LCOV - code coverage report
Current view: top level - pebble - compaction_picker.go (source / functions) Hit Total Coverage
Test: 2023-12-20 08:15Z 35cfce46 - meta test only.lcov Lines: 989 1255 78.8 %
Date: 2023-12-20 08:16:07 Functions: 0 0 -

          Line data    Source code
       1             : // Copyright 2018 The LevelDB-Go and Pebble Authors. All rights reserved. Use
       2             : // of this source code is governed by a BSD-style license that can be found in
       3             : // the LICENSE file.
       4             : 
       5             : package pebble
       6             : 
       7             : import (
       8             :         "bytes"
       9             :         "fmt"
      10             :         "math"
      11             :         "sort"
      12             :         "strings"
      13             : 
      14             :         "github.com/cockroachdb/pebble/internal/base"
      15             :         "github.com/cockroachdb/pebble/internal/humanize"
      16             :         "github.com/cockroachdb/pebble/internal/manifest"
      17             : )
      18             : 
      19             : // The minimum count for an intra-L0 compaction. This matches the RocksDB
      20             : // heuristic.
      21             : const minIntraL0Count = 4
      22             : 
      23             : type compactionEnv struct {
      24             :         // diskAvailBytes holds a statistic on the number of bytes available on
      25             :         // disk, as reported by the filesystem. It's used to be more restrictive in
      26             :         // expanding compactions if available disk space is limited.
      27             :         //
      28             :         // The cached value (d.diskAvailBytes) is updated whenever a file is deleted
      29             :         // and whenever a compaction or flush completes. Since file removal is the
      30             :         // primary means of reclaiming space, there is a rough bound on the
      31             :         // statistic's staleness when available bytes is growing. Compactions and
      32             :         // flushes are longer, slower operations and provide a much looser bound
      33             :         // when available bytes is decreasing.
      34             :         diskAvailBytes          uint64
      35             :         earliestUnflushedSeqNum uint64
      36             :         earliestSnapshotSeqNum  uint64
      37             :         inProgressCompactions   []compactionInfo
      38             :         readCompactionEnv       readCompactionEnv
      39             : }
      40             : 
      41             : type compactionPicker interface {
      42             :         getScores([]compactionInfo) [numLevels]float64
      43             :         getBaseLevel() int
      44             :         estimatedCompactionDebt(l0ExtraSize uint64) uint64
      45             :         pickAuto(env compactionEnv) (pc *pickedCompaction)
      46             :         pickElisionOnlyCompaction(env compactionEnv) (pc *pickedCompaction)
      47             :         pickRewriteCompaction(env compactionEnv) (pc *pickedCompaction)
      48             :         pickReadTriggeredCompaction(env compactionEnv) (pc *pickedCompaction)
      49             :         forceBaseLevel1()
      50             : }
      51             : 
      52             : // readCompactionEnv is used to hold data required to perform read compactions
      53             : type readCompactionEnv struct {
      54             :         rescheduleReadCompaction *bool
      55             :         readCompactions          *readCompactionQueue
      56             :         flushing                 bool
      57             : }
      58             : 
      59             : // Information about in-progress compactions provided to the compaction picker.
      60             : // These are used to constrain the new compactions that will be picked.
      61             : type compactionInfo struct {
      62             :         // versionEditApplied is true if this compaction's version edit has already
      63             :         // been committed. The compaction may still be in-progress deleting newly
      64             :         // obsolete files.
      65             :         versionEditApplied bool
      66             :         inputs             []compactionLevel
      67             :         outputLevel        int
      68             :         smallest           InternalKey
      69             :         largest            InternalKey
      70             : }
      71             : 
      72           0 : func (info compactionInfo) String() string {
      73           0 :         var buf bytes.Buffer
      74           0 :         var largest int
      75           0 :         for i, in := range info.inputs {
      76           0 :                 if i > 0 {
      77           0 :                         fmt.Fprintf(&buf, " -> ")
      78           0 :                 }
      79           0 :                 fmt.Fprintf(&buf, "L%d", in.level)
      80           0 :                 in.files.Each(func(m *fileMetadata) {
      81           0 :                         fmt.Fprintf(&buf, " %s", m.FileNum)
      82           0 :                 })
      83           0 :                 if largest < in.level {
      84           0 :                         largest = in.level
      85           0 :                 }
      86             :         }
      87           0 :         if largest != info.outputLevel || len(info.inputs) == 1 {
      88           0 :                 fmt.Fprintf(&buf, " -> L%d", info.outputLevel)
      89           0 :         }
      90           0 :         return buf.String()
      91             : }
      92             : 
      93             : type sortCompactionLevelsByPriority []candidateLevelInfo
      94             : 
      95           1 : func (s sortCompactionLevelsByPriority) Len() int {
      96           1 :         return len(s)
      97           1 : }
      98             : 
      99             : // A level should be picked for compaction if the compensatedScoreRatio is >= the
     100             : // compactionScoreThreshold.
     101             : const compactionScoreThreshold = 1
     102             : 
     103             : // Less should return true if s[i] must be placed earlier than s[j] in the final
     104             : // sorted list. The candidateLevelInfo for the level placed earlier is more likely
     105             : // to be picked for a compaction.
     106           1 : func (s sortCompactionLevelsByPriority) Less(i, j int) bool {
     107           1 :         iShouldCompact := s[i].compensatedScoreRatio >= compactionScoreThreshold
     108           1 :         jShouldCompact := s[j].compensatedScoreRatio >= compactionScoreThreshold
     109           1 :         // Ordering is defined as decreasing on (shouldCompact, uncompensatedScoreRatio)
     110           1 :         // where shouldCompact is 1 for true and 0 for false.
     111           1 :         if iShouldCompact && !jShouldCompact {
     112           1 :                 return true
     113           1 :         }
     114           1 :         if !iShouldCompact && jShouldCompact {
     115           1 :                 return false
     116           1 :         }
     117             : 
     118           1 :         if s[i].uncompensatedScoreRatio != s[j].uncompensatedScoreRatio {
     119           1 :                 return s[i].uncompensatedScoreRatio > s[j].uncompensatedScoreRatio
     120           1 :         }
     121           1 :         return s[i].level < s[j].level
     122             : }
     123             : 
     124           1 : func (s sortCompactionLevelsByPriority) Swap(i, j int) {
     125           1 :         s[i], s[j] = s[j], s[i]
     126           1 : }
     127             : 
     128             : // sublevelInfo is used to tag a LevelSlice for an L0 sublevel with the
     129             : // sublevel.
     130             : type sublevelInfo struct {
     131             :         manifest.LevelSlice
     132             :         sublevel manifest.Level
     133             : }
     134             : 
     135           1 : func (cl sublevelInfo) Clone() sublevelInfo {
     136           1 :         return sublevelInfo{
     137           1 :                 sublevel:   cl.sublevel,
     138           1 :                 LevelSlice: cl.LevelSlice.Reslice(func(start, end *manifest.LevelIterator) {}),
     139             :         }
     140             : }
     141           0 : func (cl sublevelInfo) String() string {
     142           0 :         return fmt.Sprintf(`Sublevel %s; Levels %s`, cl.sublevel, cl.LevelSlice)
     143           0 : }
     144             : 
     145             : // generateSublevelInfo will generate the level slices for each of the sublevels
     146             : // from the level slice for all of L0.
     147           1 : func generateSublevelInfo(cmp base.Compare, levelFiles manifest.LevelSlice) []sublevelInfo {
     148           1 :         sublevelMap := make(map[uint64][]*fileMetadata)
     149           1 :         it := levelFiles.Iter()
     150           1 :         for f := it.First(); f != nil; f = it.Next() {
     151           1 :                 sublevelMap[uint64(f.SubLevel)] = append(sublevelMap[uint64(f.SubLevel)], f)
     152           1 :         }
     153             : 
     154           1 :         var sublevels []int
     155           1 :         for level := range sublevelMap {
     156           1 :                 sublevels = append(sublevels, int(level))
     157           1 :         }
     158           1 :         sort.Ints(sublevels)
     159           1 : 
     160           1 :         var levelSlices []sublevelInfo
     161           1 :         for _, sublevel := range sublevels {
     162           1 :                 metas := sublevelMap[uint64(sublevel)]
     163           1 :                 levelSlices = append(
     164           1 :                         levelSlices,
     165           1 :                         sublevelInfo{
     166           1 :                                 manifest.NewLevelSliceKeySorted(cmp, metas),
     167           1 :                                 manifest.L0Sublevel(sublevel),
     168           1 :                         },
     169           1 :                 )
     170           1 :         }
     171           1 :         return levelSlices
     172             : }
     173             : 
     174             : // compactionPickerMetrics holds metrics related to the compaction picking process
     175             : type compactionPickerMetrics struct {
     176             :         // scores contains the compensatedScoreRatio from the candidateLevelInfo.
     177             :         scores                      []float64
     178             :         singleLevelOverlappingRatio float64
     179             :         multiLevelOverlappingRatio  float64
     180             : }
     181             : 
     182             : // pickedCompaction contains information about a compaction that has already
     183             : // been chosen, and is being constructed. Compaction construction info lives in
     184             : // this struct, and is copied over into the compaction struct when that's
     185             : // created.
     186             : type pickedCompaction struct {
     187             :         cmp Compare
     188             :         // score of the chosen compaction. This is the same as the
     189             :         // compensatedScoreRatio in the candidateLevelInfo.
     190             :         score float64
     191             :         // kind indicates the kind of compaction.
     192             :         kind compactionKind
     193             :         // startLevel is the level that is being compacted. Inputs from startLevel
     194             :         // and outputLevel will be merged to produce a set of outputLevel files.
     195             :         startLevel *compactionLevel
     196             :         // outputLevel is the level that files are being produced in. outputLevel is
     197             :         // equal to startLevel+1 except when:
     198             :         //    - if startLevel is 0, the output level equals compactionPicker.baseLevel().
     199             :         //    - in multilevel compaction, the output level is the lowest level involved in
     200             :         //      the compaction
     201             :         outputLevel *compactionLevel
     202             :         // extraLevels contain additional levels in between the input and output
     203             :         // levels that get compacted in multi level compactions
     204             :         extraLevels []*compactionLevel
     205             :         inputs      []compactionLevel
     206             :         // LBase at the time of compaction picking.
     207             :         baseLevel int
     208             :         // L0-specific compaction info. Set to a non-nil value for all compactions
     209             :         // where startLevel == 0 that were generated by L0Sublevels.
     210             :         lcf *manifest.L0CompactionFiles
     211             :         // maxOutputFileSize is the maximum size of an individual table created
     212             :         // during compaction.
     213             :         maxOutputFileSize uint64
     214             :         // maxOverlapBytes is the maximum number of bytes of overlap allowed for a
     215             :         // single output table with the tables in the grandparent level.
     216             :         maxOverlapBytes uint64
     217             :         // maxReadCompactionBytes is the maximum bytes a read compaction is allowed to
     218             :         // overlap in its output level with. If the overlap is greater than
     219             :         // maxReadCompaction bytes, then we don't proceed with the compaction.
     220             :         maxReadCompactionBytes uint64
     221             :         // The boundaries of the input data.
     222             :         smallest      InternalKey
     223             :         largest       InternalKey
     224             :         version       *version
     225             :         pickerMetrics compactionPickerMetrics
     226             : }
     227             : 
     228           1 : func defaultOutputLevel(startLevel, baseLevel int) int {
     229           1 :         outputLevel := startLevel + 1
     230           1 :         if startLevel == 0 {
     231           1 :                 outputLevel = baseLevel
     232           1 :         }
     233           1 :         if outputLevel >= numLevels-1 {
     234           1 :                 outputLevel = numLevels - 1
     235           1 :         }
     236           1 :         return outputLevel
     237             : }
     238             : 
     239             : func newPickedCompaction(
     240             :         opts *Options, cur *version, startLevel, outputLevel, baseLevel int,
     241           1 : ) *pickedCompaction {
     242           1 :         if startLevel > 0 && startLevel < baseLevel {
     243           0 :                 panic(fmt.Sprintf("invalid compaction: start level %d should not be empty (base level %d)",
     244           0 :                         startLevel, baseLevel))
     245             :         }
     246             : 
     247           1 :         adjustedLevel := adjustedOutputLevel(outputLevel, baseLevel)
     248           1 :         pc := &pickedCompaction{
     249           1 :                 cmp:                    opts.Comparer.Compare,
     250           1 :                 version:                cur,
     251           1 :                 baseLevel:              baseLevel,
     252           1 :                 inputs:                 []compactionLevel{{level: startLevel}, {level: outputLevel}},
     253           1 :                 maxOutputFileSize:      uint64(opts.Level(adjustedLevel).TargetFileSize),
     254           1 :                 maxOverlapBytes:        maxGrandparentOverlapBytes(opts, adjustedLevel),
     255           1 :                 maxReadCompactionBytes: maxReadCompactionBytes(opts, adjustedLevel),
     256           1 :         }
     257           1 :         pc.startLevel = &pc.inputs[0]
     258           1 :         pc.outputLevel = &pc.inputs[1]
     259           1 :         return pc
     260             : }
     261             : 
     262             : // adjustedOutputLevel is the output level used for the purpose of
     263             : // determining the target output file size, overlap bytes, and expanded
     264             : // bytes, taking into account the base level.
     265           1 : func adjustedOutputLevel(outputLevel int, baseLevel int) int {
     266           1 :         adjustedOutputLevel := outputLevel
     267           1 :         if adjustedOutputLevel > 0 {
     268           1 :                 // Output level is in the range [baseLevel, numLevels]. For the purpose of
     269           1 :                 // determining the target output file size, overlap bytes, and expanded
     270           1 :                 // bytes, we want to adjust the range to [1,numLevels].
     271           1 :                 adjustedOutputLevel = 1 + outputLevel - baseLevel
     272           1 :         }
     273           1 :         return adjustedOutputLevel
     274             : }
     275             : 
     276             : func newPickedCompactionFromL0(
     277             :         lcf *manifest.L0CompactionFiles, opts *Options, vers *version, baseLevel int, isBase bool,
     278           1 : ) *pickedCompaction {
     279           1 :         outputLevel := baseLevel
     280           1 :         if !isBase {
     281           1 :                 outputLevel = 0 // Intra L0
     282           1 :         }
     283             : 
     284           1 :         pc := newPickedCompaction(opts, vers, 0, outputLevel, baseLevel)
     285           1 :         pc.lcf = lcf
     286           1 :         pc.outputLevel.level = outputLevel
     287           1 : 
     288           1 :         // Manually build the compaction as opposed to calling
     289           1 :         // pickAutoHelper. This is because L0Sublevels has already added
     290           1 :         // any overlapping L0 SSTables that need to be added, and
     291           1 :         // because compactions built by L0SSTables do not necessarily
     292           1 :         // pick contiguous sequences of files in pc.version.Levels[0].
