LCOV - code coverage report
Current view: top level - pebble - range_keys.go (source / functions) Hit Total Coverage
Test: 2024-01-03 08:16Z 1cce3d01 - tests + meta.lcov Lines: 271 314 86.3 %
Date: 2024-01-03 08:17:11 Functions: 0 0 -

          Line data    Source code
       1             : // Copyright 2021 The LevelDB-Go and Pebble Authors. All rights reserved. Use
       2             : // of this source code is governed by a BSD-style license that can be found in
       3             : // the LICENSE file.
       4             : 
       5             : package pebble
       6             : 
       7             : import (
       8             :         "context"
       9             : 
      10             :         "github.com/cockroachdb/errors"
      11             :         "github.com/cockroachdb/pebble/internal/base"
      12             :         "github.com/cockroachdb/pebble/internal/invariants"
      13             :         "github.com/cockroachdb/pebble/internal/keyspan"
      14             :         "github.com/cockroachdb/pebble/internal/manifest"
      15             :         "github.com/cockroachdb/pebble/sstable"
      16             : )
      17             : 
      18             : // constructRangeKeyIter constructs the range-key iterator stack, populating
      19             : // i.rangeKey.rangeKeyIter with the resulting iterator.
      20           2 : func (i *Iterator) constructRangeKeyIter() {
      21           2 :         i.rangeKey.rangeKeyIter = i.rangeKey.iterConfig.Init(
      22           2 :                 &i.comparer, i.seqNum, i.opts.LowerBound, i.opts.UpperBound,
      23           2 :                 &i.hasPrefix, &i.prefixOrFullSeekKey, false /* internalKeys */, &i.rangeKey.rangeKeyBuffers.internal)
      24           2 : 
      25           2 :         // If there's an indexed batch with range keys, include it.
      26           2 :         if i.batch != nil {
      27           2 :                 if i.batch.index == nil {
      28           0 :                         // This isn't an indexed batch. We shouldn't have gotten this far.
      29           0 :                         panic(errors.AssertionFailedf("creating an iterator over an unindexed batch"))
      30           2 :                 } else {
      31           2 :                         // Only include the batch's range key iterator if it has any keys.
      32           2 :                         // NB: This can force reconstruction of the rangekey iterator stack
      33           2 :                         // in SetOptions if subsequently range keys are added. See
      34           2 :                         // SetOptions.
      35           2 :                         if i.batch.countRangeKeys > 0 {
      36           2 :                                 i.batch.initRangeKeyIter(&i.opts, &i.batchRangeKeyIter, i.batchSeqNum)
      37           2 :                                 i.rangeKey.iterConfig.AddLevel(&i.batchRangeKeyIter)
      38           2 :                         }
      39             :                 }
      40             :         }
      41             : 
      42           2 :         if !i.batchOnlyIter {
      43           2 :                 // Next are the flushables: memtables and large batches.
      44           2 :                 if i.readState != nil {
      45           2 :                         for j := len(i.readState.memtables) - 1; j >= 0; j-- {
      46           2 :                                 mem := i.readState.memtables[j]
      47           2 :                                 // We only need to read from memtables which contain sequence numbers older
      48           2 :                                 // than seqNum.
      49           2 :                                 if logSeqNum := mem.logSeqNum; logSeqNum >= i.seqNum {
      50           2 :                                         continue
      51             :                                 }
      52           2 :                                 if rki := mem.newRangeKeyIter(&i.opts); rki != nil {
      53           2 :                                         i.rangeKey.iterConfig.AddLevel(rki)
      54           2 :                                 }
      55             :                         }
      56             :                 }
      57             : 
      58           2 :                 current := i.version
      59           2 :                 if current == nil {
      60           2 :                         current = i.readState.current
      61           2 :                 }
      62             :                 // Next are the file levels: L0 sub-levels followed by lower levels.
      63             : 
      64             :                 // Add file-specific iterators for L0 files containing range keys. We
      65             :                 // maintain a separate manifest.LevelMetadata for each level containing only
      66             :                 // files that contain range keys, however we don't compute a separate
      67             :                 // L0Sublevels data structure too.
      68             :                 //
      69             :                 // We first use L0's LevelMetadata to peek and see whether L0 contains any
      70             :                 // range keys at all. If it does, we create a range key level iterator per
      71             :                 // level that contains range keys using the information from L0Sublevels.
      72             :                 // Some sublevels may not contain any range keys, and we need to iterate
      73             :                 // through the fileMetadata to determine that. Since L0's file count should
      74             :                 // not significantly exceed ~1000 files (see L0CompactionFileThreshold),
      75             :                 // this should be okay.
      76           2 :                 if !current.RangeKeyLevels[0].Empty() {
      77           2 :                         // L0 contains at least 1 file containing range keys.
      78           2 :                         // Add level iterators for the L0 sublevels, iterating from newest to
      79           2 :                         // oldest.
