate them so that
    2460           1 :         // finishInitializingIter will reconstruct them.
    2461           1 :         //
    2462           1 :         // If either the original options or the new options specify a table filter,
    2463           1 :         // we need to reconstruct the iterator stacks. If they both supply a table
    2464           1 :         // filter, we can't be certain that it's the same filter since we have no
    2465           1 :         // mechanism to compare the filter closures.
    2466           1 :         closeBoth := i.err != nil ||
    2467           1 :                 o.OnlyReadGuaranteedDurable != i.opts.OnlyReadGuaranteedDurable ||
    2468           1 :                 o.TableFilter != nil || i.opts.TableFilter != nil
    2469           1 : 
    2470           1 :         // If either options specify block property filters for an iterator stack,
    2471           1 :         // reconstruct it.
    2472           1 :         if i.pointIter != nil && (closeBoth || len(o.PointKeyFilters) > 0 || len(i.opts.PointKeyFilters) > 0 ||
    2473           1 :                 o.RangeKeyMasking.Filter != nil || i.opts.RangeKeyMasking.Filter != nil || o.SkipPoint != nil ||
    2474           1 :                 i.opts.SkipPoint != nil) {
    2475           1 :                 i.err = firstError(i.err, i.pointIter.Close())
    2476           1 :                 i.pointIter = nil
    2477           1 :         }
    2478           1 :         if i.rangeKey != nil {
    2479           1 :                 if closeBoth || len(o.RangeKeyFilters) > 0 || len(i.opts.RangeKeyFilters) > 0 {
    2480           1 :                         i.err = firstError(i.err, i.rangeKey.rangeKeyIter.Close())
    2481           1 :                         i.rangeKey = nil
    2482           1 :                 } else {
    2483           1 :                         // If there's still a range key iterator stack, invalidate the
    2484           1 :                         // iterator. This ensures RangeKeyChanged() returns true if a
    2485           1 :                         // subsequent positioning operation discovers a range key. It also
    2486           1 :                         // prevents seek no-op optimizations.
    2487           1 :                         i.invalidate()
    2488           1 :                 }
    2489             :         }
    2490             : 
    2491             :         // If the iterator is backed by a batch that's been mutated, refresh its
    2492             :         // existing point and range-key iterators, and invalidate the iterator to
    2493             :         // prevent seek-using-next optimizations. If we don't yet have a point-key
    2494             :         // iterator or range-key iterator but we require one, it'll be created in
    2495             :         // the slow path that reconstructs the iterator in finishInitializingIter.
    2496           1 :         if i.batch != nil {
    2497           1 :                 nextBatchSeqNum := (uint64(len(i.batch.data)) | base.InternalKeySeqNumBatch)
    2498           1 :                 if nextBatchSeqNum != i.batchSeqNum {
    2499           1 :                         i.batchSeqNum = nextBatchSeqNum
    2500           1 :                         if i.merging != nil {
    2501           1 :                                 i.merging.batchSnapshot = nextBatchSeqNum
    2502           1 :                         }
    2503             :                         // Prevent a no-op seek optimization on the next seek. We won't be
    2504             :                         // able to reuse the top-level Iterator state, because it may be
    2505             :                         // incorrect after the inclusion of new batch mutations.
    2506           1 :                         i.batchJustRefreshed = true
    2507           1 :                         if i.pointIter != nil && i.batch.countRangeDels > 0 {
    2508           1 :                                 if i.batchRangeDelIter.Count() == 0 {
    2509           1 :                                         // When we constructed this iterator, there were no
    2510           1 :                                         // rangedels in the batch. Iterator construction will
    2511           1 :                                         // have excluded the batch rangedel iterator from the
    2512           1 :                                         // point iterator stack. We need to reconstruct the
    2513           1 :                                         // point iterator to add i.batchRangeDelIter into the
    2514           1 :                                         // iterator stack.
    2515           1 :                                         i.err = firstError(i.err, i.pointIter.Close())
    2516           1 :                                         i.pointIter = nil
    2517           1 :                                 } else {
    2518           1 :                                         // There are range deletions in the batch and we already
    2519           1 :                                         // have a batch rangedel iterator. We can update the
    2520           1 :                                         // batch rangedel iterator in place.
    2521           1 :                                         //
    2522           1 :                                         // NB: There may or may not be new range deletions. We
    2523           1 :                                         // can't tell based on i.batchRangeDelIter.Count(),
    2524           1 :                                         // which is the count of fragmented range deletions, NOT
    2525           1 :                                         // the number of range deletions written to the batch
    2526           1 :                                         // [i.batch.countRangeDels].