     293           1 :         files := make([]*manifest.FileMetadata, 0, len(lcf.Files))
     294           1 :         iter := vers.Levels[0].Iter()
     295           1 :         for f := iter.First(); f != nil; f = iter.Next() {
     296           1 :                 if lcf.FilesIncluded[f.L0Index] {
     297           1 :                         files = append(files, f)
     298           1 :                 }
     299             :         }
     300           1 :         pc.startLevel.files = manifest.NewLevelSliceSeqSorted(files)
     301           1 :         return pc
     302             : }
     303             : 
     304           0 : func (pc *pickedCompaction) String() string {
     305           0 :         var builder strings.Builder
     306           0 :         builder.WriteString(fmt.Sprintf(`Score=%f, `, pc.score))
     307           0 :         builder.WriteString(fmt.Sprintf(`Kind=%s, `, pc.kind))
     308           0 :         builder.WriteString(fmt.Sprintf(`AdjustedOutputLevel=%d, `, adjustedOutputLevel(pc.outputLevel.level, pc.baseLevel)))
     309           0 :         builder.WriteString(fmt.Sprintf(`maxOutputFileSize=%d, `, pc.maxOutputFileSize))
     310           0 :         builder.WriteString(fmt.Sprintf(`maxReadCompactionBytes=%d, `, pc.maxReadCompactionBytes))
     311           0 :         builder.WriteString(fmt.Sprintf(`smallest=%s, `, pc.smallest))
     312           0 :         builder.WriteString(fmt.Sprintf(`largest=%s, `, pc.largest))
     313           0 :         builder.WriteString(fmt.Sprintf(`version=%s, `, pc.version))
     314           0 :         builder.WriteString(fmt.Sprintf(`inputs=%s, `, pc.inputs))
     315           0 :         builder.WriteString(fmt.Sprintf(`startlevel=%s, `, pc.startLevel))
     316           0 :         builder.WriteString(fmt.Sprintf(`outputLevel=%s, `, pc.outputLevel))
     317           0 :         builder.WriteString(fmt.Sprintf(`extraLevels=%s, `, pc.extraLevels))
     318           0 :         builder.WriteString(fmt.Sprintf(`l0SublevelInfo=%s, `, pc.startLevel.l0SublevelInfo))
     319           0 :         builder.WriteString(fmt.Sprintf(`lcf=%s`, pc.lcf))
     320           0 :         return builder.String()
     321           0 : }
     322             : 
     323             : // Clone creates a deep copy of the pickedCompaction
     324           1 : func (pc *pickedCompaction) clone() *pickedCompaction {
     325           1 : 
     326           1 :         // Quickly copy over fields that do not require special deep copy care, and
     327           1 :         // set all fields that will require a deep copy to nil.
     328           1 :         newPC := &pickedCompaction{
     329           1 :                 cmp:                    pc.cmp,
     330           1 :                 score:                  pc.score,
     331           1 :                 kind:                   pc.kind,
     332           1 :                 baseLevel:              pc.baseLevel,
     333           1 :                 maxOutputFileSize:      pc.maxOutputFileSize,
     334           1 :                 maxOverlapBytes:        pc.maxOverlapBytes,
     335           1 :                 maxReadCompactionBytes: pc.maxReadCompactionBytes,
     336           1 :                 smallest:               pc.smallest.Clone(),
     337           1 :                 largest:                pc.largest.Clone(),
     338           1 : 
     339           1 :                 // TODO(msbutler): properly clone picker metrics
     340           1 :                 pickerMetrics: pc.pickerMetrics,
     341           1 : 
     342           1 :                 // Both copies see the same manifest, therefore, it's ok for them to se
     343           1 :                 // share the same pc. version.
     344           1 :                 version: pc.version,
     345           1 :         }
     346           1 : 
     347           1 :         newPC.inputs = make([]compactionLevel, len(pc.inputs))
     348           1 :         newPC.extraLevels = make([]*compactionLevel, 0, len(pc.extraLevels))
     349           1 :         for i := range pc.inputs {
     350           1 :                 newPC.inputs[i] = pc.inputs[i].Clone()
     351           1 :                 if i == 0 {
     352           1 :                         newPC.startLevel = &newPC.inputs[i]
     353           1 :                 } else if i == len(pc.inputs)-1 {
     354           1 :                         newPC.outputLevel = &newPC.inputs[i]
     355           1 :                 } else {
     356           0 :                         newPC.extraLevels = append(newPC.extraLevels, &newPC.inputs[i])
     357           0 :                 }
     358             :         }
     359             : 
     360           1 :         if len(pc.startLevel.l0SublevelInfo) > 0 {
     361           1 :                 newPC.startLevel.l0SublevelInfo = make([]sublevelInfo, len(pc.startLevel.l0SublevelInfo))
     362           1 :                 for i := range pc.startLevel.l0SublevelInfo {
     363           1 :                         newPC.startLevel.l0SublevelInfo[i] = pc.startLevel.l0SublevelInfo[i].Clone()
     364           1 :                 }
     365             :         }
     366           1 :         if pc.lcf != nil {
     367           1 :                 newPC.lcf = pc.lcf.Clone()
     368           1 :         }
     369           1 :         return newPC
     370             : }
     371             : 
     372             : // maybeExpandedBounds is a helper function for setupInputs which ensures the
     373             : // pickedCompaction's smallest and largest internal keys are updated iff
     374             : // the candidate keys expand the key span. This avoids a bug for multi-level
     375             : // compactions: during the second call to setupInputs, the picked compaction's
     376             : // smallest and largest keys should not decrease the key span.
     377           1 : func (pc *pickedCompaction) maybeExpandBounds(smallest InternalKey, largest InternalKey) {
     378           1 :         emptyKey := InternalKey{}
     379           1 :         if base.InternalCompare(pc.cmp, smallest, emptyKey) == 0 {
     380           1 :                 if base.InternalCompare(pc.cmp, largest, emptyKey) != 0 {
     381           0 :                         panic("either both candidate keys are empty or neither are empty")
     382             :                 }
     383           1 :                 return
     384             :         }
     385           1 :         if base.InternalCompare(pc.cmp, pc.smallest, emptyKey) == 0 {
     386           1 :                 if base.InternalCompare(pc.cmp, pc.largest, emptyKey) != 0 {
     387           0 :                         panic("either both pc keys are empty or neither are empty")
     388             :                 }
     389           1 :                 pc.smallest = smallest
     390           1 :                 pc.largest = largest
     391           1 :                 return
     392             :         }
     393           1 :         if base.InternalCompare(pc.cmp, pc.smallest, smallest) >= 0 {
     394           1 :                 pc.smallest = smallest
     395           1 :         }
     396           1 :         if base.InternalCompare(pc.cmp, pc.largest, largest) <= 0 {
     397           1 :                 pc.largest = largest
     398           1 :         }
     399             : }
     400             : 
     401             : // setupInputs returns true if a compaction has been set up. It returns false if
     402             : // a concurrent compaction is occurring on the start or output level files.
     403             : func (pc *pickedCompaction) setupInputs(
     404             :         opts *Options, diskAvailBytes uint64, startLevel *compactionLevel,
     405           1 : ) bool {
     406           1 :         // maxExpandedBytes is the maximum size of an expanded compaction. If
     407           1 :         // growing a compaction results in a larger size, the original compaction
     408           1 :         // is used instead.
     409           1 :         maxExpandedBytes := expandedCompactionByteSizeLimit(
     410           1 :                 opts, adjustedOutputLevel(pc.outputLevel.level, pc.baseLevel), diskAvailBytes,
     411           1 :         )
     412           1 : 
     413           1 :         // Expand the initial inputs to a clean cut.
     414           1 :         var isCompacting bool
     415           1 :         startLevel.files, isCompacting = expandToAtomicUnit(pc.cmp, startLevel.files, false /* disableIsCompacting */)
     416           1 :         if isCompacting {
     417           1 :                 return false
     418           1 :         }
     419           1 :         pc.maybeExpandBounds(manifest.KeyRange(pc.cmp, startLevel.files.Iter()))
     420           1 : 
     421           1 :         // Determine the sstables in the output level which overlap with the input
     422           1 :         // sstables, and then expand those tables to a clean cut. No need to do
     423           1 :         // this for intra-L0 compactions; outputLevel.files is left empty for those.
     424           1 :         if startLevel.level != pc.outputLevel.level {
     425           1 :                 pc.outputLevel.files = pc.version.Overlaps(pc.outputLevel.level, pc.cmp, pc.smallest.UserKey,
     426           1 :                         pc.largest.UserKey, pc.largest.IsExclusiveSentinel())
     427           1 :                 pc.outputLevel.files, isCompacting = expandToAtomicUnit(pc.cmp, pc.outputLevel.files,
     428           1 :                         false /* disableIsCompacting */)
     429           1 :                 if isCompacting {
     430           1 :                         return false
     431           1 :                 }
     432           1 :                 pc.maybeExpandBounds(manifest.KeyRange(pc.cmp,
     433           1 :                         startLevel.files.Iter(), pc.outputLevel.files.Iter()))
     434             :         }
     435             : 
     436             :         // Grow the sstables in startLevel.level as long as it doesn't affect the number
     437             :         // of sstables included from pc.outputLevel.level.
     438           1 :         if pc.lcf != nil && startLevel.level == 0 && pc.outputLevel.level != 0 {
     439           1 :                 // Call the L0-specific compaction extension method. Similar logic as
     440           1 :                 // pc.grow. Additional L0 files are optionally added to the compaction at
     441           1 :                 // this step. Note that the bounds passed in are not the bounds of the
     442           1 :                 // compaction, but rather the smallest and largest internal keys that
     443           1 :                 // the compaction cannot include from L0 without pulling in more Lbase
     444           1 :                 // files. Consider this example:
     445           1 :                 //
     446           1 :                 // L0:        c-d e+f g-h
     447           1 :                 // Lbase: a-b     e+f     i-j
     448           1 :                 //        a b c d e f g h i j
     449           1 :                 //
     450           1 :                 // The e-f files have already been chosen in the compaction. As pulling
     451           1 :                 // in more LBase files is undesirable, the logic below will pass in
     452           1 :                 // smallest = b and largest = i to ExtendL0ForBaseCompactionTo, which
     453           1 :                 // will expand the compaction to include c-d and g-h from L0. The
     454           1 :                 // bounds passed in are exclusive; the compaction cannot be expanded
     455           1 :                 // to include files that "touch" it.
     456           1 :                 smallestBaseKey := base.InvalidInternalKey
     457           1 :                 largestBaseKey := base.InvalidInternalKey
     458           1 :                 if pc.outputLevel.files.Empty() {
     459           1 :                         baseIter := pc.version.Levels[pc.outputLevel.level].Iter()
     460           1 :                         if sm := baseIter.SeekLT(pc.cmp, pc.smallest.UserKey); sm != nil {
     461           1 :                                 smallestBaseKey = sm.Largest
     462           1 :                         }
     463           1 :                         if la := baseIter.SeekGE(pc.cmp, pc.largest.UserKey); la != nil {
     464           1 :                                 largestBaseKey = la.Smallest
     465           1 :                         }
     466           1 :                 } else {
     467           1 :                         // NB: We use Reslice to access the underlying level's files, but
     468           1 :                         // we discard the returned slice. The pc.outputLevel.files slice
     469           1 :                         // is not modified.
     470           1 :                         _ = pc.outputLevel.files.Reslice(func(start, end *manifest.LevelIterator) {
     471           1 :                                 if sm := start.Prev(); sm != nil {
     472           1 :                                         smallestBaseKey = sm.Largest
     473           1 :                                 }
     474           1 :                                 if la := end.Next(); la != nil {
     475           1 :                                         largestBaseKey = la.Smallest
     476           1 :                                 }
     477             :                         })
     478             :                 }
     479           1 :                 oldLcf := pc.lcf.Clone()
     480           1 :                 if pc.version.L0Sublevels.ExtendL0ForBaseCompactionTo(smallestBaseKey, largestBaseKey, pc.lcf) {
     481           1 :                         var newStartLevelFiles []*fileMetadata
     482           1 :                         iter := pc.version.Levels[0].Iter()
     483           1 :                         var sizeSum uint64
     484           1 :                         for j, f := 0, iter.First(); f != nil; j, f = j+1, iter.Next() {
     485           1 :                                 if pc.lcf.FilesIncluded[f.L0Index] {
     486           1 :                                         newStartLevelFiles = append(newStartLevelFiles, f)
     487           1 :                                         sizeSum += f.Size
     488           1 :                                 }
     489             :                         }
     490           1 :                         if sizeSum+pc.outputLevel.files.SizeSum() < maxExpandedBytes {
     491           1 :                                 startLevel.files = manifest.NewLevelSliceSeqSorted(newStartLevelFiles)
     492           1 :                                 pc.smallest, pc.largest = manifest.KeyRange(pc.cmp,
     493           1 :                                         startLevel.files.Iter(), pc.outputLevel.files.Iter())
     494           1 :                         } else {
     495           1 :                                 *pc.lcf = *oldLcf
     496           1 :                         }
     497             :                 }
     498           1 :         } else if pc.grow(pc.smallest, pc.largest, maxExpandedBytes, startLevel) {
     499           1 :                 pc.maybeExpandBounds(manifest.KeyRange(pc.cmp,
     500           1 :                         startLevel.files.Iter(), pc.outputLevel.files.Iter()))
     501           1 :         }
     502             : 
     503           1 :         if pc.startLevel.level == 0 {
     504           1 :                 // We don't change the input files for the compaction beyond this point.
     505           1 :                 pc.startLevel.l0SublevelInfo = generateSublevelInfo(pc.cmp, pc.startLevel.files)
     506           1 :         }
     507             : 
     508           1 :         return true
     509             : }
     510             : 
     511             : // grow grows the number of inputs at c.level without changing the number of
     512             : // c.level+1 files in the compaction, and returns whether the inputs grew. sm
     513             : // and la are the smallest and largest InternalKeys in all of the inputs.
