LCOV - code coverage report
Current view: top level - pebble/internal/manifest - version.go (source / functions) Hit Total Coverage
Test: 2024-03-03 08:16Z dd51d85c - tests + meta.lcov Lines: 767 878 87.4 %
Date: 2024-03-03 08:17:33 Functions: 0 0 -

          Line data    Source code
       1             : // Copyright 2012 The LevelDB-Go and Pebble Authors. All rights reserved. Use
       2             : // of this source code is governed by a BSD-style license that can be found in
       3             : // the LICENSE file.
       4             : 
       5             : package manifest
       6             : 
       7             : import (
       8             :         "bytes"
       9             :         stdcmp "cmp"
      10             :         "fmt"
      11             :         "sort"
      12             :         "strconv"
      13             :         "strings"
      14             :         "sync"
      15             :         "sync/atomic"
      16             :         "unicode"
      17             : 
      18             :         "github.com/cockroachdb/errors"
      19             :         "github.com/cockroachdb/pebble/internal/base"
      20             :         "github.com/cockroachdb/pebble/internal/invariants"
      21             :         "github.com/cockroachdb/pebble/sstable"
      22             : )
      23             : 
      24             : // Compare exports the base.Compare type.
      25             : type Compare = base.Compare
      26             : 
      27             : // InternalKey exports the base.InternalKey type.
      28             : type InternalKey = base.InternalKey
      29             : 
      30             : // TableInfo contains the common information for table related events.
      31             : type TableInfo struct {
      32             :         // FileNum is the internal DB identifier for the table.
      33             :         FileNum base.FileNum
      34             :         // Size is the size of the file in bytes.
      35             :         Size uint64
      36             :         // Smallest is the smallest internal key in the table.
      37             :         Smallest InternalKey
      38             :         // Largest is the largest internal key in the table.
      39             :         Largest InternalKey
      40             :         // SmallestSeqNum is the smallest sequence number in the table.
      41             :         SmallestSeqNum uint64
      42             :         // LargestSeqNum is the largest sequence number in the table.
      43             :         LargestSeqNum uint64
      44             : }
      45             : 
      46             : // TableStats contains statistics on a table used for compaction heuristics,
      47             : // and export via Metrics.
      48             : type TableStats struct {
      49             :         // The total number of entries in the table.
      50             :         NumEntries uint64
      51             :         // The number of point and range deletion entries in the table.
      52             :         NumDeletions uint64
      53             :         // NumRangeKeySets is the total number of range key sets in the table.
      54             :         //
      55             :         // NB: If there's a chance that the sstable contains any range key sets,
      56             :         // then NumRangeKeySets must be > 0.
      57             :         NumRangeKeySets uint64
      58             :         // Estimate of the total disk space that may be dropped by this table's
      59             :         // point deletions by compacting them.
      60             :         PointDeletionsBytesEstimate uint64
      61             :         // Estimate of the total disk space that may be dropped by this table's
      62             :         // range deletions by compacting them. This estimate is at data-block
      63             :         // granularity and is not updated if compactions beneath the table reduce
      64             :         // the amount of reclaimable disk space. It also does not account for
      65             :         // overlapping data in L0 and ignores L0 sublevels, but the error that
      66             :         // introduces is expected to be small.
      67             :         //
      68             :         // Tables in the bottommost level of the LSM may have a nonzero estimate if
      69             :         // snapshots or move compactions prevented the elision of their range
      70             :         // tombstones. A table in the bottommost level that was ingested into L6
      71             :         // will have a zero estimate, because the file's sequence numbers indicate
      72             :         // that the tombstone cannot drop any data contained within the file itself.
      73             :         RangeDeletionsBytesEstimate uint64
      74             :         // Total size of value blocks and value index block.
      75             :         ValueBlocksSize uint64
      76             : }
      77             : 
      78             : // boundType represents the type of key (point or range) present as the smallest
      79             : // and largest keys.
      80             : type boundType uint8
      81             : 
      82             : const (
      83             :         boundTypePointKey boundType = iota + 1
      84             :         boundTypeRangeKey
      85             : )
      86             : 
      87             : // CompactionState is the compaction state of a file.
      88             : //
      89             : // The following shows the valid state transitions:
      90             : //
      91             : //      NotCompacting --> Compacting --> Compacted
      92             : //            ^               |
      93             : //            |               |
      94             : //            +-------<-------+
      95             : //
      96             : // Input files to a compaction transition to Compacting when a compaction is
      97             : // picked. A file that has finished compacting typically transitions into the
      98             : // Compacted state, at which point it is effectively obsolete ("zombied") and
      99             : // will eventually be removed from the LSM. A file that has been move-compacted
     100             : // will transition from Compacting back into the NotCompacting state, signaling
     101             : // that the file may be selected for a subsequent compaction. A failed
     102             : // compaction will result in all input tables transitioning from Compacting to
     103             : // NotCompacting.
     104             : //
     105             : // This state is in-memory only. It is not persisted to the manifest.
     106             : type CompactionState uint8
     107             : 
     108             : // CompactionStates.
     109             : const (
     110             :         CompactionStateNotCompacting CompactionState = iota
     111             :         CompactionStateCompacting
     112             :         CompactionStateCompacted
     113             : )
     114             : 
     115             : // String implements fmt.Stringer.
     116           0 : func (s CompactionState) String() string {
     117           0 :         switch s {
     118           0 :         case CompactionStateNotCompacting:
     119           0 :                 return "NotCompacting"
     120           0 :         case CompactionStateCompacting:
     121           0 :                 return "Compacting"
     122           0 :         case CompactionStateCompacted:
     123           0 :                 return "Compacted"
     124           0 :         default:
     125           0 :                 panic(fmt.Sprintf("pebble: unknown compaction state %d", s))
     126             :         }
     127             : }
     128             : 
     129             : // FileMetadata is maintained for leveled-ssts, i.e., they belong to a level of
     130             : // some version. FileMetadata does not contain the actual level of the sst,
     131             : // since such leveled-ssts can move across levels in different versions, while
     132             : // sharing the same FileMetadata. There are two kinds of leveled-ssts, physical
     133             : // and virtual. Underlying both leveled-ssts is a backing-sst, for which the
     134             : // only state is FileBacking. A backing-sst is level-less. It is possible for a
     135             : // backing-sst to be referred to by a physical sst in one version and by one or
     136             : // more virtual ssts in one or more versions. A backing-sst becomes obsolete
     137             : // and can be deleted once it is no longer required by any physical or virtual
     138             : // sst in any version.
     139             : //
     140             : // We maintain some invariants:
     141             : //
     142             : //  1. Each physical and virtual sst will have a unique FileMetadata.FileNum,
     143             : //     and there will be exactly one FileMetadata associated with the FileNum.
     144             : //
     145             : //  2. Within a version, a backing-sst is either only referred to by one
     146             : //     physical sst or one or more virtual ssts.
     147             : //
     148             : //  3. Once a backing-sst is referred to by a virtual sst in the latest version,
     149             : //     it cannot go back to being referred to by a physical sst in any future
     150             : //     version.
     151             : //
     152             : // Once a physical sst is no longer needed by any version, we will no longer
     153             : // maintain the file metadata associated with it. We will still maintain the
     154             : // FileBacking associated with the physical sst if the backing sst is required
     155             : // by any virtual ssts in any version.
     156             : type FileMetadata struct {
     157             :         // AllowedSeeks is used to determine if a file should be picked for
     158             :         // a read triggered compaction. It is decremented when read sampling
     159             :         // in pebble.Iterator after every after every positioning operation
     160             :         // that returns a user key (eg. Next, Prev, SeekGE, SeekLT, etc).
     161             :         AllowedSeeks atomic.Int64
     162             : 
     163             :         // statsValid indicates if stats have been loaded for the table. The
     164             :         // TableStats structure is populated only if valid is true.
     165             :         statsValid atomic.Bool
     166             : 
     167             :         // FileBacking is the state which backs either a physical or virtual
     168             :         // sstables.
     169             :         FileBacking *FileBacking
     170             : 
     171             :         // InitAllowedSeeks is the inital value of allowed seeks. This is used
     172             :         // to re-set allowed seeks on a file once it hits 0.
     173             :         InitAllowedSeeks int64
     174             :         // FileNum is the file number.
     175             :         //
     176             :         // INVARIANT: when !FileMetadata.Virtual, FileNum == FileBacking.DiskFileNum.
     177             :         FileNum base.FileNum
     178             :         // Size is the size of the file, in bytes. Size is an approximate value for
     179             :         // virtual sstables.
     180             :         //
     181             :         // INVARIANTS:
     182             :         // - When !FileMetadata.Virtual, Size == FileBacking.Size.
     183             :         // - Size should be non-zero. Size 0 virtual sstables must not be created.
     184             :         Size uint64
     185             :         // File creation time in seconds since the epoch (1970-01-01 00:00:00
     186             :         // UTC). For ingested sstables, this corresponds to the time the file was
     187             :         // ingested. For virtual sstables, this corresponds to the wall clock time
     188             :         // when the FileMetadata for the virtual sstable was first created.
     189             :         CreationTime int64
     190             :         // Lower and upper bounds for the smallest and largest sequence numbers in
     191             :         // the table, across both point and range keys. For physical sstables, these
     192             :         // values are tight bounds. For virtual sstables, there is no guarantee that
     193             :         // there will be keys with SmallestSeqNum or LargestSeqNum within virtual
     194             :         // sstable bounds.
     195             :         SmallestSeqNum uint64
     196             :         LargestSeqNum  uint64
     197             :         // SmallestPointKey and LargestPointKey are the inclusive bounds for the
     198             :         // internal point keys stored in the table. This includes RANGEDELs, which
     199             :         // alter point keys.
     200             :         // NB: these field should be set using ExtendPointKeyBounds. They are left
     201             :         // exported for reads as an optimization.
     202             :         SmallestPointKey InternalKey
     203             :         LargestPointKey  InternalKey
     204             :         // SmallestRangeKey and LargestRangeKey are the inclusive bounds for the
     205             :         // internal range keys stored in the table.
     206             :         // NB: these field should be set using ExtendRangeKeyBounds. They are left
     207             :         // exported for reads as an optimization.
     208             :         SmallestRangeKey InternalKey
     209             :         LargestRangeKey  InternalKey
     210             :         // Smallest and Largest are the inclusive bounds for the internal keys stored
     211             :         // in the table, across both point and range keys.
     212             :         // NB: these fields are derived from their point and range key equivalents,
     213             :         // and are updated via the MaybeExtend{Point,Range}KeyBounds methods.
     214             :         Smallest InternalKey
     215             :         Largest  InternalKey
     216             :         // Stats describe table statistics. Protected by DB.mu.
     217             :         //
     218             :         // For virtual sstables, set stats upon virtual sstable creation as
     219             :         // asynchronous computation of stats is not currently supported.
     220             :         //
     221             :         // TODO(bananabrick): To support manifest replay for virtual sstables, we
     222             :         // probably need to compute virtual sstable stats asynchronously. Otherwise,
     223             :         // we'd have to write virtual sstable stats to the version edit.
     224             :         Stats TableStats
     225             : 
     226             :         // For L0 files only. Protected by DB.mu. Used to generate L0 sublevels and
     227             :         // pick L0 compactions. Only accurate for the most recent Version.
     228             :         SubLevel         int
     229             :         L0Index          int
     230             :         minIntervalIndex int
     231             :         maxIntervalIndex int
     232             : 
     233             :         // NB: the alignment of this struct is 8 bytes. We pack all the bools to
     234             :         // ensure an optimal packing.