    2527           1 :                                         i.batch.initRangeDelIter(&i.opts, &i.batchRangeDelIter, nextBatchSeqNum)
    2528           1 :                                 }
    2529             :                         }
    2530           1 :                         if i.rangeKey != nil && i.batch.countRangeKeys > 0 {
    2531           1 :                                 if i.batchRangeKeyIter.Count() == 0 {
    2532           1 :                                         // When we constructed this iterator, there were no range
    2533           1 :                                         // keys in the batch. Iterator construction will have
    2534           1 :                                         // excluded the batch rangekey iterator from the range key
    2535           1 :                                         // iterator stack. We need to reconstruct the range key
    2536           1 :                                         // iterator to add i.batchRangeKeyIter into the iterator
    2537           1 :                                         // stack.
    2538           1 :                                         i.err = firstError(i.err, i.rangeKey.rangeKeyIter.Close())
    2539           1 :                                         i.rangeKey = nil
    2540           1 :                                 } else {
    2541           1 :                                         // There are range keys in the batch and we already
    2542           1 :                                         // have a batch rangekey iterator. We can update the batch
    2543           1 :                                         // rangekey iterator in place.
    2544           1 :                                         //
    2545           1 :                                         // NB: There may or may not be new range keys. We can't
    2546           1 :                                         // tell based on i.batchRangeKeyIter.Count(), which is the
    2547           1 :                                         // count of fragmented range keys, NOT the number of
    2548           1 :                                         // range keys written to the batch [i.batch.countRangeKeys].
    2549           1 :                                         i.batch.initRangeKeyIter(&i.opts, &i.batchRangeKeyIter, nextBatchSeqNum)
    2550           1 :                                         i.invalidate()
    2551           1 :                                 }
    2552             :                         }
    2553             :                 }
    2554             :         }
    2555             : 
    2556             :         // Reset combinedIterState.initialized in case the iterator key types
    2557             :         // changed. If there's already a range key iterator stack, the combined
    2558             :         // iterator is already initialized.  Additionally, if the iterator is not
    2559             :         // configured to include range keys, mark it as initialized to signal that
    2560             :         // lower level iterators should not trigger a switch to combined iteration.
    2561           1 :         i.lazyCombinedIter.combinedIterState = combinedIterState{
    2562           1 :                 initialized: i.rangeKey != nil || !i.opts.rangeKeys(),
    2563           1 :         }
    2564           1 : 
    2565           1 :         boundsEqual := ((i.opts.LowerBound == nil) == (o.LowerBound == nil)) &&
    2566           1 :                 ((i.opts.UpperBound == nil) == (o.UpperBound == nil)) &&
    2567           1 :                 i.equal(i.opts.LowerBound, o.LowerBound) &&
    2568           1 :                 i.equal(i.opts.UpperBound, o.UpperBound)
    2569           1 : 
    2570           1 :         if boundsEqual && o.KeyTypes == i.opts.KeyTypes &&
    2571           1 :                 (i.pointIter != nil || !i.opts.pointKeys()) &&
    2572           1 :                 (i.rangeKey != nil || !i.opts.rangeKeys() || i.opts.KeyTypes == IterKeyTypePointsAndRanges) &&
    2573           1 :                 i.equal(o.RangeKeyMasking.Suffix, i.opts.RangeKeyMasking.Suffix) &&
    2574           1 :                 o.UseL6Filters == i.opts.UseL6Filters {
    2575           1 :                 // The options are identical, so we can likely use the fast path. In
    2576           1 :                 // addition to all the above constraints, we cannot use the fast path if
    2577           1 :                 // configured to perform lazy combined iteration but an indexed batch
    2578           1 :                 // used by the iterator now contains range keys. Lazy combined iteration
    2579           1 :                 // is not compatible with batch range keys because we always need to
    2580           1 :                 // merge the batch's range keys into iteration.
    2581           1 :                 if i.rangeKey != nil || !i.opts.rangeKeys() || i.batch == nil || i.batch.countRangeKeys == 0 {
    2582           1 :                         // Fast path. This preserves the Seek-using-Next optimizations as
    2583           1 :                         // long as the iterator wasn't already invalidated up above.
    2584           1 :                         return
    2585           1 :                 }
    2586             :         }
    2587             :         // Slow path.
    2588             : 
    2589             :         // The options changed. Save the new ones to i.opts.
    2590           1 :         if boundsEqual {
    2591           1 :                 // Copying the options into i.opts will overwrite LowerBound and
    2592           1 :                 // UpperBound fields with the user-provided slices. We need to hold on
    2593           1 :                 // to the Pebble-owned slices, so save them and re-set them after the
    2594           1 :                 // copy.
