LCOV - code coverage report
Current view: top level - pebble/internal/manifest - version.go (source / functions) Hit Total Coverage
Test: 2024-03-31 08:15Z 1c7bcd1c - tests only.lcov Lines: 752 858 87.6 %
Date: 2024-03-31 08:16:11 Functions: 0 0 -

          Line data    Source code
       1             : // Copyright 2012 The LevelDB-Go and Pebble Authors. All rights reserved. Use
       2             : // of this source code is governed by a BSD-style license that can be found in
       3             : // the LICENSE file.
       4             : 
       5             : package manifest
       6             : 
       7             : import (
       8             :         "bytes"
       9             :         stdcmp "cmp"
      10             :         "fmt"
      11             :         "slices"
      12             :         "sort"
      13             :         "strings"
      14             :         "sync"
      15             :         "sync/atomic"
      16             : 
      17             :         "github.com/cockroachdb/errors"
      18             :         "github.com/cockroachdb/pebble/internal/base"
      19             :         "github.com/cockroachdb/pebble/internal/invariants"
      20             :         "github.com/cockroachdb/pebble/sstable"
      21             : )
      22             : 
      23             : // Compare exports the base.Compare type.
      24             : type Compare = base.Compare
      25             : 
      26             : // InternalKey exports the base.InternalKey type.
      27             : type InternalKey = base.InternalKey
      28             : 
      29             : // TableInfo contains the common information for table related events.
      30             : type TableInfo struct {
      31             :         // FileNum is the internal DB identifier for the table.
      32             :         FileNum base.FileNum
      33             :         // Size is the size of the file in bytes.
      34             :         Size uint64
      35             :         // Smallest is the smallest internal key in the table.
      36             :         Smallest InternalKey
      37             :         // Largest is the largest internal key in the table.
      38             :         Largest InternalKey
      39             :         // SmallestSeqNum is the smallest sequence number in the table.
      40             :         SmallestSeqNum uint64
      41             :         // LargestSeqNum is the largest sequence number in the table.
      42             :         LargestSeqNum uint64
      43             : }
      44             : 
      45             : // TableStats contains statistics on a table used for compaction heuristics,
      46             : // and export via Metrics.
      47             : type TableStats struct {
      48             :         // The total number of entries in the table.
      49             :         NumEntries uint64
      50             :         // The number of point and range deletion entries in the table.
      51             :         NumDeletions uint64
      52             :         // NumRangeKeySets is the total number of range key sets in the table.
      53             :         //
      54             :         // NB: If there's a chance that the sstable contains any range key sets,
      55             :         // then NumRangeKeySets must be > 0.
      56             :         NumRangeKeySets uint64
      57             :         // Estimate of the total disk space that may be dropped by this table's
      58             :         // point deletions by compacting them.
      59             :         PointDeletionsBytesEstimate uint64
      60             :         // Estimate of the total disk space that may be dropped by this table's
      61             :         // range deletions by compacting them. This estimate is at data-block
      62             :         // granularity and is not updated if compactions beneath the table reduce
      63             :         // the amount of reclaimable disk space. It also does not account for
      64             :         // overlapping data in L0 and ignores L0 sublevels, but the error that
      65             :         // introduces is expected to be small.
      66             :         //
      67             :         // Tables in the bottommost level of the LSM may have a nonzero estimate if
      68             :         // snapshots or move compactions prevented the elision of their range
      69             :         // tombstones. A table in the bottommost level that was ingested into L6
      70             :         // will have a zero estimate, because the file's sequence numbers indicate
      71             :         // that the tombstone cannot drop any data contained within the file itself.
      72             :         RangeDeletionsBytesEstimate uint64
      73             :         // Total size of value blocks and value index block.
      74             :         ValueBlocksSize uint64
      75             : }
      76             : 
      77             : // boundType represents the type of key (point or range) present as the smallest
      78             : // and largest keys.
      79             : type boundType uint8
      80             : 
      81             : const (
      82             :         boundTypePointKey boundType = iota + 1
      83             :         boundTypeRangeKey
      84             : )
      85             : 
      86             : // CompactionState is the compaction state of a file.
      87             : //
      88             : // The following shows the valid state transitions:
      89             : //
      90             : //      NotCompacting --> Compacting --> Compacted
      91             : //            ^               |
      92             : //            |               |
      93             : //            +-------<-------+
      94             : //
      95             : // Input files to a compaction transition to Compacting when a compaction is
      96             : // picked. A file that has finished compacting typically transitions into the
      97             : // Compacted state, at which point it is effectively obsolete ("zombied") and
      98             : // will eventually be removed from the LSM. A file that has been move-compacted
      99             : // will transition from Compacting back into the NotCompacting state, signaling
     100             : // that the file may be selected for a subsequent compaction. A failed
     101             : // compaction will result in all input tables transitioning from Compacting to
     102             : // NotCompacting.
     103             : //
     104             : // This state is in-memory only. It is not persisted to the manifest.
     105             : type CompactionState uint8
     106             : 
     107             : // CompactionStates.
     108             : const (
     109             :         CompactionStateNotCompacting CompactionState = iota
     110             :         CompactionStateCompacting
     111             :         CompactionStateCompacted
     112             : )
     113             : 
     114             : // String implements fmt.Stringer.
     115           0 : func (s CompactionState) String() string {
     116           0 :         switch s {
     117           0 :         case CompactionStateNotCompacting:
     118           0 :                 return "NotCompacting"
     119           0 :         case CompactionStateCompacting:
     120           0 :                 return "Compacting"
     121           0 :         case CompactionStateCompacted:
     122           0 :                 return "Compacted"
     123           0 :         default:
     124           0 :                 panic(fmt.Sprintf("pebble: unknown compaction state %d", s))
     125             :         }
     126             : }
     127             : 
     128             : // FileMetadata is maintained for leveled-ssts, i.e., they belong to a level of
     129             : // some version. FileMetadata does not contain the actual level of the sst,
     130             : // since such leveled-ssts can move across levels in different versions, while
     131             : // sharing the same FileMetadata. There are two kinds of leveled-ssts, physical
     132             : // and virtual. Underlying both leveled-ssts is a backing-sst, for which the
     133             : // only state is FileBacking. A backing-sst is level-less. It is possible for a
     134             : // backing-sst to be referred to by a physical sst in one version and by one or
     135             : // more virtual ssts in one or more versions. A backing-sst becomes obsolete
     136             : // and can be deleted once it is no longer required by any physical or virtual
     137             : // sst in any version.
     138             : //
     139             : // We maintain some invariants:
     140             : //
     141             : //  1. Each physical and virtual sst will have a unique FileMetadata.FileNum,
     142             : //     and there will be exactly one FileMetadata associated with the FileNum.
     143             : //
     144             : //  2. Within a version, a backing-sst is either only referred to by one
     145             : //     physical sst or one or more virtual ssts.