     514             : func (pc *pickedCompaction) grow(
     515             :         sm, la InternalKey, maxExpandedBytes uint64, startLevel *compactionLevel,
     516           1 : ) bool {
     517           1 :         if pc.outputLevel.files.Empty() {
     518           1 :                 return false
     519           1 :         }
     520           1 :         grow0 := pc.version.Overlaps(startLevel.level, pc.cmp, sm.UserKey,
     521           1 :                 la.UserKey, la.IsExclusiveSentinel())
     522           1 :         grow0, isCompacting := expandToAtomicUnit(pc.cmp, grow0, false /* disableIsCompacting */)
     523           1 :         if isCompacting {
     524           1 :                 return false
     525           1 :         }
     526           1 :         if grow0.Len() <= startLevel.files.Len() {
     527           1 :                 return false
     528           1 :         }
     529           1 :         if grow0.SizeSum()+pc.outputLevel.files.SizeSum() >= maxExpandedBytes {
     530           1 :                 return false
     531           1 :         }
     532             :         // We need to include the outputLevel iter because without it, in a multiLevel scenario,
     533             :         // sm1 and la1 could shift the output level keyspace when pc.outputLevel.files is set to grow1.
     534           1 :         sm1, la1 := manifest.KeyRange(pc.cmp, grow0.Iter(), pc.outputLevel.files.Iter())
     535           1 :         grow1 := pc.version.Overlaps(pc.outputLevel.level, pc.cmp, sm1.UserKey,
     536           1 :                 la1.UserKey, la1.IsExclusiveSentinel())
     537           1 :         grow1, isCompacting = expandToAtomicUnit(pc.cmp, grow1, false /* disableIsCompacting */)
     538           1 :         if isCompacting {
     539           1 :                 return false
     540           1 :         }
     541           1 :         if grow1.Len() != pc.outputLevel.files.Len() {
     542           1 :                 return false
     543           1 :         }
     544           1 :         startLevel.files = grow0
     545           1 :         pc.outputLevel.files = grow1
     546           1 :         return true
     547             : }
     548             : 
     549           1 : func (pc *pickedCompaction) compactionSize() uint64 {
     550           1 :         var bytesToCompact uint64
     551           1 :         for i := range pc.inputs {
     552           1 :                 bytesToCompact += pc.inputs[i].files.SizeSum()
     553           1 :         }
     554           1 :         return bytesToCompact
     555             : }
     556             : 
     557             : // setupMultiLevelCandidated returns true if it successfully added another level
     558             : // to the compaction.
     559           1 : func (pc *pickedCompaction) setupMultiLevelCandidate(opts *Options, diskAvailBytes uint64) bool {
     560           1 :         pc.inputs = append(pc.inputs, compactionLevel{level: pc.outputLevel.level + 1})
     561           1 : 
     562           1 :         // Recalibrate startLevel and outputLevel:
     563           1 :         //  - startLevel and outputLevel pointers may be obsolete after appending to pc.inputs.
     564           1 :         //  - push outputLevel to extraLevels and move the new level to outputLevel
     565           1 :         pc.startLevel = &pc.inputs[0]
     566           1 :         pc.extraLevels = []*compactionLevel{&pc.inputs[1]}
     567           1 :         pc.outputLevel = &pc.inputs[2]
     568           1 :         return pc.setupInputs(opts, diskAvailBytes, pc.extraLevels[len(pc.extraLevels)-1])
     569           1 : }
     570             : 
     571             : // expandToAtomicUnit expands the provided level slice within its level both
     572             : // forwards and backwards to its "atomic compaction unit" boundaries, if
     573             : // necessary.
     574             : //
     575             : // While picking compaction inputs, this is required to maintain the invariant
     576             : // that the versions of keys at level+1 are older than the versions of keys at
     577             : // level. Tables are added to the right of the current slice tables such that
     578             : // the rightmost table has a "clean cut". A clean cut is either a change in
     579             : // user keys, or when the largest key in the left sstable is a range tombstone
     580             : // sentinel key (InternalKeyRangeDeleteSentinel).
     581             : //
     582             : // In addition to maintaining the seqnum invariant, expandToAtomicUnit is used
     583             : // to provide clean boundaries for range tombstone truncation during
     584             : // compaction. In order to achieve these clean boundaries, expandToAtomicUnit
     585             : // needs to find a "clean cut" on the left edge of the compaction as well.
     586             : // This is necessary in order for "atomic compaction units" to always be
     587             : // compacted as a unit. Failure to do this leads to a subtle bug with
     588             : // truncation of range tombstones to atomic compaction unit boundaries.
     589             : // Consider the scenario:
     590             : //
     591             : //      L3:
     592             : //        12:[a#2,15-b#1,1]
     593             : //        13:[b#0,15-d#72057594037927935,15]
     594             : //
     595             : // These sstables contain a range tombstone [a-d)#2 which spans the two
     596             : // sstables. The two sstables need to always be kept together. Compacting
     597             : // sstable 13 independently of sstable 12 would result in:
     598             : //
     599             : //      L3:
     600             : //        12:[a#2,15-b#1,1]
     601             : //      L4:
     602             : //        14:[b#0,15-d#72057594037927935,15]
     603             : //
     604             : // This state is still ok, but when sstable 12 is next compacted, its range
     605             : // tombstones will be truncated at "b" (the largest key in its atomic
     606             : // compaction unit). In the scenario here, that could result in b#1 becoming
     607             : // visible when it should be deleted.
     608             : //
     609             : // isCompacting is returned true for any atomic units that contain files that
     610             : // have in-progress compactions, i.e. FileMetadata.Compacting == true. If
     611             : // disableIsCompacting is true, isCompacting always returns false. This helps
     612             : // avoid spurious races from being detected when this method is used outside
     613             : // of compaction picking code.
     614             : //
     615             : // TODO(jackson): Compactions and flushes no longer split a user key between two
     616             : // sstables. We could perform a migration, re-compacting any sstables with split
     617             : // user keys, which would allow us to remove atomic compaction unit expansion
     618             : // code.
     619             : func expandToAtomicUnit(
     620             :         cmp Compare, inputs manifest.LevelSlice, disableIsCompacting bool,
     621           1 : ) (slice manifest.LevelSlice, isCompacting bool) {
     622           1 :         // NB: Inputs for L0 can't be expanded and *version.Overlaps guarantees
     623           1 :         // that we get a 'clean cut.' For L0, Overlaps will return a slice without
     624           1 :         // access to the rest of the L0 files, so it's OK to try to reslice.
     625           1 :         if inputs.Empty() {
     626           1 :                 // Nothing to expand.
     627           1 :                 return inputs, false
     628           1 :         }
     629             : 
     630             :         // TODO(jackson): Update to avoid use of LevelIterator.Current(). The
     631             :         // Reslice interface will require some tweaking, because we currently rely
     632             :         // on Reslice having already positioned the LevelIterator appropriately.
     633             : 
     634           1 :         inputs = inputs.Reslice(func(start, end *manifest.LevelIterator) {
     635           1 :                 iter := start.Clone()
     636           1 :                 iter.Prev()
     637           1 :                 for cur, prev := start.Current(), iter.Current(); prev != nil; cur, prev = start.Prev(), iter.Prev() {
     638           1 :                         if cur.IsCompacting() {
     639           1 :                                 isCompacting = true
     640           1 :                         }
     641           1 :                         if cmp(prev.Largest.UserKey, cur.Smallest.UserKey) < 0 {
     642           1 :                                 break
     643             :                         }
     644           1 :                         if prev.Largest.IsExclusiveSentinel() {
     645           1 :                                 // The table prev has a largest key indicating that the user key
     646           1 :                                 // prev.largest.UserKey doesn't actually exist in the table.
     647           1 :                                 break
     648             :                         }
     649             :                         // prev.Largest.UserKey == cur.Smallest.UserKey, so we need to
     650             :                         // include prev in the compaction.
     651             :                 }
     652             : 
     653           1 :                 iter = end.Clone()
     654           1 :                 iter.Next()
     655           1 :                 for cur, next := end.Current(), iter.Current(); next != nil; cur, next = end.Next(), iter.Next() {
     656           1 :                         if cur.IsCompacting() {
     657           1 :                                 isCompacting = true
     658           1 :                         }
     659           1 :                         if cmp(cur.Largest.UserKey, next.Smallest.UserKey) < 0 {
     660           1 :                                 break
     661             :                         }
     662           1 :                         if cur.Largest.IsExclusiveSentinel() {
     663           1 :                                 // The table cur has a largest key indicating that the user key
     664           1 :                                 // cur.largest.UserKey doesn't actually exist in the table.
     665           1 :                                 break
     666             :                         }
     667             :                         // cur.Largest.UserKey == next.Smallest.UserKey, so we need to
     668             :                         // include next in the compaction.
     669             :                 }
     670             :         })
     671           1 :         inputIter := inputs.Iter()
     672           1 :         isCompacting = !disableIsCompacting &&
     673           1 :                 (isCompacting || inputIter.First().IsCompacting() || inputIter.Last().IsCompacting())
     674           1 :         return inputs, isCompacting
     675             : }
     676             : 
     677             : func newCompactionPicker(
     678             :         v *version, opts *Options, inProgressCompactions []compactionInfo,
     679           1 : ) compactionPicker {
     680           1 :         p := &compactionPickerByScore{
     681           1 :                 opts: opts,
     682           1 :                 vers: v,
     683           1 :         }
     684           1 :         p.initLevelMaxBytes(inProgressCompactions)
     685           1 :         return p
     686           1 : }
     687             : 
     688             : // Information about a candidate compaction level that has been identified by
     689             : // the compaction picker.
     690             : type candidateLevelInfo struct {
     691             :         // The compensatedScore of the level after adjusting according to the other
     692             :         // levels' sizes. For L0, the compensatedScoreRatio is equivalent to the
     693             :         // uncompensatedScoreRatio as we don't account for level size compensation in
     694             :         // L0.
     695             :         compensatedScoreRatio float64
     696             :         // The score of the level after accounting for level size compensation before
     697             :         // adjusting according to other levels' sizes. For L0, the compensatedScore
     698             :         // is equivalent to the uncompensatedScore as we don't account for level
     699             :         // size compensation in L0.
     700             :         compensatedScore float64
     701             :         // The score of the level to be compacted, calculated using uncompensated file
     702             :         // sizes and without any adjustments.
     703             :         uncompensatedScore float64
     704             :         // uncompensatedScoreRatio is the uncompensatedScore adjusted according to
     705             :         // the other levels' sizes.
     706             :         uncompensatedScoreRatio float64
     707             :         level                   int
     708             :         // The level to compact to.
     709             :         outputLevel int
     710             :         // The file in level that will be compacted. Additional files may be
     711             :         // picked by the compaction, and a pickedCompaction created for the
     712             :         // compaction.
     713             :         file manifest.LevelFile
     714             : }
     715             : 
     716           1 : func (c *candidateLevelInfo) shouldCompact() bool {
     717           1 :         return c.compensatedScoreRatio >= compactionScoreThreshold
     718           1 : }
     719             : 
     720           1 : func fileCompensation(f *fileMetadata) uint64 {
     721           1 :         return uint64(f.Stats.PointDeletionsBytesEstimate) + f.Stats.RangeDeletionsBytesEstimate
     722           1 : }
     723             : 
     724             : // compensatedSize returns f's file size, inflated according to compaction
     725             : // priorities.
     726           1 : func compensatedSize(f *fileMetadata) uint64 {
     727           1 :         // Add in the estimate of disk space that may be reclaimed by compacting the
     728           1 :         // file's tombstones.
     729           1 :         return f.Size + fileCompensation(f)
     730           1 : }
     731             : 
     732             : // compensatedSizeAnnotator implements manifest.Annotator, annotating B-Tree
     733             : // nodes with the sum of the files' compensated sizes. Its annotation type is
     734             : // a *uint64. Compensated sizes may change once a table's stats are loaded
     735             : // asynchronously, so its values are marked as cacheable only if a file's
     736             : // stats have been loaded.
     737             : type compensatedSizeAnnotator struct {
     738             : }
     739             : 
     740             : var _ manifest.Annotator = compensatedSizeAnnotator{}
     741             : 
     742           1 : func (a compensatedSizeAnnotator) Zero(dst interface{}) interface{} {
     743           1 :         if dst == nil {
     744           1 :                 return new(uint64)
     745           1 :         }
     746           1 :         v := dst.(*uint64)
     747           1 :         *v = 0
     748           1 :         return v
     749             : }
     750             : 
     751             : func (a compensatedSizeAnnotator) Accumulate(
     752             :         f *fileMetadata, dst interface{},
     753           1 : ) (v interface{}, cacheOK bool) {
     754           1 :         vptr := dst.(*uint64)
     755           1 :         *vptr = *vptr + compensatedSize(f)
     756           1 :         return vptr, f.StatsValid()
     757           1 : }
     758             : 
     759           1 : func (a compensatedSizeAnnotator) Merge(src interface{}, dst interface{}) interface{} {
     760           1 :         srcV := src.(*uint64)
     761           1 :         dstV := dst.(*uint64)
     762           1 :         *dstV = *dstV + *srcV
     763           1 :         return dstV
     764           1 : }
     765             : 
     766             : // totalCompensatedSize computes the compensated size over a file metadata
     767             : // iterator. Note that this function is linear in the files available to the
     768             : // iterator. Use the compensatedSizeAnnotator if querying the total
     769             : // compensated size of a level.
     770           1 : func totalCompensatedSize(iter manifest.LevelIterator) uint64 {
     771           1 :         var sz uint64
     772           1 :         for f := iter.First(); f != nil; f = iter.Next() {
     773           1 :                 sz += compensatedSize(f)
     774           1 :         }
     775           1 :         return sz
     776             : }
     777             : 
     778             : // compactionPickerByScore holds the state and logic for picking a compaction. A
     779             : // compaction picker is associated with a single version. A new compaction
     780             : // picker is created and initialized every time a new version is installed.
     781             : type compactionPickerByScore struct {
     782             :         opts *Options
     783             :         vers *version
     784             :         // The level to target for L0 compactions. Levels L1 to baseLevel must be
     785             :         // empty.
     786             :         baseLevel int
     787             :         // levelMaxBytes holds the dynamically adjusted max bytes setting for each
     788             :         // level.
     789             :         levelMaxBytes [numLevels]int64
     790             : }
     791             : 
     792             : var _ compactionPicker = &compactionPickerByScore{}
     793             : 
     794           1 : func (p *compactionPickerByScore) getScores(inProgress []compactionInfo) [numLevels]float64 {
     795           1 :         var scores [numLevels]float64
     796           1 :         for _, info := range p.calculateLevelScores(inProgress) {
     797           1 :                 scores[info.level] = info.compensatedScoreRatio
     798           1 :         }
     799           1 :         return scores
     800             : }
     801             : 
     802           1 : func (p *compactionPickerByScore) getBaseLevel() int {
     803           1 :         if p == nil {
     804           0 :                 return 1
     805           0 :         }
     806           1 :         return p.baseLevel
     807             : }
     808             : 
     809             : // estimatedCompactionDebt estimates the number of bytes which need to be
     810             : // compacted before the LSM tree becomes stable.