     235             : 
     236             :         // IsIntraL0Compacting is set to True if this file is part of an intra-L0
     237             :         // compaction. When it's true, IsCompacting must also return true. If
     238             :         // Compacting is true and IsIntraL0Compacting is false for an L0 file, the
     239             :         // file must be part of a compaction to Lbase.
     240             :         IsIntraL0Compacting bool
     241             :         CompactionState     CompactionState
     242             :         // True if compaction of this file has been explicitly requested.
     243             :         // Previously, RocksDB and earlier versions of Pebble allowed this
     244             :         // flag to be set by a user table property collector. Some earlier
     245             :         // versions of Pebble respected this flag, while other more recent
     246             :         // versions ignored this flag.
     247             :         //
     248             :         // More recently this flag has been repurposed to facilitate the
     249             :         // compaction of 'atomic compaction units'. Files marked for
     250             :         // compaction are compacted in a rewrite compaction at the lowest
     251             :         // possible compaction priority.
     252             :         //
     253             :         // NB: A count of files marked for compaction is maintained on
     254             :         // Version, and compaction picking reads cached annotations
     255             :         // determined by this field.
     256             :         //
     257             :         // Protected by DB.mu.
     258             :         MarkedForCompaction bool
     259             :         // HasPointKeys tracks whether the table contains point keys (including
     260             :         // RANGEDELs). If a table contains only range deletions, HasPointsKeys is
     261             :         // still true.
     262             :         HasPointKeys bool
     263             :         // HasRangeKeys tracks whether the table contains any range keys.
     264             :         HasRangeKeys bool
     265             :         // smallestSet and largestSet track whether the overall bounds have been set.
     266             :         boundsSet bool
     267             :         // boundTypeSmallest and boundTypeLargest provide an indication as to which
     268             :         // key type (point or range) corresponds to the smallest and largest overall
     269             :         // table bounds.
     270             :         boundTypeSmallest, boundTypeLargest boundType
     271             :         // Virtual is true if the FileMetadata belongs to a virtual sstable.
     272             :         Virtual bool
     273             : 
     274             :         // PrefixReplacement is used for virtual files where the backing file has a
     275             :         // different prefix on its keys than the span in which it is being exposed.
     276             :         PrefixReplacement *sstable.PrefixReplacement
     277             : 
     278             :         SyntheticSuffix sstable.SyntheticSuffix
     279             : }
     280             : 
     281             : // InternalKeyBounds returns the set of overall table bounds.
     282           2 : func (m *FileMetadata) InternalKeyBounds() (InternalKey, InternalKey) {
     283           2 :         return m.Smallest, m.Largest
     284           2 : }
     285             : 
     286             : // SyntheticSeqNum returns a SyntheticSeqNum which is set when SmallestSeqNum
     287             : // equals LargestSeqNum.
     288           2 : func (m *FileMetadata) SyntheticSeqNum() sstable.SyntheticSeqNum {
     289           2 :         if m.SmallestSeqNum == m.LargestSeqNum {
     290           2 :                 return sstable.SyntheticSeqNum(m.SmallestSeqNum)
     291           2 :         }
     292           2 :         return sstable.NoSyntheticSeqNum
     293             : }
     294             : 
     295             : // IterTransforms returns an sstable.IterTransforms that has SyntheticSeqNum set as needed.
     296           2 : func (m *FileMetadata) IterTransforms() sstable.IterTransforms {
     297           2 :         var syntheticPrefix []byte
     298           2 :         if m.PrefixReplacement != nil && !m.PrefixReplacement.UsePrefixReplacementIterator() {
     299           1 :                 syntheticPrefix = m.PrefixReplacement.SyntheticPrefix
     300           1 :         }
     301           2 :         return sstable.IterTransforms{
     302           2 :                 SyntheticSeqNum: m.SyntheticSeqNum(),
     303           2 :                 SyntheticSuffix: m.SyntheticSuffix,
     304           2 :                 SyntheticPrefix: syntheticPrefix,
     305           2 :         }
     306             : }
     307             : 
     308             : // PhysicalFileMeta is used by functions which want a guarantee that their input
     309             : // belongs to a physical sst and not a virtual sst.
     310             : //
     311             : // NB: This type should only be constructed by calling
     312             : // FileMetadata.PhysicalMeta.
     313             : type PhysicalFileMeta struct {
     314             :         *FileMetadata
     315             : }
     316             : 
     317             : // VirtualFileMeta is used by functions which want a guarantee that their input
     318             : // belongs to a virtual sst and not a physical sst.
     319             : //
     320             : // A VirtualFileMeta inherits all the same fields as a FileMetadata. These
     321             : // fields have additional invariants imposed on them, and/or slightly varying
     322             : // meanings:
     323             : //   - Smallest and Largest (and their counterparts
     324             : //     {Smallest, Largest}{Point,Range}Key) remain tight bounds that represent a
     325             : //     key at that exact bound. We make the effort to determine the next smallest
     326             : //     or largest key in an sstable after virtualizing it, to maintain this
     327             : //     tightness. If the largest is a sentinel key (IsExclusiveSentinel()), it
     328             : //     could mean that a rangedel or range key ends at that user key, or has been
     329             : //     truncated to that user key.
     330             : //   - One invariant is that if a rangedel or range key is truncated on its
     331             : //     upper bound, the virtual sstable *must* have a rangedel or range key
     332             : //     sentinel key as its upper bound. This is because truncation yields
     333             : //     an exclusive upper bound for the rangedel/rangekey, and if there are
     334             : //     any points at that exclusive upper bound within the same virtual
     335             : //     sstable, those could get uncovered by this truncation. We enforce this
     336             : //     invariant in calls to keyspan.Truncate.
     337             : //   - Size is an estimate of the size of the virtualized portion of this sstable.
     338             : //     The underlying file's size is stored in FileBacking.Size, though it could
     339             : //     also be estimated or could correspond to just the referenced portion of
     340             : //     a file (eg. if the file originated on another node).
     341             : //   - Size must be > 0.
     342             : //   - SmallestSeqNum and LargestSeqNum are loose bounds for virtual sstables.
     343             : //     This means that all keys in the virtual sstable must have seqnums within
     344             : //     [SmallestSeqNum, LargestSeqNum], however there's no guarantee that there's
     345             : //     a key with a seqnum at either of the bounds. Calculating tight seqnum
     346             : //     bounds would be too expensive and deliver little value.
     347             : //
     348             : // NB: This type should only be constructed by calling FileMetadata.VirtualMeta.
     349             : type VirtualFileMeta struct {
     350             :         *FileMetadata
     351             : }
     352             : 
     353             : // VirtualReaderParams fills in the parameters necessary to create a virtual
     354             : // sstable reader.
     355           2 : func (m VirtualFileMeta) VirtualReaderParams(isShared bool) sstable.VirtualReaderParams {
     356           2 :         return sstable.VirtualReaderParams{
     357           2 :                 Lower:             m.Smallest,
     358           2 :                 Upper:             m.Largest,
     359           2 :                 FileNum:           m.FileNum,
     360           2 :                 IsSharedIngested:  isShared && m.SyntheticSeqNum() != 0,
     361           2 :                 Size:              m.Size,
     362           2 :                 BackingSize:       m.FileBacking.Size,
     363           2 :                 PrefixReplacement: m.PrefixReplacement,
     364           2 :         }
     365           2 : }
     366             : 
     367             : // PhysicalMeta should be the only source of creating the PhysicalFileMeta
     368             : // wrapper type.
     369           2 : func (m *FileMetadata) PhysicalMeta() PhysicalFileMeta {
     370           2 :         if m.Virtual {
     371           0 :                 panic("pebble: file metadata does not belong to a physical sstable")
     372             :         }
     373           2 :         return PhysicalFileMeta{
     374           2 :                 m,
     375           2 :         }
     376             : }
     377             : 
     378             : // VirtualMeta should be the only source of creating the VirtualFileMeta wrapper
     379             : // type.
     380           2 : func (m *FileMetadata) VirtualMeta() VirtualFileMeta {
     381           2 :         if !m.Virtual {
     382           0 :                 panic("pebble: file metadata does not belong to a virtual sstable")
     383             :         }
     384           2 :         return VirtualFileMeta{
     385           2 :                 m,
     386           2 :         }
     387             : }
     388             : 
     389             : // FileBacking either backs a single physical sstable, or one or more virtual
     390             : // sstables.
     391             : //
     392             : // See the comment above the FileMetadata type for sstable terminology.
     393             : type FileBacking struct {
     394             :         // Reference count for the backing file on disk: incremented when a
     395             :         // physical or virtual sstable which is backed by the FileBacking is
     396             :         // added to a version and decremented when the version is unreferenced.
     397             :         // We ref count in order to determine when it is safe to delete a
     398             :         // backing sst file from disk. The backing file is obsolete when the
     399             :         // reference count falls to zero.
     400             :         refs atomic.Int32
     401             :         // latestVersionRefs are the references to the FileBacking in the
     402             :         // latest version. This reference can be through a single physical
     403             :         // sstable in the latest version, or one or more virtual sstables in the
     404             :         // latest version.
     405             :         //
     406             :         // INVARIANT: latestVersionRefs <= refs.
     407             :         latestVersionRefs atomic.Int32
     408             :         // VirtualizedSize is set iff the backing sst is only referred to by
     409             :         // virtual ssts in the latest version. VirtualizedSize is the sum of the
     410             :         // virtual sstable sizes of all of the virtual sstables in the latest
     411             :         // version which are backed by the physical sstable. When a virtual
     412             :         // sstable is removed from the latest version, we will decrement the
     413             :         // VirtualizedSize. During compaction picking, we'll compensate a
     414             :         // virtual sstable file size by
     415             :         // (FileBacking.Size - FileBacking.VirtualizedSize) / latestVersionRefs.
     416             :         // The intuition is that if FileBacking.Size - FileBacking.VirtualizedSize
     417             :         // is high, then the space amplification due to virtual sstables is
     418             :         // high, and we should pick the virtual sstable with a higher priority.
     419             :         //
     420             :         // TODO(bananabrick): Compensate the virtual sstable file size using
     421             :         // the VirtualizedSize during compaction picking and test.
     422             :         VirtualizedSize atomic.Uint64
     423             :         DiskFileNum     base.DiskFileNum
     424             :         Size            uint64
     425             : }
     426             : 
     427             : // InitPhysicalBacking allocates and sets the FileBacking which is required by a
     428             : // physical sstable FileMetadata.
     429             : //
     430             : // Ensure that the state required by FileBacking, such as the FileNum, is
     431             : // already set on the FileMetadata before InitPhysicalBacking is called.
     432             : // Calling InitPhysicalBacking only after the relevant state has been set in the
     433             : // FileMetadata is not necessary in tests which don't rely on FileBacking.
     434           2 : func (m *FileMetadata) InitPhysicalBacking() {
     435           2 :         if m.Virtual {
     436           0 :                 panic("pebble: virtual sstables should use a pre-existing FileBacking")
     437             :         }
     438           2 :         if m.FileBacking == nil {
     439           2 :                 m.FileBacking = &FileBacking{
     440           2 :                         DiskFileNum: base.PhysicalTableDiskFileNum(m.FileNum),
     441           2 :                         Size:        m.Size,
     442           2 :                 }
     443           2 :         }
     444             : }
     445             : 
     446             : // InitProviderBacking creates a new FileBacking for a file backed by
     447             : // an objstorage.Provider.
