LCOV - code coverage report
Current view: top level - pebble/sstable - reader_iter_single_lvl.go (source / functions) Hit Total Coverage
Test: 2024-01-28 08:16Z 5b280af7 - meta test only.lcov Lines: 855 952 89.8 %
Date: 2024-01-28 08:17:14 Functions: 0 0 -

          Line data    Source code
       1             : // Copyright 2011 The LevelDB-Go and Pebble Authors. All rights reserved. Use
       2             : // of this source code is governed by a BSD-style license that can be found in
       3             : // the LICENSE file.
       4             : 
       5             : package sstable
       6             : 
       7             : import (
       8             :         "bytes"
       9             :         "context"
      10             :         "fmt"
      11             :         "unsafe"
      12             : 
      13             :         "github.com/cockroachdb/pebble/internal/base"
      14             :         "github.com/cockroachdb/pebble/internal/invariants"
      15             :         "github.com/cockroachdb/pebble/objstorage"
      16             :         "github.com/cockroachdb/pebble/objstorage/objstorageprovider"
      17             :         "github.com/cockroachdb/pebble/objstorage/objstorageprovider/objiotracing"
      18             : )
      19             : 
      20             : // singleLevelIterator iterates over an entire table of data. To seek for a given
      21             : // key, it first looks in the index for the block that contains that key, and then
      22             : // looks inside that block.
      23             : type singleLevelIterator struct {
      24             :         ctx context.Context
      25             :         cmp Compare
      26             :         // Global lower/upper bound for the iterator.
      27             :         lower []byte
      28             :         upper []byte
      29             :         bpfs  *BlockPropertiesFilterer
      30             :         // Per-block lower/upper bound. Nil if the bound does not apply to the block
      31             :         // because we determined the block lies completely within the bound.
      32             :         blockLower []byte
      33             :         blockUpper []byte
      34             :         reader     *Reader
      35             :         // vState will be set iff the iterator is constructed for virtual sstable
      36             :         // iteration.
      37             :         vState *virtualState
      38             :         // endKeyInclusive is set to force the iterator to treat the upper field as
      39             :         // inclusive while iterating instead of exclusive.
      40             :         endKeyInclusive bool
      41             :         index           blockIter
      42             :         data            blockIter
      43             :         dataRH          objstorage.ReadHandle
      44             :         dataRHPrealloc  objstorageprovider.PreallocatedReadHandle
      45             :         // dataBH refers to the last data block that the iterator considered
      46             :         // loading. It may not actually have loaded the block, due to an error or
      47             :         // because it was considered irrelevant.
      48             :         dataBH   BlockHandle
      49             :         vbReader *valueBlockReader
      50             :         // vbRH is the read handle for value blocks, which are in a different
      51             :         // part of the sstable than data blocks.
      52             :         vbRH         objstorage.ReadHandle
      53             :         vbRHPrealloc objstorageprovider.PreallocatedReadHandle
      54             :         err          error
      55             :         closeHook    func(i Iterator) error
      56             :         // stats and iterStats are slightly different. stats is a shared struct
      57             :         // supplied from the outside, and represents stats for the whole iterator
      58             :         // tree and can be reset from the outside (e.g. when the pebble.Iterator is
      59             :         // being reused). It is currently only provided when the iterator tree is
      60             :         // rooted at pebble.Iterator. iterStats is this sstable iterator's private
      61             :         // stats that are reported to a CategoryStatsCollector when this iterator is
      62             :         // closed. More paths are instrumented with this as the
      63             :         // CategoryStatsCollector needed for this is provided by the
      64             :         // tableCacheContainer (which is more universally used).
      65             :         stats      *base.InternalIteratorStats
      66             :         iterStats  iterStatsAccumulator
      67             :         bufferPool *BufferPool
      68             : 
      69             :         // boundsCmp and positionedUsingLatestBounds are for optimizing iteration
      70             :         // that uses multiple adjacent bounds. The seek after setting a new bound
      71             :         // can use the fact that the iterator is either within the previous bounds
      72             :         // or exactly one key before or after the bounds. If the new bounds is
      73             :         // after/before the previous bounds, and we are already positioned at a
      74             :         // block that is relevant for the new bounds, we can try to first position
      75             :         // using Next/Prev (repeatedly) instead of doing a more expensive seek.
      76             :         //
      77             :         // When there are wide files at higher levels that match the bounds
      78             :         // but don't have any data for the bound, we will already be
      79             :         // positioned at the key beyond the bounds and won't need to do much
      80             :         // work -- given that most data is in L6, such files are likely to
      81             :         // dominate the performance of the mergingIter, and may be the main
      82             :         // benefit of this performance optimization (of course it also helps
      83             :         // when the file that has the data has successive seeks that stay in
      84             :         // the same block).
      85             :         //
      86             :         // Specifically, boundsCmp captures the relationship between the previous
      87             :         // and current bounds, if the iterator had been positioned after setting
      88             :         // the previous bounds. If it was not positioned, i.e., Seek/First/Last
      89             :         // were not called, we don't know where it is positioned and cannot
      90             :         // optimize.
      91             :         //
      92             :         // Example: Bounds moving forward, and iterator exhausted in forward direction.
      93             :         //      bounds = [f, h), ^ shows block iterator position
      94             :         //  file contents [ a  b  c  d  e  f  g  h  i  j  k ]
      95             :         //                                       ^
      96             :         //  new bounds = [j, k). Since positionedUsingLatestBounds=true, boundsCmp is
      97             :         //  set to +1. SeekGE(j) can use next (the optimization also requires that j
      98             :         //  is within the block, but that is not for correctness, but to limit the
      99             :         //  optimization to when it will actually be an optimization).
     100             :         //
     101             :         // Example: Bounds moving forward.
     102             :         //      bounds = [f, h), ^ shows block iterator position
     103             :         //  file contents [ a  b  c  d  e  f  g  h  i  j  k ]
     104             :         //                                 ^
     105             :         //  new bounds = [j, k). Since positionedUsingLatestBounds=true, boundsCmp is
     106             :         //  set to +1. SeekGE(j) can use next.
     107             :         //
     108             :         // Example: Bounds moving forward, but iterator not positioned using previous
     109             :         //  bounds.
     110             :         //      bounds = [f, h), ^ shows block iterator position
     111             :         //  file contents [ a  b  c  d  e  f  g  h  i  j  k ]
     112             :         //                                             ^
     113             :         //  new bounds = [i, j). Iterator is at j since it was never positioned using
     114             :         //  [f, h). So positionedUsingLatestBounds=false, and boundsCmp is set to 0.
     115             :         //  SeekGE(i) will not use next.
     116             :         //
     117             :         // Example: Bounds moving forward and sparse file
     118             :         //      bounds = [f, h), ^ shows block iterator position
     119             :         //  file contents [ a z ]
     120             :         //                    ^
     121             :         //  new bounds = [j, k). Since positionedUsingLatestBounds=true, boundsCmp is
     122             :         //  set to +1. SeekGE(j) notices that the iterator is already past j and does
     123             :         //  not need to do anything.
     124             :         //
     125             :         // Similar examples can be constructed for backward iteration.
     126             :         //
     127             :         // This notion of exactly one key before or after the bounds is not quite
     128             :         // true when block properties are used to ignore blocks. In that case we
     129             :         // can't stop precisely at the first block that is past the bounds since
     130             :         // we are using the index entries to enforce the bounds.
     131             :         //
     132             :         // e.g. 3 blocks with keys [b, c]  [f, g], [i, j, k] with index entries d,
     133             :         // h, l. And let the lower bound be k, and we are reverse iterating. If
     134             :         // the block [i, j, k] is ignored due to the block interval annotations we
     135             :         // do need to move the index to block [f, g] since the index entry for the
     136             :         // [i, j, k] block is l which is not less than the lower bound of k. So we
     137             :         // have passed the entries i, j.
     138             :         //
     139             :         // This behavior is harmless since the block property filters are fixed
     140             :         // for the lifetime of the iterator so i, j are irrelevant. In addition,
     141             :         // the current code will not load the [f, g] block, so the seek
     142             :         // optimization that attempts to use Next/Prev do not apply anyway.
     143             :         boundsCmp                   int
     144             :         positionedUsingLatestBounds bool
     145             : 
     146             :         // exhaustedBounds represents whether the iterator is exhausted for
     147             :         // iteration by reaching the upper or lower bound. +1 when exhausted
     148             :         // the upper bound, -1 when exhausted the lower bound, and 0 when
     149             :         // neither. exhaustedBounds is also used for the TrySeekUsingNext
     150             :         // optimization in twoLevelIterator and singleLevelIterator. Care should be
     151             :         // taken in setting this in twoLevelIterator before calling into
     152             :         // singleLevelIterator, given that these two iterators share this field.
     153             :         exhaustedBounds int8
     154             : 
     155             :         // maybeFilteredKeysSingleLevel indicates whether the last iterator
     156             :         // positioning operation may have skipped any data blocks due to
     157             :         // block-property filters when positioning the index.
     158             :         maybeFilteredKeysSingleLevel bool
     159             : 
     160             :         // useFilter specifies whether the filter block in this sstable, if present,
     161             :         // should be used for prefix seeks or not. In some cases it is beneficial
     162             :         // to skip a filter block even if it exists (eg. if probability of a match
     163             :         // is high).
     164             :         useFilter              bool
     165             :         lastBloomFilterMatched bool
     166             : 
     167             :         hideObsoletePoints bool
     168             : }
     169             : 
     170             : // singleLevelIterator implements the base.InternalIterator interface.
     171             : var _ base.InternalIterator = (*singleLevelIterator)(nil)
     172             : 
     173             : // init initializes a singleLevelIterator for reading from the table. It is
     174             : // synonmous with Reader.NewIter, but allows for reusing of the iterator
     175             : // between different Readers.
     176             : //
     177             : // Note that lower, upper passed into init has nothing to do with virtual sstable
     178             : // bounds. If the virtualState passed in is not nil, then virtual sstable bounds
     179             : // will be enforced.