     146             : //
     147             : //  3. Once a backing-sst is referred to by a virtual sst in the latest version,
     148             : //     it cannot go back to being referred to by a physical sst in any future
     149             : //     version.
     150             : //
     151             : // Once a physical sst is no longer needed by any version, we will no longer
     152             : // maintain the file metadata associated with it. We will still maintain the
     153             : // FileBacking associated with the physical sst if the backing sst is required
     154             : // by any virtual ssts in any version.
     155             : type FileMetadata struct {
     156             :         // AllowedSeeks is used to determine if a file should be picked for
     157             :         // a read triggered compaction. It is decremented when read sampling
     158             :         // in pebble.Iterator after every after every positioning operation
     159             :         // that returns a user key (eg. Next, Prev, SeekGE, SeekLT, etc).
     160             :         AllowedSeeks atomic.Int64
     161             : 
     162             :         // statsValid indicates if stats have been loaded for the table. The
     163             :         // TableStats structure is populated only if valid is true.
     164             :         statsValid atomic.Bool
     165             : 
     166             :         // FileBacking is the state which backs either a physical or virtual
     167             :         // sstables.
     168             :         FileBacking *FileBacking
     169             : 
     170             :         // InitAllowedSeeks is the inital value of allowed seeks. This is used
     171             :         // to re-set allowed seeks on a file once it hits 0.
     172             :         InitAllowedSeeks int64
     173             :         // FileNum is the file number.
     174             :         //
     175             :         // INVARIANT: when !FileMetadata.Virtual, FileNum == FileBacking.DiskFileNum.
     176             :         FileNum base.FileNum
     177             :         // Size is the size of the file, in bytes. Size is an approximate value for
     178             :         // virtual sstables.
     179             :         //
     180             :         // INVARIANTS:
     181             :         // - When !FileMetadata.Virtual, Size == FileBacking.Size.
     182             :         // - Size should be non-zero. Size 0 virtual sstables must not be created.
     183             :         Size uint64
     184             :         // File creation time in seconds since the epoch (1970-01-01 00:00:00
     185             :         // UTC). For ingested sstables, this corresponds to the time the file was
     186             :         // ingested. For virtual sstables, this corresponds to the wall clock time
     187             :         // when the FileMetadata for the virtual sstable was first created.
     188             :         CreationTime int64
     189             :         // Lower and upper bounds for the smallest and largest sequence numbers in
     190             :         // the table, across both point and range keys. For physical sstables, these
     191             :         // values are tight bounds. For virtual sstables, there is no guarantee that
     192             :         // there will be keys with SmallestSeqNum or LargestSeqNum within virtual
     193             :         // sstable bounds.
     194             :         SmallestSeqNum uint64
     195             :         LargestSeqNum  uint64
     196             :         // SmallestPointKey and LargestPointKey are the inclusive bounds for the
     197             :         // internal point keys stored in the table. This includes RANGEDELs, which
     198             :         // alter point keys.
     199             :         // NB: these field should be set using ExtendPointKeyBounds. They are left
     200             :         // exported for reads as an optimization.
     201             :         SmallestPointKey InternalKey
     202             :         LargestPointKey  InternalKey
     203             :         // SmallestRangeKey and LargestRangeKey are the inclusive bounds for the
     204             :         // internal range keys stored in the table.
     205             :         // NB: these field should be set using ExtendRangeKeyBounds. They are left
     206             :         // exported for reads as an optimization.
     207             :         SmallestRangeKey InternalKey
     208             :         LargestRangeKey  InternalKey
     209             :         // Smallest and Largest are the inclusive bounds for the internal keys stored
     210             :         // in the table, across both point and range keys.
     211             :         // NB: these fields are derived from their point and range key equivalents,
     212             :         // and are updated via the MaybeExtend{Point,Range}KeyBounds methods.
     213             :         Smallest InternalKey
     214             :         Largest  InternalKey
     215             :         // Stats describe table statistics. Protected by DB.mu.
     216             :         //
     217             :         // For virtual sstables, set stats upon virtual sstable creation as
     218             :         // asynchronous computation of stats is not currently supported.
     219             :         //
     220             :         // TODO(bananabrick): To support manifest replay for virtual sstables, we
     221             :         // probably need to compute virtual sstable stats asynchronously. Otherwise,
     222             :         // we'd have to write virtual sstable stats to the version edit.
     223             :         Stats TableStats
     224             : 
     225             :         // For L0 files only. Protected by DB.mu. Used to generate L0 sublevels and
     226             :         // pick L0 compactions. Only accurate for the most recent Version.
     227             :         SubLevel         int
     228             :         L0Index          int
     229             :         minIntervalIndex int
     230             :         maxIntervalIndex int
     231             : 
     232             :         // NB: the alignment of this struct is 8 bytes. We pack all the bools to
     233             :         // ensure an optimal packing.
     234             : 
     235             :         // IsIntraL0Compacting is set to True if this file is part of an intra-L0
     236             :         // compaction. When it's true, IsCompacting must also return true. If
     237             :         // Compacting is true and IsIntraL0Compacting is false for an L0 file, the
     238             :         // file must be part of a compaction to Lbase.
     239             :         IsIntraL0Compacting bool
     240             :         CompactionState     CompactionState
     241             :         // True if compaction of this file has been explicitly requested.
     242             :         // Previously, RocksDB and earlier versions of Pebble allowed this
     243             :         // flag to be set by a user table property collector. Some earlier
     244             :         // versions of Pebble respected this flag, while other more recent
     245             :         // versions ignored this flag.
     246             :         //
     247             :         // More recently this flag has been repurposed to facilitate the
     248             :         // compaction of 'atomic compaction units'. Files marked for
     249             :         // compaction are compacted in a rewrite compaction at the lowest
     250             :         // possible compaction priority.
     251             :         //
     252             :         // NB: A count of files marked for compaction is maintained on
     253             :         // Version, and compaction picking reads cached annotations
     254             :         // determined by this field.
     255             :         //
     256             :         // Protected by DB.mu.
     257             :         MarkedForCompaction bool
     258             :         // HasPointKeys tracks whether the table contains point keys (including
     259             :         // RANGEDELs). If a table contains only range deletions, HasPointsKeys is
     260             :         // still true.
     261             :         HasPointKeys bool
     262             :         // HasRangeKeys tracks whether the table contains any range keys.
     263             :         HasRangeKeys bool
     264             :         // smallestSet and largestSet track whether the overall bounds have been set.
     265             :         boundsSet bool
     266             :         // boundTypeSmallest and boundTypeLargest provide an indication as to which
     267             :         // key type (point or range) corresponds to the smallest and largest overall
     268             :         // table bounds.