     448           2 : func (m *FileMetadata) InitProviderBacking(fileNum base.DiskFileNum, size uint64) {
     449           2 :         if !m.Virtual {
     450           0 :                 panic("pebble: provider-backed sstables must be virtual")
     451             :         }
     452           2 :         if m.FileBacking == nil {
     453           2 :                 m.FileBacking = &FileBacking{DiskFileNum: fileNum}
     454           2 :         }
     455           2 :         m.FileBacking.Size = size
     456             : }
     457             : 
     458             : // ValidateVirtual should be called once the FileMetadata for a virtual sstable
     459             : // is created to verify that the fields of the virtual sstable are sound.
     460           2 : func (m *FileMetadata) ValidateVirtual(createdFrom *FileMetadata) {
     461           2 :         if !m.Virtual {
     462           0 :                 panic("pebble: invalid virtual sstable")
     463             :         }
     464             : 
     465           2 :         if createdFrom.SmallestSeqNum != m.SmallestSeqNum {
     466           0 :                 panic("pebble: invalid smallest sequence number for virtual sstable")
     467             :         }
     468             : 
     469           2 :         if createdFrom.LargestSeqNum != m.LargestSeqNum {
     470           0 :                 panic("pebble: invalid largest sequence number for virtual sstable")
     471             :         }
     472             : 
     473           2 :         if createdFrom.FileBacking != nil && createdFrom.FileBacking != m.FileBacking {
     474           0 :                 panic("pebble: invalid physical sstable state for virtual sstable")
     475             :         }
     476             : 
     477           2 :         if m.Size == 0 {
     478           0 :                 panic("pebble: virtual sstable size must be set upon creation")
     479             :         }
     480             : }
     481             : 
     482             : // Refs returns the refcount of backing sstable.
     483           2 : func (m *FileMetadata) Refs() int32 {
     484           2 :         return m.FileBacking.refs.Load()
     485           2 : }
     486             : 
     487             : // Ref increments the ref count associated with the backing sstable.
     488           2 : func (m *FileMetadata) Ref() {
     489           2 :         m.FileBacking.refs.Add(1)
     490           2 : }
     491             : 
     492             : // Unref decrements the ref count associated with the backing sstable.
     493           2 : func (m *FileMetadata) Unref() int32 {
     494           2 :         v := m.FileBacking.refs.Add(-1)
     495           2 :         if invariants.Enabled && v < 0 {
     496           0 :                 panic("pebble: invalid FileMetadata refcounting")
     497             :         }
     498           2 :         return v
     499             : }
     500             : 
     501             : // LatestRef increments the latest ref count associated with the backing
     502             : // sstable.
     503           2 : func (m *FileMetadata) LatestRef() {
     504           2 :         m.FileBacking.latestVersionRefs.Add(1)
     505           2 : 
     506           2 :         if m.Virtual {
     507           2 :                 m.FileBacking.VirtualizedSize.Add(m.Size)
     508           2 :         }
     509             : }
     510             : 
     511             : // LatestUnref decrements the latest ref count associated with the backing
     512             : // sstable.
     513           2 : func (m *FileMetadata) LatestUnref() int32 {
     514           2 :         if m.Virtual {
     515           2 :                 m.FileBacking.VirtualizedSize.Add(-m.Size)
     516           2 :         }
     517             : 
     518           2 :         v := m.FileBacking.latestVersionRefs.Add(-1)
     519           2 :         if invariants.Enabled && v < 0 {
     520           0 :                 panic("pebble: invalid FileMetadata latest refcounting")
     521             :         }
     522           2 :         return v
     523             : }
     524             : 
     525             : // LatestRefs returns the latest ref count associated with the backing sstable.
     526           2 : func (m *FileMetadata) LatestRefs() int32 {
     527           2 :         return m.FileBacking.latestVersionRefs.Load()
     528           2 : }
     529             : 
     530             : // SetCompactionState transitions this file's compaction state to the given
     531             : // state. Protected by DB.mu.
     532           2 : func (m *FileMetadata) SetCompactionState(to CompactionState) {
     533           2 :         if invariants.Enabled {
     534           2 :                 transitionErr := func() error {
     535           0 :                         return errors.Newf("pebble: invalid compaction state transition: %s -> %s", m.CompactionState, to)
     536           0 :                 }
     537           2 :                 switch m.CompactionState {
     538           2 :                 case CompactionStateNotCompacting:
     539           2 :                         if to != CompactionStateCompacting {
     540           0 :                                 panic(transitionErr())
     541             :                         }
     542           2 :                 case CompactionStateCompacting:
     543           2 :                         if to != CompactionStateCompacted && to != CompactionStateNotCompacting {
     544           0 :                                 panic(transitionErr())
     545             :                         }
     546           0 :                 case CompactionStateCompacted:
     547           0 :                         panic(transitionErr())
     548           0 :                 default:
     549           0 :                         panic(fmt.Sprintf("pebble: unknown compaction state: %d", m.CompactionState))
     550             :                 }
     551             :         }
     552           2 :         m.CompactionState = to
     553             : }
     554             : 
     555             : // IsCompacting returns true if this file's compaction state is
     556             : // CompactionStateCompacting. Protected by DB.mu.
     557           2 : func (m *FileMetadata) IsCompacting() bool {
     558           2 :         return m.CompactionState == CompactionStateCompacting
     559           2 : }
     560             : 
     561             : // StatsValid returns true if the table stats have been populated. If StatValid
     562             : // returns true, the Stats field may be read (with or without holding the
     563             : // database mutex).
     564           2 : func (m *FileMetadata) StatsValid() bool {
     565           2 :         return m.statsValid.Load()
     566           2 : }
     567             : 
     568             : // StatsMarkValid marks the TableStats as valid. The caller must hold DB.mu
     569             : // while populating TableStats and calling StatsMarkValud. Once stats are
     570             : // populated, they must not be mutated.
     571           2 : func (m *FileMetadata) StatsMarkValid() {
     572           2 :         m.statsValid.Store(true)
     573           2 : }
     574             : 
     575             : // ExtendPointKeyBounds attempts to extend the lower and upper point key bounds
     576             : // and overall table bounds with the given smallest and largest keys. The
     577             : // smallest and largest bounds may not be extended if the table already has a
     578             : // bound that is smaller or larger, respectively. The receiver is returned.
     579             : // NB: calling this method should be preferred to manually setting the bounds by
     580             : // manipulating the fields directly, to maintain certain invariants.
     581             : func (m *FileMetadata) ExtendPointKeyBounds(
     582             :         cmp Compare, smallest, largest InternalKey,
     583           2 : ) *FileMetadata {
     584           2 :         // Update the point key bounds.
     585           2 :         if !m.HasPointKeys {
     586           2 :                 m.SmallestPointKey, m.LargestPointKey = smallest, largest
     587           2 :                 m.HasPointKeys = true
     588           2 :         } else {
     589           2 :                 if base.InternalCompare(cmp, smallest, m.SmallestPointKey) < 0 {
     590           2 :                         m.SmallestPointKey = smallest
     591           2 :                 }
     592           2 :                 if base.InternalCompare(cmp, largest, m.LargestPointKey) > 0 {
     593           2 :                         m.LargestPointKey = largest
     594           2 :                 }
     595             :         }
     596             :         // Update the overall bounds.
     597           2 :         m.extendOverallBounds(cmp, m.SmallestPointKey, m.LargestPointKey, boundTypePointKey)
     598           2 :         return m
     599             : }
     600             : 
     601             : // ExtendRangeKeyBounds attempts to extend the lower and upper range key bounds
     602             : // and overall table bounds with the given smallest and largest keys. The
     603             : // smallest and largest bounds may not be extended if the table already has a
     604             : // bound that is smaller or larger, respectively. The receiver is returned.
     605             : // NB: calling this method should be preferred to manually setting the bounds by
     606             : // manipulating the fields directly, to maintain certain invariants.
     607             : func (m *FileMetadata) ExtendRangeKeyBounds(
     608             :         cmp Compare, smallest, largest InternalKey,
     609           2 : ) *FileMetadata {
     610           2 :         // Update the range key bounds.
     611           2 :         if !m.HasRangeKeys {
     612           2 :                 m.SmallestRangeKey, m.LargestRangeKey = smallest, largest
     613           2 :                 m.HasRangeKeys = true
     614           2 :         } else {
     615           1 :                 if base.InternalCompare(cmp, smallest, m.SmallestRangeKey) < 0 {
     616           0 :                         m.SmallestRangeKey = smallest
     617           0 :                 }
     618           1 :                 if base.InternalCompare(cmp, largest, m.LargestRangeKey) > 0 {
     619           1 :                         m.LargestRangeKey = largest
     620           1 :                 }
     621             :         }
     622             :         // Update the overall bounds.
     623           2 :         m.extendOverallBounds(cmp, m.SmallestRangeKey, m.LargestRangeKey, boundTypeRangeKey)
     624           2 :         return m
     625             : }
     626             : 
     627             : // extendOverallBounds attempts to extend the overall table lower and upper
     628             : // bounds. The given bounds may not be used if a lower or upper bound already
     629             : // exists that is smaller or larger than the given keys, respectively. The given
     630             : // boundType will be used if the bounds are updated.
     631             : func (m *FileMetadata) extendOverallBounds(
     632             :         cmp Compare, smallest, largest InternalKey, bTyp boundType,
     633           2 : ) {
     634           2 :         if !m.boundsSet {
     635           2 :                 m.Smallest, m.Largest = smallest, largest
     636           2 :                 m.boundsSet = true
     637           2 :                 m.boundTypeSmallest, m.boundTypeLargest = bTyp, bTyp
     638           2 :         } else {
     639           2 :                 if base.InternalCompare(cmp, smallest, m.Smallest) < 0 {
     640           2 :                         m.Smallest = smallest
     641           2 :                         m.boundTypeSmallest = bTyp
     642           2 :                 }
     643           2 :                 if base.InternalCompare(cmp, largest, m.Largest) > 0 {
     644           2 :                         m.Largest = largest
     645           2 :                         m.boundTypeLargest = bTyp
     646           2 :                 }
     647             :         }
     648             : }
     649             : 
     650             : // Overlaps returns true if the file key range overlaps with the given range.
     651           2 : func (m *FileMetadata) Overlaps(cmp Compare, start []byte, end []byte, exclusiveEnd bool) bool {
     652           2 :         if c := cmp(m.Largest.UserKey, start); c < 0 || (c == 0 && m.Largest.IsExclusiveSentinel()) {
     653           2 :                 // f is completely before the specified range; no overlap.
     654           2 :                 return false
     655           2 :         }
     656           2 :         if c := cmp(m.Smallest.UserKey, end); c > 0 || (c == 0 && exclusiveEnd) {
     657           2 :                 // f is completely after the specified range; no overlap.
     658           2 :                 return false
     659           2 :         }
     660           2 :         return true
     661             : }
     662             : 
     663             : // ContainedWithinSpan returns true if the file key range completely overlaps with the
     664             : // given range ("end" is assumed to exclusive).
     665           1 : func (m *FileMetadata) ContainedWithinSpan(cmp Compare, start, end []byte) bool {
     666           1 :         lowerCmp, upperCmp := cmp(m.Smallest.UserKey, start), cmp(m.Largest.UserKey, end)
     667           1 :         return lowerCmp >= 0 && (upperCmp < 0 || (upperCmp == 0 && m.Largest.IsExclusiveSentinel()))
     668           1 : }
     669             : 
     670             : // ContainsKeyType returns whether or not the file contains keys of the provided
     671             : // type.