    2595           1 :                 lower, upper := i.opts.LowerBound, i.opts.UpperBound
    2596           1 :                 i.opts = *o
    2597           1 :                 i.opts.LowerBound, i.opts.UpperBound = lower, upper
    2598           1 :         } else {
    2599           1 :                 i.opts = *o
    2600           1 :                 i.processBounds(o.LowerBound, o.UpperBound)
    2601           1 :                 // Propagate the changed bounds to the existing point iterator.
    2602           1 :                 // NB: We propagate i.opts.{Lower,Upper}Bound, not o.{Lower,Upper}Bound
    2603           1 :                 // because i.opts now point to buffers owned by Pebble.
    2604           1 :                 if i.pointIter != nil {
    2605           1 :                         i.pointIter.SetBounds(i.opts.LowerBound, i.opts.UpperBound)
    2606           1 :                 }
    2607           1 :                 if i.rangeKey != nil {
    2608           1 :                         i.rangeKey.iterConfig.SetBounds(i.opts.LowerBound, i.opts.UpperBound)
    2609           1 :                 }
    2610             :         }
    2611             : 
    2612             :         // Even though this is not a positioning operation, the invalidation of the
    2613             :         // iterator stack means we cannot optimize Seeks by using Next.
    2614           1 :         i.invalidate()
    2615           1 : 
    2616           1 :         // Iterators created through NewExternalIter have a different iterator
    2617           1 :         // initialization process.
    2618           1 :         if i.externalReaders != nil {
    2619           1 :                 finishInitializingExternal(i.ctx, i)
    2620           1 :                 return
    2621           1 :         }
    2622           1 :         finishInitializingIter(i.ctx, i.alloc)
    2623             : }
    2624             : 
    2625           1 : func (i *Iterator) invalidate() {
    2626           1 :         i.lastPositioningOp = invalidatedLastPositionOp
    2627           1 :         i.hasPrefix = false
    2628           1 :         i.iterKey = nil
    2629           1 :         i.iterValue = LazyValue{}
    2630           1 :         i.err = nil
    2631           1 :         // This switch statement isn't necessary for correctness since callers
    2632           1 :         // should call a repositioning method. We could have arbitrarily set i.pos
    2633           1 :         // to one of the values. But it results in more intuitive behavior in
    2634           1 :         // tests, which do not always reposition.
    2635           1 :         switch i.pos {
    2636           1 :         case iterPosCurForward, iterPosNext, iterPosCurForwardPaused:
    2637           1 :                 i.pos = iterPosCurForward
    2638           1 :         case iterPosCurReverse, iterPosPrev, iterPosCurReversePaused:
    2639           1 :                 i.pos = iterPosCurReverse
    2640             :         }
    2641           1 :         i.iterValidityState = IterExhausted
    2642           1 :         if i.rangeKey != nil {
    2643           1 :                 i.rangeKey.iiter.Invalidate()
    2644           1 :                 i.rangeKey.prevPosHadRangeKey = false
    2645           1 :         }
    2646             : }
    2647             : 
    2648             : // Metrics returns per-iterator metrics.
    2649           0 : func (i *Iterator) Metrics() IteratorMetrics {
    2650           0 :         m := IteratorMetrics{
    2651           0 :                 ReadAmp: 1,
    2652           0 :         }
    2653           0 :         if mi, ok := i.iter.(*mergingIter); ok {
    2654           0 :                 m.ReadAmp = len(mi.levels)
    2655           0 :         }
    2656           0 :         return m
    2657             : }
    2658             : 
    2659             : // ResetStats resets the stats to 0.
    2660           0 : func (i *Iterator) ResetStats() {
    2661           0 :         i.stats = IteratorStats{}
    2662           0 : }
    2663             : 
    2664             : // Stats returns the current stats.
    2665           1 : func (i *Iterator) Stats() IteratorStats {
    2666           1 :         return i.stats
    2667           1 : }
    2668             : 
    2669             : // CloneOptions configures an iterator constructed through Iterator.Clone.
    2670             : type CloneOptions struct {
    2671             :         // IterOptions, if non-nil, define the iterator options to configure a
    2672             :         // cloned iterator. If nil, the clone adopts the same IterOptions as the
    2673             :         // iterator being cloned.