      80           2 :                         for j := len(current.L0SublevelFiles) - 1; j >= 0; j-- {
      81           2 :                                 iter := current.L0SublevelFiles[j].Iter()
      82           2 :                                 if !containsAnyRangeKeys(iter) {
      83           2 :                                         continue
      84             :                                 }
      85             : 
      86           2 :                                 li := i.rangeKey.iterConfig.NewLevelIter()
      87           2 :                                 li.Init(
      88           2 :                                         i.opts.SpanIterOptions(),
      89           2 :                                         i.cmp,
      90           2 :                                         i.newIterRangeKey,
      91           2 :                                         iter.Filter(manifest.KeyTypeRange),
      92           2 :                                         manifest.L0Sublevel(j),
      93           2 :                                         manifest.KeyTypeRange,
      94           2 :                                 )
      95           2 :                                 i.rangeKey.iterConfig.AddLevel(li)
      96             :                         }
      97             :                 }
      98             : 
      99             :                 // Add level iterators for the non-empty non-L0 levels.
     100           2 :                 for level := 1; level < len(current.RangeKeyLevels); level++ {
     101           2 :                         if current.RangeKeyLevels[level].Empty() {
     102           2 :                                 continue
     103             :                         }
     104           2 :                         li := i.rangeKey.iterConfig.NewLevelIter()
     105           2 :                         spanIterOpts := i.opts.SpanIterOptions()
     106           2 :                         li.Init(spanIterOpts, i.cmp, i.newIterRangeKey, current.RangeKeyLevels[level].Iter(),
     107           2 :                                 manifest.Level(level), manifest.KeyTypeRange)
     108           2 :                         i.rangeKey.iterConfig.AddLevel(li)
     109             :                 }
     110             :         }
     111             : }
     112             : 
     113           2 : func containsAnyRangeKeys(iter manifest.LevelIterator) bool {
     114           2 :         for f := iter.First(); f != nil; f = iter.Next() {
     115           2 :                 if f.HasRangeKeys {
     116           2 :                         return true
     117           2 :                 }
     118             :         }
     119           2 :         return false
     120             : }
     121             : 
     122             : // Range key masking
     123             : //
     124             : // Pebble iterators may be configured such that range keys with suffixes mask
     125             : // point keys with lower suffixes. The intended use is implementing a MVCC
     126             : // delete range operation using range keys, when suffixes are MVCC timestamps.
     127             : //
     128             : // To enable masking, the user populates the IterOptions's RangeKeyMasking
     129             : // field. The Suffix field configures which range keys act as masks. The
     130             : // intended use is to hold a MVCC read timestamp. When implementing a MVCC
     131             : // delete range operation, only range keys that are visible at the read
     132             : // timestamp should be visible. If a range key has a suffix ≤
     133             : // RangeKeyMasking.Suffix, it acts as a mask.
     134             : //
     135             : // Range key masking is facilitated by the keyspan.InterleavingIter. The
     136             : // interleaving iterator interleaves range keys and point keys during combined
     137             : // iteration. During user iteration, the interleaving iterator is configured
     138             : // with a keyspan.SpanMask, implemented by the rangeKeyMasking struct below.
     139             : // The SpanMask interface defines two methods: SpanChanged and SkipPoint.
     140             : //
     141             : // SpanChanged is used to keep the current mask up-to-date. Whenever the point
     142             : // iterator has stepped into or out of the bounds of a range key, the
     143             : // interleaving iterator invokes SpanChanged passing the current covering range
     144             : // key. The below rangeKeyMasking implementation scans the range keys looking
     145             : // for the range key with the largest suffix that's still ≤ the suffix supplied
     146             : // to IterOptions.RangeKeyMasking.Suffix (the "read timestamp"). If it finds a
     147             : // range key that meets the condition, the range key should act as a mask. The
     148             : // span and the relevant range key's suffix are saved.
     149             : //
     150             : // The above ensures that `rangeKeyMasking.maskActiveSuffix` always contains the
     151             : // current masking suffix such that any point keys with lower suffixes should be
     152             : // skipped.
     153             : //
     154             : // There are two ways in which masked point keys are skipped.
     155             : //
     156             : //   1. Interleaving iterator SkipPoint
     157             : //
     158             : // Whenever the interleaving iterator encounters a point key that falls within
     159             : // the bounds of a range key, it invokes SkipPoint. The interleaving iterator
     160             : // guarantees that the SpanChanged method described above has already been
     161             : // invoked with the covering range key. The below rangeKeyMasking implementation
     162             : // of SkipPoint splits the key into prefix and suffix, compares the suffix to
     163             : // the `maskActiveSuffix` updated by SpanChanged and returns true if
     164             : // suffix(point) < maskActiveSuffix.
     165             : //
     166             : // The SkipPoint logic is sufficient to ensure that the Pebble iterator filters
     167             : // out all masked point keys. However, it requires the iterator read each masked
     168             : // point key. For broad range keys that mask many points, this may be expensive.