     180             : func (i *singleLevelIterator) init(
     181             :         ctx context.Context,
     182             :         r *Reader,
     183             :         v *virtualState,
     184             :         lower, upper []byte,
     185             :         filterer *BlockPropertiesFilterer,
     186             :         useFilter, hideObsoletePoints bool,
     187             :         stats *base.InternalIteratorStats,
     188             :         categoryAndQoS CategoryAndQoS,
     189             :         statsCollector *CategoryStatsCollector,
     190             :         rp ReaderProvider,
     191             :         bufferPool *BufferPool,
     192           1 : ) error {
     193           1 :         if r.err != nil {
     194           0 :                 return r.err
     195           0 :         }
     196           1 :         i.iterStats.init(categoryAndQoS, statsCollector)
     197           1 :         indexH, err := r.readIndex(ctx, stats, &i.iterStats)
     198           1 :         if err != nil {
     199           0 :                 return err
     200           0 :         }
     201           1 :         if v != nil {
     202           1 :                 i.vState = v
     203           1 :                 i.endKeyInclusive, lower, upper = v.constrainBounds(lower, upper, false /* endInclusive */)
     204           1 :         }
     205             : 
     206           1 :         i.ctx = ctx
     207           1 :         i.lower = lower
     208           1 :         i.upper = upper
     209           1 :         i.bpfs = filterer
     210           1 :         i.useFilter = useFilter
     211           1 :         i.reader = r
     212           1 :         i.cmp = r.Compare
     213           1 :         i.stats = stats
     214           1 :         i.hideObsoletePoints = hideObsoletePoints
     215           1 :         i.bufferPool = bufferPool
     216           1 :         err = i.index.initHandle(i.cmp, indexH, r.Properties.GlobalSeqNum, false)
     217           1 :         if err != nil {
     218           0 :                 // blockIter.Close releases indexH and always returns a nil error
     219           0 :                 _ = i.index.Close()
     220           0 :                 return err
     221           0 :         }
     222           1 :         i.dataRH = objstorageprovider.UsePreallocatedReadHandle(ctx, r.readable, &i.dataRHPrealloc)
     223           1 :         if r.tableFormat >= TableFormatPebblev3 {
     224           1 :                 if r.Properties.NumValueBlocks > 0 {
     225           1 :                         // NB: we cannot avoid this ~248 byte allocation, since valueBlockReader
     226           1 :                         // can outlive the singleLevelIterator due to be being embedded in a
     227           1 :                         // LazyValue. This consumes ~2% in microbenchmark CPU profiles, but we
     228           1 :                         // should only optimize this if it shows up as significant in end-to-end
     229           1 :                         // CockroachDB benchmarks, since it is tricky to do so. One possibility
     230           1 :                         // is that if many sstable iterators only get positioned at latest
     231           1 :                         // versions of keys, and therefore never expose a LazyValue that is
     232           1 :                         // separated to their callers, they can put this valueBlockReader into a
     233           1 :                         // sync.Pool.
     234           1 :                         i.vbReader = &valueBlockReader{
     235           1 :                                 bpOpen: i,
     236           1 :                                 rp:     rp,
     237           1 :                                 vbih:   r.valueBIH,
     238           1 :                                 stats:  stats,
     239           1 :                         }
     240           1 :                         i.data.lazyValueHandling.vbr = i.vbReader
     241           1 :                         i.vbRH = objstorageprovider.UsePreallocatedReadHandle(ctx, r.readable, &i.vbRHPrealloc)
     242           1 :                 }
     243           1 :                 i.data.lazyValueHandling.hasValuePrefix = true
     244             :         }
     245           1 :         return nil
     246             : }
     247             : 
     248             : // Helper function to check if keys returned from iterator are within global and virtual bounds.
     249             : func (i *singleLevelIterator) maybeVerifyKey(
     250             :         iKey *InternalKey, val base.LazyValue,
     251           1 : ) (*InternalKey, base.LazyValue) {
     252           1 :         // maybeVerify key is only used for virtual sstable iterators.
     253           1 :         if invariants.Enabled && i.vState != nil && iKey != nil {
     254           1 :                 key := iKey.UserKey
     255           1 : 
     256           1 :                 uc, vuc := i.cmp(key, i.upper), i.cmp(key, i.vState.upper.UserKey)
     257           1 :                 lc, vlc := i.cmp(key, i.lower), i.cmp(key, i.vState.lower.UserKey)
     258           1 : 
     259           1 :                 if (i.vState.upper.IsExclusiveSentinel() && vuc == 0) || (!i.endKeyInclusive && uc == 0) || uc > 0 || vuc > 0 || lc < 0 || vlc < 0 {
     260           0 :                         panic(fmt.Sprintf("key: %s out of bounds of singleLevelIterator", key))
     261             :                 }
     262             :         }
     263           1 :         return iKey, val
     264             : }
     265             : 
     266             : // setupForCompaction sets up the singleLevelIterator for use with compactionIter.
     267             : // Currently, it skips readahead ramp-up. It should be called after init is called.
     268           1 : func (i *singleLevelIterator) setupForCompaction() {
     269           1 :         i.dataRH.SetupForCompaction()
     270           1 :         if i.vbRH != nil {
     271           1 :                 i.vbRH.SetupForCompaction()
     272           1 :         }
     273             : }
     274             : 
     275           1 : func (i *singleLevelIterator) resetForReuse() singleLevelIterator {
     276           1 :         return singleLevelIterator{
     277           1 :                 index: i.index.resetForReuse(),
     278           1 :                 data:  i.data.resetForReuse(),
     279           1 :         }
     280           1 : }
     281             : 
     282           1 : func (i *singleLevelIterator) initBounds() {
     283           1 :         // Trim the iteration bounds for the current block. We don't have to check
     284           1 :         // the bounds on each iteration if the block is entirely contained within the
     285           1 :         // iteration bounds.
     286           1 :         i.blockLower = i.lower
     287           1 :         if i.blockLower != nil {
     288           1 :                 key, _ := i.data.First()
     289           1 :                 if key != nil && i.cmp(i.blockLower, key.UserKey) < 0 {
     290           1 :                         // The lower-bound is less than the first key in the block. No need
     291           1 :                         // to check the lower-bound again for this block.
     292           1 :                         i.blockLower = nil
     293           1 :                 }
     294             :         }
     295           1 :         i.blockUpper = i.upper
     296           1 :         if i.blockUpper != nil && i.cmp(i.blockUpper, i.index.Key().UserKey) > 0 {
     297           1 :                 // The upper-bound is greater than the index key which itself is greater
     298           1 :                 // than or equal to every key in the block. No need to check the
     299           1 :                 // upper-bound again for this block. Even if blockUpper is inclusive
     300           1 :                 // because of upper being inclusive, we can still safely set blockUpper
     301           1 :                 // to nil here.
     302           1 :                 //
     303           1 :                 // TODO(bananabrick): We could also set blockUpper to nil for the >=
     304           1 :                 // case, if blockUpper is inclusive.
     305           1 :                 i.blockUpper = nil
     306           1 :         }
     307             : }
     308             : 
     309             : // Deterministic disabling of the bounds-based optimization that avoids seeking.
     310             : // Uses the iterator pointer, since we want diversity in iterator behavior for
     311             : // the same SetBounds call. Used for tests.
     312           1 : func disableBoundsOpt(bound []byte, ptr uintptr) bool {
     313           1 :         // Fibonacci hash https://probablydance.com/2018/06/16/fibonacci-hashing-the-optimization-that-the-world-forgot-or-a-better-alternative-to-integer-modulo/
     314           1 :         simpleHash := (11400714819323198485 * uint64(ptr)) >> 63
     315           1 :         return bound[len(bound)-1]&byte(1) == 0 && simpleHash == 0
     316           1 : }
     317             : 
     318             : // ensureBoundsOptDeterminism provides a facility for disabling of the bounds
     319             : // optimizations performed by disableBoundsOpt for tests that require
     320             : // deterministic iterator behavior. Some unit tests examine internal iterator
     321             : // state and require this behavior to be deterministic.
     322             : var ensureBoundsOptDeterminism bool
     323             : 
     324             : // SetBoundsWithSyntheticPrefix indicates whether this iterator requires keys
     325             : // passed to its SetBounds() method by a prefix rewriting wrapper to be *not*
     326             : // rewritten to be in terms of this iterator's content, but instead be passed
     327             : // as-is, i.e. with the synthetic prefix still on them.
     328             : //
     329             : // This allows an optimization when this iterator is passing these bounds on to
     330             : // a vState to additionally constrain them. In said vState, passed bounds are
     331             : // combined with the vState bounds which are in terms of the rewritten prefix.
     332             : // If the caller rewrote bounds to be in terms of content prefix and SetBounds
     333             : // passed those to vState, the vState would need to *un*rewrite them back to the
     334             : // synthetic prefix in order to combine them with the vState bounds. Thus, if
     335             : // this iterator knows bounds will be passed to vState, it can signal that it
     336             : // they should be passed without being rewritten to skip converting to and fro.
     337           0 : func (i singleLevelIterator) SetBoundsWithSyntheticPrefix() bool {
     338           0 :         return i.vState != nil
     339           0 : }
     340             : 
     341             : // SetBounds implements internalIterator.SetBounds, as documented in the pebble
     342             : // package. Note that the upper field is exclusive.
     343           1 : func (i *singleLevelIterator) SetBounds(lower, upper []byte) {
     344           1 :         i.boundsCmp = 0
     345           1 :         if i.vState != nil {
     346           1 :                 // If the reader is constructed for a virtual sstable, then we must
     347           1 :                 // constrain the bounds of the reader. For physical sstables, the bounds
     348           1 :                 // can be wider than the actual sstable's bounds because we won't
     349           1 :                 // accidentally expose additional keys as there are no additional keys.
     350           1 :                 i.endKeyInclusive, lower, upper = i.vState.constrainBounds(
     351           1 :                         lower, upper, false,
     352           1 :                 )
     353           1 :         } else {
     354           1 :                 // TODO(bananabrick): Figure out the logic here to enable the boundsCmp
     355           1 :                 // optimization for virtual sstables.