     672           2 : func (m *FileMetadata) ContainsKeyType(kt KeyType) bool {
     673           2 :         switch kt {
     674           2 :         case KeyTypePointAndRange:
     675           2 :                 return true
     676           2 :         case KeyTypePoint:
     677           2 :                 return m.HasPointKeys
     678           2 :         case KeyTypeRange:
     679           2 :                 return m.HasRangeKeys
     680           0 :         default:
     681           0 :                 panic("unrecognized key type")
     682             :         }
     683             : }
     684             : 
     685             : // SmallestBound returns the file's smallest bound of the key type. It returns a
     686             : // false second return value if the file does not contain any keys of the key
     687             : // type.
     688           2 : func (m *FileMetadata) SmallestBound(kt KeyType) (*InternalKey, bool) {
     689           2 :         switch kt {
     690           0 :         case KeyTypePointAndRange:
     691           0 :                 return &m.Smallest, true
     692           2 :         case KeyTypePoint:
     693           2 :                 return &m.SmallestPointKey, m.HasPointKeys
     694           2 :         case KeyTypeRange:
     695           2 :                 return &m.SmallestRangeKey, m.HasRangeKeys
     696           0 :         default:
     697           0 :                 panic("unrecognized key type")
     698             :         }
     699             : }
     700             : 
     701             : // LargestBound returns the file's largest bound of the key type. It returns a
     702             : // false second return value if the file does not contain any keys of the key
     703             : // type.
     704           2 : func (m *FileMetadata) LargestBound(kt KeyType) (*InternalKey, bool) {
     705           2 :         switch kt {
     706           0 :         case KeyTypePointAndRange:
     707           0 :                 return &m.Largest, true
     708           2 :         case KeyTypePoint:
     709           2 :                 return &m.LargestPointKey, m.HasPointKeys
     710           2 :         case KeyTypeRange:
     711           2 :                 return &m.LargestRangeKey, m.HasRangeKeys
     712           0 :         default:
     713           0 :                 panic("unrecognized key type")
     714             :         }
     715             : }
     716             : 
     717             : const (
     718             :         maskContainsPointKeys = 1 << 0
     719             :         maskSmallest          = 1 << 1
     720             :         maskLargest           = 1 << 2
     721             : )
     722             : 
     723             : // boundsMarker returns a marker byte whose bits encode the following
     724             : // information (in order from least significant bit):
     725             : // - if the table contains point keys
     726             : // - if the table's smallest key is a point key
     727             : // - if the table's largest key is a point key
     728           2 : func (m *FileMetadata) boundsMarker() (sentinel uint8, err error) {
     729           2 :         if m.HasPointKeys {
     730           2 :                 sentinel |= maskContainsPointKeys
     731           2 :         }
     732           2 :         switch m.boundTypeSmallest {
     733           2 :         case boundTypePointKey:
     734           2 :                 sentinel |= maskSmallest
     735           2 :         case boundTypeRangeKey:
     736             :                 // No op - leave bit unset.
     737           0 :         default:
     738           0 :                 return 0, base.CorruptionErrorf("file %s has neither point nor range key as smallest key", m.FileNum)
     739             :         }
     740           2 :         switch m.boundTypeLargest {
     741           2 :         case boundTypePointKey:
     742           2 :                 sentinel |= maskLargest
     743           2 :         case boundTypeRangeKey:
     744             :                 // No op - leave bit unset.
     745           0 :         default:
     746           0 :                 return 0, base.CorruptionErrorf("file %s has neither point nor range key as largest key", m.FileNum)
     747             :         }
     748           2 :         return
     749             : }
     750             : 
     751             : // String implements fmt.Stringer, printing the file number and the overall
     752             : // table bounds.
     753           2 : func (m *FileMetadata) String() string {
     754           2 :         return fmt.Sprintf("%s:[%s-%s]", m.FileNum, m.Smallest, m.Largest)
     755           2 : }
     756             : 
     757             : // DebugString returns a verbose representation of FileMetadata, typically for
     758             : // use in tests and debugging, returning the file number and the point, range
     759             : // and overall bounds for the table.
     760           2 : func (m *FileMetadata) DebugString(format base.FormatKey, verbose bool) string {
     761           2 :         var b bytes.Buffer
     762           2 :         if m.Virtual {
     763           2 :                 fmt.Fprintf(&b, "%s(%s):[%s-%s]",
     764           2 :                         m.FileNum, m.FileBacking.DiskFileNum, m.Smallest.Pretty(format), m.Largest.Pretty(format))
     765           2 :         } else {
     766           2 :                 fmt.Fprintf(&b, "%s:[%s-%s]",
     767           2 :                         m.FileNum, m.Smallest.Pretty(format), m.Largest.Pretty(format))
     768           2 :         }
     769           2 :         if !verbose {
     770           2 :                 return b.String()
     771           2 :         }
     772           1 :         fmt.Fprintf(&b, " seqnums:[%d-%d]", m.SmallestSeqNum, m.LargestSeqNum)
     773           1 :         if m.HasPointKeys {
     774           1 :                 fmt.Fprintf(&b, " points:[%s-%s]",
     775           1 :                         m.SmallestPointKey.Pretty(format), m.LargestPointKey.Pretty(format))
     776           1 :         }
     777           1 :         if m.HasRangeKeys {
     778           1 :                 fmt.Fprintf(&b, " ranges:[%s-%s]",
     779           1 :                         m.SmallestRangeKey.Pretty(format), m.LargestRangeKey.Pretty(format))
     780           1 :         }
     781           1 :         return b.String()
     782             : }
     783             : 
     784             : // ParseFileMetadataDebug parses a FileMetadata from its DebugString
     785             : // representation.
     786           1 : func ParseFileMetadataDebug(s string) (*FileMetadata, error) {
     787           1 :         // Split lines of the form:
     788           1 :         //  000000:[a#0,SET-z#0,SET] seqnums:[5-5] points:[...] ranges:[...]
     789           1 :         fields := strings.FieldsFunc(s, func(c rune) bool {
     790           1 :                 switch c {
     791           1 :                 case ':', '[', '-', ']':
     792           1 :                         return true
     793           1 :                 default:
     794           1 :                         return unicode.IsSpace(c) // NB: also trim whitespace padding.
     795             :                 }
     796             :         })
     797           1 :         if len(fields)%3 != 0 {
     798           0 :                 return nil, errors.Newf("malformed input: %s", s)
     799           0 :         }
     800           1 :         m := &FileMetadata{}
     801           1 :         for len(fields) > 0 {
     802           1 :                 prefix := fields[0]
     803           1 :                 if prefix == "seqnums" {
     804           1 :                         smallestSeqNum, err := strconv.ParseUint(fields[1], 10, 64)
     805           1 :                         if err != nil {
     806           0 :                                 return m, errors.Newf("malformed input: %s: %s", s, err)
     807           0 :                         }
     808           1 :                         largestSeqNum, err := strconv.ParseUint(fields[2], 10, 64)
     809           1 :                         if err != nil {
     810           0 :                                 return m, errors.Newf("malformed input: %s: %s", s, err)
     811           0 :                         }
     812           1 :                         m.SmallestSeqNum, m.LargestSeqNum = smallestSeqNum, largestSeqNum
     813           1 :                         fields = fields[3:]
     814           1 :                         continue
     815             :                 }
     816           1 :                 smallest := base.ParsePrettyInternalKey(fields[1])
     817           1 :                 largest := base.ParsePrettyInternalKey(fields[2])
     818           1 :                 switch prefix {
     819           1 :                 case "points":
     820           1 :                         m.SmallestPointKey, m.LargestPointKey = smallest, largest
     821           1 :                         m.HasPointKeys = true
     822           1 :                 case "ranges":
     823           1 :                         m.SmallestRangeKey, m.LargestRangeKey = smallest, largest
     824           1 :                         m.HasRangeKeys = true
     825           1 :                 default:
     826           1 :                         fileNum, err := strconv.ParseUint(prefix, 10, 64)
     827           1 :                         if err != nil {
     828           0 :                                 return m, errors.Newf("malformed input: %s: %s", s, err)
     829           0 :                         }
     830           1 :                         m.FileNum = base.FileNum(fileNum)
     831           1 :                         m.Smallest, m.Largest = smallest, largest
     832           1 :                         m.boundsSet = true
     833             :                 }
     834           1 :                 fields = fields[3:]
     835             :         }
     836             :         // By default, when the parser sees just the overall bounds, we set the point
     837             :         // keys. This preserves backwards compatability with existing test cases that
     838             :         // specify only the overall bounds.
     839           1 :         if !m.HasPointKeys && !m.HasRangeKeys {
     840           1 :                 m.SmallestPointKey, m.LargestPointKey = m.Smallest, m.Largest
     841           1 :                 m.HasPointKeys = true
     842           1 :         }
     843           1 :         m.InitPhysicalBacking()
     844           1 :         return m, nil
     845             : }
     846             : 
     847             : // Validate validates the metadata for consistency with itself, returning an
     848             : // error if inconsistent.
     849           2 : func (m *FileMetadata) Validate(cmp Compare, formatKey base.FormatKey) error {
     850           2 :         // Combined range and point key validation.
     851           2 : 
     852           2 :         if !m.HasPointKeys && !m.HasRangeKeys {
     853           0 :                 return base.CorruptionErrorf("file %s has neither point nor range keys",
     854           0 :                         errors.Safe(m.FileNum))
     855           0 :         }
     856           2 :         if base.InternalCompare(cmp, m.Smallest, m.Largest) > 0 {
     857           1 :                 return base.CorruptionErrorf("file %s has inconsistent bounds: %s vs %s",
     858           1 :                         errors.Safe(m.FileNum), m.Smallest.Pretty(formatKey),
     859           1 :                         m.Largest.Pretty(formatKey))
     860           1 :         }
     861           2 :         if m.SmallestSeqNum > m.LargestSeqNum {
     862           0 :                 return base.CorruptionErrorf("file %s has inconsistent seqnum bounds: %d vs %d",
     863           0 :                         errors.Safe(m.FileNum), m.SmallestSeqNum, m.LargestSeqNum)
     864           0 :         }
     865             : 
     866             :         // Point key validation.
     867             : 
     868           2 :         if m.HasPointKeys {
     869           2 :                 if base.InternalCompare(cmp, m.SmallestPointKey, m.LargestPointKey) > 0 {
     870           0 :                         return base.CorruptionErrorf("file %s has inconsistent point key bounds: %s vs %s",
     871           0 :                                 errors.Safe(m.FileNum), m.SmallestPointKey.Pretty(formatKey),
     872           0 :                                 m.LargestPointKey.Pretty(formatKey))
     873           0 :                 }
     874           2 :                 if base.InternalCompare(cmp, m.SmallestPointKey, m.Smallest) < 0 ||
     875           2 :                         base.InternalCompare(cmp, m.LargestPointKey, m.Largest) > 0 {
     876           0 :                         return base.CorruptionErrorf(
     877           0 :                                 "file %s has inconsistent point key bounds relative to overall bounds: "+
     878           0 :                                         "overall = [%s-%s], point keys = [%s-%s]",
     879           0 :                                 errors.Safe(m.FileNum),
     880           0 :                                 m.Smallest.Pretty(formatKey), m.Largest.Pretty(formatKey),
     881           0 :                                 m.SmallestPointKey.Pretty(formatKey), m.LargestPointKey.Pretty(formatKey),
     882           0 :                         )
     883           0 :                 }
     884             :         }
     885             : 
     886             :         // Range key validation.