     269             :         boundTypeSmallest, boundTypeLargest boundType
     270             :         // Virtual is true if the FileMetadata belongs to a virtual sstable.
     271             :         Virtual bool
     272             : 
     273             :         // SyntheticPrefix is used to prepend a prefix to all keys; used for some virtual
     274             :         // tables.
     275             :         SyntheticPrefix sstable.SyntheticPrefix
     276             : 
     277             :         // SyntheticSuffix overrides all suffixes in a table; used for some virtual tables.
     278             :         SyntheticSuffix sstable.SyntheticSuffix
     279             : }
     280             : 
     281             : // InternalKeyBounds returns the set of overall table bounds.
     282           0 : func (m *FileMetadata) InternalKeyBounds() (InternalKey, InternalKey) {
     283           0 :         return m.Smallest, m.Largest
     284           0 : }
     285             : 
     286             : // UserKeyBounds returns the user key bounds that correspond to m.Smallest and
     287             : // Largest. Because we do not allow split user keys, the user key bounds of
     288             : // files within a level do not overlap.
     289           1 : func (m *FileMetadata) UserKeyBounds() base.UserKeyBounds {
     290           1 :         return base.UserKeyBoundsFromInternal(m.Smallest, m.Largest)
     291           1 : }
     292             : 
     293             : // SyntheticSeqNum returns a SyntheticSeqNum which is set when SmallestSeqNum
     294             : // equals LargestSeqNum.
     295           1 : func (m *FileMetadata) SyntheticSeqNum() sstable.SyntheticSeqNum {
     296           1 :         if m.SmallestSeqNum == m.LargestSeqNum {
     297           1 :                 return sstable.SyntheticSeqNum(m.SmallestSeqNum)
     298           1 :         }
     299           1 :         return sstable.NoSyntheticSeqNum
     300             : }
     301             : 
     302             : // IterTransforms returns an sstable.IterTransforms that has SyntheticSeqNum set as needed.
     303           1 : func (m *FileMetadata) IterTransforms() sstable.IterTransforms {
     304           1 :         return sstable.IterTransforms{
     305           1 :                 SyntheticSeqNum: m.SyntheticSeqNum(),
     306           1 :                 SyntheticSuffix: m.SyntheticSuffix,
     307           1 :                 SyntheticPrefix: m.SyntheticPrefix,
     308           1 :         }
     309           1 : }
     310             : 
     311             : // PhysicalFileMeta is used by functions which want a guarantee that their input
     312             : // belongs to a physical sst and not a virtual sst.
     313             : //
     314             : // NB: This type should only be constructed by calling
     315             : // FileMetadata.PhysicalMeta.
     316             : type PhysicalFileMeta struct {
     317             :         *FileMetadata
     318             : }
     319             : 
     320             : // VirtualFileMeta is used by functions which want a guarantee that their input
     321             : // belongs to a virtual sst and not a physical sst.
     322             : //
     323             : // A VirtualFileMeta inherits all the same fields as a FileMetadata. These
     324             : // fields have additional invariants imposed on them, and/or slightly varying
     325             : // meanings:
     326             : //   - Smallest and Largest (and their counterparts
     327             : //     {Smallest, Largest}{Point,Range}Key) remain tight bounds that represent a
     328             : //     key at that exact bound. We make the effort to determine the next smallest
     329             : //     or largest key in an sstable after virtualizing it, to maintain this
     330             : //     tightness. If the largest is a sentinel key (IsExclusiveSentinel()), it
     331             : //     could mean that a rangedel or range key ends at that user key, or has been
     332             : //     truncated to that user key.
     333             : //   - One invariant is that if a rangedel or range key is truncated on its
     334             : //     upper bound, the virtual sstable *must* have a rangedel or range key
     335             : //     sentinel key as its upper bound. This is because truncation yields
     336             : //     an exclusive upper bound for the rangedel/rangekey, and if there are
     337             : //     any points at that exclusive upper bound within the same virtual
     338             : //     sstable, those could get uncovered by this truncation. We enforce this
     339             : //     invariant in calls to keyspan.Truncate.
     340             : //   - Size is an estimate of the size of the virtualized portion of this sstable.
     341             : //     The underlying file's size is stored in FileBacking.Size, though it could
     342             : //     also be estimated or could correspond to just the referenced portion of
     343             : //     a file (eg. if the file originated on another node).
     344             : //   - Size must be > 0.
     345             : //   - SmallestSeqNum and LargestSeqNum are loose bounds for virtual sstables.
     346             : //     This means that all keys in the virtual sstable must have seqnums within
     347             : //     [SmallestSeqNum, LargestSeqNum], however there's no guarantee that there's
     348             : //     a key with a seqnum at either of the bounds. Calculating tight seqnum
     349             : //     bounds would be too expensive and deliver little value.
     350             : //
     351             : // NB: This type should only be constructed by calling FileMetadata.VirtualMeta.
     352             : type VirtualFileMeta struct {
     353             :         *FileMetadata
     354             : }
     355             : 
     356             : // VirtualReaderParams fills in the parameters necessary to create a virtual
     357             : // sstable reader.
     358           1 : func (m VirtualFileMeta) VirtualReaderParams(isShared bool) sstable.VirtualReaderParams {
     359           1 :         return sstable.VirtualReaderParams{
     360           1 :                 Lower:            m.Smallest,
     361           1 :                 Upper:            m.Largest,
     362           1 :                 FileNum:          m.FileNum,
     363           1 :                 IsSharedIngested: isShared && m.SyntheticSeqNum() != 0,
     364           1 :                 Size:             m.Size,
     365           1 :                 BackingSize:      m.FileBacking.Size,
     366           1 :         }
     367           1 : }
     368             : 
     369             : // PhysicalMeta should be the only source of creating the PhysicalFileMeta
     370             : // wrapper type.
     371           1 : func (m *FileMetadata) PhysicalMeta() PhysicalFileMeta {
     372           1 :         if m.Virtual {
     373           0 :                 panic("pebble: file metadata does not belong to a physical sstable")
     374             :         }
     375           1 :         return PhysicalFileMeta{
     376           1 :                 m,
     377           1 :         }
     378             : }
     379             : 
     380             : // VirtualMeta should be the only source of creating the VirtualFileMeta wrapper
     381             : // type.
     382           1 : func (m *FileMetadata) VirtualMeta() VirtualFileMeta {
     383           1 :         if !m.Virtual {
     384           0 :                 panic("pebble: file metadata does not belong to a virtual sstable")
     385             :         }
     386           1 :         return VirtualFileMeta{
     387           1 :                 m,
     388           1 :         }
     389             : }
     390             : 
     391             : // FileBacking either backs a single physical sstable, or one or more virtual
     392             : // sstables.
     393             : //
     394             : // See the comment above the FileMetadata type for sstable terminology.