     356           1 :                 if i.positionedUsingLatestBounds {
     357           1 :                         if i.upper != nil && lower != nil && i.cmp(i.upper, lower) <= 0 {
     358           1 :                                 i.boundsCmp = +1
     359           1 :                                 if invariants.Enabled && !ensureBoundsOptDeterminism &&
     360           1 :                                         disableBoundsOpt(lower, uintptr(unsafe.Pointer(i))) {
     361           1 :                                         i.boundsCmp = 0
     362           1 :                                 }
     363           1 :                         } else if i.lower != nil && upper != nil && i.cmp(upper, i.lower) <= 0 {
     364           1 :                                 i.boundsCmp = -1
     365           1 :                                 if invariants.Enabled && !ensureBoundsOptDeterminism &&
     366           1 :                                         disableBoundsOpt(upper, uintptr(unsafe.Pointer(i))) {
     367           1 :                                         i.boundsCmp = 0
     368           1 :                                 }
     369             :                         }
     370             :                 }
     371             :         }
     372             : 
     373           1 :         i.positionedUsingLatestBounds = false
     374           1 :         i.lower = lower
     375           1 :         i.upper = upper
     376           1 :         i.blockLower = nil
     377           1 :         i.blockUpper = nil
     378             : }
     379             : 
     380           0 : func (i *singleLevelIterator) SetContext(ctx context.Context) {
     381           0 :         i.ctx = ctx
     382           0 : }
     383             : 
     384             : // loadBlock loads the block at the current index position and leaves i.data
     385             : // unpositioned. If unsuccessful, it sets i.err to any error encountered, which
     386             : // may be nil if we have simply exhausted the entire table.
     387           1 : func (i *singleLevelIterator) loadBlock(dir int8) loadBlockResult {
     388           1 :         if !i.index.valid() {
     389           0 :                 // Ensure the data block iterator is invalidated even if loading of the block
     390           0 :                 // fails.
     391           0 :                 i.data.invalidate()
     392           0 :                 return loadBlockFailed
     393           0 :         }
     394             :         // Load the next block.
     395           1 :         v := i.index.value()
     396           1 :         bhp, err := decodeBlockHandleWithProperties(v.InPlaceValue())
     397           1 :         if i.dataBH == bhp.BlockHandle && i.data.valid() {
     398           1 :                 // We're already at the data block we want to load. Reset bounds in case
     399           1 :                 // they changed since the last seek, but don't reload the block from cache
     400           1 :                 // or disk.
     401           1 :                 //
     402           1 :                 // It's safe to leave i.data in its original state here, as all callers to
     403           1 :                 // loadBlock make an absolute positioning call (i.e. a seek, first, or last)
     404           1 :                 // to `i.data` right after loadBlock returns loadBlockOK.
     405           1 :                 i.initBounds()
     406           1 :                 return loadBlockOK
     407           1 :         }
     408             :         // Ensure the data block iterator is invalidated even if loading of the block
     409             :         // fails.
     410           1 :         i.data.invalidate()
     411           1 :         i.dataBH = bhp.BlockHandle
     412           1 :         if err != nil {
     413           0 :                 i.err = errCorruptIndexEntry
     414           0 :                 return loadBlockFailed
     415           0 :         }
     416           1 :         if i.bpfs != nil {
     417           1 :                 intersects, err := i.bpfs.intersects(bhp.Props)
     418           1 :                 if err != nil {
     419           0 :                         i.err = errCorruptIndexEntry
     420           0 :                         return loadBlockFailed
     421           0 :                 }
     422           1 :                 if intersects == blockMaybeExcluded {
     423           1 :                         intersects = i.resolveMaybeExcluded(dir)
     424           1 :                 }
     425           1 :                 if intersects == blockExcluded {
     426           1 :                         i.maybeFilteredKeysSingleLevel = true
     427           1 :                         return loadBlockIrrelevant
     428           1 :                 }
     429             :                 // blockIntersects
     430             :         }
     431           1 :         ctx := objiotracing.WithBlockType(i.ctx, objiotracing.DataBlock)
     432           1 :         block, err := i.reader.readBlock(
     433           1 :                 ctx, i.dataBH, nil /* transform */, i.dataRH, i.stats, &i.iterStats, i.bufferPool)
     434           1 :         if err != nil {
     435           0 :                 i.err = err
     436           0 :                 return loadBlockFailed
     437           0 :         }
     438           1 :         i.err = i.data.initHandle(i.cmp, block, i.reader.Properties.GlobalSeqNum, i.hideObsoletePoints)
     439           1 :         if i.err != nil {
     440           0 :                 // The block is partially loaded, and we don't want it to appear valid.
     441           0 :                 i.data.invalidate()
     442           0 :                 return loadBlockFailed
     443           0 :         }
     444           1 :         i.initBounds()
     445           1 :         return loadBlockOK
     446             : }
     447             : 
     448             : // readBlockForVBR implements the blockProviderWhenOpen interface for use by
     449             : // the valueBlockReader.
     450             : func (i *singleLevelIterator) readBlockForVBR(
     451             :         h BlockHandle, stats *base.InternalIteratorStats,
     452           1 : ) (bufferHandle, error) {
     453           1 :         ctx := objiotracing.WithBlockType(i.ctx, objiotracing.ValueBlock)
     454           1 :         return i.reader.readBlock(ctx, h, nil, i.vbRH, stats, &i.iterStats, i.bufferPool)
     455           1 : }
     456             : 
     457             : // resolveMaybeExcluded is invoked when the block-property filterer has found
     458             : // that a block is excluded according to its properties but only if its bounds
     459             : // fall within the filter's current bounds.  This function consults the
     460             : // apprioriate bound, depending on the iteration direction, and returns either
     461             : // `blockIntersects` or `blockExcluded`.
     462           1 : func (i *singleLevelIterator) resolveMaybeExcluded(dir int8) intersectsResult {
     463           1 :         // TODO(jackson): We could first try comparing to top-level index block's
     464           1 :         // key, and if within bounds avoid per-data block key comparisons.
     465           1 : 
     466           1 :         // This iterator is configured with a bound-limited block property
     467           1 :         // filter. The bpf determined this block could be excluded from
     468           1 :         // iteration based on the property encoded in the block handle.
     469           1 :         // However, we still need to determine if the block is wholly
     470           1 :         // contained within the filter's key bounds.
     471           1 :         //
     472           1 :         // External guarantees ensure all the block's keys are ≥ the
     473           1 :         // filter's lower bound during forward iteration, and that all the
     474           1 :         // block's keys are < the filter's upper bound during backward
     475           1 :         // iteration. We only need to determine if the opposite bound is
     476           1 :         // also met.
     477           1 :         //
     478           1 :         // The index separator in index.Key() provides an inclusive
     479           1 :         // upper-bound for the data block's keys, guaranteeing that all its
     480           1 :         // keys are ≤ index.Key(). For forward iteration, this is all we
     481           1 :         // need.
     482           1 :         if dir > 0 {
     483           1 :                 // Forward iteration.
     484           1 :                 if i.bpfs.boundLimitedFilter.KeyIsWithinUpperBound(i.index.Key().UserKey) {
     485           1 :                         return blockExcluded
     486           1 :                 }
     487           1 :                 return blockIntersects
     488             :         }
     489             : 
     490             :         // Reverse iteration.
     491             :         //
     492             :         // Because we're iterating in the reverse direction, we don't yet have
     493             :         // enough context available to determine if the block is wholly contained
     494             :         // within its bounds. This case arises only during backward iteration,
     495             :         // because of the way the index is structured.
     496             :         //
     497             :         // Consider a bound-limited bpf limited to the bounds [b,d), loading the
     498             :         // block with separator `c`. During reverse iteration, the guarantee that
     499             :         // all the block's keys are < `d` is externally provided, but no guarantee
     500             :         // is made on the bpf's lower bound. The separator `c` only provides an
     501             :         // inclusive upper bound on the block's keys, indicating that the
     502             :         // corresponding block handle points to a block containing only keys ≤ `c`.
     503             :         //
     504             :         // To establish a lower bound, we step the index backwards to read the
     505             :         // previous block's separator, which provides an inclusive lower bound on
     506             :         // the original block's keys. Afterwards, we step forward to restore our
     507             :         // index position.
     508           1 :         if peekKey, _ := i.index.Prev(); peekKey == nil {
     509           1 :                 // The original block points to the first block of this index block. If
     510           1 :                 // there's a two-level index, it could potentially provide a lower
     511           1 :                 // bound, but the code refactoring necessary to read it doesn't seem
     512           1 :                 // worth the payoff. We fall through to loading the block.
     513           1 :         } else if i.bpfs.boundLimitedFilter.KeyIsWithinLowerBound(peekKey.UserKey) {
     514           1 :                 // The lower-bound on the original block falls within the filter's
     515           1 :                 // bounds, and we can skip the block (after restoring our current index
     516           1 :                 // position).
     517           1 :                 _, _ = i.index.Next()
     518           1 :                 return blockExcluded
     519           1 :         }
     520           1 :         _, _ = i.index.Next()
     521           1 :         return blockIntersects
     522             : }
     523             : 
     524           1 : func (i *singleLevelIterator) initBoundsForAlreadyLoadedBlock() {
     525           1 :         if i.data.getFirstUserKey() == nil {
     526           0 :                 panic("initBoundsForAlreadyLoadedBlock must not be called on empty or corrupted block")
     527             :         }
     528           1 :         i.blockLower = i.lower
     529           1 :         if i.blockLower != nil {
     530           1 :                 firstUserKey := i.data.getFirstUserKey()
     531           1 :                 if firstUserKey != nil && i.cmp(i.blockLower, firstUserKey) < 0 {
     532           1 :                         // The lower-bound is less than the first key in the block. No need
     533           1 :                         // to check the lower-bound again for this block.
     534           1 :                         i.blockLower = nil
     535           1 :                 }
     536             :         }
     537           1 :         i.blockUpper = i.upper
     538           1 :         if i.blockUpper != nil && i.cmp(i.blockUpper, i.index.Key().UserKey) > 0 {
     539           1 :                 // The upper-bound is greater than the index key which itself is greater
     540           1 :                 // than or equal to every key in the block. No need to check the
     541           1 :                 // upper-bound again for this block.