    2674             :         IterOptions *IterOptions
    2675             :         // RefreshBatchView may be set to true when cloning an Iterator over an
    2676             :         // indexed batch. When false, the clone adopts the same (possibly stale)
    2677             :         // view of the indexed batch as the cloned Iterator. When true, the clone is
    2678             :         // constructed with a refreshed view of the batch, observing all of the
    2679             :         // batch's mutations at the time of the Clone. If the cloned iterator was
    2680             :         // not constructed to read over an indexed batch, RefreshVatchView has no
    2681             :         // effect.
    2682             :         RefreshBatchView bool
    2683             : }
    2684             : 
    2685             : // Clone creates a new Iterator over the same underlying data, i.e., over the
    2686             : // same {batch, memtables, sstables}). The resulting iterator is not positioned.
    2687             : // It starts with the same IterOptions, unless opts.IterOptions is set.
    2688             : //
    2689             : // When called on an Iterator over an indexed batch, the clone's visibility of
    2690             : // the indexed batch is determined by CloneOptions.RefreshBatchView. If false,
    2691             : // the clone inherits the iterator's current (possibly stale) view of the batch,
    2692             : // and callers may call SetOptions to subsequently refresh the clone's view to
    2693             : // include all batch mutations. If true, the clone is constructed with a
    2694             : // complete view of the indexed batch's mutations at the time of the Clone.
    2695             : //
    2696             : // Callers can use Clone if they need multiple iterators that need to see
    2697             : // exactly the same underlying state of the DB. This should not be used to
    2698             : // extend the lifetime of the data backing the original Iterator since that
    2699             : // will cause an increase in memory and disk usage (use NewSnapshot for that
    2700             : // purpose).
    2701           1 : func (i *Iterator) Clone(opts CloneOptions) (*Iterator, error) {
    2702           1 :         return i.CloneWithContext(context.Background(), opts)
    2703           1 : }
    2704             : 
    2705             : // CloneWithContext is like Clone, and additionally accepts a context for
    2706             : // tracing.
    2707           1 : func (i *Iterator) CloneWithContext(ctx context.Context, opts CloneOptions) (*Iterator, error) {
    2708           1 :         if opts.IterOptions == nil {
    2709           1 :                 opts.IterOptions = &i.opts
    2710           1 :         }
    2711             : 
    2712           1 :         readState := i.readState
    2713           1 :         vers := i.version
    2714           1 :         if readState == nil && vers == nil {
    2715           1 :                 return nil, errors.Errorf("cannot Clone a closed Iterator")
    2716           1 :         }
    2717             :         // i is already holding a ref, so there is no race with unref here.
    2718             :         //
    2719             :         // TODO(bilal): If the underlying iterator was created on a snapshot, we could
    2720             :         // grab a reference to the current readState instead of reffing the original
    2721             :         // readState. This allows us to release references to some zombie sstables
    2722             :         // and memtables.
    2723           1 :         if readState != nil {
    2724           1 :                 readState.ref()
    2725           1 :         }
    2726           1 :         if vers != nil {
    2727           1 :                 vers.Ref()
    2728           1 :         }
    2729             :         // Bundle various structures under a single umbrella in order to allocate
    2730             :         // them together.
    2731           1 :         buf := iterAllocPool.Get().(*iterAlloc)
    2732           1 :         dbi := &buf.dbi
    2733           1 :         *dbi = Iterator{
    2734           1 :                 ctx:                 ctx,
    2735           1 :                 opts:                *opts.IterOptions,
    2736           1 :                 alloc:               buf,
    2737           1 :                 merge:               i.merge,
    2738           1 :                 comparer:            i.comparer,
    2739           1 :                 readState:           readState,
    2740           1 :                 version:             vers,
    2741           1 :                 keyBuf:              buf.keyBuf,
    2742           1 :                 prefixOrFullSeekKey: buf.prefixOrFullSeekKey,
    2743           1 :                 boundsBuf:           buf.boundsBuf,
    2744           1 :                 batch:               i.batch,
    2745           1 :                 batchSeqNum:         i.batchSeqNum,
    2746           1 :                 newIters:            i.newIters,
    2747           1 :                 newIterRangeKey:     i.newIterRangeKey,
    2748           1 :                 seqNum:              i.seqNum,
    2749           1 :         }
    2750           1 :         dbi.processBounds(dbi.opts.LowerBound, dbi.opts.UpperBound)
    2751           1 : 
    2752           1 :         // If the caller requested the clone have a current view of the indexed
    2753           1 :         // batch, set the clone's batch sequence number appropriately.