     395             : type FileBacking struct {
     396             :         DiskFileNum base.DiskFileNum
     397             :         Size        uint64
     398             : 
     399             :         // Reference count for the backing file, used to determine when a backing file
     400             :         // is obsolete and can be removed.
     401             :         //
     402             :         // The reference count is at least the number of distinct tables that use this
     403             :         // backing across all versions that have a non-zero reference count. The tables
     404             :         // in each version are maintained in a copy-on-write B-tree and each B-tree node
     405             :         // keeps a reference on the respective backings.
     406             :         //
     407             :         // In addition, a reference count is taken for every backing in the latest
     408             :         // version's VirtualBackings (necessary to support Protect/Unprotect).
     409             :         refs atomic.Int32
     410             : }
     411             : 
     412             : // MustHaveRefs asserts that the backing has a positive refcount.
     413           1 : func (b *FileBacking) MustHaveRefs() {
     414           1 :         if refs := b.refs.Load(); refs <= 0 {
     415           0 :                 panic(errors.AssertionFailedf("backing %s must have positive refcount (refs=%d)",
     416           0 :                         b.DiskFileNum, refs))
     417             :         }
     418             : }
     419             : 
     420             : // Ref increments the backing's ref count.
     421           1 : func (b *FileBacking) Ref() {
     422           1 :         b.refs.Add(1)
     423           1 : }
     424             : 
     425             : // Unref decrements the backing's ref count (and returns the new count).
     426           1 : func (b *FileBacking) Unref() int32 {
     427           1 :         v := b.refs.Add(-1)
     428           1 :         if invariants.Enabled && v < 0 {
     429           0 :                 panic("pebble: invalid FileMetadata refcounting")
     430             :         }
     431           1 :         return v
     432             : }
     433             : 
     434             : // InitPhysicalBacking allocates and sets the FileBacking which is required by a
     435             : // physical sstable FileMetadata.
     436             : //
     437             : // Ensure that the state required by FileBacking, such as the FileNum, is
     438             : // already set on the FileMetadata before InitPhysicalBacking is called.
     439             : // Calling InitPhysicalBacking only after the relevant state has been set in the
     440             : // FileMetadata is not necessary in tests which don't rely on FileBacking.
     441           1 : func (m *FileMetadata) InitPhysicalBacking() {
     442           1 :         if m.Virtual {
     443           0 :                 panic("pebble: virtual sstables should use a pre-existing FileBacking")
     444             :         }
     445           1 :         if m.FileBacking == nil {
     446           1 :                 m.FileBacking = &FileBacking{
     447           1 :                         DiskFileNum: base.PhysicalTableDiskFileNum(m.FileNum),
     448           1 :                         Size:        m.Size,
     449           1 :                 }
     450           1 :         }
     451             : }
     452             : 
     453             : // InitProviderBacking creates a new FileBacking for a file backed by
     454             : // an objstorage.Provider.
     455           1 : func (m *FileMetadata) InitProviderBacking(fileNum base.DiskFileNum, size uint64) {
     456           1 :         if !m.Virtual {
     457           0 :                 panic("pebble: provider-backed sstables must be virtual")
     458             :         }
     459           1 :         if m.FileBacking == nil {
     460           1 :                 m.FileBacking = &FileBacking{DiskFileNum: fileNum}
     461           1 :         }
     462           1 :         m.FileBacking.Size = size
     463             : }
     464             : 
     465             : // ValidateVirtual should be called once the FileMetadata for a virtual sstable
     466             : // is created to verify that the fields of the virtual sstable are sound.
     467           1 : func (m *FileMetadata) ValidateVirtual(createdFrom *FileMetadata) {
     468           1 :         if !m.Virtual {
     469           0 :                 panic("pebble: invalid virtual sstable")
     470             :         }
     471             : 
     472           1 :         if createdFrom.SmallestSeqNum != m.SmallestSeqNum {
     473           0 :                 panic("pebble: invalid smallest sequence number for virtual sstable")
     474             :         }
     475             : 
     476           1 :         if createdFrom.LargestSeqNum != m.LargestSeqNum {
     477           0 :                 panic("pebble: invalid largest sequence number for virtual sstable")
     478             :         }
     479             : 
     480           1 :         if createdFrom.FileBacking != nil && createdFrom.FileBacking != m.FileBacking {
     481           0 :                 panic("pebble: invalid physical sstable state for virtual sstable")
     482             :         }
     483             : 
     484           1 :         if m.Size == 0 {
     485           0 :                 panic("pebble: virtual sstable size must be set upon creation")
     486             :         }
     487             : }
     488             : 
     489             : // SetCompactionState transitions this file's compaction state to the given
     490             : // state. Protected by DB.mu.
     491           1 : func (m *FileMetadata) SetCompactionState(to CompactionState) {
     492           1 :         if invariants.Enabled {
     493           1 :                 transitionErr := func() error {
     494           0 :                         return errors.Newf("pebble: invalid compaction state transition: %s -> %s", m.CompactionState, to)
     495           0 :                 }
     496           1 :                 switch m.CompactionState {
     497           1 :                 case CompactionStateNotCompacting:
     498           1 :                         if to != CompactionStateCompacting {
     499           0 :                                 panic(transitionErr())
     500             :                         }
     501           1 :                 case CompactionStateCompacting:
     502           1 :                         if to != CompactionStateCompacted && to != CompactionStateNotCompacting {
     503           0 :                                 panic(transitionErr())
     504             :                         }
     505           0 :                 case CompactionStateCompacted:
     506           0 :                         panic(transitionErr())
     507           0 :                 default:
     508           0 :                         panic(fmt.Sprintf("pebble: unknown compaction state: %d", m.CompactionState))
     509             :                 }
     510             :         }
     511           1 :         m.CompactionState = to
     512             : }
     513             : 
     514             : // IsCompacting returns true if this file's compaction state is
     515             : // CompactionStateCompacting. Protected by DB.mu.
     516           1 : func (m *FileMetadata) IsCompacting() bool {
     517           1 :         return m.CompactionState == CompactionStateCompacting
     518           1 : }
     519             : 
     520             : // StatsValid returns true if the table stats have been populated. If StatValid
     521             : // returns true, the Stats field may be read (with or without holding the
     522             : // database mutex).
     523           1 : func (m *FileMetadata) StatsValid() bool {
     524           1 :         return m.statsValid.Load()
     525           1 : }
     526             : 
     527             : // StatsMarkValid marks the TableStats as valid. The caller must hold DB.mu
     528             : // while populating TableStats and calling StatsMarkValud. Once stats are
     529             : // populated, they must not be mutated.
     530           1 : func (m *FileMetadata) StatsMarkValid() {
     531           1 :         m.statsValid.Store(true)
     532           1 : }
     533             : 
     534             : // ExtendPointKeyBounds attempts to extend the lower and upper point key bounds
     535             : // and overall table bounds with the given smallest and largest keys. The
     536             : // smallest and largest bounds may not be extended if the table already has a
     537             : // bound that is smaller or larger, respectively. The receiver is returned.