     542           1 :                 i.blockUpper = nil
     543           1 :         }
     544             : }
     545             : 
     546             : // The number of times to call Next/Prev in a block before giving up and seeking.
     547             : // The value of 4 is arbitrary.
     548             : // TODO(sumeer): experiment with dynamic adjustment based on the history of
     549             : // seeks for a particular iterator.
     550             : const numStepsBeforeSeek = 4
     551             : 
     552             : func (i *singleLevelIterator) trySeekGEUsingNextWithinBlock(
     553             :         key []byte,
     554           1 : ) (k *InternalKey, v base.LazyValue, done bool) {
     555           1 :         k, v = i.data.Key(), i.data.value()
     556           1 :         for j := 0; j < numStepsBeforeSeek; j++ {
     557           1 :                 curKeyCmp := i.cmp(k.UserKey, key)
     558           1 :                 if curKeyCmp >= 0 {
     559           1 :                         if i.blockUpper != nil {
     560           1 :                                 cmp := i.cmp(k.UserKey, i.blockUpper)
     561           1 :                                 if (!i.endKeyInclusive && cmp >= 0) || cmp > 0 {
     562           1 :                                         i.exhaustedBounds = +1
     563           1 :                                         return nil, base.LazyValue{}, true
     564           1 :                                 }
     565             :                         }
     566           1 :                         return k, v, true
     567             :                 }
     568           1 :                 k, v = i.data.Next()
     569           1 :                 if k == nil {
     570           1 :                         break
     571             :                 }
     572             :         }
     573           1 :         return k, v, false
     574             : }
     575             : 
     576             : func (i *singleLevelIterator) trySeekLTUsingPrevWithinBlock(
     577             :         key []byte,
     578           1 : ) (k *InternalKey, v base.LazyValue, done bool) {
     579           1 :         k, v = i.data.Key(), i.data.value()
     580           1 :         for j := 0; j < numStepsBeforeSeek; j++ {
     581           1 :                 curKeyCmp := i.cmp(k.UserKey, key)
     582           1 :                 if curKeyCmp < 0 {
     583           1 :                         if i.blockLower != nil && i.cmp(k.UserKey, i.blockLower) < 0 {
     584           1 :                                 i.exhaustedBounds = -1
     585           1 :                                 return nil, base.LazyValue{}, true
     586           1 :                         }
     587           1 :                         return k, v, true
     588             :                 }
     589           1 :                 k, v = i.data.Prev()
     590           1 :                 if k == nil {
     591           1 :                         break
     592             :                 }
     593             :         }
     594           1 :         return k, v, false
     595             : }
     596             : 
     597           1 : func (i *singleLevelIterator) recordOffset() uint64 {
     598           1 :         offset := i.dataBH.Offset
     599           1 :         if i.data.valid() {
     600           1 :                 // - i.dataBH.Length/len(i.data.data) is the compression ratio. If
     601           1 :                 //   uncompressed, this is 1.
     602           1 :                 // - i.data.nextOffset is the uncompressed position of the current record
     603           1 :                 //   in the block.
     604           1 :                 // - i.dataBH.Offset is the offset of the block in the sstable before
     605           1 :                 //   decompression.
     606           1 :                 offset += (uint64(i.data.nextOffset) * i.dataBH.Length) / uint64(len(i.data.data))
     607           1 :         } else {
     608           1 :                 // Last entry in the block must increment bytes iterated by the size of the block trailer
     609           1 :                 // and restart points.
     610           1 :                 offset += i.dataBH.Length + blockTrailerLen
     611           1 :         }
     612           1 :         return offset
     613             : }
     614             : 
     615             : // SeekGE implements internalIterator.SeekGE, as documented in the pebble
     616             : // package. Note that SeekGE only checks the upper bound. It is up to the
     617             : // caller to ensure that key is greater than or equal to the lower bound.
     618             : func (i *singleLevelIterator) SeekGE(
     619             :         key []byte, flags base.SeekGEFlags,
     620           1 : ) (*InternalKey, base.LazyValue) {
     621           1 :         if i.vState != nil {
     622           1 :                 // Callers of SeekGE don't know about virtual sstable bounds, so we may
     623           1 :                 // have to internally restrict the bounds.
     624           1 :                 //
     625           1 :                 // TODO(bananabrick): We can optimize this check away for the level iter
     626           1 :                 // if necessary.
     627           1 :                 if i.cmp(key, i.lower) < 0 {
     628           1 :                         key = i.lower
     629           1 :                 }
     630             :         }
     631             : 
     632           1 :         if flags.TrySeekUsingNext() {
     633           1 :                 // The i.exhaustedBounds comparison indicates that the upper bound was
     634           1 :                 // reached. The i.data.isDataInvalidated() indicates that the sstable was
     635           1 :                 // exhausted.
     636           1 :                 if (i.exhaustedBounds == +1 || i.data.isDataInvalidated()) && i.err == nil {
     637           1 :                         // Already exhausted, so return nil.
     638           1 :                         return nil, base.LazyValue{}
     639           1 :                 }
     640           1 :                 if i.err != nil {
     641           0 :                         // The current iterator position cannot be used.
     642           0 :                         flags = flags.DisableTrySeekUsingNext()
     643           0 :                 }
     644             :                 // INVARIANT: flags.TrySeekUsingNext() => i.err == nil &&
     645             :                 // !i.exhaustedBounds==+1 && !i.data.isDataInvalidated(). That is,
     646             :                 // data-exhausted and bounds-exhausted, as defined earlier, are both
     647             :                 // false. Ths makes it safe to clear out i.exhaustedBounds and i.err
     648             :                 // before calling into seekGEHelper.
     649             :         }
     650             : 
     651           1 :         i.exhaustedBounds = 0
     652           1 :         i.err = nil // clear cached iteration error
     653           1 :         boundsCmp := i.boundsCmp
     654           1 :         // Seek optimization only applies until iterator is first positioned after SetBounds.
     655           1 :         i.boundsCmp = 0
     656           1 :         i.positionedUsingLatestBounds = true
     657           1 :         return i.seekGEHelper(key, boundsCmp, flags)
     658             : }
     659             : 
     660             : // seekGEHelper contains the common functionality for SeekGE and SeekPrefixGE.
     661             : func (i *singleLevelIterator) seekGEHelper(
     662             :         key []byte, boundsCmp int, flags base.SeekGEFlags,
     663           1 : ) (*InternalKey, base.LazyValue) {
     664           1 :         // Invariant: trySeekUsingNext => !i.data.isDataInvalidated() && i.exhaustedBounds != +1
     665           1 : 
     666           1 :         // SeekGE performs various step-instead-of-seeking optimizations: eg enabled
     667           1 :         // by trySeekUsingNext, or by monotonically increasing bounds (i.boundsCmp).
     668           1 :         // Care must be taken to ensure that when performing these optimizations and
     669           1 :         // the iterator becomes exhausted, i.maybeFilteredKeys is set appropriately.
     670           1 :         // Consider a previous SeekGE that filtered keys from k until the current
     671           1 :         // iterator position.
     672           1 :         //
     673           1 :         // If the previous SeekGE exhausted the iterator, it's possible keys greater
     674           1 :         // than or equal to the current search key were filtered. We must not reuse
     675           1 :         // the current iterator position without remembering the previous value of
     676           1 :         // maybeFilteredKeys.
     677           1 : 
     678           1 :         var dontSeekWithinBlock bool
     679           1 :         if !i.data.isDataInvalidated() && !i.index.isDataInvalidated() && i.data.valid() && i.index.valid() &&
     680           1 :                 boundsCmp > 0 && i.cmp(key, i.index.Key().UserKey) <= 0 {
     681           1 :                 // Fast-path: The bounds have moved forward and this SeekGE is
     682           1 :                 // respecting the lower bound (guaranteed by Iterator). We know that
     683           1 :                 // the iterator must already be positioned within or just outside the
     684           1 :                 // previous bounds. Therefore it cannot be positioned at a block (or
     685           1 :                 // the position within that block) that is ahead of the seek position.
     686           1 :                 // However it can be positioned at an earlier block. This fast-path to
     687           1 :                 // use Next() on the block is only applied when we are already at the
     688           1 :                 // block that the slow-path (the else-clause) would load -- this is
     689           1 :                 // the motivation for the i.cmp(key, i.index.Key().UserKey) <= 0
     690           1 :                 // predicate.
     691           1 :                 i.initBoundsForAlreadyLoadedBlock()
     692           1 :                 ikey, val, done := i.trySeekGEUsingNextWithinBlock(key)
     693           1 :                 if done {
     694           1 :                         return ikey, val
     695           1 :                 }
     696           1 :                 if ikey == nil {
     697           1 :                         // Done with this block.
     698           1 :                         dontSeekWithinBlock = true
     699           1 :                 }
     700           1 :         } else {
     701           1 :                 // Cannot use bounds monotonicity. But may be able to optimize if
     702           1 :                 // caller claimed externally known invariant represented by
     703           1 :                 // flags.TrySeekUsingNext().
     704           1 :                 if flags.TrySeekUsingNext() {
     705           1 :                         // seekPrefixGE or SeekGE has already ensured
     706           1 :                         // !i.data.isDataInvalidated() && i.exhaustedBounds != +1
     707           1 :                         currKey := i.data.Key()
     708           1 :                         value := i.data.value()
     709           1 :                         less := i.cmp(currKey.UserKey, key) < 0
     710           1 :                         // We could be more sophisticated and confirm that the seek
     711           1 :                         // position is within the current block before applying this
     712           1 :                         // optimization. But there may be some benefit even if it is in
     713           1 :                         // the next block, since we can avoid seeking i.index.