     811           1 : func (p *compactionPickerByScore) estimatedCompactionDebt(l0ExtraSize uint64) uint64 {
     812           1 :         if p == nil {
     813           0 :                 return 0
     814           0 :         }
     815             : 
     816             :         // We assume that all the bytes in L0 need to be compacted to Lbase. This is
     817             :         // unlike the RocksDB logic that figures out whether L0 needs compaction.
     818           1 :         bytesAddedToNextLevel := l0ExtraSize + p.vers.Levels[0].Size()
     819           1 :         lbaseSize := p.vers.Levels[p.baseLevel].Size()
     820           1 : 
     821           1 :         var compactionDebt uint64
     822           1 :         if bytesAddedToNextLevel > 0 && lbaseSize > 0 {
     823           1 :                 // We only incur compaction debt if both L0 and Lbase contain data. If L0
     824           1 :                 // is empty, no compaction is necessary. If Lbase is empty, a move-based
     825           1 :                 // compaction from L0 would occur.
     826           1 :                 compactionDebt += bytesAddedToNextLevel + lbaseSize
     827           1 :         }
     828             : 
     829             :         // loop invariant: At the beginning of the loop, bytesAddedToNextLevel is the
     830             :         // bytes added to `level` in the loop.
     831           1 :         for level := p.baseLevel; level < numLevels-1; level++ {
     832           1 :                 levelSize := p.vers.Levels[level].Size() + bytesAddedToNextLevel
     833           1 :                 nextLevelSize := p.vers.Levels[level+1].Size()
     834           1 :                 if levelSize > uint64(p.levelMaxBytes[level]) {
     835           1 :                         bytesAddedToNextLevel = levelSize - uint64(p.levelMaxBytes[level])
     836           1 :                         if nextLevelSize > 0 {
     837           1 :                                 // We only incur compaction debt if the next level contains data. If the
     838           1 :                                 // next level is empty, a move-based compaction would be used.
     839           1 :                                 levelRatio := float64(nextLevelSize) / float64(levelSize)
     840           1 :                                 // The current level contributes bytesAddedToNextLevel to compactions.
     841           1 :                                 // The next level contributes levelRatio * bytesAddedToNextLevel.
     842           1 :                                 compactionDebt += uint64(float64(bytesAddedToNextLevel) * (levelRatio + 1))
     843           1 :                         }
     844           1 :                 } else {
     845           1 :                         // We're not moving any bytes to the next level.
     846           1 :                         bytesAddedToNextLevel = 0
     847           1 :                 }
     848             :         }
     849           1 :         return compactionDebt
     850             : }
     851             : 
     852           1 : func (p *compactionPickerByScore) initLevelMaxBytes(inProgressCompactions []compactionInfo) {
     853           1 :         // The levelMaxBytes calculations here differ from RocksDB in two ways:
     854           1 :         //
     855           1 :         // 1. The use of dbSize vs maxLevelSize. RocksDB uses the size of the maximum
     856           1 :         //    level in L1-L6, rather than determining the size of the bottom level
     857           1 :         //    based on the total amount of data in the dB. The RocksDB calculation is
     858           1 :         //    problematic if L0 contains a significant fraction of data, or if the
     859           1 :         //    level sizes are roughly equal and thus there is a significant fraction
     860           1 :         //    of data outside of the largest level.
     861           1 :         //
     862           1 :         // 2. Not adjusting the size of Lbase based on L0. RocksDB computes
     863           1 :         //    baseBytesMax as the maximum of the configured LBaseMaxBytes and the
     864           1 :         //    size of L0. This is problematic because baseBytesMax is used to compute
     865           1 :         //    the max size of lower levels. A very large baseBytesMax will result in
     866           1 :         //    an overly large value for the size of lower levels which will caused
     867           1 :         //    those levels not to be compacted even when they should be
     868           1 :         //    compacted. This often results in "inverted" LSM shapes where Ln is
     869           1 :         //    larger than Ln+1.
     870           1 : 
     871           1 :         // Determine the first non-empty level and the total DB size.
     872           1 :         firstNonEmptyLevel := -1
     873           1 :         var dbSize uint64
     874           1 :         for level := 1; level < numLevels; level++ {
     875           1 :                 if p.vers.Levels[level].Size() > 0 {
     876           1 :                         if firstNonEmptyLevel == -1 {
     877           1 :                                 firstNonEmptyLevel = level
     878           1 :                         }
     879           1 :                         dbSize += p.vers.Levels[level].Size()
     880             :                 }
     881             :         }
     882           1 :         for _, c := range inProgressCompactions {
     883           1 :                 if c.outputLevel == 0 || c.outputLevel == -1 {
     884           1 :                         continue
     885             :                 }
     886           1 :                 if c.inputs[0].level == 0 && (firstNonEmptyLevel == -1 || c.outputLevel < firstNonEmptyLevel) {
     887           1 :                         firstNonEmptyLevel = c.outputLevel
     888           1 :                 }
     889             :         }
     890             : 
     891             :         // Initialize the max-bytes setting for each level to "infinity" which will
     892             :         // disallow compaction for that level. We'll fill in the actual value below
     893             :         // for levels we want to allow compactions from.
     894           1 :         for level := 0; level < numLevels; level++ {
     895           1 :                 p.levelMaxBytes[level] = math.MaxInt64
     896           1 :         }
     897             : 
     898           1 :         if dbSize == 0 {
     899           1 :                 // No levels for L1 and up contain any data. Target L0 compactions for the
     900           1 :                 // last level or to the level to which there is an ongoing L0 compaction.
     901           1 :                 p.baseLevel = numLevels - 1
     902           1 :                 if firstNonEmptyLevel >= 0 {
     903           1 :                         p.baseLevel = firstNonEmptyLevel
     904           1 :                 }
     905           1 :                 return
     906             :         }
     907             : 
     908           1 :         dbSize += p.vers.Levels[0].Size()
     909           1 :         bottomLevelSize := dbSize - dbSize/uint64(p.opts.Experimental.LevelMultiplier)
     910           1 : 
     911           1 :         curLevelSize := bottomLevelSize
     912           1 :         for level := numLevels - 2; level >= firstNonEmptyLevel; level-- {
     913           1 :                 curLevelSize = uint64(float64(curLevelSize) / float64(p.opts.Experimental.LevelMultiplier))
     914           1 :         }
     915             : 
     916             :         // Compute base level (where L0 data is compacted to).
     917           1 :         baseBytesMax := uint64(p.opts.LBaseMaxBytes)
     918           1 :         p.baseLevel = firstNonEmptyLevel
     919           1 :         for p.baseLevel > 1 && curLevelSize > baseBytesMax {
     920           1 :                 p.baseLevel--
     921           1 :                 curLevelSize = uint64(float64(curLevelSize) / float64(p.opts.Experimental.LevelMultiplier))
     922           1 :         }
     923             : 
     924           1 :         smoothedLevelMultiplier := 1.0
     925           1 :         if p.baseLevel < numLevels-1 {
     926           1 :                 smoothedLevelMultiplier = math.Pow(
     927           1 :                         float64(bottomLevelSize)/float64(baseBytesMax),
     928           1 :                         1.0/float64(numLevels-p.baseLevel-1))
     929           1 :         }
     930             : 
     931           1 :         levelSize := float64(baseBytesMax)
     932           1 :         for level := p.baseLevel; level < numLevels; level++ {
     933           1 :                 if level > p.baseLevel && levelSize > 0 {
     934           1 :                         levelSize *= smoothedLevelMultiplier
     935           1 :                 }
     936             :                 // Round the result since test cases use small target level sizes, which
     937             :                 // can be impacted by floating-point imprecision + integer truncation.
     938           1 :                 roundedLevelSize := math.Round(levelSize)
     939           1 :                 if roundedLevelSize > float64(math.MaxInt64) {
     940           0 :                         p.levelMaxBytes[level] = math.MaxInt64
     941           1 :                 } else {
     942           1 :                         p.levelMaxBytes[level] = int64(roundedLevelSize)
     943           1 :                 }
     944             :         }
     945             : }
     946             : 
     947             : type levelSizeAdjust struct {
     948             :         incomingActualBytes      uint64
     949             :         outgoingActualBytes      uint64
     950             :         outgoingCompensatedBytes uint64
     951             : }
     952             : 
     953           1 : func (a levelSizeAdjust) compensated() uint64 {
     954           1 :         return a.incomingActualBytes - a.outgoingCompensatedBytes
     955           1 : }
     956             : 
     957           1 : func (a levelSizeAdjust) actual() uint64 {
     958           1 :         return a.incomingActualBytes - a.outgoingActualBytes
     959           1 : }
     960             : 
     961           1 : func calculateSizeAdjust(inProgressCompactions []compactionInfo) [numLevels]levelSizeAdjust {
     962           1 :         // Compute size adjustments for each level based on the in-progress
     963           1 :         // compactions. We sum the file sizes of all files leaving and entering each
     964           1 :         // level in in-progress compactions. For outgoing files, we also sum a
     965           1 :         // separate sum of 'compensated file sizes', which are inflated according
     966           1 :         // to deletion estimates.
     967           1 :         //
     968           1 :         // When we adjust a level's size according to these values during score
     969           1 :         // calculation, we subtract the compensated size of start level inputs to
     970           1 :         // account for the fact that score calculation uses compensated sizes.
     971           1 :         //
     972           1 :         // Since compensated file sizes may be compensated because they reclaim
     973           1 :         // space from the output level's files, we only add the real file size to
     974           1 :         // the output level.
     975           1 :         //
     976           1 :         // This is slightly different from RocksDB's behavior, which simply elides
     977           1 :         // compacting files from the level size calculation.
     978           1 :         var sizeAdjust [numLevels]levelSizeAdjust
     979           1 :         for i := range inProgressCompactions {
     980           1 :                 c := &inProgressCompactions[i]
     981           1 :                 // If this compaction's version edit has already been applied, there's
     982           1 :                 // no need to adjust: The LSM we'll examine will already reflect the
     983           1 :                 // new LSM state.
     984           1 :                 if c.versionEditApplied {
     985           1 :                         continue
     986             :                 }
     987             : 
     988           1 :                 for _, input := range c.inputs {
     989           1 :                         actualSize := input.files.SizeSum()
     990           1 :                         compensatedSize := totalCompensatedSize(input.files.Iter())
     991           1 : 
     992           1 :                         if input.level != c.outputLevel {
     993           1 :                                 sizeAdjust[input.level].outgoingCompensatedBytes += compensatedSize
     994           1 :                                 sizeAdjust[input.level].outgoingActualBytes += actualSize
     995           1 :                                 if c.outputLevel != -1 {
     996           1 :                                         sizeAdjust[c.outputLevel].incomingActualBytes += actualSize
     997           1 :                                 }
     998             :                         }
     999             :                 }
    1000             :         }
    1001           1 :         return sizeAdjust
    1002             : }
    1003             : 
    1004           1 : func levelCompensatedSize(lm manifest.LevelMetadata) uint64 {
    1005           1 :         return *lm.Annotation(compensatedSizeAnnotator{}).(*uint64)
    1006           1 : }
    1007             : 
    1008             : func (p *compactionPickerByScore) calculateLevelScores(
    1009             :         inProgressCompactions []compactionInfo,
    1010           1 : ) [numLevels]candidateLevelInfo {
    1011           1 :         var scores [numLevels]candidateLevelInfo
    1012           1 :         for i := range scores {
    1013           1 :                 scores[i].level = i
    1014           1 :                 scores[i].outputLevel = i + 1
    1015           1 :         }
    1016           1 :         l0UncompensatedScore := calculateL0UncompensatedScore(p.vers, p.opts, inProgressCompactions)
    1017           1 :         scores[0] = candidateLevelInfo{
    1018           1 :                 outputLevel:        p.baseLevel,
    1019           1 :                 uncompensatedScore: l0UncompensatedScore,
    1020           1 :                 compensatedScore:   l0UncompensatedScore, /* No level size compensation for L0 */
    1021           1 :         }
    1022           1 :         sizeAdjust := calculateSizeAdjust(inProgressCompactions)
    1023           1 :         for level := 1; level < numLevels; level++ {
    1024           1 :                 compensatedLevelSize := levelCompensatedSize(p.vers.Levels[level]) + sizeAdjust[level].compensated()
    1025           1 :                 scores[level].compensatedScore = float64(compensatedLevelSize) / float64(p.levelMaxBytes[level])
    1026           1 :                 scores[level].uncompensatedScore = float64(p.vers.Levels[level].Size()+sizeAdjust[level].actual()) / float64(p.levelMaxBytes[level])
    1027           1 :         }
    1028             : 
    1029             :         // Adjust each level's {compensated, uncompensated}Score by the uncompensatedScore
    1030             :         // of the next level to get a {compensated, uncompensated}ScoreRatio. If the
    1031             :         // next level has a high uncompensatedScore, and is thus a priority for compaction,
    1032             :         // this reduces the priority for compacting the current level. If the next level
    1033             :         // has a low uncompensatedScore (i.e. it is below its target size), this increases
    1034             :         // the priority for compacting the current level.
    1035             :         //
    1036             :         // The effect of this adjustment is to help prioritize compactions in lower
    1037             :         // levels. The following example shows the compensatedScoreRatio and the
    1038             :         // compensatedScore. In this scenario, L0 has 68 sublevels. L3 (a.k.a. Lbase)
    1039             :         // is significantly above its target size. The original score prioritizes
    1040             :         // compactions from those two levels, but doing so ends up causing a future
    1041             :         // problem: data piles up in the higher levels, starving L5->L6 compactions,
    1042             :         // and to a lesser degree starving L4->L5 compactions.
    1043             :         //
    1044             :         // Note that in the example shown there is no level size compensation so the
    1045             :         // compensatedScore and the uncompensatedScore is the same for each level.
    1046             :         //
    1047             :         //        compensatedScoreRatio   compensatedScore   uncompensatedScore   size   max-size
    1048             :         //   L0                     3.2               68.0                 68.0  2.2 G          -
    1049             :         //   L3                     3.2               21.1                 21.1  1.3 G       64 M
    1050             :         //   L4                     3.4                6.7                  6.7  3.1 G      467 M
    1051             :         //   L5                     3.4                2.0                  2.0  6.6 G      3.3 G
    1052             :         //   L6                     0.6                0.6                  0.6   14 G       24 G
    1053           1 :         var prevLevel int
    1054           1 :         for level := p.baseLevel; level < numLevels; level++ {
    1055           1 :                 // The compensated scores, and uncompensated scores will be turned into
    1056           1 :                 // ratios as they're adjusted according to other levels' sizes.