     169             : //
     170             : //   2. Block property filter
     171             : //
     172             : // For more efficient handling of braad range keys that mask many points, the
     173             : // IterOptions.RangeKeyMasking field has an optional Filter option. This Filter
     174             : // field takes a superset of the block-property filter interface, adding a
     175             : // method to dynamically configure the filter's filtering criteria.
     176             : //
     177             : // To make use of the Filter option, the user is required to define and
     178             : // configure a block-property collector that collects a property containing at
     179             : // least the maximum suffix of a key within a block.
     180             : //
     181             : // When the SpanChanged method described above is invoked, rangeKeyMasking also
     182             : // reconfigures the user-provided filter. It invokes a SetSuffix method,
     183             : // providing the `maskActiveSuffix`, requesting that from now on the
     184             : // block-property filter return Intersects()=false for any properties indicating
     185             : // that a block contains exclusively keys with suffixes greater than the
     186             : // provided suffix.
     187             : //
     188             : // Note that unlike other block-property filters, the filter used for masking
     189             : // must not apply across the entire keyspace. It must only filter blocks that
     190             : // lie within the bounds of the range key that set the mask suffix. To
     191             : // accommodate this, rangeKeyMasking implements a special interface:
     192             : // sstable.BoundLimitedBlockPropertyFilter. This interface extends the block
     193             : // property filter interface with two new methods: KeyIsWithinLowerBound and
     194             : // KeyIsWithinUpperBound. The rangeKeyMasking type wraps the user-provided block
     195             : // property filter, implementing these two methods and overriding Intersects to
     196             : // always return true if there is no active mask.
     197             : //
     198             : // The logic to ensure that a mask block-property filter is only applied within
     199             : // the bounds of the masking range key is subtle. The interleaving iterator
     200             : // guarantees that it never invokes SpanChanged until the point iterator is
     201             : // positioned within the range key. During forward iteration, this guarantees
     202             : // that any block that a sstable reader might attempt to load contains only keys
     203             : // greater than or equal to the range key's lower bound. During backward
     204             : // iteration, it provides the analagous guarantee on the range key's upper
     205             : // bound.
     206             : //
     207             : // The above ensures that an sstable reader only needs to verify that a block
     208             : // that it skips meets the opposite bound. This is where the
     209             : // KeyIsWithinLowerBound and KeyIsWithinUpperBound methods are used. When an
     210             : // sstable iterator is configured with a BoundLimitedBlockPropertyFilter, it
     211             : // checks for intersection with the block-property filter before every block
     212             : // load, like ordinary block-property filters. However, if the bound-limited
     213             : // block property filter indicates that it does NOT intersect, the filter's
     214             : // relevant KeyIsWithin{Lower,Upper}Bound method is queried, using a block
     215             : // index separator as the bound. If the method indicates that the provided index
     216             : // separator does not fall within the range key bounds, the no-intersection
     217             : // result is ignored, and the block is read.
     218             : 
     219             : type rangeKeyMasking struct {
     220             :         cmp    base.Compare
     221             :         split  base.Split
     222             :         filter BlockPropertyFilterMask
     223             :         // maskActiveSuffix holds the suffix of a range key currently acting as a
     224             :         // mask, hiding point keys with suffixes greater than it. maskActiveSuffix
     225             :         // is only ever non-nil if IterOptions.RangeKeyMasking.Suffix is non-nil.
     226             :         // maskActiveSuffix is updated whenever the iterator passes over a new range
     227             :         // key. The maskActiveSuffix should only be used if maskSpan is non-nil.
     228             :         //
     229             :         // See SpanChanged.
     230             :         maskActiveSuffix []byte
     231             :         // maskSpan holds the span from which the active mask suffix was extracted.
     232             :         // The span is used for bounds comparisons, to ensure that a range-key mask
     233             :         // is not applied beyond the bounds of the range key.
     234             :         maskSpan *keyspan.Span
     235             :         parent   *Iterator
     236             : }
     237             : 
     238           2 : func (m *rangeKeyMasking) init(parent *Iterator, cmp base.Compare, split base.Split) {
     239           2 :         m.cmp = cmp
     240           2 :         m.split = split
     241           2 :         if parent.opts.RangeKeyMasking.Filter != nil {
     242           2 :                 m.filter = parent.opts.RangeKeyMasking.Filter()
     243           2 :         }
     244           2 :         m.parent = parent
     245             : }
     246             : 
     247             : // SpanChanged implements the keyspan.SpanMask interface, used during range key
     248             : // iteration.
     249           2 : func (m *rangeKeyMasking) SpanChanged(s *keyspan.Span) {
     250           2 :         if s == nil && m.maskSpan == nil {
     251           2 :                 return
     252           2 :         }
     253           2 :         m.maskSpan = nil
     254           2 :         m.maskActiveSuffix = m.maskActiveSuffix[:0]
     255           2 : 
     256           2 :         // Find the smallest suffix of a range key contained within the Span,
     257           2 :         // excluding suffixes less than m.opts.RangeKeyMasking.Suffix.