     887             : 
     888           2 :         if m.HasRangeKeys {
     889           2 :                 if base.InternalCompare(cmp, m.SmallestRangeKey, m.LargestRangeKey) > 0 {
     890           0 :                         return base.CorruptionErrorf("file %s has inconsistent range key bounds: %s vs %s",
     891           0 :                                 errors.Safe(m.FileNum), m.SmallestRangeKey.Pretty(formatKey),
     892           0 :                                 m.LargestRangeKey.Pretty(formatKey))
     893           0 :                 }
     894           2 :                 if base.InternalCompare(cmp, m.SmallestRangeKey, m.Smallest) < 0 ||
     895           2 :                         base.InternalCompare(cmp, m.LargestRangeKey, m.Largest) > 0 {
     896           0 :                         return base.CorruptionErrorf(
     897           0 :                                 "file %s has inconsistent range key bounds relative to overall bounds: "+
     898           0 :                                         "overall = [%s-%s], range keys = [%s-%s]",
     899           0 :                                 errors.Safe(m.FileNum),
     900           0 :                                 m.Smallest.Pretty(formatKey), m.Largest.Pretty(formatKey),
     901           0 :                                 m.SmallestRangeKey.Pretty(formatKey), m.LargestRangeKey.Pretty(formatKey),
     902           0 :                         )
     903           0 :                 }
     904             :         }
     905             : 
     906             :         // Ensure that FileMetadata.Init was called.
     907           2 :         if m.FileBacking == nil {
     908           0 :                 return base.CorruptionErrorf("file metadata FileBacking not set")
     909           0 :         }
     910             : 
     911           2 :         if m.PrefixReplacement != nil {
     912           1 :                 if !m.Virtual {
     913           0 :                         return base.CorruptionErrorf("prefix replacement rule set with non-virtual file")
     914           0 :                 }
     915           1 :                 if !bytes.HasPrefix(m.Smallest.UserKey, m.PrefixReplacement.SyntheticPrefix) {
     916           0 :                         return base.CorruptionErrorf("virtual file with prefix replacement rules has smallest key with a different prefix: %s", m.Smallest.Pretty(formatKey))
     917           0 :                 }
     918           1 :                 if !bytes.HasPrefix(m.Largest.UserKey, m.PrefixReplacement.SyntheticPrefix) {
     919           0 :                         return base.CorruptionErrorf("virtual file with prefix replacement rules has largest key with a different prefix: %s", m.Largest.Pretty(formatKey))
     920           0 :                 }
     921             :         }
     922             : 
     923           2 :         if m.SyntheticSuffix != nil {
     924           2 :                 if !m.Virtual {
     925           0 :                         return base.CorruptionErrorf("suffix replacement rule set with non-virtual file")
     926           0 :                 }
     927             :         }
     928             : 
     929           2 :         return nil
     930             : }
     931             : 
     932             : // TableInfo returns a subset of the FileMetadata state formatted as a
     933             : // TableInfo.
     934           2 : func (m *FileMetadata) TableInfo() TableInfo {
     935           2 :         return TableInfo{
     936           2 :                 FileNum:        m.FileNum,
     937           2 :                 Size:           m.Size,
     938           2 :                 Smallest:       m.Smallest,
     939           2 :                 Largest:        m.Largest,
     940           2 :                 SmallestSeqNum: m.SmallestSeqNum,
     941           2 :                 LargestSeqNum:  m.LargestSeqNum,
     942           2 :         }
     943           2 : }
     944             : 
     945           2 : func (m *FileMetadata) cmpSeqNum(b *FileMetadata) int {
     946           2 :         // NB: This is the same ordering that RocksDB uses for L0 files.
     947           2 : 
     948           2 :         // Sort first by largest sequence number.
     949           2 :         if v := stdcmp.Compare(m.LargestSeqNum, b.LargestSeqNum); v != 0 {
     950           2 :                 return v
     951           2 :         }
     952             :         // Then by smallest sequence number.
     953           2 :         if v := stdcmp.Compare(m.SmallestSeqNum, b.SmallestSeqNum); v != 0 {
     954           2 :                 return v
     955           2 :         }
     956             :         // Break ties by file number.
     957           2 :         return stdcmp.Compare(m.FileNum, b.FileNum)
     958             : }
     959             : 
     960           2 : func (m *FileMetadata) lessSeqNum(b *FileMetadata) bool {
     961           2 :         return m.cmpSeqNum(b) < 0
     962           2 : }
     963             : 
     964           2 : func (m *FileMetadata) cmpSmallestKey(b *FileMetadata, cmp Compare) int {
     965           2 :         return base.InternalCompare(cmp, m.Smallest, b.Smallest)
     966           2 : }
     967             : 
     968             : // KeyRange returns the minimum smallest and maximum largest internalKey for
     969             : // all the FileMetadata in iters.
     970           2 : func KeyRange(ucmp Compare, iters ...LevelIterator) (smallest, largest InternalKey) {
     971           2 :         first := true
     972           2 :         for _, iter := range iters {
     973           2 :                 for meta := iter.First(); meta != nil; meta = iter.Next() {
     974           2 :                         if first {
     975           2 :                                 first = false
     976           2 :                                 smallest, largest = meta.Smallest, meta.Largest
     977           2 :                                 continue
     978             :                         }
     979           2 :                         if base.InternalCompare(ucmp, smallest, meta.Smallest) >= 0 {
     980           2 :                                 smallest = meta.Smallest
     981           2 :                         }
     982           2 :                         if base.InternalCompare(ucmp, largest, meta.Largest) <= 0 {
     983           2 :                                 largest = meta.Largest
     984           2 :                         }
     985             :                 }
     986             :         }
     987           2 :         return smallest, largest
     988             : }
     989             : 
     990             : type bySeqNum []*FileMetadata
     991             : 
     992           2 : func (b bySeqNum) Len() int { return len(b) }
     993           2 : func (b bySeqNum) Less(i, j int) bool {
     994           2 :         return b[i].lessSeqNum(b[j])
     995           2 : }
     996           2 : func (b bySeqNum) Swap(i, j int) { b[i], b[j] = b[j], b[i] }
     997             : 
     998             : // SortBySeqNum sorts the specified files by increasing sequence number.
     999           2 : func SortBySeqNum(files []*FileMetadata) {
    1000           2 :         sort.Sort(bySeqNum(files))
    1001           2 : }
    1002             : 
    1003             : type bySmallest struct {
    1004             :         files []*FileMetadata
    1005             :         cmp   Compare
    1006             : }
    1007             : 
    1008           1 : func (b bySmallest) Len() int { return len(b.files) }
    1009           1 : func (b bySmallest) Less(i, j int) bool {
    1010           1 :         return b.files[i].cmpSmallestKey(b.files[j], b.cmp) < 0
    1011           1 : }
    1012           0 : func (b bySmallest) Swap(i, j int) { b.files[i], b.files[j] = b.files[j], b.files[i] }
    1013             : 
    1014             : // SortBySmallest sorts the specified files by smallest key using the supplied
    1015             : // comparison function to order user keys.
    1016           1 : func SortBySmallest(files []*FileMetadata, cmp Compare) {
    1017           1 :         sort.Sort(bySmallest{files, cmp})
    1018           1 : }
    1019             : 
    1020           2 : func overlaps(iter LevelIterator, cmp Compare, start, end []byte, exclusiveEnd bool) LevelSlice {
    1021           2 :         startIter := iter.Clone()
    1022           2 :         {
    1023           2 :                 startIterFile := startIter.SeekGE(cmp, start)
    1024           2 :                 // SeekGE compares user keys. The user key `start` may be equal to the
    1025           2 :                 // f.Largest because f.Largest is a range deletion sentinel, indicating
    1026           2 :                 // that the user key `start` is NOT contained within the file f. If
    1027           2 :                 // that's the case, we can narrow the overlapping bounds to exclude the
    1028           2 :                 // file with the sentinel.
    1029           2 :                 if startIterFile != nil && startIterFile.Largest.IsExclusiveSentinel() &&
    1030           2 :                         cmp(startIterFile.Largest.UserKey, start) == 0 {
    1031           2 :                         startIterFile = startIter.Next()
    1032           2 :                 }
    1033           2 :                 _ = startIterFile // Ignore unused assignment.
    1034             :         }
    1035             : 
    1036           2 :         endIter := iter.Clone()
    1037           2 :         {
    1038           2 :                 endIterFile := endIter.SeekGE(cmp, end)
    1039           2 : 
    1040           2 :                 if !exclusiveEnd {
    1041           2 :                         // endIter is now pointing at the *first* file with a largest key >= end.
    1042           2 :                         // If there are multiple files including the user key `end`, we want all
    1043           2 :                         // of them, so move forward.
    1044           2 :                         for endIterFile != nil && cmp(endIterFile.Largest.UserKey, end) == 0 {
    1045           2 :                                 endIterFile = endIter.Next()
    1046           2 :                         }
    1047             :                 }
    1048             : 
    1049             :                 // LevelSlice uses inclusive bounds, so if we seeked to the end sentinel
    1050             :                 // or nexted too far because Largest.UserKey equaled `end`, go back.
    1051             :                 //
    1052             :                 // Consider !exclusiveEnd and end = 'f', with the following file bounds:
    1053             :                 //
    1054             :                 //     [b,d] [e, f] [f, f] [g, h]
    1055             :                 //
    1056             :                 // the above for loop will Next until it arrives at [g, h]. We need to
    1057             :                 // observe that g > f, and Prev to the file with bounds [f, f].
    1058           2 :                 if endIterFile == nil {
    1059           2 :                         endIterFile = endIter.Prev()
    1060           2 :                 } else if c := cmp(endIterFile.Smallest.UserKey, end); c > 0 || c == 0 && exclusiveEnd {
    1061           2 :                         endIterFile = endIter.Prev()
    1062           2 :                 }
    1063           2 :                 _ = endIterFile // Ignore unused assignment.
    1064             :         }
    1065           2 :         return newBoundedLevelSlice(startIter.Clone().iter, &startIter.iter, &endIter.iter)
    1066             : }
    1067             : 
    1068             : // NumLevels is the number of levels a Version contains.
    1069             : const NumLevels = 7
    1070             : 
    1071             : // NewVersion constructs a new Version with the provided files. It requires
    1072             : // the provided files are already well-ordered. It's intended for testing.
    1073             : func NewVersion(
    1074             :         comparer *base.Comparer, flushSplitBytes int64, files [NumLevels][]*FileMetadata,
    1075           1 : ) *Version {
    1076           1 :         v := &Version{
    1077           1 :                 cmp: comparer,
    1078           1 :         }
    1079           1 :         for l := range files {
    1080           1 :                 // NB: We specifically insert `files` into the B-Tree in the order
    1081           1 :                 // they appear within `files`. Some tests depend on this behavior in
    1082           1 :                 // order to test consistency checking, etc. Once we've constructed the
    1083           1 :                 // initial B-Tree, we swap out the btreeCmp for the correct one.
    1084           1 :                 // TODO(jackson): Adjust or remove the tests and remove this.