     538             : // NB: calling this method should be preferred to manually setting the bounds by
     539             : // manipulating the fields directly, to maintain certain invariants.
     540             : func (m *FileMetadata) ExtendPointKeyBounds(
     541             :         cmp Compare, smallest, largest InternalKey,
     542           1 : ) *FileMetadata {
     543           1 :         // Update the point key bounds.
     544           1 :         if !m.HasPointKeys {
     545           1 :                 m.SmallestPointKey, m.LargestPointKey = smallest, largest
     546           1 :                 m.HasPointKeys = true
     547           1 :         } else {
     548           1 :                 if base.InternalCompare(cmp, smallest, m.SmallestPointKey) < 0 {
     549           1 :                         m.SmallestPointKey = smallest
     550           1 :                 }
     551           1 :                 if base.InternalCompare(cmp, largest, m.LargestPointKey) > 0 {
     552           1 :                         m.LargestPointKey = largest
     553           1 :                 }
     554             :         }
     555             :         // Update the overall bounds.
     556           1 :         m.extendOverallBounds(cmp, m.SmallestPointKey, m.LargestPointKey, boundTypePointKey)
     557           1 :         return m
     558             : }
     559             : 
     560             : // ExtendRangeKeyBounds attempts to extend the lower and upper range key bounds
     561             : // and overall table bounds with the given smallest and largest keys. The
     562             : // smallest and largest bounds may not be extended if the table already has a
     563             : // bound that is smaller or larger, respectively. The receiver is returned.
     564             : // NB: calling this method should be preferred to manually setting the bounds by
     565             : // manipulating the fields directly, to maintain certain invariants.
     566             : func (m *FileMetadata) ExtendRangeKeyBounds(
     567             :         cmp Compare, smallest, largest InternalKey,
     568           1 : ) *FileMetadata {
     569           1 :         // Update the range key bounds.
     570           1 :         if !m.HasRangeKeys {
     571           1 :                 m.SmallestRangeKey, m.LargestRangeKey = smallest, largest
     572           1 :                 m.HasRangeKeys = true
     573           1 :         } else {
     574           1 :                 if base.InternalCompare(cmp, smallest, m.SmallestRangeKey) < 0 {
     575           0 :                         m.SmallestRangeKey = smallest
     576           0 :                 }
     577           1 :                 if base.InternalCompare(cmp, largest, m.LargestRangeKey) > 0 {
     578           1 :                         m.LargestRangeKey = largest
     579           1 :                 }
     580             :         }
     581             :         // Update the overall bounds.
     582           1 :         m.extendOverallBounds(cmp, m.SmallestRangeKey, m.LargestRangeKey, boundTypeRangeKey)
     583           1 :         return m
     584             : }
     585             : 
     586             : // extendOverallBounds attempts to extend the overall table lower and upper
     587             : // bounds. The given bounds may not be used if a lower or upper bound already
     588             : // exists that is smaller or larger than the given keys, respectively. The given
     589             : // boundType will be used if the bounds are updated.
     590             : func (m *FileMetadata) extendOverallBounds(
     591             :         cmp Compare, smallest, largest InternalKey, bTyp boundType,
     592           1 : ) {
     593           1 :         if !m.boundsSet {
     594           1 :                 m.Smallest, m.Largest = smallest, largest
     595           1 :                 m.boundsSet = true
     596           1 :                 m.boundTypeSmallest, m.boundTypeLargest = bTyp, bTyp
     597           1 :         } else {
     598           1 :                 if base.InternalCompare(cmp, smallest, m.Smallest) < 0 {
     599           1 :                         m.Smallest = smallest
     600           1 :                         m.boundTypeSmallest = bTyp
     601           1 :                 }
     602           1 :                 if base.InternalCompare(cmp, largest, m.Largest) > 0 {
     603           1 :                         m.Largest = largest
     604           1 :                         m.boundTypeLargest = bTyp
     605           1 :                 }
     606             :         }
     607             : }
     608             : 
     609             : // Overlaps returns true if the file key range overlaps with the given user key bounds.
     610           1 : func (m *FileMetadata) Overlaps(cmp Compare, bounds *base.UserKeyBounds) bool {
     611           1 :         b := m.UserKeyBounds()
     612           1 :         return b.Overlaps(cmp, bounds)
     613           1 : }
     614             : 
     615             : // ContainedWithinSpan returns true if the file key range completely overlaps with the
     616             : // given range ("end" is assumed to exclusive).
     617           1 : func (m *FileMetadata) ContainedWithinSpan(cmp Compare, start, end []byte) bool {
     618           1 :         lowerCmp, upperCmp := cmp(m.Smallest.UserKey, start), cmp(m.Largest.UserKey, end)
     619           1 :         return lowerCmp >= 0 && (upperCmp < 0 || (upperCmp == 0 && m.Largest.IsExclusiveSentinel()))
     620           1 : }
     621             : 
     622             : // ContainsKeyType returns whether or not the file contains keys of the provided
     623             : // type.
     624           1 : func (m *FileMetadata) ContainsKeyType(kt KeyType) bool {
     625           1 :         switch kt {
     626           1 :         case KeyTypePointAndRange:
     627           1 :                 return true
     628           1 :         case KeyTypePoint:
     629           1 :                 return m.HasPointKeys
     630           1 :         case KeyTypeRange:
     631           1 :                 return m.HasRangeKeys
     632           0 :         default:
     633           0 :                 panic("unrecognized key type")
     634             :         }
     635             : }
     636             : 
     637             : // SmallestBound returns the file's smallest bound of the key type. It returns a
     638             : // false second return value if the file does not contain any keys of the key
     639             : // type.
     640           1 : func (m *FileMetadata) SmallestBound(kt KeyType) (*InternalKey, bool) {
     641           1 :         switch kt {
     642           0 :         case KeyTypePointAndRange:
     643           0 :                 return &m.Smallest, true
     644           1 :         case KeyTypePoint:
     645           1 :                 return &m.SmallestPointKey, m.HasPointKeys
     646           1 :         case KeyTypeRange:
     647           1 :                 return &m.SmallestRangeKey, m.HasRangeKeys
     648           0 :         default:
     649           0 :                 panic("unrecognized key type")
     650             :         }
     651             : }
     652             : 
     653             : // LargestBound returns the file's largest bound of the key type. It returns a
     654             : // false second return value if the file does not contain any keys of the key
     655             : // type.