     258           2 :         if s != nil {
     259           2 :                 m.parent.rangeKey.stale = true
     260           2 :                 if m.parent.opts.RangeKeyMasking.Suffix != nil {
     261           2 :                         for j := range s.Keys {
     262           2 :                                 if s.Keys[j].Suffix == nil {
     263           0 :                                         continue
     264             :                                 }
     265           2 :                                 if m.cmp(s.Keys[j].Suffix, m.parent.opts.RangeKeyMasking.Suffix) < 0 {
     266           2 :                                         continue
     267             :                                 }
     268           2 :                                 if len(m.maskActiveSuffix) == 0 || m.cmp(m.maskActiveSuffix, s.Keys[j].Suffix) > 0 {
     269           2 :                                         m.maskSpan = s
     270           2 :                                         m.maskActiveSuffix = append(m.maskActiveSuffix[:0], s.Keys[j].Suffix...)
     271           2 :                                 }
     272             :                         }
     273             :                 }
     274             :         }
     275             : 
     276           2 :         if m.maskSpan != nil && m.parent.opts.RangeKeyMasking.Filter != nil {
     277           2 :                 // Update the  block-property filter to filter point keys with suffixes
     278           2 :                 // greater than m.maskActiveSuffix.
     279           2 :                 err := m.filter.SetSuffix(m.maskActiveSuffix)
     280           2 :                 if err != nil {
     281           0 :                         m.parent.err = err
     282           0 :                 }
     283             :         }
     284             :         // If no span is active, we leave the inner block-property filter configured
     285             :         // with its existing suffix. That's okay, because Intersects calls are first
     286             :         // evaluated by iteratorRangeKeyState.Intersects, which considers all blocks
     287             :         // as intersecting if there's no active mask.
     288             : }
     289             : 
     290             : // SkipPoint implements the keyspan.SpanMask interface, used during range key
     291             : // iteration. Whenever a point key is covered by a non-empty Span, the
     292             : // interleaving iterator invokes SkipPoint. This function is responsible for
     293             : // performing range key masking.
     294             : //
     295             : // If a non-nil IterOptions.RangeKeyMasking.Suffix is set, range key masking is
     296             : // enabled. Masking hides point keys, transparently skipping over the keys.
     297             : // Whether or not a point key is masked is determined by comparing the point
     298             : // key's suffix, the overlapping span's keys' suffixes, and the user-configured
     299             : // IterOption's RangeKeyMasking.Suffix. When configured with a masking threshold
     300             : // _t_, and there exists a span with suffix _r_ covering a point key with suffix
     301             : // _p_, and
     302             : //
     303             : //      _t_ ≤ _r_ < _p_
     304             : //
     305             : // then the point key is elided. Consider the following rendering, where using
     306             : // integer suffixes with higher integers sort before suffixes with lower
     307             : // integers, (for example @7 ≤ @6 < @5):
     308             : //
     309             : //           ^
     310             : //        @9 |        •―――――――――――――――○ [e,m)@9
     311             : //      s  8 |                      • l@8
     312             : //      u  7 |------------------------------------ @7 RangeKeyMasking.Suffix
     313             : //      f  6 |      [h,q)@6 •―――――――――――――――――○            (threshold)
     314             : //      f  5 |              • h@5
     315             : //      f  4 |                          • n@4
     316             : //      i  3 |          •―――――――――――○ [f,l)@3
     317             : //      x  2 |  • b@2
     318             : //         1 |
     319             : //         0 |___________________________________
     320             : //            a b c d e f g h i j k l m n o p q
     321             : //
     322             : // An iterator scanning the entire keyspace with the masking threshold set to @7
     323             : // will observe point keys b@2 and l@8. The span keys [h,q)@6 and [f,l)@3 serve
     324             : // as masks, because cmp(@6,@7) ≥ 0 and cmp(@3,@7) ≥ 0. The span key [e,m)@9
     325             : // does not serve as a mask, because cmp(@9,@7) < 0.
     326             : //
     327             : // Although point l@8 falls within the user key bounds of [e,m)@9, [e,m)@9 is
     328             : // non-masking due to its suffix. The point key l@8 also falls within the user
     329             : // key bounds of [h,q)@6, but since cmp(@6,@8) ≥ 0, l@8 is unmasked.
     330             : //
     331             : // Invariant: The userKey is within the user key bounds of the span most
     332             : // recently provided to `SpanChanged`.
     333           2 : func (m *rangeKeyMasking) SkipPoint(userKey []byte) bool {
     334           2 :         m.parent.stats.RangeKeyStats.ContainedPoints++
     335           2 :         if m.maskSpan == nil {
     336           2 :                 // No range key is currently acting as a mask, so don't skip.
     337           2 :                 return false
     338           2 :         }
     339             :         // Range key masking is enabled and the current span includes a range key
     340             :         // that is being used as a mask. (NB: SpanChanged already verified that the
     341             :         // range key's suffix is ≥ RangeKeyMasking.Suffix).
     342             :         //
     343             :         // This point key falls within the bounds of the range key (guaranteed by
     344             :         // the InterleavingIter). Skip the point key if the range key's suffix is
     345             :         // greater than the point key's suffix.