     714           1 :                         for j := 0; less && j < numStepsBeforeSeek; j++ {
     715           1 :                                 currKey, value = i.Next()
     716           1 :                                 if currKey == nil {
     717           1 :                                         return nil, base.LazyValue{}
     718           1 :                                 }
     719           1 :                                 less = i.cmp(currKey.UserKey, key) < 0
     720             :                         }
     721           1 :                         if !less {
     722           1 :                                 if i.blockUpper != nil {
     723           1 :                                         cmp := i.cmp(currKey.UserKey, i.blockUpper)
     724           1 :                                         if (!i.endKeyInclusive && cmp >= 0) || cmp > 0 {
     725           0 :                                                 i.exhaustedBounds = +1
     726           0 :                                                 return nil, base.LazyValue{}
     727           0 :                                         }
     728             :                                 }
     729           1 :                                 return currKey, value
     730             :                         }
     731             :                 }
     732             : 
     733             :                 // Slow-path.
     734             :                 // Since we're re-seeking the iterator, the previous value of
     735             :                 // maybeFilteredKeysSingleLevel is irrelevant. If we filter out blocks
     736             :                 // during seeking, loadBlock will set it to true.
     737           1 :                 i.maybeFilteredKeysSingleLevel = false
     738           1 : 
     739           1 :                 var ikey *InternalKey
     740           1 :                 if ikey, _ = i.index.SeekGE(key, flags.DisableTrySeekUsingNext()); ikey == nil {
     741           1 :                         // The target key is greater than any key in the index block.
     742           1 :                         // Invalidate the block iterator so that a subsequent call to Prev()
     743           1 :                         // will return the last key in the table.
     744           1 :                         i.data.invalidate()
     745           1 :                         return nil, base.LazyValue{}
     746           1 :                 }
     747           1 :                 result := i.loadBlock(+1)
     748           1 :                 if result == loadBlockFailed {
     749           0 :                         return nil, base.LazyValue{}
     750           0 :                 }
     751           1 :                 if result == loadBlockIrrelevant {
     752           1 :                         // Enforce the upper bound here since don't want to bother moving
     753           1 :                         // to the next block if upper bound is already exceeded. Note that
     754           1 :                         // the next block starts with keys >= ikey.UserKey since even
     755           1 :                         // though this is the block separator, the same user key can span
     756           1 :                         // multiple blocks. If upper is exclusive we use >= below, else
     757           1 :                         // we use >.
     758           1 :                         if i.upper != nil {
     759           1 :                                 cmp := i.cmp(ikey.UserKey, i.upper)
     760           1 :                                 if (!i.endKeyInclusive && cmp >= 0) || cmp > 0 {
     761           1 :                                         i.exhaustedBounds = +1
     762           1 :                                         return nil, base.LazyValue{}
     763           1 :                                 }
     764             :                         }
     765             :                         // Want to skip to the next block.
     766           1 :                         dontSeekWithinBlock = true
     767             :                 }
     768             :         }
     769           1 :         if !dontSeekWithinBlock {
     770           1 :                 if ikey, val := i.data.SeekGE(key, flags.DisableTrySeekUsingNext()); ikey != nil {
     771           1 :                         if i.blockUpper != nil {
     772           1 :                                 cmp := i.cmp(ikey.UserKey, i.blockUpper)
     773           1 :                                 if (!i.endKeyInclusive && cmp >= 0) || cmp > 0 {
     774           1 :                                         i.exhaustedBounds = +1
     775           1 :                                         return nil, base.LazyValue{}
     776           1 :                                 }
     777             :                         }
     778           1 :                         return ikey, val
     779             :                 }
     780             :         }
     781           1 :         return i.skipForward()
     782             : }
     783             : 
     784             : // SeekPrefixGE implements internalIterator.SeekPrefixGE, as documented in the
     785             : // pebble package. Note that SeekPrefixGE only checks the upper bound. It is up
     786             : // to the caller to ensure that key is greater than or equal to the lower bound.
     787             : func (i *singleLevelIterator) SeekPrefixGE(
     788             :         prefix, key []byte, flags base.SeekGEFlags,
     789           1 : ) (*base.InternalKey, base.LazyValue) {
     790           1 :         if i.vState != nil {
     791           1 :                 // Callers of SeekPrefixGE aren't aware of virtual sstable bounds, so
     792           1 :                 // we may have to internally restrict the bounds.
     793           1 :                 //
     794           1 :                 // TODO(bananabrick): We can optimize away this check for the level iter
     795           1 :                 // if necessary.
     796           1 :                 if i.cmp(key, i.lower) < 0 {
     797           1 :                         key = i.lower
     798           1 :                 }
     799             :         }
     800           1 :         return i.seekPrefixGE(prefix, key, flags, i.useFilter)
     801             : }
     802             : 
     803             : func (i *singleLevelIterator) seekPrefixGE(
     804             :         prefix, key []byte, flags base.SeekGEFlags, checkFilter bool,
     805           1 : ) (k *InternalKey, value base.LazyValue) {
     806           1 :         // NOTE: prefix is only used for bloom filter checking and not later work in
     807           1 :         // this method. Hence, we can use the existing iterator position if the last
     808           1 :         // SeekPrefixGE did not fail bloom filter matching.
     809           1 : 
     810           1 :         err := i.err
     811           1 :         i.err = nil // clear cached iteration error
     812           1 :         if checkFilter && i.reader.tableFilter != nil {
     813           1 :                 if !i.lastBloomFilterMatched {
     814           1 :                         // Iterator is not positioned based on last seek.
     815           1 :                         flags = flags.DisableTrySeekUsingNext()
     816           1 :                 }
     817           1 :                 i.lastBloomFilterMatched = false
     818           1 :                 // Check prefix bloom filter.
     819           1 :                 var dataH bufferHandle
     820           1 :                 dataH, i.err = i.reader.readFilter(i.ctx, i.stats, &i.iterStats)
     821           1 :                 if i.err != nil {
     822           0 :                         i.data.invalidate()
     823           0 :                         return nil, base.LazyValue{}
     824           0 :                 }
     825           1 :                 mayContain := i.reader.tableFilter.mayContain(dataH.Get(), prefix)
     826           1 :                 dataH.Release()
     827           1 :                 if !mayContain {
     828           1 :                         // This invalidation may not be necessary for correctness, and may
     829           1 :                         // be a place to optimize later by reusing the already loaded
     830           1 :                         // block. It was necessary in earlier versions of the code since
     831           1 :                         // the caller was allowed to call Next when SeekPrefixGE returned
     832           1 :                         // nil. This is no longer allowed.
     833           1 :                         i.data.invalidate()
     834           1 :                         return nil, base.LazyValue{}
     835           1 :                 }
     836           1 :                 i.lastBloomFilterMatched = true
     837             :         }
     838           1 :         if flags.TrySeekUsingNext() {
     839           1 :                 // The i.exhaustedBounds comparison indicates that the upper bound was
     840           1 :                 // reached. The i.data.isDataInvalidated() indicates that the sstable was
     841           1 :                 // exhausted.
     842           1 :                 if (i.exhaustedBounds == +1 || i.data.isDataInvalidated()) && err == nil {
     843           1 :                         // Already exhausted, so return nil.
     844           1 :                         return nil, base.LazyValue{}
     845           1 :                 }
     846           1 :                 if err != nil {
     847           0 :                         // The current iterator position cannot be used.
     848           0 :                         flags = flags.DisableTrySeekUsingNext()
     849           0 :                 }
     850             :                 // INVARIANT: flags.TrySeekUsingNext() => err == nil &&
     851             :                 // !i.exhaustedBounds==+1 && !i.data.isDataInvalidated(). That is,
     852             :                 // data-exhausted and bounds-exhausted, as defined earlier, are both
     853             :                 // false. Ths makes it safe to clear out i.exhaustedBounds and i.err
     854             :                 // before calling into seekGEHelper.
     855             :         }
     856             :         // Bloom filter matches, or skipped, so this method will position the
     857             :         // iterator.
     858           1 :         i.exhaustedBounds = 0
     859           1 :         boundsCmp := i.boundsCmp
     860           1 :         // Seek optimization only applies until iterator is first positioned after SetBounds.
     861           1 :         i.boundsCmp = 0
     862           1 :         i.positionedUsingLatestBounds = true
     863           1 :         k, value = i.seekGEHelper(key, boundsCmp, flags)
     864           1 :         return i.maybeVerifyKey(k, value)
     865             : }
     866             : 
     867             : // virtualLast should only be called if i.vReader != nil.
     868           1 : func (i *singleLevelIterator) virtualLast() (*InternalKey, base.LazyValue) {
     869           1 :         if i.vState == nil {
     870           0 :                 panic("pebble: invalid call to virtualLast")
     871             :         }
     872             : 
     873           1 :         if !i.endKeyInclusive {
     874           1 :                 // Trivial case.
     875           1 :                 return i.SeekLT(i.upper, base.SeekLTFlagsNone)
     876           1 :         }
     877           1 :         return i.virtualLastSeekLE(i.upper)
     878             : }
     879             : 
     880             : // virtualLastSeekLE is called by virtualLast to do a SeekLE as part of a
     881             : // virtualLast. Consider generalizing this into a SeekLE() if there are other
     882             : // uses of this method in the future.
     883           1 : func (i *singleLevelIterator) virtualLastSeekLE(key []byte) (*InternalKey, base.LazyValue) {
     884           1 :         // Callers of SeekLE don't know about virtual sstable bounds, so we may
     885           1 :         // have to internally restrict the bounds.
     886           1 :         //
     887           1 :         // TODO(bananabrick): We can optimize this check away for the level iter
     888           1 :         // if necessary.
     889           1 :         if i.cmp(key, i.upper) >= 0 {
     890           1 :                 if !i.endKeyInclusive {
     891           0 :                         panic("unexpected virtualLastSeekLE with exclusive upper bounds")
     892             :                 }
     893           1 :                 key = i.upper
     894             :         }
     895             : 
     896           1 :         i.exhaustedBounds = 0
     897           1 :         i.err = nil // clear cached iteration error
     898           1 :         // Seek optimization only applies until iterator is first positioned with a
     899           1 :         // SeekGE or SeekLT after SetBounds.
     900           1 :         i.boundsCmp = 0
     901           1 :         i.positionedUsingLatestBounds = true
     902           1 :         i.maybeFilteredKeysSingleLevel = false
     903           1 : 
     904           1 :         ikey, _ := i.index.SeekGE(key, base.SeekGEFlagsNone)
     905           1 :         // We can have multiple internal keys with the same user key as the seek
     906           1 :         // key. In that case, we want the last (greatest) internal key.