    1085           1 :                 v.Levels[l].tree, _ = makeBTree(btreeCmpSpecificOrder(files[l]), files[l])
    1086           1 :                 v.Levels[l].level = l
    1087           1 :                 if l == 0 {
    1088           1 :                         v.Levels[l].tree.cmp = btreeCmpSeqNum
    1089           1 :                 } else {
    1090           1 :                         v.Levels[l].tree.cmp = btreeCmpSmallestKey(comparer.Compare)
    1091           1 :                 }
    1092           1 :                 for _, f := range files[l] {
    1093           1 :                         v.Levels[l].totalSize += f.Size
    1094           1 :                 }
    1095             :         }
    1096           1 :         if err := v.InitL0Sublevels(flushSplitBytes); err != nil {
    1097           0 :                 panic(err)
    1098             :         }
    1099           1 :         return v
    1100             : }
    1101             : 
    1102             : // TestingNewVersion returns a blank Version, used for tests.
    1103           1 : func TestingNewVersion(comparer *base.Comparer) *Version {
    1104           1 :         return &Version{
    1105           1 :                 cmp: comparer,
    1106           1 :         }
    1107           1 : }
    1108             : 
    1109             : // Version is a collection of file metadata for on-disk tables at various
    1110             : // levels. In-memory DBs are written to level-0 tables, and compactions
    1111             : // migrate data from level N to level N+1. The tables map internal keys (which
    1112             : // are a user key, a delete or set bit, and a sequence number) to user values.
    1113             : //
    1114             : // The tables at level 0 are sorted by largest sequence number. Due to file
    1115             : // ingestion, there may be overlap in the ranges of sequence numbers contain in
    1116             : // level 0 sstables. In particular, it is valid for one level 0 sstable to have
    1117             : // the seqnum range [1,100] while an adjacent sstable has the seqnum range
    1118             : // [50,50]. This occurs when the [50,50] table was ingested and given a global
    1119             : // seqnum. The ingestion code will have ensured that the [50,50] sstable will
    1120             : // not have any keys that overlap with the [1,100] in the seqnum range
    1121             : // [1,49]. The range of internal keys [fileMetadata.smallest,
    1122             : // fileMetadata.largest] in each level 0 table may overlap.
    1123             : //
    1124             : // The tables at any non-0 level are sorted by their internal key range and any
    1125             : // two tables at the same non-0 level do not overlap.
    1126             : //
    1127             : // The internal key ranges of two tables at different levels X and Y may
    1128             : // overlap, for any X != Y.
    1129             : //
    1130             : // Finally, for every internal key in a table at level X, there is no internal
    1131             : // key in a higher level table that has both the same user key and a higher
    1132             : // sequence number.
    1133             : type Version struct {
    1134             :         refs atomic.Int32
    1135             : 
    1136             :         // The level 0 sstables are organized in a series of sublevels. Similar to
    1137             :         // the seqnum invariant in normal levels, there is no internal key in a
    1138             :         // higher level table that has both the same user key and a higher sequence
    1139             :         // number. Within a sublevel, tables are sorted by their internal key range
    1140             :         // and any two tables at the same sublevel do not overlap. Unlike the normal
    1141             :         // levels, sublevel n contains older tables (lower sequence numbers) than
    1142             :         // sublevel n+1.
    1143             :         //
    1144             :         // The L0Sublevels struct is mostly used for compaction picking. As most
    1145             :         // internal data structures in it are only necessary for compaction picking
    1146             :         // and not for iterator creation, the reference to L0Sublevels is nil'd
    1147             :         // after this version becomes the non-newest version, to reduce memory
    1148             :         // usage.
    1149             :         //
    1150             :         // L0Sublevels.Levels contains L0 files ordered by sublevels. All the files
    1151             :         // in Levels[0] are in L0Sublevels.Levels. L0SublevelFiles is also set to
    1152             :         // a reference to that slice, as that slice is necessary for iterator
    1153             :         // creation and needs to outlast L0Sublevels.
    1154             :         L0Sublevels     *L0Sublevels
    1155             :         L0SublevelFiles []LevelSlice
    1156             : 
    1157             :         Levels [NumLevels]LevelMetadata
    1158             : 
    1159             :         // RangeKeyLevels holds a subset of the same files as Levels that contain range
    1160             :         // keys (i.e. fileMeta.HasRangeKeys == true). The memory amplification of this
    1161             :         // duplication should be minimal, as range keys are expected to be rare.
    1162             :         RangeKeyLevels [NumLevels]LevelMetadata
    1163             : 
    1164             :         // The callback to invoke when the last reference to a version is
    1165             :         // removed. Will be called with list.mu held.
    1166             :         Deleted func(obsolete []*FileBacking)
    1167             : 
    1168             :         // Stats holds aggregated stats about the version maintained from
    1169             :         // version to version.
    1170             :         Stats struct {
    1171             :                 // MarkedForCompaction records the count of files marked for
    1172             :                 // compaction within the version.
    1173             :                 MarkedForCompaction int
    1174             :         }
    1175             : 
    1176             :         cmp *base.Comparer
    1177             : 
    1178             :         // The list the version is linked into.
    1179             :         list *VersionList
    1180             : 
    1181             :         // The next/prev link for the versionList doubly-linked list of versions.
    1182             :         prev, next *Version
    1183             : }
    1184             : 
    1185             : // String implements fmt.Stringer, printing the FileMetadata for each level in
    1186             : // the Version.
    1187           1 : func (v *Version) String() string {
    1188           1 :         return v.string(false)
    1189           1 : }
    1190             : 
    1191             : // DebugString returns an alternative format to String() which includes sequence
    1192             : // number and kind information for the sstable boundaries.
    1193           1 : func (v *Version) DebugString() string {
    1194           1 :         return v.string(true)
    1195           1 : }
    1196             : 
    1197           2 : func describeSublevels(format base.FormatKey, verbose bool, sublevels []LevelSlice) string {
    1198           2 :         var buf bytes.Buffer
    1199           2 :         for sublevel := len(sublevels) - 1; sublevel >= 0; sublevel-- {
    1200           2 :                 fmt.Fprintf(&buf, "0.%d:\n", sublevel)
    1201           2 :                 sublevels[sublevel].Each(func(f *FileMetadata) {
    1202           2 :                         fmt.Fprintf(&buf, "  %s\n", f.DebugString(format, verbose))
    1203           2 :                 })
    1204             :         }
    1205           2 :         return buf.String()
    1206             : }
    1207             : 
    1208           1 : func (v *Version) string(verbose bool) string {
    1209           1 :         var buf bytes.Buffer
    1210           1 :         if len(v.L0SublevelFiles) > 0 {
    1211           1 :                 fmt.Fprintf(&buf, "%s", describeSublevels(v.cmp.FormatKey, verbose, v.L0SublevelFiles))
    1212           1 :         }
    1213           1 :         for level := 1; level < NumLevels; level++ {
    1214           1 :                 if v.Levels[level].Empty() {
    1215           1 :                         continue
    1216             :                 }
    1217           1 :                 fmt.Fprintf(&buf, "%d:\n", level)
    1218           1 :                 iter := v.Levels[level].Iter()
    1219           1 :                 for f := iter.First(); f != nil; f = iter.Next() {
    1220           1 :                         fmt.Fprintf(&buf, "  %s\n", f.DebugString(v.cmp.FormatKey, verbose))
    1221           1 :                 }
    1222             :         }
    1223           1 :         return buf.String()
    1224             : }
    1225             : 
    1226             : // ParseVersionDebug parses a Version from its DebugString output.
    1227           1 : func ParseVersionDebug(comparer *base.Comparer, flushSplitBytes int64, s string) (*Version, error) {
    1228           1 :         var level int
    1229           1 :         var files [NumLevels][]*FileMetadata
    1230           1 :         for _, l := range strings.Split(s, "\n") {
    1231           1 :                 l = strings.TrimSpace(l)
    1232           1 : 
    1233           1 :                 switch l[:2] {
    1234           1 :                 case "0.", "0:", "1:", "2:", "3:", "4:", "5:", "6:":
    1235           1 :                         var err error
    1236           1 :                         level, err = strconv.Atoi(l[:1])
    1237           1 :                         if err != nil {
    1238           0 :                                 return nil, err
    1239           0 :                         }
    1240           1 :                 default:
    1241           1 :                         m, err := ParseFileMetadataDebug(l)
    1242           1 :                         if err != nil {
    1243           0 :                                 return nil, err
    1244           0 :                         }
    1245             :                         // If we only parsed overall bounds, default to setting the point bounds.
    1246           1 :                         if !m.HasPointKeys && !m.HasRangeKeys {
    1247           0 :                                 m.SmallestPointKey, m.LargestPointKey = m.Smallest, m.Largest
    1248           0 :                                 m.HasPointKeys = true
    1249           0 :                         }
    1250           1 :                         files[level] = append(files[level], m)
    1251             :                 }
    1252             :         }
    1253             :         // Reverse the order of L0 files. This ensures we construct the same
    1254             :         // sublevels. (They're printed from higher sublevel to lower, which means in
    1255             :         // a partial order that represents newest to oldest).
    1256           1 :         for i := 0; i < len(files[0])/2; i++ {
    1257           1 :                 files[0][i], files[0][len(files[0])-i-1] = files[0][len(files[0])-i-1], files[0][i]
    1258           1 :         }
    1259           1 :         return NewVersion(comparer, flushSplitBytes, files), nil
    1260             : }
    1261             : 
    1262             : // Refs returns the number of references to the version.
    1263           2 : func (v *Version) Refs() int32 {
    1264           2 :         return v.refs.Load()
    1265           2 : }
    1266             : 
    1267             : // Ref increments the version refcount.
    1268           2 : func (v *Version) Ref() {
    1269           2 :         v.refs.Add(1)
    1270           2 : }
    1271             : 
    1272             : // Unref decrements the version refcount. If the last reference to the version
    1273             : // was removed, the version is removed from the list of versions and the
    1274             : // Deleted callback is invoked. Requires that the VersionList mutex is NOT
    1275             : // locked.
    1276           2 : func (v *Version) Unref() {
    1277           2 :         if v.refs.Add(-1) == 0 {
    1278           2 :                 l := v.list
    1279           2 :                 l.mu.Lock()
    1280           2 :                 l.Remove(v)
    1281           2 :                 v.Deleted(v.unrefFiles())
    1282           2 :                 l.mu.Unlock()
    1283           2 :         }
    1284             : }
    1285             : 
    1286             : // UnrefLocked decrements the version refcount. If the last reference to the
    1287             : // version was removed, the version is removed from the list of versions and
    1288             : // the Deleted callback is invoked. Requires that the VersionList mutex is
    1289             : // already locked.
    1290           2 : func (v *Version) UnrefLocked() {
    1291           2 :         if v.refs.Add(-1) == 0 {
    1292           2 :                 v.list.Remove(v)
    1293           2 :                 v.Deleted(v.unrefFiles())
    1294           2 :         }
    1295             : }
    1296             : 
    1297           2 : func (v *Version) unrefFiles() []*FileBacking {
    1298           2 :         var obsolete []*FileBacking
    1299           2 :         for _, lm := range v.Levels {
    1300           2 :                 obsolete = append(obsolete, lm.release()...)
    1301           2 :         }
    1302           2 :         for _, lm := range v.RangeKeyLevels {
    1303           2 :                 obsolete = append(obsolete, lm.release()...)
    1304           2 :         }
    1305           2 :         return obsolete
    1306             : }
    1307             : 
    1308             : // Next returns the next version in the list of versions.