     346           2 :         pointSuffix := userKey[m.split(userKey):]
     347           2 :         if len(pointSuffix) > 0 && m.cmp(m.maskActiveSuffix, pointSuffix) < 0 {
     348           2 :                 m.parent.stats.RangeKeyStats.SkippedPoints++
     349           2 :                 return true
     350           2 :         }
     351           2 :         return false
     352             : }
     353             : 
     354             : // The iteratorRangeKeyState type implements the sstable package's
     355             : // BoundLimitedBlockPropertyFilter interface in order to use block property
     356             : // filters for range key masking. The iteratorRangeKeyState implementation wraps
     357             : // the block-property filter provided in Options.RangeKeyMasking.Filter.
     358             : //
     359             : // Using a block-property filter for range-key masking requires limiting the
     360             : // filter's effect to the bounds of the range key currently acting as a mask.
     361             : // Consider the range key [a,m)@10, and an iterator positioned just before the
     362             : // below block, bounded by index separators `c` and `z`:
     363             : //
     364             : //                c                          z
     365             : //         x      |  c@9 c@5 c@1 d@7 e@4 y@4 | ...
     366             : //      iter pos
     367             : //
     368             : // The next block cannot be skipped, despite the range key suffix @10 is greater
     369             : // than all the block's keys' suffixes, because it contains a key (y@4) outside
     370             : // the bounds of the range key.
     371             : //
     372             : // This extended BoundLimitedBlockPropertyFilter interface adds two new methods,
     373             : // KeyIsWithinLowerBound and KeyIsWithinUpperBound, for testing whether a
     374             : // particular block is within bounds.
     375             : //
     376             : // The iteratorRangeKeyState implements these new methods by first checking if
     377             : // the iterator is currently positioned within a range key. If not, the provided
     378             : // key is considered out-of-bounds. If the iterator is positioned within a range
     379             : // key, it compares the corresponding range key bound.
     380             : var _ sstable.BoundLimitedBlockPropertyFilter = (*rangeKeyMasking)(nil)
     381             : 
     382             : // Name implements the limitedBlockPropertyFilter interface defined in the
     383             : // sstable package by passing through to the user-defined block property filter.
     384           2 : func (m *rangeKeyMasking) Name() string {
     385           2 :         return m.filter.Name()
     386           2 : }
     387             : 
     388             : // Intersects implements the limitedBlockPropertyFilter interface defined in the
     389             : // sstable package by passing the intersection decision to the user-provided
     390             : // block property filter only if a range key is covering the current iterator
     391             : // position.
     392           2 : func (m *rangeKeyMasking) Intersects(prop []byte) (bool, error) {
     393           2 :         if m.maskSpan == nil {
     394           2 :                 // No span is actively masking.
     395           2 :                 return true, nil
     396           2 :         }
     397           2 :         return m.filter.Intersects(prop)
     398             : }
     399             : 
     400             : // KeyIsWithinLowerBound implements the limitedBlockPropertyFilter interface
     401             : // defined in the sstable package. It's used to restrict the masking block
     402             : // property filter to only applying within the bounds of the active range key.
     403           2 : func (m *rangeKeyMasking) KeyIsWithinLowerBound(key []byte) bool {
     404           2 :         // Invariant: m.maskSpan != nil
     405           2 :         //
     406           2 :         // The provided `key` is an inclusive lower bound of the block we're
     407           2 :         // considering skipping.
     408           2 :         return m.cmp(m.maskSpan.Start, key) <= 0
     409           2 : }
     410             : 
     411             : // KeyIsWithinUpperBound implements the limitedBlockPropertyFilter interface
     412             : // defined in the sstable package. It's used to restrict the masking block
     413             : // property filter to only applying within the bounds of the active range key.
     414           2 : func (m *rangeKeyMasking) KeyIsWithinUpperBound(key []byte) bool {
     415           2 :         // Invariant: m.maskSpan != nil
     416           2 :         //
     417           2 :         // The provided `key` is an *inclusive* upper bound of the block we're
     418           2 :         // considering skipping, so the range key's end must be strictly greater
     419           2 :         // than the block bound for the block to be within bounds.
     420           2 :         return m.cmp(m.maskSpan.End, key) > 0
     421           2 : }
     422             : 
     423             : // lazyCombinedIter implements the internalIterator interface, wrapping a
     424             : // pointIter. It requires the pointIter's the levelIters be configured with
     425             : // pointers to its combinedIterState. When the levelIter observes a file
     426             : // containing a range key, the lazyCombinedIter constructs the combined
     427             : // range+point key iterator stack and switches to it.
     428             : type lazyCombinedIter struct {
     429             :         // parent holds a pointer to the root *pebble.Iterator containing this
     430             :         // iterator. It's used to mutate the internalIterator in use when switching
     431             :         // to combined iteration.
     432             :         parent            *Iterator
     433             :         pointIter         internalIterator
     434             :         combinedIterState combinedIterState
     435             : }
     436             : 
     437             : // combinedIterState encapsulates the current state of combined iteration.