     656           1 : func (m *FileMetadata) LargestBound(kt KeyType) (*InternalKey, bool) {
     657           1 :         switch kt {
     658           0 :         case KeyTypePointAndRange:
     659           0 :                 return &m.Largest, true
     660           1 :         case KeyTypePoint:
     661           1 :                 return &m.LargestPointKey, m.HasPointKeys
     662           1 :         case KeyTypeRange:
     663           1 :                 return &m.LargestRangeKey, m.HasRangeKeys
     664           0 :         default:
     665           0 :                 panic("unrecognized key type")
     666             :         }
     667             : }
     668             : 
     669             : const (
     670             :         maskContainsPointKeys = 1 << 0
     671             :         maskSmallest          = 1 << 1
     672             :         maskLargest           = 1 << 2
     673             : )
     674             : 
     675             : // boundsMarker returns a marker byte whose bits encode the following
     676             : // information (in order from least significant bit):
     677             : // - if the table contains point keys
     678             : // - if the table's smallest key is a point key
     679             : // - if the table's largest key is a point key
     680           1 : func (m *FileMetadata) boundsMarker() (sentinel uint8, err error) {
     681           1 :         if m.HasPointKeys {
     682           1 :                 sentinel |= maskContainsPointKeys
     683           1 :         }
     684           1 :         switch m.boundTypeSmallest {
     685           1 :         case boundTypePointKey:
     686           1 :                 sentinel |= maskSmallest
     687           1 :         case boundTypeRangeKey:
     688             :                 // No op - leave bit unset.
     689           0 :         default:
     690           0 :                 return 0, base.CorruptionErrorf("file %s has neither point nor range key as smallest key", m.FileNum)
     691             :         }
     692           1 :         switch m.boundTypeLargest {
     693           1 :         case boundTypePointKey:
     694           1 :                 sentinel |= maskLargest
     695           1 :         case boundTypeRangeKey:
     696             :                 // No op - leave bit unset.
     697           0 :         default:
     698           0 :                 return 0, base.CorruptionErrorf("file %s has neither point nor range key as largest key", m.FileNum)
     699             :         }
     700           1 :         return
     701             : }
     702             : 
     703             : // String implements fmt.Stringer, printing the file number and the overall
     704             : // table bounds.
     705           1 : func (m *FileMetadata) String() string {
     706           1 :         return fmt.Sprintf("%s:[%s-%s]", m.FileNum, m.Smallest, m.Largest)
     707           1 : }
     708             : 
     709             : // DebugString returns a verbose representation of FileMetadata, typically for
     710             : // use in tests and debugging, returning the file number and the point, range
     711             : // and overall bounds for the table.
     712           1 : func (m *FileMetadata) DebugString(format base.FormatKey, verbose bool) string {
     713           1 :         var b bytes.Buffer
     714           1 :         if m.Virtual {
     715           1 :                 fmt.Fprintf(&b, "%s(%s):[%s-%s]",
     716           1 :                         m.FileNum, m.FileBacking.DiskFileNum, m.Smallest.Pretty(format), m.Largest.Pretty(format))
     717           1 :         } else {
     718           1 :                 fmt.Fprintf(&b, "%s:[%s-%s]",
     719           1 :                         m.FileNum, m.Smallest.Pretty(format), m.Largest.Pretty(format))
     720           1 :         }
     721           1 :         if !verbose {
     722           1 :                 return b.String()
     723           1 :         }
     724           1 :         fmt.Fprintf(&b, " seqnums:[%d-%d]", m.SmallestSeqNum, m.LargestSeqNum)
     725           1 :         if m.HasPointKeys {
     726           1 :                 fmt.Fprintf(&b, " points:[%s-%s]",
     727           1 :                         m.SmallestPointKey.Pretty(format), m.LargestPointKey.Pretty(format))
     728           1 :         }
     729           1 :         if m.HasRangeKeys {
     730           1 :                 fmt.Fprintf(&b, " ranges:[%s-%s]",
     731           1 :                         m.SmallestRangeKey.Pretty(format), m.LargestRangeKey.Pretty(format))
     732           1 :         }
     733           1 :         if m.Size != 0 {
     734           1 :                 fmt.Fprintf(&b, " size:%d", m.Size)
     735           1 :         }
     736           1 :         return b.String()
     737             : }
     738             : 
     739             : // ParseFileMetadataDebug parses a FileMetadata from its DebugString
     740             : // representation.
     741           1 : func ParseFileMetadataDebug(s string) (_ *FileMetadata, err error) {
     742           1 :         defer func() {
     743           1 :                 err = errors.CombineErrors(err, maybeRecover())
     744           1 :         }()
     745             : 
     746             :         // Input format:
     747             :         //      000000:[a#0,SET-z#0,SET] seqnums:[5-5] points:[...] ranges:[...]
     748           1 :         m := &FileMetadata{}
     749           1 :         p := makeDebugParser(s)
     750           1 :         m.FileNum = p.FileNum()
     751           1 :         var backingNum base.DiskFileNum
     752           1 :         if p.Peek() == "(" {
     753           1 :                 p.Expect("(")
     754           1 :                 backingNum = p.DiskFileNum()
     755           1 :                 p.Expect(")")
     756           1 :         }
     757           1 :         p.Expect(":", "[")
     758           1 :         m.Smallest = p.InternalKey()
     759           1 :         p.Expect("-")
     760           1 :         m.Largest = p.InternalKey()
     761           1 :         p.Expect("]")
     762           1 : 
     763           1 :         for !p.Done() {
     764           1 :                 field := p.Next()
     765           1 :                 p.Expect(":")
     766           1 :                 switch field {
     767           1 :                 case "seqnums":
     768           1 :                         p.Expect("[")
     769           1 :                         m.SmallestSeqNum = p.Uint64()
     770           1 :                         p.Expect("-")
     771           1 :                         m.LargestSeqNum = p.Uint64()
     772           1 :                         p.Expect("]")
     773             : 
     774           1 :                 case "points":
     775           1 :                         p.Expect("[")
     776           1 :                         m.SmallestPointKey = p.InternalKey()
     777           1 :                         p.Expect("-")
     778           1 :                         m.LargestPointKey = p.InternalKey()
     779           1 :                         m.HasPointKeys = true
     780           1 :                         p.Expect("]")
     781             : 
     782           1 :                 case "ranges":
     783           1 :                         p.Expect("[")
     784           1 :                         m.SmallestRangeKey = p.InternalKey()
     785           1 :                         p.Expect("-")
     786           1 :                         m.LargestRangeKey = p.InternalKey()
     787           1 :                         m.HasRangeKeys = true
     788           1 :                         p.Expect("]")
     789             : 
     790           1 :                 case "size":
     791           1 :                         m.Size = p.Uint64()
     792             : 
     793           0 :                 default:
     794           0 :                         p.Errf("unknown field %q", field)
     795             :                 }
     796             :         }
     797             : 
     798             :         // By default, when the parser sees just the overall bounds, we set the point
     799             :         // keys. This preserves backwards compatability with existing test cases that
     800             :         // specify only the overall bounds.