    2754           1 :         if i.batch != nil && opts.RefreshBatchView {
    2755           1 :                 dbi.batchSeqNum = (uint64(len(i.batch.data)) | base.InternalKeySeqNumBatch)
    2756           1 :         }
    2757             : 
    2758           1 :         return finishInitializingIter(ctx, buf), nil
    2759             : }
    2760             : 
    2761             : // Merge adds all of the argument's statistics to the receiver. It may be used
    2762             : // to accumulate stats across multiple iterators.
    2763           1 : func (stats *IteratorStats) Merge(o IteratorStats) {
    2764           1 :         for i := InterfaceCall; i < NumStatsKind; i++ {
    2765           1 :                 stats.ForwardSeekCount[i] += o.ForwardSeekCount[i]
    2766           1 :                 stats.ReverseSeekCount[i] += o.ReverseSeekCount[i]
    2767           1 :                 stats.ForwardStepCount[i] += o.ForwardStepCount[i]
    2768           1 :                 stats.ReverseStepCount[i] += o.ReverseStepCount[i]
    2769           1 :         }
    2770           1 :         stats.InternalStats.Merge(o.InternalStats)
    2771           1 :         stats.RangeKeyStats.Merge(o.RangeKeyStats)
    2772             : }
    2773             : 
    2774           1 : func (stats *IteratorStats) String() string {
    2775           1 :         return redact.StringWithoutMarkers(stats)
    2776           1 : }
    2777             : 
    2778             : // SafeFormat implements the redact.SafeFormatter interface.
    2779           1 : func (stats *IteratorStats) SafeFormat(s redact.SafePrinter, verb rune) {
    2780           1 :         for i := range stats.ForwardStepCount {
    2781           1 :                 switch IteratorStatsKind(i) {
    2782           1 :                 case InterfaceCall:
    2783           1 :                         s.SafeString("(interface (dir, seek, step): ")
    2784           1 :                 case InternalIterCall:
    2785           1 :                         s.SafeString(", (internal (dir, seek, step): ")
    2786             :                 }
    2787           1 :                 s.Printf("(fwd, %d, %d), (rev, %d, %d))",
    2788           1 :                         redact.Safe(stats.ForwardSeekCount[i]), redact.Safe(stats.ForwardStepCount[i]),
    2789           1 :                         redact.Safe(stats.ReverseSeekCount[i]), redact.Safe(stats.ReverseStepCount[i]))
    2790             :         }
    2791           1 :         if stats.InternalStats != (InternalIteratorStats{}) {
    2792           1 :                 s.SafeString(",\n(internal-stats: ")
    2793           1 :                 s.Printf("(block-bytes: (total %s, cached %s, read-time %s)), "+
    2794           1 :                         "(points: (count %s, key-bytes %s, value-bytes %s, tombstoned %s))",
    2795           1 :                         humanize.Bytes.Uint64(stats.InternalStats.BlockBytes),
    2796           1 :                         humanize.Bytes.Uint64(stats.InternalStats.BlockBytesInCache),
    2797           1 :                         humanize.FormattedString(stats.InternalStats.BlockReadDuration.String()),
    2798           1 :                         humanize.Count.Uint64(stats.InternalStats.PointCount),
    2799           1 :                         humanize.Bytes.Uint64(stats.InternalStats.KeyBytes),
    2800           1 :                         humanize.Bytes.Uint64(stats.InternalStats.ValueBytes),
    2801           1 :                         humanize.Count.Uint64(stats.InternalStats.PointsCoveredByRangeTombstones),
    2802           1 :                 )
    2803           1 :                 if stats.InternalStats.SeparatedPointValue.Count != 0 {
    2804           1 :                         s.Printf(", (separated: (count %s, bytes %s, fetched %s)))",
    2805           1 :                                 humanize.Count.Uint64(stats.InternalStats.SeparatedPointValue.Count),
    2806           1 :                                 humanize.Bytes.Uint64(stats.InternalStats.SeparatedPointValue.ValueBytes),
    2807           1 :                                 humanize.Bytes.Uint64(stats.InternalStats.SeparatedPointValue.ValueBytesFetched))
    2808           1 :                 } else {
    2809           1 :                         s.Printf(")")
    2810           1 :                 }
    2811             :         }
    2812           1 :         if stats.RangeKeyStats != (RangeKeyIteratorStats{}) {
    2813           1 :                 s.SafeString(",\n(range-key-stats: ")
    2814           1 :                 s.Printf("(count %d), (contained points: (count %d, skipped %d)))",
    2815           1 :                         stats.RangeKeyStats.Count,
    2816           1 :                         stats.RangeKeyStats.ContainedPoints,
    2817           1 :                         stats.RangeKeyStats.SkippedPoints)
    2818           1 :         }
    2819             : }

Generated by: LCOV version 1.14