     438             : // Various low-level iterators (mergingIter, leveliter) hold pointers to the
     439             : // *pebble.Iterator's combinedIterState. This allows them to check whether or
     440             : // not they must monitor for files containing range keys (!initialized), or not.
     441             : //
     442             : // When !initialized, low-level iterators watch for files containing range keys.
     443             : // When one is discovered, they set triggered=true and key to the smallest
     444             : // (forward direction) or largest (reverse direction) range key that's been
     445             : // observed.
     446             : type combinedIterState struct {
     447             :         // key holds the smallest (forward direction) or largest (backward
     448             :         // direction) user key from a range key bound discovered during the iterator
     449             :         // operation that triggered the switch to combined iteration.
     450             :         //
     451             :         // Slices stored here must be stable. This is possible because callers pass
     452             :         // a Smallest/Largest bound from a fileMetadata, which are immutable. A key
     453             :         // slice's bytes must not be overwritten.
     454             :         key         []byte
     455             :         triggered   bool
     456             :         initialized bool
     457             : }
     458             : 
     459             : // Assert that *lazyCombinedIter implements internalIterator.
     460             : var _ internalIterator = (*lazyCombinedIter)(nil)
     461             : 
     462             : // initCombinedIteration is invoked after a pointIter positioning operation
     463             : // resulted in i.combinedIterState.triggered=true.
     464             : //
     465             : // The `dir` parameter is `+1` or `-1` indicating forward iteration or backward
     466             : // iteration respectively.
     467             : //
     468             : // The `pointKey` and `pointValue` parameters provide the new point key-value
     469             : // pair that the iterator was just positioned to. The combined iterator should
     470             : // be seeded with this point key-value pair and return the smaller (forward
     471             : // iteration) or largest (backward iteration) of the two.
     472             : //
     473             : // The `seekKey` parameter is non-nil only if the iterator operation that
     474             : // triggered the switch to combined iteration was a SeekGE, SeekPrefixGE or
     475             : // SeekLT. It provides the seek key supplied and is used to seek the range-key
     476             : // iterator using the same key. This is necessary for SeekGE/SeekPrefixGE
     477             : // operations that land in the middle of a range key and must truncate to the
     478             : // user-provided seek key.
     479             : func (i *lazyCombinedIter) initCombinedIteration(
     480             :         dir int8, pointKey *InternalKey, pointValue base.LazyValue, seekKey []byte,
     481           2 : ) (*InternalKey, base.LazyValue) {
     482           2 :         // Invariant: i.parent.rangeKey is nil.
     483           2 :         // Invariant: !i.combinedIterState.initialized.
     484           2 :         if invariants.Enabled {
     485           2 :                 if i.combinedIterState.initialized {
     486           0 :                         panic("pebble: combined iterator already initialized")
     487             :                 }
     488           2 :                 if i.parent.rangeKey != nil {
     489           0 :                         panic("pebble: iterator already has a range-key iterator stack")
     490             :                 }
     491             :         }
     492             : 
     493             :         // We need to determine the key to seek the range key iterator to. If
     494             :         // seekKey is not nil, the user-initiated operation that triggered the
     495             :         // switch to combined iteration was itself a seek, and we can use that key.
     496             :         // Otherwise, a First/Last or relative positioning operation triggered the
     497             :         // switch to combined iteration.
     498             :         //
     499             :         // The levelIter that observed a file containing range keys populated
     500             :         // combinedIterState.key with the smallest (forward) or largest (backward)
     501             :         // range key it observed. If multiple levelIters observed files with range
     502             :         // keys during the same operation on the mergingIter, combinedIterState.key
     503             :         // is the smallest [during forward iteration; largest in reverse iteration]
     504             :         // such key.
     505           2 :         if seekKey == nil {
     506           2 :                 // Use the levelIter-populated key.
     507           2 :                 seekKey = i.combinedIterState.key
     508           2 : 
     509           2 :                 // We may need to adjust the levelIter-populated seek key to the
     510           2 :                 // surfaced point key. If the key observed is beyond [in the iteration
     511           2 :                 // direction] the current point key, there may still exist a range key
     512           2 :                 // at an earlier key. Consider the following example:
     513           2 :                 //
     514           2 :                 //   L5:  000003:[bar.DEL.5, foo.RANGEKEYSET.9]
     515           2 :                 //   L6:  000001:[bar.SET.2] 000002:[bax.RANGEKEYSET.8]
     516           2 :                 //
     517           2 :                 // A call to First() seeks the levels to files L5.000003 and L6.000001.
     518           2 :                 // The L5 levelIter observes that L5.000003 contains the range key with
     519           2 :                 // start key `foo`, and triggers a switch to combined iteration, setting
     520           2 :                 // `combinedIterState.key` = `foo`.