     801           1 :         if !m.HasPointKeys && !m.HasRangeKeys {
     802           1 :                 m.SmallestPointKey, m.LargestPointKey = m.Smallest, m.Largest
     803           1 :                 m.HasPointKeys = true
     804           1 :         }
     805           1 :         if backingNum == 0 {
     806           1 :                 m.InitPhysicalBacking()
     807           1 :         } else {
     808           1 :                 m.Virtual = true
     809           1 :                 m.InitProviderBacking(backingNum, 0 /* size */)
     810           1 :         }
     811           1 :         return m, nil
     812             : }
     813             : 
     814             : // Validate validates the metadata for consistency with itself, returning an
     815             : // error if inconsistent.
     816           1 : func (m *FileMetadata) Validate(cmp Compare, formatKey base.FormatKey) error {
     817           1 :         // Combined range and point key validation.
     818           1 : 
     819           1 :         if !m.HasPointKeys && !m.HasRangeKeys {
     820           0 :                 return base.CorruptionErrorf("file %s has neither point nor range keys",
     821           0 :                         errors.Safe(m.FileNum))
     822           0 :         }
     823           1 :         if base.InternalCompare(cmp, m.Smallest, m.Largest) > 0 {
     824           1 :                 return base.CorruptionErrorf("file %s has inconsistent bounds: %s vs %s",
     825           1 :                         errors.Safe(m.FileNum), m.Smallest.Pretty(formatKey),
     826           1 :                         m.Largest.Pretty(formatKey))
     827           1 :         }
     828           1 :         if m.SmallestSeqNum > m.LargestSeqNum {
     829           0 :                 return base.CorruptionErrorf("file %s has inconsistent seqnum bounds: %d vs %d",
     830           0 :                         errors.Safe(m.FileNum), m.SmallestSeqNum, m.LargestSeqNum)
     831           0 :         }
     832             : 
     833             :         // Point key validation.
     834             : 
     835           1 :         if m.HasPointKeys {
     836           1 :                 if base.InternalCompare(cmp, m.SmallestPointKey, m.LargestPointKey) > 0 {
     837           0 :                         return base.CorruptionErrorf("file %s has inconsistent point key bounds: %s vs %s",
     838           0 :                                 errors.Safe(m.FileNum), m.SmallestPointKey.Pretty(formatKey),
     839           0 :                                 m.LargestPointKey.Pretty(formatKey))
     840           0 :                 }
     841           1 :                 if base.InternalCompare(cmp, m.SmallestPointKey, m.Smallest) < 0 ||
     842           1 :                         base.InternalCompare(cmp, m.LargestPointKey, m.Largest) > 0 {
     843           0 :                         return base.CorruptionErrorf(
     844           0 :                                 "file %s has inconsistent point key bounds relative to overall bounds: "+
     845           0 :                                         "overall = [%s-%s], point keys = [%s-%s]",
     846           0 :                                 errors.Safe(m.FileNum),
     847           0 :                                 m.Smallest.Pretty(formatKey), m.Largest.Pretty(formatKey),
     848           0 :                                 m.SmallestPointKey.Pretty(formatKey), m.LargestPointKey.Pretty(formatKey),
     849           0 :                         )
     850           0 :                 }
     851             :         }
     852             : 
     853             :         // Range key validation.
     854             : 
     855           1 :         if m.HasRangeKeys {
     856           1 :                 if base.InternalCompare(cmp, m.SmallestRangeKey, m.LargestRangeKey) > 0 {
     857           0 :                         return base.CorruptionErrorf("file %s has inconsistent range key bounds: %s vs %s",
     858           0 :                                 errors.Safe(m.FileNum), m.SmallestRangeKey.Pretty(formatKey),
     859           0 :                                 m.LargestRangeKey.Pretty(formatKey))
     860           0 :                 }
     861           1 :                 if base.InternalCompare(cmp, m.SmallestRangeKey, m.Smallest) < 0 ||
     862           1 :                         base.InternalCompare(cmp, m.LargestRangeKey, m.Largest) > 0 {
     863           0 :                         return base.CorruptionErrorf(
     864           0 :                                 "file %s has inconsistent range key bounds relative to overall bounds: "+
     865           0 :                                         "overall = [%s-%s], range keys = [%s-%s]",
     866           0 :                                 errors.Safe(m.FileNum),
     867           0 :                                 m.Smallest.Pretty(formatKey), m.Largest.Pretty(formatKey),
     868           0 :                                 m.SmallestRangeKey.Pretty(formatKey), m.LargestRangeKey.Pretty(formatKey),
     869           0 :                         )
     870           0 :                 }
     871             :         }
     872             : 
     873             :         // Ensure that FileMetadata.Init was called.
     874           1 :         if m.FileBacking == nil {
     875           0 :                 return base.CorruptionErrorf("file metadata FileBacking not set")
     876           0 :         }
     877             : 
     878           1 :         if m.SyntheticPrefix.IsSet() {
     879           1 :                 if !m.Virtual {
     880           0 :                         return base.CorruptionErrorf("non-virtual file with synthetic prefix")
     881           0 :                 }
     882           1 :                 if !bytes.HasPrefix(m.Smallest.UserKey, m.SyntheticPrefix) {
     883           0 :                         return base.CorruptionErrorf("virtual file with synthetic prefix has smallest key with a different prefix: %s", m.Smallest.Pretty(formatKey))
     884           0 :                 }
     885           1 :                 if !bytes.HasPrefix(m.Largest.UserKey, m.SyntheticPrefix) {
     886           0 :                         return base.CorruptionErrorf("virtual file with synthetic prefix has largest key with a different prefix: %s", m.Largest.Pretty(formatKey))
     887           0 :                 }
     888             :         }
     889             : 
     890           1 :         if m.SyntheticSuffix != nil {
     891           1 :                 if !m.Virtual {
     892           0 :                         return base.CorruptionErrorf("non-virtual file with synthetic suffix")
     893           0 :                 }
     894             :         }
     895             : 
     896           1 :         return nil
     897             : }
     898             : 
     899             : // TableInfo returns a subset of the FileMetadata state formatted as a
     900             : // TableInfo.
     901           1 : func (m *FileMetadata) TableInfo() TableInfo {
     902           1 :         return TableInfo{
     903           1 :                 FileNum:        m.FileNum,
     904           1 :                 Size:           m.Size,
     905           1 :                 Smallest:       m.Smallest,
     906           1 :                 Largest:        m.Largest,
     907           1 :                 SmallestSeqNum: m.SmallestSeqNum,
     908           1 :                 LargestSeqNum:  m.LargestSeqNum,
     909           1 :         }
     910           1 : }
     911             : 
     912           1 : func (m *FileMetadata) cmpSeqNum(b *FileMetadata) int {
     913           1 :         // NB: This is the same ordering that RocksDB uses for L0 files.