    1057           1 :                 scores[prevLevel].compensatedScoreRatio = scores[prevLevel].compensatedScore
    1058           1 :                 scores[prevLevel].uncompensatedScoreRatio = scores[prevLevel].uncompensatedScore
    1059           1 : 
    1060           1 :                 // Avoid absurdly large scores by placing a floor on the score that we'll
    1061           1 :                 // adjust a level by. The value of 0.01 was chosen somewhat arbitrarily.
    1062           1 :                 const minScore = 0.01
    1063           1 :                 if scores[prevLevel].compensatedScoreRatio >= compactionScoreThreshold {
    1064           1 :                         if scores[level].uncompensatedScore >= minScore {
    1065           1 :                                 scores[prevLevel].compensatedScoreRatio /= scores[level].uncompensatedScore
    1066           1 :                         } else {
    1067           1 :                                 scores[prevLevel].compensatedScoreRatio /= minScore
    1068           1 :                         }
    1069             :                 }
    1070           1 :                 if scores[prevLevel].uncompensatedScoreRatio >= compactionScoreThreshold {
    1071           1 :                         if scores[level].uncompensatedScore >= minScore {
    1072           1 :                                 scores[prevLevel].uncompensatedScoreRatio /= scores[level].uncompensatedScore
    1073           1 :                         } else {
    1074           1 :                                 scores[prevLevel].uncompensatedScoreRatio /= minScore
    1075           1 :                         }
    1076             :                 }
    1077           1 :                 prevLevel = level
    1078             :         }
    1079             :         // Set the score ratios for the lowest level.
    1080             :         // INVARIANT: prevLevel == numLevels-1
    1081           1 :         scores[prevLevel].compensatedScoreRatio = scores[prevLevel].compensatedScore
    1082           1 :         scores[prevLevel].uncompensatedScoreRatio = scores[prevLevel].uncompensatedScore
    1083           1 : 
    1084           1 :         sort.Sort(sortCompactionLevelsByPriority(scores[:]))
    1085           1 :         return scores
    1086             : }
    1087             : 
    1088             : // calculateL0UncompensatedScore calculates a float score representing the
    1089             : // relative priority of compacting L0. Level L0 is special in that files within
    1090             : // L0 may overlap one another, so a different set of heuristics that take into
    1091             : // account read amplification apply.
    1092             : func calculateL0UncompensatedScore(
    1093             :         vers *version, opts *Options, inProgressCompactions []compactionInfo,
    1094           1 : ) float64 {
    1095           1 :         // Use the sublevel count to calculate the score. The base vs intra-L0
    1096           1 :         // compaction determination happens in pickAuto, not here.
    1097           1 :         score := float64(2*vers.L0Sublevels.MaxDepthAfterOngoingCompactions()) /
    1098           1 :                 float64(opts.L0CompactionThreshold)
    1099           1 : 
    1100           1 :         // Also calculate a score based on the file count but use it only if it
    1101           1 :         // produces a higher score than the sublevel-based one. This heuristic is
    1102           1 :         // designed to accommodate cases where L0 is accumulating non-overlapping
    1103           1 :         // files in L0. Letting too many non-overlapping files accumulate in few
    1104           1 :         // sublevels is undesirable, because:
    1105           1 :         // 1) we can produce a massive backlog to compact once files do overlap.
    1106           1 :         // 2) constructing L0 sublevels has a runtime that grows superlinearly with
    1107           1 :         //    the number of files in L0 and must be done while holding D.mu.
    1108           1 :         noncompactingFiles := vers.Levels[0].Len()
    1109           1 :         for _, c := range inProgressCompactions {
    1110           1 :                 for _, cl := range c.inputs {
    1111           1 :                         if cl.level == 0 {
    1112           1 :                                 noncompactingFiles -= cl.files.Len()
    1113           1 :                         }
    1114             :                 }
    1115             :         }
    1116           1 :         fileScore := float64(noncompactingFiles) / float64(opts.L0CompactionFileThreshold)
    1117           1 :         if score < fileScore {
    1118           1 :                 score = fileScore
    1119           1 :         }
    1120           1 :         return score
    1121             : }
    1122             : 
    1123             : // pickCompactionSeedFile picks a file from `level` in the `vers` to build a
    1124             : // compaction around. Currently, this function implements a heuristic similar to
    1125             : // RocksDB's kMinOverlappingRatio, seeking to minimize write amplification. This
    1126             : // function is linear with respect to the number of files in `level` and
    1127             : // `outputLevel`.
    1128             : func pickCompactionSeedFile(
    1129             :         vers *version, opts *Options, level, outputLevel int, earliestSnapshotSeqNum uint64,
    1130           1 : ) (manifest.LevelFile, bool) {
    1131           1 :         // Select the file within the level to compact. We want to minimize write
    1132           1 :         // amplification, but also ensure that deletes are propagated to the
    1133           1 :         // bottom level in a timely fashion so as to reclaim disk space. A table's
    1134           1 :         // smallest sequence number provides a measure of its age. The ratio of
    1135           1 :         // overlapping-bytes / table-size gives an indication of write
    1136           1 :         // amplification (a smaller ratio is preferrable).
    1137           1 :         //
    1138           1 :         // The current heuristic is based off the the RocksDB kMinOverlappingRatio
    1139           1 :         // heuristic. It chooses the file with the minimum overlapping ratio with
    1140           1 :         // the target level, which minimizes write amplification.
    1141           1 :         //
    1142           1 :         // It uses a "compensated size" for the denominator, which is the file
    1143           1 :         // size but artificially inflated by an estimate of the space that may be
    1144           1 :         // reclaimed through compaction. Currently, we only compensate for range
    1145           1 :         // deletions and only with a rough estimate of the reclaimable bytes. This
    1146           1 :         // differs from RocksDB which only compensates for point tombstones and
    1147           1 :         // only if they exceed the number of non-deletion entries in table.
    1148           1 :         //
    1149           1 :         // TODO(peter): For concurrent compactions, we may want to try harder to
    1150           1 :         // pick a seed file whose resulting compaction bounds do not overlap with
    1151           1 :         // an in-progress compaction.
    1152           1 : 
    1153           1 :         cmp := opts.Comparer.Compare
    1154           1 :         startIter := vers.Levels[level].Iter()
    1155           1 :         outputIter := vers.Levels[outputLevel].Iter()
    1156           1 : 
    1157           1 :         var file manifest.LevelFile
    1158           1 :         smallestRatio := uint64(math.MaxUint64)
    1159           1 : 
    1160           1 :         outputFile := outputIter.First()
    1161           1 : 
    1162           1 :         for f := startIter.First(); f != nil; f = startIter.Next() {
    1163           1 :                 var overlappingBytes uint64
    1164           1 :                 compacting := f.IsCompacting()
    1165           1 :                 if compacting {
    1166           1 :                         // Move on if this file is already being compacted. We'll likely
    1167           1 :                         // still need to move past the overlapping output files regardless,
    1168           1 :                         // but in cases where all start-level files are compacting we won't.
    1169           1 :                         continue
    1170             :                 }
    1171             : 
    1172             :                 // Trim any output-level files smaller than f.
    1173           1 :                 for outputFile != nil && sstableKeyCompare(cmp, outputFile.Largest, f.Smallest) < 0 {
    1174           1 :                         outputFile = outputIter.Next()
    1175           1 :                 }
    1176             : 
    1177           1 :                 for outputFile != nil && sstableKeyCompare(cmp, outputFile.Smallest, f.Largest) <= 0 && !compacting {
    1178           1 :                         overlappingBytes += outputFile.Size
    1179           1 :                         compacting = compacting || outputFile.IsCompacting()
    1180           1 : 
    1181           1 :                         // For files in the bottommost level of the LSM, the
    1182           1 :                         // Stats.RangeDeletionsBytesEstimate field is set to the estimate
    1183           1 :                         // of bytes /within/ the file itself that may be dropped by
    1184           1 :                         // recompacting the file. These bytes from obsolete keys would not
    1185           1 :                         // need to be rewritten if we compacted `f` into `outputFile`, so
    1186           1 :                         // they don't contribute to write amplification. Subtracting them
    1187           1 :                         // out of the overlapping bytes helps prioritize these compactions
    1188           1 :                         // that are cheaper than their file sizes suggest.
    1189           1 :                         if outputLevel == numLevels-1 && outputFile.LargestSeqNum < earliestSnapshotSeqNum {
    1190           1 :                                 overlappingBytes -= outputFile.Stats.RangeDeletionsBytesEstimate
    1191           1 :                         }
    1192             : 
    1193             :                         // If the file in the next level extends beyond f's largest key,
    1194             :                         // break out and don't advance outputIter because f's successor
    1195             :                         // might also overlap.
    1196             :                         //
    1197             :                         // Note, we stop as soon as we encounter an output-level file with a
    1198             :                         // largest key beyond the input-level file's largest bound. We
    1199             :                         // perform a simple user key comparison here using sstableKeyCompare
    1200             :                         // which handles the potential for exclusive largest key bounds.
    1201             :                         // There's some subtlety when the bounds are equal (eg, equal and
    1202             :                         // inclusive, or equal and exclusive). Current Pebble doesn't split
    1203             :                         // user keys across sstables within a level (and in format versions
    1204             :                         // FormatSplitUserKeysMarkedCompacted and later we guarantee no
    1205             :                         // split user keys exist within the entire LSM). In that case, we're
    1206             :                         // assured that neither the input level nor the output level's next
    1207             :                         // file shares the same user key, so compaction expansion will not
    1208             :                         // include them in any compaction compacting `f`.
    1209             :                         //
    1210             :                         // NB: If we /did/ allow split user keys, or we're running on an
    1211             :                         // old database with an earlier format major version where there are
    1212             :                         // existing split user keys, this logic would be incorrect. Consider
    1213             :                         //    L1: [a#120,a#100] [a#80,a#60]
    1214             :                         //    L2: [a#55,a#45] [a#35,a#25] [a#15,a#5]
    1215             :                         // While considering the first file in L1, [a#120,a#100], we'd skip
    1216             :                         // past all of the files in L2. When considering the second file in
    1217             :                         // L1, we'd improperly conclude that the second file overlaps
    1218             :                         // nothing in the second level and is cheap to compact, when in
    1219             :                         // reality we'd need to expand the compaction to include all 5
    1220             :                         // files.
    1221           1 :                         if sstableKeyCompare(cmp, outputFile.Largest, f.Largest) > 0 {
    1222           1 :                                 break
    1223             :                         }
    1224           1 :                         outputFile = outputIter.Next()
    1225             :                 }
    1226             : 
    1227             :                 // If the input level file or one of the overlapping files is
    1228             :                 // compacting, we're not going to be able to compact this file
    1229             :                 // anyways, so skip it.
    1230           1 :                 if compacting {
    1231           1 :                         continue
    1232             :                 }
    1233             : 
    1234           1 :                 compSz := compensatedSize(f)
    1235           1 :                 scaledRatio := overlappingBytes * 1024 / compSz
    1236           1 :                 if scaledRatio < smallestRatio {
    1237           1 :                         smallestRatio = scaledRatio
    1238           1 :                         file = startIter.Take()
    1239           1 :                 }
    1240             :         }
    1241           1 :         return file, file.FileMetadata != nil
    1242             : }
    1243             : 
    1244             : // pickAuto picks the best compaction, if any.
    1245             : //
    1246             : // On each call, pickAuto computes per-level size adjustments based on
    1247             : // in-progress compactions, and computes a per-level score. The levels are
    1248             : // iterated over in decreasing score order trying to find a valid compaction
    1249             : // anchored at that level.
    1250             : //
    1251             : // If a score-based compaction cannot be found, pickAuto falls back to looking
    1252             : // for an elision-only compaction to remove obsolete keys.
    1253           1 : func (p *compactionPickerByScore) pickAuto(env compactionEnv) (pc *pickedCompaction) {
    1254           1 :         // Compaction concurrency is controlled by L0 read-amp. We allow one
    1255           1 :         // additional compaction per L0CompactionConcurrency sublevels, as well as
    1256           1 :         // one additional compaction per CompactionDebtConcurrency bytes of
    1257           1 :         // compaction debt. Compaction concurrency is tied to L0 sublevels as that
    1258           1 :         // signal is independent of the database size. We tack on the compaction
    1259           1 :         // debt as a second signal to prevent compaction concurrency from dropping
    1260           1 :         // significantly right after a base compaction finishes, and before those
    1261           1 :         // bytes have been compacted further down the LSM.
    1262           1 :         if n := len(env.inProgressCompactions); n > 0 {
    1263           1 :                 l0ReadAmp := p.vers.L0Sublevels.MaxDepthAfterOngoingCompactions()
    1264           1 :                 compactionDebt := p.estimatedCompactionDebt(0)
    1265           1 :                 ccSignal1 := n * p.opts.Experimental.L0CompactionConcurrency
    1266           1 :                 ccSignal2 := uint64(n) * p.opts.Experimental.CompactionDebtConcurrency
    1267           1 :                 if l0ReadAmp < ccSignal1 && compactionDebt < ccSignal2 {
    1268           1 :                         return nil
    1269           1 :                 }
    1270             :         }
    1271             : 
    1272           1 :         scores := p.calculateLevelScores(env.inProgressCompactions)
    1273           1 : 
    1274           1 :         // TODO(bananabrick): Either remove, or change this into an event sent to the
    1275           1 :         // EventListener.