     907           1 :         //
     908           1 :         // NB: We can avoid this Next()ing if we just implement a blockIter.SeekLE().
     909           1 :         // This might be challenging to do correctly, so impose regular operations
     910           1 :         // for now.
     911           1 :         for ikey != nil && bytes.Equal(ikey.UserKey, key) {
     912           1 :                 ikey, _ = i.index.Next()
     913           1 :         }
     914           1 :         if ikey == nil {
     915           1 :                 return i.skipBackward()
     916           1 :         }
     917           1 :         result := i.loadBlock(-1)
     918           1 :         if result == loadBlockFailed {
     919           0 :                 return nil, base.LazyValue{}
     920           0 :         }
     921           1 :         if result == loadBlockIrrelevant {
     922           1 :                 // Want to skip to the previous block.
     923           1 :                 return i.skipBackward()
     924           1 :         }
     925           1 :         ikey, _ = i.data.SeekGE(key, base.SeekGEFlagsNone)
     926           1 :         var val base.LazyValue
     927           1 :         // Go to the last user key that matches key, and then Prev() on the data
     928           1 :         // block.
     929           1 :         for ikey != nil && bytes.Equal(ikey.UserKey, key) {
     930           1 :                 ikey, _ = i.data.Next()
     931           1 :         }
     932           1 :         ikey, val = i.data.Prev()
     933           1 :         if ikey != nil {
     934           1 :                 return ikey, val
     935           1 :         }
     936           1 :         return i.skipBackward()
     937             : }
     938             : 
     939             : // SeekLT implements internalIterator.SeekLT, as documented in the pebble
     940             : // package. Note that SeekLT only checks the lower bound. It is up to the
     941             : // caller to ensure that key is less than or equal to the upper bound.
     942             : func (i *singleLevelIterator) SeekLT(
     943             :         key []byte, flags base.SeekLTFlags,
     944           1 : ) (*InternalKey, base.LazyValue) {
     945           1 :         if i.vState != nil {
     946           1 :                 // Might have to fix upper bound since virtual sstable bounds are not
     947           1 :                 // known to callers of SeekLT.
     948           1 :                 //
     949           1 :                 // TODO(bananabrick): We can optimize away this check for the level iter
     950           1 :                 // if necessary.
     951           1 :                 cmp := i.cmp(key, i.upper)
     952           1 :                 // key == i.upper is fine. We'll do the right thing and return the
     953           1 :                 // first internal key with user key < key.
     954           1 :                 if cmp > 0 {
     955           1 :                         // Return the last key in the virtual sstable.
     956           1 :                         return i.virtualLast()
     957           1 :                 }
     958             :         }
     959             : 
     960           1 :         i.exhaustedBounds = 0
     961           1 :         i.err = nil // clear cached iteration error
     962           1 :         boundsCmp := i.boundsCmp
     963           1 :         // Seek optimization only applies until iterator is first positioned after SetBounds.
     964           1 :         i.boundsCmp = 0
     965           1 : 
     966           1 :         // Seeking operations perform various step-instead-of-seeking optimizations:
     967           1 :         // eg by considering monotonically increasing bounds (i.boundsCmp). Care
     968           1 :         // must be taken to ensure that when performing these optimizations and the
     969           1 :         // iterator becomes exhausted i.maybeFilteredKeysSingleLevel is set
     970           1 :         // appropriately.  Consider a previous SeekLT that filtered keys from k
     971           1 :         // until the current iterator position.
     972           1 :         //
     973           1 :         // If the previous SeekLT did exhausted the iterator, it's possible keys
     974           1 :         // less than the current search key were filtered. We must not reuse the
     975           1 :         // current iterator position without remembering the previous value of
     976           1 :         // maybeFilteredKeysSingleLevel.
     977           1 : 
     978           1 :         i.positionedUsingLatestBounds = true
     979           1 : 
     980           1 :         var dontSeekWithinBlock bool
     981           1 :         if !i.data.isDataInvalidated() && !i.index.isDataInvalidated() && i.data.valid() && i.index.valid() &&
     982           1 :                 boundsCmp < 0 && i.cmp(i.data.getFirstUserKey(), key) < 0 {
     983           1 :                 // Fast-path: The bounds have moved backward, and this SeekLT is
     984           1 :                 // respecting the upper bound (guaranteed by Iterator). We know that
     985           1 :                 // the iterator must already be positioned within or just outside the
     986           1 :                 // previous bounds. Therefore it cannot be positioned at a block (or
     987           1 :                 // the position within that block) that is behind the seek position.
     988           1 :                 // However it can be positioned at a later block. This fast-path to
     989           1 :                 // use Prev() on the block is only applied when we are already at the
     990           1 :                 // block that can satisfy this seek -- this is the motivation for the
     991           1 :                 // the i.cmp(i.data.firstKey.UserKey, key) < 0 predicate.
     992           1 :                 i.initBoundsForAlreadyLoadedBlock()
     993           1 :                 ikey, val, done := i.trySeekLTUsingPrevWithinBlock(key)
     994           1 :                 if done {
     995           1 :                         return ikey, val
     996           1 :                 }
     997           1 :                 if ikey == nil {
     998           1 :                         // Done with this block.
     999           1 :                         dontSeekWithinBlock = true
    1000           1 :                 }
    1001           1 :         } else {
    1002           1 :                 // Slow-path.
    1003           1 :                 i.maybeFilteredKeysSingleLevel = false
    1004           1 :                 var ikey *InternalKey
    1005           1 : 
    1006           1 :                 // NB: If a bound-limited block property filter is configured, it's
    1007           1 :                 // externally ensured that the filter is disabled (through returning
    1008           1 :                 // Intersects=false irrespective of the block props provided) during
    1009           1 :                 // seeks.
    1010           1 :                 if ikey, _ = i.index.SeekGE(key, base.SeekGEFlagsNone); ikey == nil {
    1011           1 :                         ikey, _ = i.index.Last()
    1012           1 :                         if ikey == nil {
    1013           0 :                                 return nil, base.LazyValue{}
    1014           0 :                         }
    1015             :                 }
    1016             :                 // INVARIANT: ikey != nil.
    1017           1 :                 result := i.loadBlock(-1)
    1018           1 :                 if result == loadBlockFailed {
    1019           0 :                         return nil, base.LazyValue{}
    1020           0 :                 }
    1021           1 :                 if result == loadBlockIrrelevant {
    1022           1 :                         // Enforce the lower bound here since don't want to bother moving
    1023           1 :                         // to the previous block if lower bound is already exceeded. Note
    1024           1 :                         // that the previous block starts with keys <= ikey.UserKey since
    1025           1 :                         // even though this is the current block's separator, the same
    1026           1 :                         // user key can span multiple blocks.
    1027           1 :                         if i.lower != nil && i.cmp(ikey.UserKey, i.lower) < 0 {
    1028           1 :                                 i.exhaustedBounds = -1
    1029           1 :                                 return nil, base.LazyValue{}
    1030           1 :                         }
    1031             :                         // Want to skip to the previous block.
    1032           1 :                         dontSeekWithinBlock = true
    1033             :                 }
    1034             :         }
    1035           1 :         if !dontSeekWithinBlock {
    1036           1 :                 if ikey, val := i.data.SeekLT(key, flags); ikey != nil {
    1037           1 :                         if i.blockLower != nil && i.cmp(ikey.UserKey, i.blockLower) < 0 {
    1038           1 :                                 i.exhaustedBounds = -1
    1039           1 :                                 return nil, base.LazyValue{}
    1040           1 :                         }
    1041           1 :                         return ikey, val
    1042             :                 }
    1043             :         }
    1044             :         // The index contains separator keys which may lie between
    1045             :         // user-keys. Consider the user-keys:
    1046             :         //
    1047             :         //   complete
    1048             :         // ---- new block ---
    1049             :         //   complexion
    1050             :         //
    1051             :         // If these two keys end one block and start the next, the index key may
    1052             :         // be chosen as "compleu". The SeekGE in the index block will then point
    1053             :         // us to the block containing "complexion". If this happens, we want the
    1054             :         // last key from the previous data block.
    1055           1 :         return i.maybeVerifyKey(i.skipBackward())
    1056             : }
    1057             : 
    1058             : // First implements internalIterator.First, as documented in the pebble
    1059             : // package. Note that First only checks the upper bound. It is up to the caller
    1060             : // to ensure that key is greater than or equal to the lower bound (e.g. via a
    1061             : // call to SeekGE(lower)).
    1062           1 : func (i *singleLevelIterator) First() (*InternalKey, base.LazyValue) {
    1063           1 :         // If the iterator was created on a virtual sstable, we will SeekGE to the
    1064           1 :         // lower bound instead of using First, because First does not respect
    1065           1 :         // bounds.
    1066           1 :         if i.vState != nil {
    1067           1 :                 return i.SeekGE(i.lower, base.SeekGEFlagsNone)
    1068           1 :         }
    1069             : 
    1070           1 :         if i.lower != nil {
    1071           0 :                 panic("singleLevelIterator.First() used despite lower bound")
    1072             :         }
    1073           1 :         i.positionedUsingLatestBounds = true
    1074           1 :         i.maybeFilteredKeysSingleLevel = false
    1075           1 : 
    1076           1 :         return i.firstInternal()
    1077             : }
    1078             : 
    1079             : // firstInternal is a helper used for absolute positioning in a single-level
    1080             : // index file, or for positioning in the second-level index in a two-level
    1081             : // index file. For the latter, one cannot make any claims about absolute
    1082             : // positioning.
    1083           1 : func (i *singleLevelIterator) firstInternal() (*InternalKey, base.LazyValue) {
    1084           1 :         i.exhaustedBounds = 0
    1085           1 :         i.err = nil // clear cached iteration error
    1086           1 :         // Seek optimization only applies until iterator is first positioned after SetBounds.