     521           2 :                 //
     522           2 :                 // The L6 levelIter did not observe the true first range key
     523           2 :                 // (bax.RANGEKEYSET.8), because it appears in a later sstable. When the
     524           2 :                 // combined iterator is initialized, the range key iterator must be
     525           2 :                 // seeked to a key that will find `bax`. To accomplish this, we seek the
     526           2 :                 // key instead to `bar`. It is guaranteed that no range key exists
     527           2 :                 // earlier than `bar`, otherwise a levelIter would've observed it and
     528           2 :                 // set `combinedIterState.key` to its start key.
     529           2 :                 if pointKey != nil {
     530           2 :                         if dir == +1 && i.parent.cmp(i.combinedIterState.key, pointKey.UserKey) > 0 {
     531           2 :                                 seekKey = pointKey.UserKey
     532           2 :                         } else if dir == -1 && i.parent.cmp(seekKey, pointKey.UserKey) < 0 {
     533           2 :                                 seekKey = pointKey.UserKey
     534           2 :                         }
     535             :                 }
     536             :         }
     537             : 
     538             :         // An operation on the point iterator observed a file containing range keys,
     539             :         // so we must switch to combined interleaving iteration. First, construct
     540             :         // the range key iterator stack. It must not exist, otherwise we'd already
     541             :         // be performing combined iteration.
     542           2 :         i.parent.rangeKey = iterRangeKeyStateAllocPool.Get().(*iteratorRangeKeyState)
     543           2 :         i.parent.rangeKey.init(i.parent.comparer.Compare, i.parent.comparer.Split, &i.parent.opts)
     544           2 :         i.parent.constructRangeKeyIter()
     545           2 : 
     546           2 :         // Initialize the Iterator's interleaving iterator.
     547           2 :         i.parent.rangeKey.iiter.Init(
     548           2 :                 &i.parent.comparer, i.parent.pointIter, i.parent.rangeKey.rangeKeyIter,
     549           2 :                 keyspan.InterleavingIterOpts{
     550           2 :                         Mask:       &i.parent.rangeKeyMasking,
     551           2 :                         LowerBound: i.parent.opts.LowerBound,
     552           2 :                         UpperBound: i.parent.opts.UpperBound,
     553           2 :                 })
     554           2 : 
     555           2 :         // Set the parent's primary iterator to point to the combined, interleaving
     556           2 :         // iterator that's now initialized with our current state.
     557           2 :         i.parent.iter = &i.parent.rangeKey.iiter
     558           2 :         i.combinedIterState.initialized = true
     559           2 :         i.combinedIterState.key = nil
     560           2 : 
     561           2 :         // All future iterator operations will go directly through the combined
     562           2 :         // iterator.
     563           2 :         //
     564           2 :         // Initialize the interleaving iterator. We pass the point key-value pair so
     565           2 :         // that the interleaving iterator knows where the point iterator is
     566           2 :         // positioned. Additionally, we pass the seek key to which the range-key
     567           2 :         // iterator should be seeked in order to initialize its position.
     568           2 :         //
     569           2 :         // In the forward direction (invert for backwards), the seek key is a key
     570           2 :         // guaranteed to find the smallest range key that's greater than the last
     571           2 :         // key the iterator returned. The range key may be less than pointKey, in
     572           2 :         // which case the range key will be interleaved next instead of the point
     573           2 :         // key.
     574           2 :         if dir == +1 {
     575           2 :                 var prefix []byte
     576           2 :                 if i.parent.hasPrefix {
     577           2 :                         prefix = i.parent.prefixOrFullSeekKey
     578           2 :                 }
     579           2 :                 return i.parent.rangeKey.iiter.InitSeekGE(prefix, seekKey, pointKey, pointValue)
     580             :         }
     581           2 :         return i.parent.rangeKey.iiter.InitSeekLT(seekKey, pointKey, pointValue)
     582             : }
     583             : 
     584             : func (i *lazyCombinedIter) SeekGE(
     585             :         key []byte, flags base.SeekGEFlags,
     586           2 : ) (*InternalKey, base.LazyValue) {
     587           2 :         if i.combinedIterState.initialized {
     588           0 :                 return i.parent.rangeKey.iiter.SeekGE(key, flags)
     589           0 :         }
     590           2 :         k, v := i.pointIter.SeekGE(key, flags)
     591           2 :         if i.combinedIterState.triggered {
     592           2 :                 return i.initCombinedIteration(+1, k, v, key)
     593           2 :         }
     594           2 :         return k, v
     595             : }
     596             : 
     597             : func (i *lazyCombinedIter) SeekPrefixGE(
     598             :         prefix, key []byte, flags base.SeekGEFlags,
     599           2 : ) (*InternalKey, base.LazyValue) {
     600           2 :         if i.combinedIterState.initialized {
     601           0 :                 return i.parent.rangeKey.iiter.SeekPrefixGE(prefix, key, flags)
     602           0 :         }
     603           2 :         k, v := i.pointIter.SeekPrefixGE(prefix, key, flags)