    1276           1 :         logCompaction := func(pc *pickedCompaction) {
    1277           0 :                 var buf bytes.Buffer
    1278           0 :                 for i := 0; i < numLevels; i++ {
    1279           0 :                         if i != 0 && i < p.baseLevel {
    1280           0 :                                 continue
    1281             :                         }
    1282             : 
    1283           0 :                         var info *candidateLevelInfo
    1284           0 :                         for j := range scores {
    1285           0 :                                 if scores[j].level == i {
    1286           0 :                                         info = &scores[j]
    1287           0 :                                         break
    1288             :                                 }
    1289             :                         }
    1290             : 
    1291           0 :                         marker := " "
    1292           0 :                         if pc.startLevel.level == info.level {
    1293           0 :                                 marker = "*"
    1294           0 :                         }
    1295           0 :                         fmt.Fprintf(&buf, "  %sL%d: %5.1f  %5.1f  %5.1f  %5.1f %8s  %8s",
    1296           0 :                                 marker, info.level, info.compensatedScoreRatio, info.compensatedScore,
    1297           0 :                                 info.uncompensatedScoreRatio, info.uncompensatedScore,
    1298           0 :                                 humanize.Bytes.Int64(int64(totalCompensatedSize(
    1299           0 :                                         p.vers.Levels[info.level].Iter(),
    1300           0 :                                 ))),
    1301           0 :                                 humanize.Bytes.Int64(p.levelMaxBytes[info.level]),
    1302           0 :                         )
    1303           0 : 
    1304           0 :                         count := 0
    1305           0 :                         for i := range env.inProgressCompactions {
    1306           0 :                                 c := &env.inProgressCompactions[i]
    1307           0 :                                 if c.inputs[0].level != info.level {
    1308           0 :                                         continue
    1309             :                                 }
    1310           0 :                                 count++
    1311           0 :                                 if count == 1 {
    1312           0 :                                         fmt.Fprintf(&buf, "  [")
    1313           0 :                                 } else {
    1314           0 :                                         fmt.Fprintf(&buf, " ")
    1315           0 :                                 }
    1316           0 :                                 fmt.Fprintf(&buf, "L%d->L%d", c.inputs[0].level, c.outputLevel)
    1317             :                         }
    1318           0 :                         if count > 0 {
    1319           0 :                                 fmt.Fprintf(&buf, "]")
    1320           0 :                         }
    1321           0 :                         fmt.Fprintf(&buf, "\n")
    1322             :                 }
    1323           0 :                 p.opts.Logger.Infof("pickAuto: L%d->L%d\n%s",
    1324           0 :                         pc.startLevel.level, pc.outputLevel.level, buf.String())
    1325             :         }
    1326             : 
    1327             :         // Check for a score-based compaction. candidateLevelInfos are first sorted
    1328             :         // by whether they should be compacted, so if we find a level which shouldn't
    1329             :         // be compacted, we can break early.
    1330           1 :         for i := range scores {
    1331           1 :                 info := &scores[i]
    1332           1 :                 if !info.shouldCompact() {
    1333           1 :                         break
    1334             :                 }
    1335           1 :                 if info.level == numLevels-1 {
    1336           1 :                         continue
    1337             :                 }
    1338             : 
    1339           1 :                 if info.level == 0 {
    1340           1 :                         pc = pickL0(env, p.opts, p.vers, p.baseLevel)
    1341           1 :                         // Fail-safe to protect against compacting the same sstable
    1342           1 :                         // concurrently.
    1343           1 :                         if pc != nil && !inputRangeAlreadyCompacting(env, pc) {
    1344           1 :                                 p.addScoresToPickedCompactionMetrics(pc, scores)
    1345           1 :                                 pc.score = info.compensatedScoreRatio
    1346           1 :                                 // TODO(bananabrick): Create an EventListener for logCompaction.
    1347           1 :                                 if false {
    1348           0 :                                         logCompaction(pc)
    1349           0 :                                 }
    1350           1 :                                 return pc
    1351             :                         }
    1352           1 :                         continue
    1353             :                 }
    1354             : 
    1355             :                 // info.level > 0
    1356           1 :                 var ok bool
    1357           1 :                 info.file, ok = pickCompactionSeedFile(p.vers, p.opts, info.level, info.outputLevel, env.earliestSnapshotSeqNum)
    1358           1 :                 if !ok {
    1359           1 :                         continue
    1360             :                 }
    1361             : 
    1362           1 :                 pc := pickAutoLPositive(env, p.opts, p.vers, *info, p.baseLevel, p.levelMaxBytes)
    1363           1 :                 // Fail-safe to protect against compacting the same sstable concurrently.
    1364           1 :                 if pc != nil && !inputRangeAlreadyCompacting(env, pc) {
    1365           1 :                         p.addScoresToPickedCompactionMetrics(pc, scores)
    1366           1 :                         pc.score = info.compensatedScoreRatio
    1367           1 :                         // TODO(bananabrick): Create an EventListener for logCompaction.
    1368           1 :                         if false {
    1369           0 :                                 logCompaction(pc)
    1370           0 :                         }
    1371           1 :                         return pc
    1372             :                 }
    1373             :         }
    1374             : 
    1375             :         // Check for L6 files with tombstones that may be elided. These files may
    1376             :         // exist if a snapshot prevented the elision of a tombstone or because of
    1377             :         // a move compaction. These are low-priority compactions because they
    1378             :         // don't help us keep up with writes, just reclaim disk space.
    1379           1 :         if pc := p.pickElisionOnlyCompaction(env); pc != nil {
    1380           1 :                 return pc
    1381           1 :         }
    1382             : 
    1383           1 :         if pc := p.pickReadTriggeredCompaction(env); pc != nil {
    1384           0 :                 return pc
    1385           0 :         }
    1386             : 
    1387             :         // NB: This should only be run if a read compaction wasn't
    1388             :         // scheduled.
    1389             :         //
    1390             :         // We won't be scheduling a read compaction right now, and in
    1391             :         // read heavy workloads, compactions won't be scheduled frequently
    1392             :         // because flushes aren't frequent. So we need to signal to the
    1393             :         // iterator to schedule a compaction when it adds compactions to
    1394             :         // the read compaction queue.
    1395             :         //
    1396             :         // We need the nil check here because without it, we have some
    1397             :         // tests which don't set that variable fail. Since there's a
    1398             :         // chance that one of those tests wouldn't want extra compactions
    1399             :         // to be scheduled, I added this check here, instead of
    1400             :         // setting rescheduleReadCompaction in those tests.
    1401           1 :         if env.readCompactionEnv.rescheduleReadCompaction != nil {
    1402           1 :                 *env.readCompactionEnv.rescheduleReadCompaction = true
    1403           1 :         }
    1404             : 
    1405             :         // At the lowest possible compaction-picking priority, look for files marked
    1406             :         // for compaction. Pebble will mark files for compaction if they have atomic
    1407             :         // compaction units that span multiple files. While current Pebble code does
    1408             :         // not construct such sstables, RocksDB and earlier versions of Pebble may
    1409             :         // have created them. These split user keys form sets of files that must be
    1410             :         // compacted together for correctness (referred to as "atomic compaction
    1411             :         // units" within the code). Rewrite them in-place.
    1412             :         //
    1413             :         // It's also possible that a file may have been marked for compaction by
    1414             :         // even earlier versions of Pebble code, since FileMetadata's
    1415             :         // MarkedForCompaction field is persisted in the manifest. That's okay. We
    1416             :         // previously would've ignored the designation, whereas now we'll re-compact
    1417             :         // the file in place.
    1418           1 :         if p.vers.Stats.MarkedForCompaction > 0 {
    1419           0 :                 if pc := p.pickRewriteCompaction(env); pc != nil {
    1420           0 :                         return pc
    1421           0 :                 }
    1422             :         }
    1423             : 
    1424           1 :         return nil
    1425             : }
    1426             : 
    1427             : func (p *compactionPickerByScore) addScoresToPickedCompactionMetrics(
    1428             :         pc *pickedCompaction, candInfo [numLevels]candidateLevelInfo,
    1429           1 : ) {
    1430           1 : 
    1431           1 :         // candInfo is sorted by score, not by compaction level.
    1432           1 :         infoByLevel := [numLevels]candidateLevelInfo{}
    1433           1 :         for i := range candInfo {
    1434           1 :                 level := candInfo[i].level
    1435           1 :                 infoByLevel[level] = candInfo[i]
    1436           1 :         }
    1437             :         // Gather the compaction scores for the levels participating in the compaction.
    1438           1 :         pc.pickerMetrics.scores = make([]float64, len(pc.inputs))
    1439           1 :         inputIdx := 0
    1440           1 :         for i := range infoByLevel {
    1441           1 :                 if pc.inputs[inputIdx].level == infoByLevel[i].level {
    1442           1 :                         pc.pickerMetrics.scores[inputIdx] = infoByLevel[i].compensatedScoreRatio
    1443           1 :                         inputIdx++
    1444           1 :                 }
    1445           1 :                 if inputIdx == len(pc.inputs) {
    1446           1 :                         break
    1447             :                 }
    1448             :         }
    1449             : }
    1450             : 
    1451             : // elisionOnlyAnnotator implements the manifest.Annotator interface,
    1452             : // annotating B-Tree nodes with the *fileMetadata of a file meeting the
    1453             : // obsolete keys criteria for an elision-only compaction within the subtree.
    1454             : // If multiple files meet the criteria, it chooses whichever file has the
    1455             : // lowest LargestSeqNum. The lowest LargestSeqNum file will be the first
    1456             : // eligible for an elision-only compaction once snapshots less than or equal
    1457             : // to its LargestSeqNum are closed.
    1458             : type elisionOnlyAnnotator struct{}
    1459             : 
    1460             : var _ manifest.Annotator = elisionOnlyAnnotator{}
    1461             : 
    1462           1 : func (a elisionOnlyAnnotator) Zero(interface{}) interface{} {
    1463           1 :         return nil
    1464           1 : }
    1465             : 
    1466           1 : func (a elisionOnlyAnnotator) Accumulate(f *fileMetadata, dst interface{}) (interface{}, bool) {
    1467           1 :         if f.IsCompacting() {
    1468           1 :                 return dst, true
    1469           1 :         }
    1470           1 :         if !f.StatsValid() {
    1471           1 :                 return dst, false
    1472           1 :         }
    1473             :         // Bottommost files are large and not worthwhile to compact just
    1474             :         // to remove a few tombstones. Consider a file ineligible if its
    1475             :         // own range deletions delete less than 10% of its data and its
    1476             :         // deletion tombstones make up less than 10% of its entries.
    1477             :         //
    1478             :         // TODO(jackson): This does not account for duplicate user keys
    1479             :         // which may be collapsed. Ideally, we would have 'obsolete keys'
    1480             :         // statistics that would include tombstones, the keys that are
    1481             :         // dropped by tombstones and duplicated user keys. See #847.
    1482             :         //
    1483             :         // Note that tables that contain exclusively range keys (i.e. no point keys,
    1484             :         // `NumEntries` and `RangeDeletionsBytesEstimate` are both zero) are excluded
    1485             :         // from elision-only compactions.
    1486             :         // TODO(travers): Consider an alternative heuristic for elision of range-keys.
    1487           1 :         if f.Stats.RangeDeletionsBytesEstimate*10 < f.Size &&
    1488           1 :                 f.Stats.NumDeletions*10 <= f.Stats.NumEntries {
    1489           1 :                 return dst, true
    1490           1 :         }
    1491           1 :         if dst == nil {
    1492           1 :                 return f, true
    1493           1 :         } else if dstV := dst.(*fileMetadata); dstV.LargestSeqNum > f.LargestSeqNum {
    1494           1 :                 return f, true
    1495           1 :         }
    1496           1 :         return dst, true
    1497             : }
    1498             : 
    1499           1 : func (a elisionOnlyAnnotator) Merge(v interface{}, accum interface{}) interface{} {
    1500           1 :         if v == nil {
    1501           1 :                 return accum
    1502           1 :         }
    1503             :         // If we haven't accumulated an eligible file yet, or f's LargestSeqNum is
    1504             :         // less than the accumulated file's, use f.
    1505           1 :         if accum == nil {
    1506           1 :                 return v
    1507           1 :         }
    1508           1 :         f := v.(*fileMetadata)
    1509           1 :         accumV := accum.(*fileMetadata)
    1510           1 :         if accumV == nil || accumV.LargestSeqNum > f.LargestSeqNum {
    1511           1 :                 return f
    1512           1 :         }
    1513           1 :         return accumV
    1514             : }
    1515             : 
    1516             : // markedForCompactionAnnotator implements the manifest.Annotator interface,
    1517             : // annotating B-Tree nodes with the *fileMetadata of a file that is marked for
    1518             : // compaction within the subtree. If multiple files meet the criteria, it
    1519             : // chooses whichever file has the lowest LargestSeqNum.
    1520             : type markedForCompactionAnnotator struct{}
    1521             : 
    1522             : var _ manifest.Annotator = markedForCompactionAnnotator{}
    1523             : 
    1524           0 : func (a markedForCompactionAnnotator) Zero(interface{}) interface{} {
    1525           0 :         return nil
    1526           0 : }
    1527             : 
    1528             : func (a markedForCompactionAnnotator) Accumulate(
    1529             :         f *fileMetadata, dst interface{},
    1530           0 : ) (interface{}, bool) {
    1531           0 :         if !f.MarkedForCompaction {
    1532           0 :                 // Not marked for compaction; return dst.
    1533           0 :                 return dst, true
    1534           0 :         }
    1535           0 :         return markedMergeHelper(f, dst)
    1536             : }
    1537             : 
    1538           0 : func (a markedForCompactionAnnotator) Merge(v interface{}, accum interface{}) interface{} {
    1539           0 :         if v == nil {
    1540           0 :                 return accum
    1541           0 :         }
    1542           0 :         accum, _ = markedMergeHelper(v.(*fileMetadata), accum)
    1543           0 :         return accum
    1544             : }
    1545             : 
    1546             : // REQUIRES: f is non-nil, and f.MarkedForCompaction=true.
    1547           0 : func markedMergeHelper(f *fileMetadata, dst interface{}) (interface{}, bool) {
    1548           0 :         if dst == nil {
    1549           0 :                 return f, true
    1550           0 :         } else if dstV := dst.(*fileMetadata); dstV.LargestSeqNum > f.LargestSeqNum {
    1551           0 :                 return f, true
    1552           0 :         }
    1553           0 :         return dst, true
    1554             : }
    1555             : 
    1556             : // pickElisionOnlyCompaction looks for compactions of sstables in the
    1557             : // bottommost level containing obsolete records that may now be dropped.
    1558             : func (p *compactionPickerByScore) pickElisionOnlyCompaction(
    1559             :         env compactionEnv,
    1560           1 : ) (pc *pickedCompaction) {
    1561           1 :         if p.opts.private.disableElisionOnlyCompactions {
    1562           1 :                 return nil
    1563           1 :         }
    1564           1 :         v := p.vers.Levels[numLevels-1].Annotation(elisionOnlyAnnotator{})
    1565           1 :         if v == nil {
    1566           1 :                 return nil
    1567           1 :         }
    1568           1 :         candidate := v.(*fileMetadata)
    1569           1 :         if candidate.IsCompacting() || candidate.LargestSeqNum >= env.earliestSnapshotSeqNum {
    1570           1 :                 return nil
    1571           1 :         }
    1572           1 :         lf := p.vers.Levels[numLevels-1].Find(p.opts.Comparer.Compare, candidate)
    1573           1 :         if lf == nil {
    1574           0 :                 panic(fmt.Sprintf("file %s not found in level %d as expected", candidate.FileNum, numLevels-1))
    1575             :         }
    1576             : 
    1577             :         // Construct a picked compaction of the elision candidate's atomic
    1578             :         // compaction unit.