    1087           1 :         i.boundsCmp = 0
    1088           1 : 
    1089           1 :         var ikey *InternalKey
    1090           1 :         if ikey, _ = i.index.First(); ikey == nil {
    1091           0 :                 i.data.invalidate()
    1092           0 :                 return nil, base.LazyValue{}
    1093           0 :         }
    1094           1 :         result := i.loadBlock(+1)
    1095           1 :         if result == loadBlockFailed {
    1096           0 :                 return nil, base.LazyValue{}
    1097           0 :         }
    1098           1 :         if result == loadBlockOK {
    1099           1 :                 if ikey, val := i.data.First(); ikey != nil {
    1100           1 :                         if i.blockUpper != nil {
    1101           1 :                                 cmp := i.cmp(ikey.UserKey, i.blockUpper)
    1102           1 :                                 if (!i.endKeyInclusive && cmp >= 0) || cmp > 0 {
    1103           1 :                                         i.exhaustedBounds = +1
    1104           1 :                                         return nil, base.LazyValue{}
    1105           1 :                                 }
    1106             :                         }
    1107           1 :                         return ikey, val
    1108             :                 }
    1109             :                 // Else fall through to skipForward.
    1110           1 :         } else {
    1111           1 :                 // result == loadBlockIrrelevant. Enforce the upper bound here since
    1112           1 :                 // don't want to bother moving to the next block if upper bound is
    1113           1 :                 // already exceeded. Note that the next block starts with keys >=
    1114           1 :                 // ikey.UserKey since even though this is the block separator, the
    1115           1 :                 // same user key can span multiple blocks. If upper is exclusive we
    1116           1 :                 // use >= below, else we use >.
    1117           1 :                 if i.upper != nil {
    1118           1 :                         cmp := i.cmp(ikey.UserKey, i.upper)
    1119           1 :                         if (!i.endKeyInclusive && cmp >= 0) || cmp > 0 {
    1120           1 :                                 i.exhaustedBounds = +1
    1121           1 :                                 return nil, base.LazyValue{}
    1122           1 :                         }
    1123             :                 }
    1124             :                 // Else fall through to skipForward.
    1125             :         }
    1126             : 
    1127           1 :         return i.skipForward()
    1128             : }
    1129             : 
    1130             : // Last implements internalIterator.Last, as documented in the pebble
    1131             : // package. Note that Last only checks the lower bound. It is up to the caller
    1132             : // to ensure that key is less than the upper bound (e.g. via a call to
    1133             : // SeekLT(upper))
    1134           1 : func (i *singleLevelIterator) Last() (*InternalKey, base.LazyValue) {
    1135           1 :         if i.vState != nil {
    1136           1 :                 return i.virtualLast()
    1137           1 :         }
    1138             : 
    1139           1 :         if i.upper != nil {
    1140           0 :                 panic("singleLevelIterator.Last() used despite upper bound")
    1141             :         }
    1142           1 :         i.positionedUsingLatestBounds = true
    1143           1 :         i.maybeFilteredKeysSingleLevel = false
    1144           1 :         return i.lastInternal()
    1145             : }
    1146             : 
    1147             : // lastInternal is a helper used for absolute positioning in a single-level
    1148             : // index file, or for positioning in the second-level index in a two-level
    1149             : // index file. For the latter, one cannot make any claims about absolute
    1150             : // positioning.
    1151           1 : func (i *singleLevelIterator) lastInternal() (*InternalKey, base.LazyValue) {
    1152           1 :         i.exhaustedBounds = 0
    1153           1 :         i.err = nil // clear cached iteration error
    1154           1 :         // Seek optimization only applies until iterator is first positioned after SetBounds.
    1155           1 :         i.boundsCmp = 0
    1156           1 : 
    1157           1 :         var ikey *InternalKey
    1158           1 :         if ikey, _ = i.index.Last(); ikey == nil {
    1159           0 :                 i.data.invalidate()
    1160           0 :                 return nil, base.LazyValue{}
    1161           0 :         }
    1162           1 :         result := i.loadBlock(-1)
    1163           1 :         if result == loadBlockFailed {
    1164           0 :                 return nil, base.LazyValue{}
    1165           0 :         }
    1166           1 :         if result == loadBlockOK {
    1167           1 :                 if ikey, val := i.data.Last(); ikey != nil {
    1168           1 :                         if i.blockLower != nil && i.cmp(ikey.UserKey, i.blockLower) < 0 {
    1169           1 :                                 i.exhaustedBounds = -1
    1170           1 :                                 return nil, base.LazyValue{}
    1171           1 :                         }
    1172           1 :                         return ikey, val
    1173             :                 }
    1174             :                 // Else fall through to skipBackward.
    1175           1 :         } else {
    1176           1 :                 // result == loadBlockIrrelevant. Enforce the lower bound here since
    1177           1 :                 // don't want to bother moving to the previous block if lower bound is
    1178           1 :                 // already exceeded. Note that the previous block starts with keys <=
    1179           1 :                 // key.UserKey since even though this is the current block's
    1180           1 :                 // separator, the same user key can span multiple blocks.
    1181           1 :                 if i.lower != nil && i.cmp(ikey.UserKey, i.lower) < 0 {
    1182           1 :                         i.exhaustedBounds = -1
    1183           1 :                         return nil, base.LazyValue{}
    1184           1 :                 }
    1185             :         }
    1186             : 
    1187           1 :         return i.skipBackward()
    1188             : }
    1189             : 
    1190             : // Next implements internalIterator.Next, as documented in the pebble
    1191             : // package.
    1192             : // Note: compactionIterator.Next mirrors the implementation of Iterator.Next
    1193             : // due to performance. Keep the two in sync.
    1194           1 : func (i *singleLevelIterator) Next() (*InternalKey, base.LazyValue) {
    1195           1 :         if i.exhaustedBounds == +1 {
    1196           0 :                 panic("Next called even though exhausted upper bound")
    1197             :         }
    1198           1 :         i.exhaustedBounds = 0
    1199           1 :         i.maybeFilteredKeysSingleLevel = false
    1200           1 :         // Seek optimization only applies until iterator is first positioned after SetBounds.
    1201           1 :         i.boundsCmp = 0
    1202           1 : 
    1203           1 :         if i.err != nil {
    1204           0 :                 // TODO(jackson): Can this case be turned into a panic? Once an error is
    1205           0 :                 // encountered, the iterator must be re-seeked.
    1206           0 :                 return nil, base.LazyValue{}
    1207           0 :         }
    1208           1 :         if key, val := i.data.Next(); key != nil {
    1209           1 :                 if i.blockUpper != nil {
    1210           1 :                         cmp := i.cmp(key.UserKey, i.blockUpper)
    1211           1 :                         if (!i.endKeyInclusive && cmp >= 0) || cmp > 0 {
    1212           1 :                                 i.exhaustedBounds = +1
    1213           1 :                                 return nil, base.LazyValue{}
    1214           1 :                         }
    1215             :                 }
    1216           1 :                 return key, val
    1217             :         }
    1218           1 :         return i.skipForward()
    1219             : }
    1220             : 
    1221             : // NextPrefix implements (base.InternalIterator).NextPrefix.
    1222           1 : func (i *singleLevelIterator) NextPrefix(succKey []byte) (*InternalKey, base.LazyValue) {
    1223           1 :         if i.exhaustedBounds == +1 {
    1224           0 :                 panic("NextPrefix called even though exhausted upper bound")
    1225             :         }
    1226           1 :         i.exhaustedBounds = 0
    1227           1 :         i.maybeFilteredKeysSingleLevel = false
    1228           1 :         // Seek optimization only applies until iterator is first positioned after SetBounds.
    1229           1 :         i.boundsCmp = 0
    1230           1 :         if i.err != nil {
    1231           0 :                 // TODO(jackson): Can this case be turned into a panic? Once an error is
    1232           0 :                 // encountered, the iterator must be re-seeked.
    1233           0 :                 return nil, base.LazyValue{}
    1234           0 :         }
    1235           1 :         if key, val := i.data.NextPrefix(succKey); key != nil {
    1236           1 :                 if i.blockUpper != nil {
    1237           1 :                         cmp := i.cmp(key.UserKey, i.blockUpper)
    1238           1 :                         if (!i.endKeyInclusive && cmp >= 0) || cmp > 0 {
    1239           1 :                                 i.exhaustedBounds = +1
    1240           1 :                                 return nil, base.LazyValue{}
    1241           1 :                         }
    1242             :                 }
    1243           1 :                 return key, val
    1244             :         }
    1245             :         // Did not find prefix in the existing data block. This is the slow-path
    1246             :         // where we effectively seek the iterator.
    1247           1 :         var ikey *InternalKey
    1248           1 :         // The key is likely to be in the next data block, so try one step.
    1249           1 :         if ikey, _ = i.index.Next(); ikey == nil {
    1250           1 :                 // The target key is greater than any key in the index block.
    1251           1 :                 // Invalidate the block iterator so that a subsequent call to Prev()
    1252           1 :                 // will return the last key in the table.
    1253           1 :                 i.data.invalidate()
    1254           1 :                 return nil, base.LazyValue{}
    1255           1 :         }
    1256           1 :         if i.cmp(succKey, ikey.UserKey) > 0 {
    1257           1 :                 // Not in the next data block, so seek the index.
    1258           1 :                 if ikey, _ = i.index.SeekGE(succKey, base.SeekGEFlagsNone); ikey == nil {
    1259           1 :                         // The target key is greater than any key in the index block.
    1260           1 :                         // Invalidate the block iterator so that a subsequent call to Prev()
    1261           1 :                         // will return the last key in the table.
    1262           1 :                         i.data.invalidate()
    1263           1 :                         return nil, base.LazyValue{}
    1264           1 :                 }
    1265             :         }
    1266           1 :         result := i.loadBlock(+1)
    1267           1 :         if result == loadBlockFailed {
    1268           0 :                 return nil, base.LazyValue{}
    1269           0 :         }
    1270           1 :         if result == loadBlockIrrelevant {
    1271           1 :                 // Enforce the upper bound here since don't want to bother moving
    1272           1 :                 // to the next block if upper bound is already exceeded. Note that
    1273           1 :                 // the next block starts with keys >= ikey.UserKey since even
    1274           1 :                 // though this is the block separator, the same user key can span
    1275           1 :                 // multiple blocks. If upper is exclusive we use >= below, else we use
    1276           1 :                 // >.