     604           2 :         if i.combinedIterState.triggered {
     605           2 :                 return i.initCombinedIteration(+1, k, v, key)
     606           2 :         }
     607           2 :         return k, v
     608             : }
     609             : 
     610             : func (i *lazyCombinedIter) SeekLT(
     611             :         key []byte, flags base.SeekLTFlags,
     612           2 : ) (*InternalKey, base.LazyValue) {
     613           2 :         if i.combinedIterState.initialized {
     614           0 :                 return i.parent.rangeKey.iiter.SeekLT(key, flags)
     615           0 :         }
     616           2 :         k, v := i.pointIter.SeekLT(key, flags)
     617           2 :         if i.combinedIterState.triggered {
     618           2 :                 return i.initCombinedIteration(-1, k, v, key)
     619           2 :         }
     620           2 :         return k, v
     621             : }
     622             : 
     623           2 : func (i *lazyCombinedIter) First() (*InternalKey, base.LazyValue) {
     624           2 :         if i.combinedIterState.initialized {
     625           0 :                 return i.parent.rangeKey.iiter.First()
     626           0 :         }
     627           2 :         k, v := i.pointIter.First()
     628           2 :         if i.combinedIterState.triggered {
     629           2 :                 return i.initCombinedIteration(+1, k, v, nil)
     630           2 :         }
     631           2 :         return k, v
     632             : }
     633             : 
     634           2 : func (i *lazyCombinedIter) Last() (*InternalKey, base.LazyValue) {
     635           2 :         if i.combinedIterState.initialized {
     636           0 :                 return i.parent.rangeKey.iiter.Last()
     637           0 :         }
     638           2 :         k, v := i.pointIter.Last()
     639           2 :         if i.combinedIterState.triggered {
     640           2 :                 return i.initCombinedIteration(-1, k, v, nil)
     641           2 :         }
     642           2 :         return k, v
     643             : }
     644             : 
     645           2 : func (i *lazyCombinedIter) Next() (*InternalKey, base.LazyValue) {
     646           2 :         if i.combinedIterState.initialized {
     647           0 :                 return i.parent.rangeKey.iiter.Next()
     648           0 :         }
     649           2 :         k, v := i.pointIter.Next()
     650           2 :         if i.combinedIterState.triggered {
     651           2 :                 return i.initCombinedIteration(+1, k, v, nil)
     652           2 :         }
     653           2 :         return k, v
     654             : }
     655             : 
     656           2 : func (i *lazyCombinedIter) NextPrefix(succKey []byte) (*InternalKey, base.LazyValue) {
     657           2 :         if i.combinedIterState.initialized {
     658           0 :                 return i.parent.rangeKey.iiter.NextPrefix(succKey)
     659           0 :         }
     660           2 :         k, v := i.pointIter.NextPrefix(succKey)
     661           2 :         if i.combinedIterState.triggered {
     662           0 :                 return i.initCombinedIteration(+1, k, v, nil)
     663           0 :         }
     664           2 :         return k, v
     665             : }
     666             : 
     667           2 : func (i *lazyCombinedIter) Prev() (*InternalKey, base.LazyValue) {
     668           2 :         if i.combinedIterState.initialized {
     669           0 :                 return i.parent.rangeKey.iiter.Prev()
     670           0 :         }
     671           2 :         k, v := i.pointIter.Prev()
     672           2 :         if i.combinedIterState.triggered {
     673           2 :                 return i.initCombinedIteration(-1, k, v, nil)
     674           2 :         }
     675           2 :         return k, v
     676             : }
     677             : 
     678           2 : func (i *lazyCombinedIter) Error() error {
     679           2 :         if i.combinedIterState.initialized {
     680           0 :                 return i.parent.rangeKey.iiter.Error()
     681           0 :         }
     682           2 :         return i.pointIter.Error()
     683             : }
     684             : 
     685           2 : func (i *lazyCombinedIter) Close() error {
     686           2 :         if i.combinedIterState.initialized {
     687           0 :                 return i.parent.rangeKey.iiter.Close()
     688           0 :         }
     689           2 :         return i.pointIter.Close()
     690             : }
     691             : 
     692           2 : func (i *lazyCombinedIter) SetBounds(lower, upper []byte) {
     693           2 :         if i.combinedIterState.initialized {
     694           0 :                 i.parent.rangeKey.iiter.SetBounds(lower, upper)
     695           0 :                 return
     696           0 :         }
     697           2 :         i.pointIter.SetBounds(lower, upper)
     698             : }
     699             : 
     700           0 : func (i *lazyCombinedIter) SetContext(ctx context.Context) {
     701           0 :         if i.combinedIterState.initialized {
     702           0 :                 i.parent.rangeKey.iiter.SetContext(ctx)
     703           0 :                 return
     704           0 :         }
     705           0 :         i.pointIter.SetContext(ctx)
     706             : }
     707             : 
     708           0 : func (i *lazyCombinedIter) String() string {
     709           0 :         if i.combinedIterState.initialized {
     710           0 :                 return i.parent.rangeKey.iiter.String()
     711           0 :         }
     712           0 :         return i.pointIter.String()
     713             : }

Generated by: LCOV version 1.14