    1579           1 :         pc = newPickedCompaction(p.opts, p.vers, numLevels-1, numLevels-1, p.baseLevel)
    1580           1 :         pc.kind = compactionKindElisionOnly
    1581           1 :         var isCompacting bool
    1582           1 :         pc.startLevel.files, isCompacting = expandToAtomicUnit(p.opts.Comparer.Compare, lf.Slice(), false /* disableIsCompacting */)
    1583           1 :         if isCompacting {
    1584           0 :                 return nil
    1585           0 :         }
    1586           1 :         pc.smallest, pc.largest = manifest.KeyRange(pc.cmp, pc.startLevel.files.Iter())
    1587           1 :         // Fail-safe to protect against compacting the same sstable concurrently.
    1588           1 :         if !inputRangeAlreadyCompacting(env, pc) {
    1589           1 :                 return pc
    1590           1 :         }
    1591           1 :         return nil
    1592             : }
    1593             : 
    1594             : // pickRewriteCompaction attempts to construct a compaction that
    1595             : // rewrites a file marked for compaction. pickRewriteCompaction will
    1596             : // pull in adjacent files in the file's atomic compaction unit if
    1597             : // necessary. A rewrite compaction outputs files to the same level as
    1598             : // the input level.
    1599           0 : func (p *compactionPickerByScore) pickRewriteCompaction(env compactionEnv) (pc *pickedCompaction) {
    1600           0 :         for l := numLevels - 1; l >= 0; l-- {
    1601           0 :                 v := p.vers.Levels[l].Annotation(markedForCompactionAnnotator{})
    1602           0 :                 if v == nil {
    1603           0 :                         // Try the next level.
    1604           0 :                         continue
    1605             :                 }
    1606           0 :                 candidate := v.(*fileMetadata)
    1607           0 :                 if candidate.IsCompacting() {
    1608           0 :                         // Try the next level.
    1609           0 :                         continue
    1610             :                 }
    1611           0 :                 lf := p.vers.Levels[l].Find(p.opts.Comparer.Compare, candidate)
    1612           0 :                 if lf == nil {
    1613           0 :                         panic(fmt.Sprintf("file %s not found in level %d as expected", candidate.FileNum, numLevels-1))
    1614             :                 }
    1615             : 
    1616           0 :                 inputs := lf.Slice()
    1617           0 :                 // L0 files generated by a flush have never been split such that
    1618           0 :                 // adjacent files can contain the same user key. So we do not need to
    1619           0 :                 // rewrite an atomic compaction unit for L0. Note that there is nothing
    1620           0 :                 // preventing two different flushes from producing files that are
    1621           0 :                 // non-overlapping from an InternalKey perspective, but span the same
    1622           0 :                 // user key. However, such files cannot be in the same L0 sublevel,
    1623           0 :                 // since each sublevel requires non-overlapping user keys (unlike other
    1624           0 :                 // levels).
    1625           0 :                 if l > 0 {
    1626           0 :                         // Find this file's atomic compaction unit. This is only relevant
    1627           0 :                         // for levels L1+.
    1628           0 :                         var isCompacting bool
    1629           0 :                         inputs, isCompacting = expandToAtomicUnit(
    1630           0 :                                 p.opts.Comparer.Compare,
    1631           0 :                                 inputs,
    1632           0 :                                 false, /* disableIsCompacting */
    1633           0 :                         )
    1634           0 :                         if isCompacting {
    1635           0 :                                 // Try the next level.
    1636           0 :                                 continue
    1637             :                         }
    1638             :                 }
    1639             : 
    1640           0 :                 pc = newPickedCompaction(p.opts, p.vers, l, l, p.baseLevel)
    1641           0 :                 pc.outputLevel.level = l
    1642           0 :                 pc.kind = compactionKindRewrite
    1643           0 :                 pc.startLevel.files = inputs
    1644           0 :                 pc.smallest, pc.largest = manifest.KeyRange(pc.cmp, pc.startLevel.files.Iter())
    1645           0 : 
    1646           0 :                 // Fail-safe to protect against compacting the same sstable concurrently.
    1647           0 :                 if !inputRangeAlreadyCompacting(env, pc) {
    1648           0 :                         if pc.startLevel.level == 0 {
    1649           0 :                                 pc.startLevel.l0SublevelInfo = generateSublevelInfo(pc.cmp, pc.startLevel.files)
    1650           0 :                         }
    1651           0 :                         return pc
    1652             :                 }
    1653             :         }
    1654           0 :         return nil
    1655             : }
    1656             : 
    1657             : // pickAutoLPositive picks an automatic compaction for the candidate
    1658             : // file in a positive-numbered level. This function must not be used for
    1659             : // L0.
    1660             : func pickAutoLPositive(
    1661             :         env compactionEnv,
    1662             :         opts *Options,
    1663             :         vers *version,
    1664             :         cInfo candidateLevelInfo,
    1665             :         baseLevel int,
    1666             :         levelMaxBytes [numLevels]int64,
    1667           1 : ) (pc *pickedCompaction) {
    1668           1 :         if cInfo.level == 0 {
    1669           0 :                 panic("pebble: pickAutoLPositive called for L0")
    1670             :         }
    1671             : 
    1672           1 :         pc = newPickedCompaction(opts, vers, cInfo.level, defaultOutputLevel(cInfo.level, baseLevel), baseLevel)
    1673           1 :         if pc.outputLevel.level != cInfo.outputLevel {
    1674           0 :                 panic("pebble: compaction picked unexpected output level")
    1675             :         }
    1676           1 :         pc.startLevel.files = cInfo.file.Slice()
    1677           1 :         // Files in level 0 may overlap each other, so pick up all overlapping ones.
    1678           1 :         if pc.startLevel.level == 0 {
    1679           0 :                 cmp := opts.Comparer.Compare
    1680           0 :                 smallest, largest := manifest.KeyRange(cmp, pc.startLevel.files.Iter())
    1681           0 :                 pc.startLevel.files = vers.Overlaps(0, cmp, smallest.UserKey,
    1682           0 :                         largest.UserKey, largest.IsExclusiveSentinel())
    1683           0 :                 if pc.startLevel.files.Empty() {
    1684           0 :                         panic("pebble: empty compaction")
    1685             :                 }
    1686             :         }
    1687             : 
    1688           1 :         if !pc.setupInputs(opts, env.diskAvailBytes, pc.startLevel) {
    1689           0 :                 return nil
    1690           0 :         }
    1691           1 :         return pc.maybeAddLevel(opts, env.diskAvailBytes)
    1692             : }
    1693             : 
    1694             : // maybeAddLevel maybe adds a level to the picked compaction.
    1695           1 : func (pc *pickedCompaction) maybeAddLevel(opts *Options, diskAvailBytes uint64) *pickedCompaction {
    1696           1 :         pc.pickerMetrics.singleLevelOverlappingRatio = pc.overlappingRatio()
    1697           1 :         if pc.outputLevel.level == numLevels-1 {
    1698           1 :                 // Don't add a level if the current output level is in L6
    1699           1 :                 return pc
    1700           1 :         }
    1701           1 :         if !opts.Experimental.MultiLevelCompactionHeuristic.allowL0() && pc.startLevel.level == 0 {
    1702           1 :                 return pc
    1703           1 :         }
    1704           1 :         if pc.compactionSize() > expandedCompactionByteSizeLimit(
    1705           1 :                 opts, adjustedOutputLevel(pc.outputLevel.level, pc.baseLevel), diskAvailBytes) {
    1706           1 :                 // Don't add a level if the current compaction exceeds the compaction size limit
    1707           1 :                 return pc
    1708           1 :         }
    1709           1 :         return opts.Experimental.MultiLevelCompactionHeuristic.pick(pc, opts, diskAvailBytes)
    1710             : }
    1711             : 
    1712             : // MultiLevelHeuristic evaluates whether to add files from the next level into the compaction.
    1713             : type MultiLevelHeuristic interface {
    1714             :         // Evaluate returns the preferred compaction.
    1715             :         pick(pc *pickedCompaction, opts *Options, diskAvailBytes uint64) *pickedCompaction
    1716             : 
    1717             :         // Returns if the heuristic allows L0 to be involved in ML compaction
    1718             :         allowL0() bool
    1719             : 
    1720             :         // String implements fmt.Stringer.
    1721             :         String() string
    1722             : }
    1723             : 
    1724             : // NoMultiLevel will never add an additional level to the compaction.
    1725             : type NoMultiLevel struct{}
    1726             : 
    1727             : var _ MultiLevelHeuristic = (*NoMultiLevel)(nil)
    1728             : 
    1729             : func (nml NoMultiLevel) pick(
    1730             :         pc *pickedCompaction, opts *Options, diskAvailBytes uint64,
    1731           1 : ) *pickedCompaction {
    1732           1 :         return pc
    1733           1 : }
    1734             : 
    1735           1 : func (nml NoMultiLevel) allowL0() bool  { return false }
    1736           1 : func (nml NoMultiLevel) String() string { return "none" }
    1737             : 
    1738           1 : func (pc *pickedCompaction) predictedWriteAmp() float64 {
    1739           1 :         var bytesToCompact uint64
    1740           1 :         var higherLevelBytes uint64
    1741           1 :         for i := range pc.inputs {
    1742           1 :                 levelSize := pc.inputs[i].files.SizeSum()
    1743           1 :                 bytesToCompact += levelSize
    1744           1 :                 if i != len(pc.inputs)-1 {
    1745           1 :                         higherLevelBytes += levelSize
    1746           1 :                 }
    1747             :         }
    1748           1 :         return float64(bytesToCompact) / float64(higherLevelBytes)
    1749             : }
    1750             : 
    1751           1 : func (pc *pickedCompaction) overlappingRatio() float64 {
    1752           1 :         var higherLevelBytes uint64
    1753           1 :         var lowestLevelBytes uint64
    1754           1 :         for i := range pc.inputs {
    1755           1 :                 levelSize := pc.inputs[i].files.SizeSum()
    1756           1 :                 if i == len(pc.inputs)-1 {
    1757           1 :                         lowestLevelBytes += levelSize
    1758           1 :                         continue
    1759             :                 }
    1760           1 :                 higherLevelBytes += levelSize
    1761             :         }
    1762           1 :         return float64(lowestLevelBytes) / float64(higherLevelBytes)
    1763             : }
    1764             : 
    1765             : // WriteAmpHeuristic defines a multi level compaction heuristic which will add
    1766             : // an additional level to the picked compaction if it reduces predicted write
    1767             : // amp of the compaction + the addPropensity constant.
    1768             : type WriteAmpHeuristic struct {
    1769             :         // addPropensity is a constant that affects the propensity to conduct multilevel
    1770             :         // compactions. If positive, a multilevel compaction may get picked even if
    1771             :         // the single level compaction has lower write amp, and vice versa.
    1772             :         AddPropensity float64
    1773             : 
    1774             :         // AllowL0 if true, allow l0 to be involved in a ML compaction.
    1775             :         AllowL0 bool
    1776             : }
    1777             : 
    1778             : var _ MultiLevelHeuristic = (*WriteAmpHeuristic)(nil)
    1779             : 
    1780             : // TODO(msbutler): microbenchmark the extent to which multilevel compaction
    1781             : // picking slows down the compaction picking process.  This should be as fast as
    1782             : // possible since Compaction-picking holds d.mu, which prevents WAL rotations,
    1783             : // in-progress flushes and compactions from completing, etc. Consider ways to
    1784             : // deduplicate work, given that setupInputs has already been called.
    1785             : func (wa WriteAmpHeuristic) pick(
    1786             :         pcOrig *pickedCompaction, opts *Options, diskAvailBytes uint64,
    1787           1 : ) *pickedCompaction {
    1788           1 :         pcMulti := pcOrig.clone()
    1789           1 :         if !pcMulti.setupMultiLevelCandidate(opts, diskAvailBytes) {
    1790           1 :                 return pcOrig
    1791           1 :         }
    1792           1 :         picked := pcOrig
    1793           1 :         if pcMulti.predictedWriteAmp() <= pcOrig.predictedWriteAmp()+wa.AddPropensity {
    1794           1 :                 picked = pcMulti
    1795           1 :         }
    1796             :         // Regardless of what compaction was picked, log the multilevelOverlapping ratio.
    1797           1 :         picked.pickerMetrics.multiLevelOverlappingRatio = pcMulti.overlappingRatio()
    1798           1 :         return picked
    1799             : }
    1800             : 
    1801           1 : func (wa WriteAmpHeuristic) allowL0() bool {
    1802           1 :         return wa.AllowL0
    1803           1 : }
    1804             : 
    1805             : // String implements fmt.Stringer.
    1806           1 : func (wa WriteAmpHeuristic) String() string {
    1807           1 :         return fmt.Sprintf("wamp(%.2f, %t)", wa.AddPropensity, wa.AllowL0)
    1808           1 : }
    1809             : 
    1810             : // Helper method to pick compactions originating from L0. Uses information about
    1811             : // sublevels to generate a compaction.
    1812           1 : func pickL0(env compactionEnv, opts *Options, vers *version, baseLevel int) (pc *pickedCompaction) {
    1813           1 :         // It is important to pass information about Lbase files to L0Sublevels
    1814           1 :         // so it can pick a compaction that does not conflict with an Lbase => Lbase+1
    1815           1 :         // compaction. Without this, we observed reduced concurrency of L0=>Lbase
    1816           1 :         // compactions, and increasing read amplification in L0.
    1817           1 :         //
    1818           1 :         // TODO(bilal) Remove the minCompactionDepth parameter once fixing it at 1
    1819           1 :         // has been shown to not cause a performance regression.
    1820           1 :         lcf, err := vers.L0Sublevels.PickBaseCompaction(1, vers.Levels[baseLevel].Slice())
    1821           1 :         if err != nil {
    1822           0 :                 opts.Logger.Errorf("error when picking base compaction: %s", err)
    1823           0 :                 return
    1824           0 :         }
    1825           1 :         if lcf != nil {
    1826           1 :                 pc = newPickedCompactionFromL0(lcf, opts, vers, baseLevel, true)
    1827           1 :                 pc.setupInputs(opts, env.diskAvailBytes, pc.startLevel)
    1828           1 :                 if pc.startLevel.files.Empty() {
    1829           0 :                         opts.Logger.Fatalf("empty compaction chosen")
    1830           0 :                 }
    1831           1 :                 return pc.maybeAddLevel(opts, env.diskAvailBytes)
    1832             :         }
    1833             : 
    1834             :         // Couldn't choose a base compaction. Try choosing an intra-L0
    1835             :         // compaction. Note that we pass in L0CompactionThreshold here as opposed to
    1836             :         // 1, since choosing a single sublevel intra-L0 compaction is
    1837             :         // counterproductive.