    1277           1 :                 if i.upper != nil {
    1278           1 :                         cmp := i.cmp(ikey.UserKey, i.upper)
    1279           1 :                         if (!i.endKeyInclusive && cmp >= 0) || cmp > 0 {
    1280           1 :                                 i.exhaustedBounds = +1
    1281           1 :                                 return nil, base.LazyValue{}
    1282           1 :                         }
    1283             :                 }
    1284           1 :         } else if key, val := i.data.SeekGE(succKey, base.SeekGEFlagsNone); key != nil {
    1285           1 :                 if i.blockUpper != nil {
    1286           1 :                         cmp := i.cmp(key.UserKey, i.blockUpper)
    1287           1 :                         if (!i.endKeyInclusive && cmp >= 0) || cmp > 0 {
    1288           1 :                                 i.exhaustedBounds = +1
    1289           1 :                                 return nil, base.LazyValue{}
    1290           1 :                         }
    1291             :                 }
    1292           1 :                 return i.maybeVerifyKey(key, val)
    1293             :         }
    1294             : 
    1295           1 :         return i.skipForward()
    1296             : }
    1297             : 
    1298             : // Prev implements internalIterator.Prev, as documented in the pebble
    1299             : // package.
    1300           1 : func (i *singleLevelIterator) Prev() (*InternalKey, base.LazyValue) {
    1301           1 :         if i.exhaustedBounds == -1 {
    1302           0 :                 panic("Prev called even though exhausted lower bound")
    1303             :         }
    1304           1 :         i.exhaustedBounds = 0
    1305           1 :         i.maybeFilteredKeysSingleLevel = false
    1306           1 :         // Seek optimization only applies until iterator is first positioned after SetBounds.
    1307           1 :         i.boundsCmp = 0
    1308           1 : 
    1309           1 :         if i.err != nil {
    1310           0 :                 return nil, base.LazyValue{}
    1311           0 :         }
    1312           1 :         if key, val := i.data.Prev(); key != nil {
    1313           1 :                 if i.blockLower != nil && i.cmp(key.UserKey, i.blockLower) < 0 {
    1314           1 :                         i.exhaustedBounds = -1
    1315           1 :                         return nil, base.LazyValue{}
    1316           1 :                 }
    1317           1 :                 return key, val
    1318             :         }
    1319           1 :         return i.skipBackward()
    1320             : }
    1321             : 
    1322           1 : func (i *singleLevelIterator) skipForward() (*InternalKey, base.LazyValue) {
    1323           1 :         for {
    1324           1 :                 var key *InternalKey
    1325           1 :                 if key, _ = i.index.Next(); key == nil {
    1326           1 :                         i.data.invalidate()
    1327           1 :                         break
    1328             :                 }
    1329           1 :                 result := i.loadBlock(+1)
    1330           1 :                 if result != loadBlockOK {
    1331           1 :                         if i.err != nil {
    1332           0 :                                 break
    1333             :                         }
    1334           1 :                         if result == loadBlockFailed {
    1335           0 :                                 // We checked that i.index was at a valid entry, so
    1336           0 :                                 // loadBlockFailed could not have happened due to to i.index
    1337           0 :                                 // being exhausted, and must be due to an error.
    1338           0 :                                 panic("loadBlock should not have failed with no error")
    1339             :                         }
    1340             :                         // result == loadBlockIrrelevant. Enforce the upper bound here
    1341             :                         // since don't want to bother moving to the next block if upper
    1342             :                         // bound is already exceeded. Note that the next block starts with
    1343             :                         // keys >= key.UserKey since even though this is the block
    1344             :                         // separator, the same user key can span multiple blocks. If upper
    1345             :                         // is exclusive we use >= below, else we use >.
    1346           1 :                         if i.upper != nil {
    1347           1 :                                 cmp := i.cmp(key.UserKey, i.upper)
    1348           1 :                                 if (!i.endKeyInclusive && cmp >= 0) || cmp > 0 {
    1349           1 :                                         i.exhaustedBounds = +1
    1350           1 :                                         return nil, base.LazyValue{}
    1351           1 :                                 }
    1352             :                         }
    1353           1 :                         continue
    1354             :                 }
    1355           1 :                 if key, val := i.data.First(); key != nil {
    1356           1 :                         if i.blockUpper != nil {
    1357           1 :                                 cmp := i.cmp(key.UserKey, i.blockUpper)
    1358           1 :                                 if (!i.endKeyInclusive && cmp >= 0) || cmp > 0 {
    1359           1 :                                         i.exhaustedBounds = +1
    1360           1 :                                         return nil, base.LazyValue{}
    1361           1 :                                 }
    1362             :                         }
    1363           1 :                         return i.maybeVerifyKey(key, val)
    1364             :                 }
    1365             :         }
    1366           1 :         return nil, base.LazyValue{}
    1367             : }
    1368             : 
    1369           1 : func (i *singleLevelIterator) skipBackward() (*InternalKey, base.LazyValue) {
    1370           1 :         for {
    1371           1 :                 var key *InternalKey
    1372           1 :                 if key, _ = i.index.Prev(); key == nil {
    1373           1 :                         i.data.invalidate()
    1374           1 :                         break
    1375             :                 }
    1376           1 :                 result := i.loadBlock(-1)
    1377           1 :                 if result != loadBlockOK {
    1378           1 :                         if i.err != nil {
    1379           0 :                                 break
    1380             :                         }
    1381           1 :                         if result == loadBlockFailed {
    1382           0 :                                 // We checked that i.index was at a valid entry, so
    1383           0 :                                 // loadBlockFailed could not have happened due to to i.index
    1384           0 :                                 // being exhausted, and must be due to an error.
    1385           0 :                                 panic("loadBlock should not have failed with no error")
    1386             :                         }
    1387             :                         // result == loadBlockIrrelevant. Enforce the lower bound here
    1388             :                         // since don't want to bother moving to the previous block if lower
    1389             :                         // bound is already exceeded. Note that the previous block starts with
    1390             :                         // keys <= key.UserKey since even though this is the current block's
    1391             :                         // separator, the same user key can span multiple blocks.
    1392           1 :                         if i.lower != nil && i.cmp(key.UserKey, i.lower) < 0 {
    1393           1 :                                 i.exhaustedBounds = -1
    1394           1 :                                 return nil, base.LazyValue{}
    1395           1 :                         }
    1396           1 :                         continue
    1397             :                 }
    1398           1 :                 key, val := i.data.Last()
    1399           1 :                 if key == nil {
    1400           1 :                         return nil, base.LazyValue{}
    1401           1 :                 }
    1402           1 :                 if i.blockLower != nil && i.cmp(key.UserKey, i.blockLower) < 0 {
    1403           1 :                         i.exhaustedBounds = -1
    1404           1 :                         return nil, base.LazyValue{}
    1405           1 :                 }
    1406           1 :                 return i.maybeVerifyKey(key, val)
    1407             :         }
    1408           1 :         return nil, base.LazyValue{}
    1409             : }
    1410             : 
    1411             : // Error implements internalIterator.Error, as documented in the pebble
    1412             : // package.
    1413           1 : func (i *singleLevelIterator) Error() error {
    1414           1 :         if err := i.data.Error(); err != nil {
    1415           0 :                 return err
    1416           0 :         }
    1417           1 :         return i.err
    1418             : }
    1419             : 
    1420             : // MaybeFilteredKeys may be called when an iterator is exhausted to indicate
    1421             : // whether or not the last positioning method may have skipped any keys due to
    1422             : // block-property filters.
    1423           1 : func (i *singleLevelIterator) MaybeFilteredKeys() bool {
    1424           1 :         return i.maybeFilteredKeysSingleLevel
    1425           1 : }
    1426             : 
    1427             : // SetCloseHook sets a function that will be called when the iterator is
    1428             : // closed.
    1429           1 : func (i *singleLevelIterator) SetCloseHook(fn func(i Iterator) error) {
    1430           1 :         i.closeHook = fn
    1431           1 : }
    1432             : 
    1433           1 : func firstError(err0, err1 error) error {
    1434           1 :         if err0 != nil {
    1435           0 :                 return err0
    1436           0 :         }
    1437           1 :         return err1
    1438             : }
    1439             : 
    1440             : // Close implements internalIterator.Close, as documented in the pebble
    1441             : // package.
    1442           1 : func (i *singleLevelIterator) Close() error {
    1443           1 :         i.iterStats.close()
    1444           1 :         var err error
    1445           1 :         if i.closeHook != nil {
    1446           1 :                 err = firstError(err, i.closeHook(i))
    1447           1 :         }
    1448           1 :         err = firstError(err, i.data.Close())
    1449           1 :         err = firstError(err, i.index.Close())
    1450           1 :         if i.dataRH != nil {
    1451           1 :                 err = firstError(err, i.dataRH.Close())
    1452           1 :                 i.dataRH = nil
    1453           1 :         }
    1454           1 :         err = firstError(err, i.err)
    1455           1 :         if i.bpfs != nil {
    1456           1 :                 releaseBlockPropertiesFilterer(i.bpfs)
    1457           1 :         }
    1458           1 :         if i.vbReader != nil {
    1459           1 :                 i.vbReader.close()
    1460           1 :         }
    1461           1 :         if i.vbRH != nil {
    1462           1 :                 err = firstError(err, i.vbRH.Close())
    1463           1 :                 i.vbRH = nil
    1464           1 :         }
    1465           1 :         *i = i.resetForReuse()
    1466           1 :         singleLevelIterPool.Put(i)
    1467           1 :         return err
    1468             : }
    1469             : 
    1470           1 : func (i *singleLevelIterator) String() string {
    1471           1 :         if i.vState != nil {
    1472           1 :                 return i.vState.fileNum.String()
    1473           1 :         }
    1474           1 :         return i.reader.fileNum.String()
    1475             : }

Generated by: LCOV version 1.14