    1309           0 : func (v *Version) Next() *Version {
    1310           0 :         return v.next
    1311           0 : }
    1312             : 
    1313             : // InitL0Sublevels initializes the L0Sublevels
    1314           2 : func (v *Version) InitL0Sublevels(flushSplitBytes int64) error {
    1315           2 :         var err error
    1316           2 :         v.L0Sublevels, err = NewL0Sublevels(&v.Levels[0], v.cmp.Compare, v.cmp.FormatKey, flushSplitBytes)
    1317           2 :         if err == nil && v.L0Sublevels != nil {
    1318           2 :                 v.L0SublevelFiles = v.L0Sublevels.Levels
    1319           2 :         }
    1320           2 :         return err
    1321             : }
    1322             : 
    1323             : // CalculateInuseKeyRanges examines file metadata in levels [level, maxLevel]
    1324             : // within bounds [smallest,largest], returning an ordered slice of key ranges
    1325             : // that include all keys that exist within levels [level, maxLevel] and within
    1326             : // [smallest,largest].
    1327             : func (v *Version) CalculateInuseKeyRanges(
    1328             :         level, maxLevel int, smallest, largest []byte,
    1329           2 : ) []UserKeyRange {
    1330           2 :         // Use two slices, alternating which one is input and which one is output
    1331           2 :         // as we descend the LSM.
    1332           2 :         var input, output []UserKeyRange
    1333           2 : 
    1334           2 :         // L0 requires special treatment, since sstables within L0 may overlap.
    1335           2 :         // We use the L0 Sublevels structure to efficiently calculate the merged
    1336           2 :         // in-use key ranges.
    1337           2 :         if level == 0 {
    1338           2 :                 output = v.L0Sublevels.InUseKeyRanges(smallest, largest)
    1339           2 :                 level++
    1340           2 :         }
    1341             : 
    1342           2 :         for ; level <= maxLevel; level++ {
    1343           2 :                 // NB: We always treat `largest` as inclusive for simplicity, because
    1344           2 :                 // there's little consequence to calculating slightly broader in-use key
    1345           2 :                 // ranges.
    1346           2 :                 overlaps := v.Overlaps(level, smallest, largest, false /* exclusiveEnd */)
    1347           2 :                 iter := overlaps.Iter()
    1348           2 : 
    1349           2 :                 // We may already have in-use key ranges from higher levels. Iterate
    1350           2 :                 // through both our accumulated in-use key ranges and this level's
    1351           2 :                 // files, merging the two.
    1352           2 :                 //
    1353           2 :                 // Tables higher within the LSM have broader key spaces. We use this
    1354           2 :                 // when possible to seek past a level's files that are contained by
    1355           2 :                 // our current accumulated in-use key ranges. This helps avoid
    1356           2 :                 // per-sstable work during flushes or compactions in high levels which
    1357           2 :                 // overlap the majority of the LSM's sstables.
    1358           2 :                 input, output = output, input
    1359           2 :                 output = output[:0]
    1360           2 : 
    1361           2 :                 var currFile *FileMetadata
    1362           2 :                 var currAccum *UserKeyRange
    1363           2 :                 if len(input) > 0 {
    1364           2 :                         currAccum, input = &input[0], input[1:]
    1365           2 :                 }
    1366           2 :                 cmp := v.cmp.Compare
    1367           2 : 
    1368           2 :                 // If we have an accumulated key range and its start is ≤ smallest,
    1369           2 :                 // we can seek to the accumulated range's end. Otherwise, we need to
    1370           2 :                 // start at the first overlapping file within the level.
    1371           2 :                 if currAccum != nil && v.cmp.Compare(currAccum.Start, smallest) <= 0 {
    1372           2 :                         currFile = seekGT(&iter, cmp, currAccum.End)
    1373           2 :                 } else {
    1374           2 :                         currFile = iter.First()
    1375           2 :                 }
    1376             : 
    1377           2 :                 for currFile != nil || currAccum != nil {
    1378           2 :                         // If we've exhausted either the files in the level or the
    1379           2 :                         // accumulated key ranges, we just need to append the one we have.
    1380           2 :                         // If we have both a currFile and a currAccum, they either overlap
    1381           2 :                         // or they're disjoint. If they're disjoint, we append whichever
    1382           2 :                         // one sorts first and move on to the next file or range. If they
    1383           2 :                         // overlap, we merge them into currAccum and proceed to the next
    1384           2 :                         // file.
    1385           2 :                         switch {
    1386           2 :                         case currAccum == nil || (currFile != nil && cmp(currFile.Largest.UserKey, currAccum.Start) < 0):
    1387           2 :                                 // This file is strictly before the current accumulated range,
    1388           2 :                                 // or there are no more accumulated ranges.
    1389           2 :                                 output = append(output, UserKeyRange{
    1390           2 :                                         Start: currFile.Smallest.UserKey,
    1391           2 :                                         End:   currFile.Largest.UserKey,
    1392           2 :                                 })
    1393           2 :                                 currFile = iter.Next()
    1394           2 :                         case currFile == nil || (currAccum != nil && cmp(currAccum.End, currFile.Smallest.UserKey) < 0):
    1395           2 :                                 // The current accumulated key range is strictly before the
    1396           2 :                                 // current file, or there are no more files.
    1397           2 :                                 output = append(output, *currAccum)
    1398           2 :                                 currAccum = nil
    1399           2 :                                 if len(input) > 0 {
    1400           2 :                                         currAccum, input = &input[0], input[1:]
    1401           2 :                                 }
    1402           2 :                         default:
    1403           2 :                                 // The current accumulated range and the current file overlap.
    1404           2 :                                 // Adjust the accumulated range to be the union.
    1405           2 :                                 if cmp(currFile.Smallest.UserKey, currAccum.Start) < 0 {
    1406           2 :                                         currAccum.Start = currFile.Smallest.UserKey
    1407           2 :                                 }
    1408           2 :                                 if cmp(currFile.Largest.UserKey, currAccum.End) > 0 {
    1409           2 :                                         currAccum.End = currFile.Largest.UserKey
    1410           2 :                                 }
    1411             : 
    1412             :                                 // Extending `currAccum`'s end boundary may have caused it to
    1413             :                                 // overlap with `input` key ranges that we haven't processed
    1414             :                                 // yet. Merge any such key ranges.
    1415           2 :                                 for len(input) > 0 && cmp(input[0].Start, currAccum.End) <= 0 {
    1416           2 :                                         if cmp(input[0].End, currAccum.End) > 0 {
    1417           2 :                                                 currAccum.End = input[0].End
    1418           2 :                                         }
    1419           2 :                                         input = input[1:]
    1420             :                                 }
    1421             :                                 // Seek the level iterator past our current accumulated end.
    1422           2 :                                 currFile = seekGT(&iter, cmp, currAccum.End)
    1423             :                         }
    1424             :                 }
    1425             :         }
    1426           2 :         return output
    1427             : }
    1428             : 
    1429           2 : func seekGT(iter *LevelIterator, cmp base.Compare, key []byte) *FileMetadata {
    1430           2 :         f := iter.SeekGE(cmp, key)
    1431           2 :         for f != nil && cmp(f.Largest.UserKey, key) == 0 {
    1432           2 :                 f = iter.Next()
    1433           2 :         }
    1434           2 :         return f
    1435             : }
    1436             : 
    1437             : // Contains returns a boolean indicating whether the provided file exists in
    1438             : // the version at the given level. If level is non-zero then Contains binary
    1439             : // searches among the files. If level is zero, Contains scans the entire
    1440             : // level.
    1441           2 : func (v *Version) Contains(level int, m *FileMetadata) bool {
    1442           2 :         iter := v.Levels[level].Iter()
    1443           2 :         if level > 0 {
    1444           2 :                 overlaps := v.Overlaps(level, m.Smallest.UserKey, m.Largest.UserKey, m.Largest.IsExclusiveSentinel())
    1445           2 :                 iter = overlaps.Iter()
    1446           2 :         }
    1447           2 :         for f := iter.First(); f != nil; f = iter.Next() {
    1448           2 :                 if f == m {
    1449           2 :                         return true
    1450           2 :                 }
    1451             :         }
    1452           2 :         return false
    1453             : }
    1454             : 
    1455             : // Overlaps returns all elements of v.files[level] whose user key range
    1456             : // intersects the given range. If level is non-zero then the user key ranges of
    1457             : // v.files[level] are assumed to not overlap (although they may touch). If level
    1458             : // is zero then that assumption cannot be made, and the [start, end] range is
    1459             : // expanded to the union of those matching ranges so far and the computation is
    1460             : // repeated until [start, end] stabilizes.
    1461             : // The returned files are a subsequence of the input files, i.e., the ordering
    1462             : // is not changed.
    1463           2 : func (v *Version) Overlaps(level int, start, end []byte, exclusiveEnd bool) LevelSlice {
    1464           2 :         if level == 0 {
    1465           2 :                 // Indices that have been selected as overlapping.
    1466           2 :                 l0 := v.Levels[level]
    1467           2 :                 l0Iter := l0.Iter()
    1468           2 :                 selectedIndices := make([]bool, l0.Len())
    1469           2 :                 numSelected := 0
    1470           2 :                 var slice LevelSlice
    1471           2 :                 for {
    1472           2 :                         restart := false
    1473           2 :                         for i, meta := 0, l0Iter.First(); meta != nil; i, meta = i+1, l0Iter.Next() {
    1474           2 :                                 selected := selectedIndices[i]
    1475           2 :                                 if selected {
    1476           2 :                                         continue
    1477             :                                 }
    1478           2 :                                 if !meta.Overlaps(v.cmp.Compare, start, end, exclusiveEnd) {
    1479           2 :                                         // meta is completely outside the specified range; skip it.
    1480           2 :                                         continue
    1481             :                                 }
    1482             :                                 // Overlaps.
    1483           2 :                                 selectedIndices[i] = true
    1484           2 :                                 numSelected++
    1485           2 : 
    1486           2 :                                 smallest := meta.Smallest.UserKey
    1487           2 :                                 largest := meta.Largest.UserKey
    1488           2 :                                 // Since level == 0, check if the newly added fileMetadata has
    1489           2 :                                 // expanded the range. We expand the range immediately for files
    1490           2 :                                 // we have remaining to check in this loop. All already checked
    1491           2 :                                 // and unselected files will need to be rechecked via the
    1492           2 :                                 // restart below.
    1493           2 :                                 if v.cmp.Compare(smallest, start) < 0 {
    1494           2 :                                         start = smallest
    1495           2 :                                         restart = true
    1496           2 :                                 }
    1497           2 :                                 if v := v.cmp.Compare(largest, end); v > 0 {
    1498           2 :                                         end = largest
    1499           2 :                                         exclusiveEnd = meta.Largest.IsExclusiveSentinel()
    1500           2 :                                         restart = true
    1501           2 :                                 } else if v == 0 && exclusiveEnd && !meta.Largest.IsExclusiveSentinel() {
    1502           2 :                                         // Only update the exclusivity of our existing `end`
    1503           2 :                                         // bound.
    1504           2 :                                         exclusiveEnd = false
    1505           2 :                                         restart = true
    1506           2 :                                 }
    1507             :                         }
    1508             : 
    1509           2 :                         if !restart {
    1510           2 :                                 // Construct a B-Tree containing only the matching items.
    1511           2 :                                 var tr btree
    1512           2 :                                 tr.cmp = v.Levels[level].tree.cmp
    1513           2 :                                 for i, meta := 0, l0Iter.First(); meta != nil; i, meta = i+1, l0Iter.Next() {
    1514           2 :                                         if selectedIndices[i] {
    1515           2 :                                                 err := tr.Insert(meta)
    1516           2 :                                                 if err != nil {
    1517           0 :                                                         panic(err)
    1518             :                                                 }
    1519             :                                         }
    1520             :                                 }
    1521           2 :                                 slice = newLevelSlice(tr.Iter())
    1522           2 :                                 // TODO(jackson): Avoid the oddity of constructing and
    1523           2 :                                 // immediately releasing a B-Tree. Make LevelSlice an
    1524           2 :                                 // interface?