    1838           1 :         lcf, err = vers.L0Sublevels.PickIntraL0Compaction(env.earliestUnflushedSeqNum, minIntraL0Count)
    1839           1 :         if err != nil {
    1840           0 :                 opts.Logger.Errorf("error when picking intra-L0 compaction: %s", err)
    1841           0 :                 return
    1842           0 :         }
    1843           1 :         if lcf != nil {
    1844           1 :                 pc = newPickedCompactionFromL0(lcf, opts, vers, 0, false)
    1845           1 :                 if !pc.setupInputs(opts, env.diskAvailBytes, pc.startLevel) {
    1846           0 :                         return nil
    1847           0 :                 }
    1848           1 :                 if pc.startLevel.files.Empty() {
    1849           0 :                         opts.Logger.Fatalf("empty compaction chosen")
    1850           0 :                 }
    1851           1 :                 {
    1852           1 :                         iter := pc.startLevel.files.Iter()
    1853           1 :                         if iter.First() == nil || iter.Next() == nil {
    1854           0 :                                 // A single-file intra-L0 compaction is unproductive.
    1855           0 :                                 return nil
    1856           0 :                         }
    1857             :                 }
    1858             : 
    1859           1 :                 pc.smallest, pc.largest = manifest.KeyRange(pc.cmp, pc.startLevel.files.Iter())
    1860             :         }
    1861           1 :         return pc
    1862             : }
    1863             : 
    1864             : func pickManualCompaction(
    1865             :         vers *version, opts *Options, env compactionEnv, baseLevel int, manual *manualCompaction,
    1866           1 : ) (pc *pickedCompaction, retryLater bool) {
    1867           1 :         outputLevel := manual.level + 1
    1868           1 :         if manual.level == 0 {
    1869           1 :                 outputLevel = baseLevel
    1870           1 :         } else if manual.level < baseLevel {
    1871           1 :                 // The start level for a compaction must be >= Lbase. A manual
    1872           1 :                 // compaction could have been created adhering to that condition, and
    1873           1 :                 // then an automatic compaction came in and compacted all of the
    1874           1 :                 // sstables in Lbase to Lbase+1 which caused Lbase to change. Simply
    1875           1 :                 // ignore this manual compaction as there is nothing to do (manual.level
    1876           1 :                 // points to an empty level).
    1877           1 :                 return nil, false
    1878           1 :         }
    1879             :         // This conflictsWithInProgress call is necessary for the manual compaction to
    1880             :         // be retried when it conflicts with an ongoing automatic compaction. Without
    1881             :         // it, the compaction is dropped due to pc.setupInputs returning false since
    1882             :         // the input/output range is already being compacted, and the manual
    1883             :         // compaction ends with a non-compacted LSM.
    1884           1 :         if conflictsWithInProgress(manual, outputLevel, env.inProgressCompactions, opts.Comparer.Compare) {
    1885           1 :                 return nil, true
    1886           1 :         }
    1887           1 :         pc = newPickedCompaction(opts, vers, manual.level, defaultOutputLevel(manual.level, baseLevel), baseLevel)
    1888           1 :         manual.outputLevel = pc.outputLevel.level
    1889           1 :         pc.startLevel.files = vers.Overlaps(manual.level, opts.Comparer.Compare, manual.start, manual.end, false)
    1890           1 :         if pc.startLevel.files.Empty() {
    1891           1 :                 // Nothing to do
    1892           1 :                 return nil, false
    1893           1 :         }
    1894           1 :         if !pc.setupInputs(opts, env.diskAvailBytes, pc.startLevel) {
    1895           1 :                 // setupInputs returned false indicating there's a conflicting
    1896           1 :                 // concurrent compaction.
    1897           1 :                 return nil, true
    1898           1 :         }
    1899           1 :         if pc = pc.maybeAddLevel(opts, env.diskAvailBytes); pc == nil {
    1900           0 :                 return nil, false
    1901           0 :         }
    1902           1 :         if pc.outputLevel.level != outputLevel {
    1903           1 :                 if len(pc.extraLevels) > 0 {
    1904           1 :                         // multilevel compactions relax this invariant
    1905           1 :                 } else {
    1906           0 :                         panic("pebble: compaction picked unexpected output level")
    1907             :                 }
    1908             :         }
    1909             :         // Fail-safe to protect against compacting the same sstable concurrently.
    1910           1 :         if inputRangeAlreadyCompacting(env, pc) {
    1911           1 :                 return nil, true
    1912           1 :         }
    1913           1 :         return pc, false
    1914             : }
    1915             : 
    1916             : func pickDownloadCompaction(
    1917             :         vers *version,
    1918             :         opts *Options,
    1919             :         env compactionEnv,
    1920             :         baseLevel int,
    1921             :         download *downloadSpan,
    1922             :         level int,
    1923             :         file *fileMetadata,
    1924           0 : ) (pc *pickedCompaction) {
    1925           0 :         // Check if the file is compacting already. In that case we don't need to do
    1926           0 :         // anything as it'll be downloaded in the process.
    1927           0 :         if file.CompactionState == manifest.CompactionStateCompacting {
    1928           0 :                 return nil
    1929           0 :         }
    1930           0 :         pc = newPickedCompaction(opts, vers, level, level, baseLevel)
    1931           0 :         pc.kind = compactionKindRewrite
    1932           0 :         pc.startLevel.files = manifest.NewLevelSliceKeySorted(opts.Comparer.Compare, []*fileMetadata{file})
    1933           0 :         if !pc.setupInputs(opts, env.diskAvailBytes, pc.startLevel) {
    1934           0 :                 // setupInputs returned false indicating there's a conflicting
    1935           0 :                 // concurrent compaction.
    1936           0 :                 return nil
    1937           0 :         }
    1938           0 :         if pc.outputLevel.level != level {
    1939           0 :                 panic("pebble: download compaction picked unexpected output level")
    1940             :         }
    1941             :         // Fail-safe to protect against compacting the same sstable concurrently.
    1942           0 :         if inputRangeAlreadyCompacting(env, pc) {
    1943           0 :                 return nil
    1944           0 :         }
    1945           0 :         return pc
    1946             : }
    1947             : 
    1948             : func (p *compactionPickerByScore) pickReadTriggeredCompaction(
    1949             :         env compactionEnv,
    1950           1 : ) (pc *pickedCompaction) {
    1951           1 :         // If a flush is in-progress or expected to happen soon, it means more writes are taking place. We would
    1952           1 :         // soon be scheduling more write focussed compactions. In this case, skip read compactions as they are
    1953           1 :         // lower priority.
    1954           1 :         if env.readCompactionEnv.flushing || env.readCompactionEnv.readCompactions == nil {
    1955           1 :                 return nil
    1956           1 :         }
    1957           1 :         for env.readCompactionEnv.readCompactions.size > 0 {
    1958           0 :                 rc := env.readCompactionEnv.readCompactions.remove()
    1959           0 :                 if pc = pickReadTriggeredCompactionHelper(p, rc, env); pc != nil {
    1960           0 :                         break
    1961             :                 }
    1962             :         }
    1963           1 :         return pc
    1964             : }
    1965             : 
    1966             : func pickReadTriggeredCompactionHelper(
    1967             :         p *compactionPickerByScore, rc *readCompaction, env compactionEnv,
    1968           0 : ) (pc *pickedCompaction) {
    1969           0 :         cmp := p.opts.Comparer.Compare
    1970           0 :         overlapSlice := p.vers.Overlaps(rc.level, cmp, rc.start, rc.end, false /* exclusiveEnd */)
    1971           0 :         if overlapSlice.Empty() {
    1972           0 :                 // If there is no overlap, then the file with the key range
    1973           0 :                 // must have been compacted away. So, we don't proceed to
    1974           0 :                 // compact the same key range again.
    1975           0 :                 return nil
    1976           0 :         }
    1977             : 
    1978           0 :         iter := overlapSlice.Iter()
    1979           0 :         var fileMatches bool
    1980           0 :         for f := iter.First(); f != nil; f = iter.Next() {
    1981           0 :                 if f.FileNum == rc.fileNum {
    1982           0 :                         fileMatches = true
    1983           0 :                         break
    1984             :                 }
    1985             :         }
    1986           0 :         if !fileMatches {
    1987           0 :                 return nil
    1988           0 :         }
    1989             : 
    1990           0 :         pc = newPickedCompaction(p.opts, p.vers, rc.level, defaultOutputLevel(rc.level, p.baseLevel), p.baseLevel)
    1991           0 : 
    1992           0 :         pc.startLevel.files = overlapSlice
    1993           0 :         if !pc.setupInputs(p.opts, env.diskAvailBytes, pc.startLevel) {
    1994           0 :                 return nil
    1995           0 :         }
    1996           0 :         if inputRangeAlreadyCompacting(env, pc) {
    1997           0 :                 return nil
    1998           0 :         }
    1999           0 :         pc.kind = compactionKindRead
    2000           0 : 
    2001           0 :         // Prevent read compactions which are too wide.
    2002           0 :         outputOverlaps := pc.version.Overlaps(
    2003           0 :                 pc.outputLevel.level, pc.cmp, pc.smallest.UserKey,
    2004           0 :                 pc.largest.UserKey, pc.largest.IsExclusiveSentinel())
    2005           0 :         if outputOverlaps.SizeSum() > pc.maxReadCompactionBytes {
    2006           0 :                 return nil
    2007           0 :         }
    2008             : 
    2009             :         // Prevent compactions which start with a small seed file X, but overlap
    2010             :         // with over allowedCompactionWidth * X file sizes in the output layer.
    2011           0 :         const allowedCompactionWidth = 35
    2012           0 :         if outputOverlaps.SizeSum() > overlapSlice.SizeSum()*allowedCompactionWidth {
    2013           0 :                 return nil
    2014           0 :         }
    2015             : 
    2016           0 :         return pc
    2017             : }
    2018             : 
    2019           0 : func (p *compactionPickerByScore) forceBaseLevel1() {
    2020           0 :         p.baseLevel = 1
    2021           0 : }
    2022             : 
    2023           1 : func inputRangeAlreadyCompacting(env compactionEnv, pc *pickedCompaction) bool {
    2024           1 :         for _, cl := range pc.inputs {
    2025           1 :                 iter := cl.files.Iter()
    2026           1 :                 for f := iter.First(); f != nil; f = iter.Next() {
    2027           1 :                         if f.IsCompacting() {
    2028           1 :                                 return true
    2029           1 :                         }
    2030             :                 }
    2031             :         }
    2032             : 
    2033             :         // Look for active compactions outputting to the same region of the key
    2034             :         // space in the same output level. Two potential compactions may conflict
    2035             :         // without sharing input files if there are no files in the output level
    2036             :         // that overlap with the intersection of the compactions' key spaces.
    2037             :         //
    2038             :         // Consider an active L0->Lbase compaction compacting two L0 files one
    2039             :         // [a-f] and the other [t-z] into Lbase.
    2040             :         //
    2041             :         // L0
    2042             :         //     ↦ 000100  ↤                           ↦  000101   ↤
    2043             :         // L1
    2044             :         //     ↦ 000004  ↤
    2045             :         //     a b c d e f g h i j k l m n o p q r s t u v w x y z
    2046             :         //
    2047             :         // If a new file 000102 [j-p] is flushed while the existing compaction is
    2048             :         // still ongoing, new file would not be in any compacting sublevel
    2049             :         // intervals and would not overlap with any Lbase files that are also
    2050             :         // compacting. However, this compaction cannot be picked because the
    2051             :         // compaction's output key space [j-p] would overlap the existing
    2052             :         // compaction's output key space [a-z].
    2053             :         //
    2054             :         // L0
    2055             :         //     ↦ 000100* ↤       ↦   000102  ↤       ↦  000101*  ↤
    2056             :         // L1
    2057             :         //     ↦ 000004* ↤
    2058             :         //     a b c d e f g h i j k l m n o p q r s t u v w x y z
    2059             :         //
    2060             :         // * - currently compacting
    2061           1 :         if pc.outputLevel != nil && pc.outputLevel.level != 0 {
    2062           1 :                 for _, c := range env.inProgressCompactions {
    2063           1 :                         if pc.outputLevel.level != c.outputLevel {
    2064           1 :                                 continue
    2065             :                         }
    2066           1 :                         if base.InternalCompare(pc.cmp, c.largest, pc.smallest) < 0 ||
    2067           1 :                                 base.InternalCompare(pc.cmp, c.smallest, pc.largest) > 0 {
    2068           1 :                                 continue
    2069             :                         }
    2070             : 
    2071             :                         // The picked compaction and the in-progress compaction c are
    2072             :                         // outputting to the same region of the key space of the same
    2073             :                         // level.
    2074           1 :                         return true
    2075             :                 }
    2076             :         }
    2077           1 :         return false
    2078             : }
    2079             : 
    2080             : // conflictsWithInProgress checks if there are any in-progress compactions with overlapping keyspace.
    2081             : func conflictsWithInProgress(
    2082             :         manual *manualCompaction, outputLevel int, inProgressCompactions []compactionInfo, cmp Compare,
    2083           1 : ) bool {
    2084           1 :         for _, c := range inProgressCompactions {
    2085           1 :                 if (c.outputLevel == manual.level || c.outputLevel == outputLevel) &&
    2086           1 :                         isUserKeysOverlapping(manual.start, manual.end, c.smallest.UserKey, c.largest.UserKey, cmp) {
    2087           1 :                         return true
    2088           1 :                 }
    2089           1 :                 for _, in := range c.inputs {
    2090           1 :                         if in.files.Empty() {
    2091           1 :                                 continue
    2092             :                         }
    2093           1 :                         iter := in.files.Iter()
    2094           1 :                         smallest := iter.First().Smallest.UserKey
    2095           1 :                         largest := iter.Last().Largest.UserKey
    2096           1 :                         if (in.level == manual.level || in.level == outputLevel) &&
    2097           1 :                                 isUserKeysOverlapping(manual.start, manual.end, smallest, largest, cmp) {
    2098           1 :                                 return true
    2099           1 :                         }
    2100             :                 }
    2101             :         }
    2102           1 :         return false
    2103             : }
    2104             : 
    2105           1 : func isUserKeysOverlapping(x1, x2, y1, y2 []byte, cmp Compare) bool {
    2106           1 :         return cmp(x1, y2) <= 0 && cmp(y1, x2) <= 0
    2107           1 : }

Generated by: LCOV version 1.14