    1525           2 :                                 tr.Release()
    1526           2 :                                 break
    1527             :                         }
    1528             :                         // Continue looping to retry the files that were not selected.
    1529             :                 }
    1530           2 :                 return slice
    1531             :         }
    1532             : 
    1533           2 :         return overlaps(v.Levels[level].Iter(), v.cmp.Compare, start, end, exclusiveEnd)
    1534             : }
    1535             : 
    1536             : // CheckOrdering checks that the files are consistent with respect to
    1537             : // increasing file numbers (for level 0 files) and increasing and non-
    1538             : // overlapping internal key ranges (for level non-0 files).
    1539           1 : func (v *Version) CheckOrdering() error {
    1540           1 :         for sublevel := len(v.L0SublevelFiles) - 1; sublevel >= 0; sublevel-- {
    1541           1 :                 sublevelIter := v.L0SublevelFiles[sublevel].Iter()
    1542           1 :                 if err := CheckOrdering(v.cmp.Compare, v.cmp.FormatKey, L0Sublevel(sublevel), sublevelIter); err != nil {
    1543           0 :                         return base.CorruptionErrorf("%s\n%s", err, v.DebugString())
    1544           0 :                 }
    1545             :         }
    1546             : 
    1547           1 :         for level, lm := range v.Levels {
    1548           1 :                 if err := CheckOrdering(v.cmp.Compare, v.cmp.FormatKey, Level(level), lm.Iter()); err != nil {
    1549           1 :                         return base.CorruptionErrorf("%s\n%s", err, v.DebugString())
    1550           1 :                 }
    1551             :         }
    1552           1 :         return nil
    1553             : }
    1554             : 
    1555             : // VersionList holds a list of versions. The versions are ordered from oldest
    1556             : // to newest.
    1557             : type VersionList struct {
    1558             :         mu   *sync.Mutex
    1559             :         root Version
    1560             : }
    1561             : 
    1562             : // Init initializes the version list.
    1563           2 : func (l *VersionList) Init(mu *sync.Mutex) {
    1564           2 :         l.mu = mu
    1565           2 :         l.root.next = &l.root
    1566           2 :         l.root.prev = &l.root
    1567           2 : }
    1568             : 
    1569             : // Empty returns true if the list is empty, and false otherwise.
    1570           2 : func (l *VersionList) Empty() bool {
    1571           2 :         return l.root.next == &l.root
    1572           2 : }
    1573             : 
    1574             : // Front returns the oldest version in the list. Note that this version is only
    1575             : // valid if Empty() returns true.
    1576           2 : func (l *VersionList) Front() *Version {
    1577           2 :         return l.root.next
    1578           2 : }
    1579             : 
    1580             : // Back returns the newest version in the list. Note that this version is only
    1581             : // valid if Empty() returns true.
    1582           2 : func (l *VersionList) Back() *Version {
    1583           2 :         return l.root.prev
    1584           2 : }
    1585             : 
    1586             : // PushBack adds a new version to the back of the list. This new version
    1587             : // becomes the "newest" version in the list.
    1588           2 : func (l *VersionList) PushBack(v *Version) {
    1589           2 :         if v.list != nil || v.prev != nil || v.next != nil {
    1590           0 :                 panic("pebble: version list is inconsistent")
    1591             :         }
    1592           2 :         v.prev = l.root.prev
    1593           2 :         v.prev.next = v
    1594           2 :         v.next = &l.root
    1595           2 :         v.next.prev = v
    1596           2 :         v.list = l
    1597           2 :         // Let L0Sublevels on the second newest version get GC'd, as it is no longer
    1598           2 :         // necessary. See the comment in Version.
    1599           2 :         v.prev.L0Sublevels = nil
    1600             : }
    1601             : 
    1602             : // Remove removes the specified version from the list.
    1603           2 : func (l *VersionList) Remove(v *Version) {
    1604           2 :         if v == &l.root {
    1605           0 :                 panic("pebble: cannot remove version list root node")
    1606             :         }
    1607           2 :         if v.list != l {
    1608           0 :                 panic("pebble: version list is inconsistent")
    1609             :         }
    1610           2 :         v.prev.next = v.next
    1611           2 :         v.next.prev = v.prev
    1612           2 :         v.next = nil // avoid memory leaks
    1613           2 :         v.prev = nil // avoid memory leaks
    1614           2 :         v.list = nil // avoid memory leaks
    1615             : }
    1616             : 
    1617             : // CheckOrdering checks that the files are consistent with respect to
    1618             : // seqnums (for level 0 files -- see detailed comment below) and increasing and non-
    1619             : // overlapping internal key ranges (for non-level 0 files).
    1620           2 : func CheckOrdering(cmp Compare, format base.FormatKey, level Level, files LevelIterator) error {
    1621           2 :         // The invariants to check for L0 sublevels are the same as the ones to
    1622           2 :         // check for all other levels. However, if L0 is not organized into
    1623           2 :         // sublevels, or if all L0 files are being passed in, we do the legacy L0
    1624           2 :         // checks, defined in the detailed comment below.
    1625           2 :         if level == Level(0) {
    1626           2 :                 // We have 2 kinds of files:
    1627           2 :                 // - Files with exactly one sequence number: these could be either ingested files
    1628           2 :                 //   or flushed files. We cannot tell the difference between them based on FileMetadata,
    1629           2 :                 //   so our consistency checking here uses the weaker checks assuming it is a narrow
    1630           2 :                 //   flushed file. We cannot error on ingested files having sequence numbers coincident
    1631           2 :                 //   with flushed files as the seemingly ingested file could just be a flushed file
    1632           2 :                 //   with just one key in it which is a truncated range tombstone sharing sequence numbers
    1633           2 :                 //   with other files in the same flush.
    1634           2 :                 // - Files with multiple sequence numbers: these are necessarily flushed files.
    1635           2 :                 //
    1636           2 :                 // Three cases of overlapping sequence numbers:
    1637           2 :                 // Case 1:
    1638           2 :                 // An ingested file contained in the sequence numbers of the flushed file -- it must be
    1639           2 :                 // fully contained (not coincident with either end of the flushed file) since the memtable
    1640           2 :                 // must have been at [a, b-1] (where b > a) when the ingested file was assigned sequence
    1641           2 :                 // num b, and the memtable got a subsequent update that was given sequence num b+1, before
    1642           2 :                 // being flushed.
    1643           2 :                 //
    1644           2 :                 // So a sequence [1000, 1000] [1002, 1002] [1000, 2000] is invalid since the first and
    1645           2 :                 // third file are inconsistent with each other. So comparing adjacent files is insufficient
    1646           2 :                 // for consistency checking.
    1647           2 :                 //
    1648           2 :                 // Visually we have something like
    1649           2 :                 // x------y x-----------yx-------------y (flushed files where x, y are the endpoints)
    1650           2 :                 //     y       y  y        y             (y's represent ingested files)
    1651           2 :                 // And these are ordered in increasing order of y. Note that y's must be unique.
    1652           2 :                 //
    1653           2 :                 // Case 2:
    1654           2 :                 // A flushed file that did not overlap in keys with any file in any level, but does overlap
    1655           2 :                 // in the file key intervals. This file is placed in L0 since it overlaps in the file
    1656           2 :                 // key intervals but since it has no overlapping data, it is assigned a sequence number
    1657           2 :                 // of 0 in RocksDB. We handle this case for compatibility with RocksDB.
    1658           2 :                 //
    1659           2 :                 // Case 3:
    1660           2 :                 // A sequence of flushed files that overlap in sequence numbers with one another,
    1661           2 :                 // but do not overlap in keys inside the sstables. These files correspond to
    1662           2 :                 // partitioned flushes or the results of intra-L0 compactions of partitioned
    1663           2 :                 // flushes.
    1664           2 :                 //
    1665           2 :                 // Since these types of SSTables violate most other sequence number
    1666           2 :                 // overlap invariants, and handling this case is important for compatibility
    1667           2 :                 // with future versions of pebble, this method relaxes most L0 invariant
    1668           2 :                 // checks.
    1669           2 : 
    1670           2 :                 var prev *FileMetadata
    1671           2 :                 for f := files.First(); f != nil; f, prev = files.Next(), f {
    1672           2 :                         if prev == nil {
    1673           2 :                                 continue
    1674             :                         }
    1675             :                         // Validate that the sorting is sane.
    1676           2 :                         if prev.LargestSeqNum == 0 && f.LargestSeqNum == prev.LargestSeqNum {
    1677           1 :                                 // Multiple files satisfying case 2 mentioned above.
    1678           2 :                         } else if !prev.lessSeqNum(f) {
    1679           1 :                                 return base.CorruptionErrorf("L0 files %s and %s are not properly ordered: <#%d-#%d> vs <#%d-#%d>",
    1680           1 :                                         errors.Safe(prev.FileNum), errors.Safe(f.FileNum),
    1681           1 :                                         errors.Safe(prev.SmallestSeqNum), errors.Safe(prev.LargestSeqNum),
    1682           1 :                                         errors.Safe(f.SmallestSeqNum), errors.Safe(f.LargestSeqNum))
    1683           1 :                         }
    1684             :                 }
    1685           2 :         } else {
    1686           2 :                 var prev *FileMetadata
    1687           2 :                 for f := files.First(); f != nil; f, prev = files.Next(), f {
    1688           2 :                         if err := f.Validate(cmp, format); err != nil {
    1689           1 :                                 return errors.Wrapf(err, "%s ", level)
    1690           1 :                         }
    1691           2 :                         if prev != nil {
    1692           2 :                                 if prev.cmpSmallestKey(f, cmp) >= 0 {
    1693           1 :                                         return base.CorruptionErrorf("%s files %s and %s are not properly ordered: [%s-%s] vs [%s-%s]",
    1694           1 :                                                 errors.Safe(level), errors.Safe(prev.FileNum), errors.Safe(f.FileNum),
    1695           1 :                                                 prev.Smallest.Pretty(format), prev.Largest.Pretty(format),
    1696           1 :                                                 f.Smallest.Pretty(format), f.Largest.Pretty(format))
    1697           1 :                                 }
    1698             : 
    1699             :                                 // In all supported format major version, split user keys are
    1700             :                                 // prohibited, so both files cannot contain keys with the same user
    1701             :                                 // keys. If the bounds have the same user key, the previous file's
    1702             :                                 // boundary must have a Trailer indicating that it's exclusive.
    1703           2 :                                 if v := cmp(prev.Largest.UserKey, f.Smallest.UserKey); v > 0 || (v == 0 && !prev.Largest.IsExclusiveSentinel()) {
    1704           1 :                                         return base.CorruptionErrorf("%s files %s and %s have overlapping ranges: [%s-%s] vs [%s-%s]",
    1705           1 :                                                 errors.Safe(level), errors.Safe(prev.FileNum), errors.Safe(f.FileNum),
    1706           1 :                                                 prev.Smallest.Pretty(format), prev.Largest.Pretty(format),
    1707           1 :                                                 f.Smallest.Pretty(format), f.Largest.Pretty(format))
    1708           1 :                                 }
    1709             :                         }
    1710             :                 }
    1711             :         }
    1712           2 :         return nil
    1713             : }

Generated by: LCOV version 1.14