     914           1 : 
     915           1 :         // Sort first by largest sequence number.
     916           1 :         if v := stdcmp.Compare(m.LargestSeqNum, b.LargestSeqNum); v != 0 {
     917           1 :                 return v
     918           1 :         }
     919             :         // Then by smallest sequence number.
     920           1 :         if v := stdcmp.Compare(m.SmallestSeqNum, b.SmallestSeqNum); v != 0 {
     921           1 :                 return v
     922           1 :         }
     923             :         // Break ties by file number.
     924           1 :         return stdcmp.Compare(m.FileNum, b.FileNum)
     925             : }
     926             : 
     927           1 : func (m *FileMetadata) lessSeqNum(b *FileMetadata) bool {
     928           1 :         return m.cmpSeqNum(b) < 0
     929           1 : }
     930             : 
     931           1 : func (m *FileMetadata) cmpSmallestKey(b *FileMetadata, cmp Compare) int {
     932           1 :         return base.InternalCompare(cmp, m.Smallest, b.Smallest)
     933           1 : }
     934             : 
     935             : // KeyRange returns the minimum smallest and maximum largest internalKey for
     936             : // all the FileMetadata in iters.
     937           1 : func KeyRange(ucmp Compare, iters ...LevelIterator) (smallest, largest InternalKey) {
     938           1 :         first := true
     939           1 :         for _, iter := range iters {
     940           1 :                 for meta := iter.First(); meta != nil; meta = iter.Next() {
     941           1 :                         if first {
     942           1 :                                 first = false
     943           1 :                                 smallest, largest = meta.Smallest, meta.Largest
     944           1 :                                 continue
     945             :                         }
     946           1 :                         if base.InternalCompare(ucmp, smallest, meta.Smallest) >= 0 {
     947           1 :                                 smallest = meta.Smallest
     948           1 :                         }
     949           1 :                         if base.InternalCompare(ucmp, largest, meta.Largest) <= 0 {
     950           1 :                                 largest = meta.Largest
     951           1 :                         }
     952             :                 }
     953             :         }
     954           1 :         return smallest, largest
     955             : }
     956             : 
     957             : type bySeqNum []*FileMetadata
     958             : 
     959           1 : func (b bySeqNum) Len() int { return len(b) }
     960           1 : func (b bySeqNum) Less(i, j int) bool {
     961           1 :         return b[i].lessSeqNum(b[j])
     962           1 : }
     963           1 : func (b bySeqNum) Swap(i, j int) { b[i], b[j] = b[j], b[i] }
     964             : 
     965             : // SortBySeqNum sorts the specified files by increasing sequence number.
     966           1 : func SortBySeqNum(files []*FileMetadata) {
     967           1 :         sort.Sort(bySeqNum(files))
     968           1 : }
     969             : 
     970             : type bySmallest struct {
     971             :         files []*FileMetadata
     972             :         cmp   Compare
     973             : }
     974             : 
     975           1 : func (b bySmallest) Len() int { return len(b.files) }
     976           1 : func (b bySmallest) Less(i, j int) bool {
     977           1 :         return b.files[i].cmpSmallestKey(b.files[j], b.cmp) < 0
     978           1 : }
     979           0 : func (b bySmallest) Swap(i, j int) { b.files[i], b.files[j] = b.files[j], b.files[i] }
     980             : 
     981             : // SortBySmallest sorts the specified files by smallest key using the supplied
     982             : // comparison function to order user keys.
     983           1 : func SortBySmallest(files []*FileMetadata, cmp Compare) {
     984           1 :         sort.Sort(bySmallest{files, cmp})
     985           1 : }
     986             : 
     987             : // overlaps returns the subset of files in a level that overlap with the given
     988             : // bounds. It is meant for levels other than L0.
     989           1 : func overlaps(iter LevelIterator, cmp Compare, bounds base.UserKeyBounds) LevelSlice {
     990           1 :         startIter := iter.Clone()
     991           1 :         {
     992           1 :                 startIterFile := startIter.SeekGE(cmp, bounds.Start)
     993           1 :                 // SeekGE compares user keys. The user key `start` may be equal to the
     994           1 :                 // f.Largest because f.Largest is a range deletion sentinel, indicating
     995           1 :                 // that the user key `start` is NOT contained within the file f. If
     996           1 :                 // that's the case, we can narrow the overlapping bounds to exclude the
     997           1 :                 // file with the sentinel.
     998           1 :                 if startIterFile != nil && startIterFile.Largest.IsExclusiveSentinel() &&
     999           1 :                         cmp(startIterFile.Largest.UserKey, bounds.Start) == 0 {
    1000           1 :                         startIterFile = startIter.Next()
    1001           1 :                 }
    1002           1 :                 _ = startIterFile // Ignore unused assignment.
    1003             :         }
    1004             : 
    1005           1 :         endIter := iter.Clone()
    1006           1 :         {
    1007           1 :                 endIterFile := endIter.SeekGE(cmp, bounds.End.Key)
    1008           1 : 
    1009           1 :                 if bounds.End.Kind == base.Inclusive {
    1010           1 :                         // endIter is now pointing at the *first* file with a largest key >= end.
    1011           1 :                         // If there are multiple files including the user key `end`, we want all
    1012           1 :                         // of them, so move forward.
    1013           1 :                         // TODO(radu): files are now disjoint in terms of user keys, so this
    1014           1 :                         // should be simplified. The contract of LevelIterator.SeekGE should be
    1015           1 :                         // re-examined as well.
    1016           1 :                         for endIterFile != nil && cmp(endIterFile.Largest.UserKey, bounds.End.Key) == 0 {
    1017           1 :                                 endIterFile = endIter.Next()
    1018           1 :                         }
    1019             :                 }
    1020             : 
    1021             :                 // LevelSlice uses inclusive bounds, so if we seeked to the end sentinel
    1022             :                 // or nexted too far because Largest.UserKey equaled `end`, go back.
    1023             :                 //
    1024             :                 // Consider !exclusiveEnd and end = 'f', with the following file bounds:
    1025             :                 //
    1026             :                 //     [b,d] [e, f] [f, f] [g, h]
    1027             :                 //
    1028             :                 // the above for loop will Next until it arrives at [g, h]. We need to
    1029             :                 // observe that g > f, and Prev to the file with bounds [f, f].
    1030           1 :                 if endIterFile == nil || !bounds.End.IsUpperBoundFor(cmp, endIterFile.Smallest.UserKey) {
    1031           1 :                         endIterFile = endIter.Prev()
    1032           1 :                 }
    1033           1 :                 _ = endIterFile // Ignore unused assignment.
    1034             :         }
    1035           1 :         return newBoundedLevelSlice(startIter.Clone().iter, &startIter.iter, &endIter.iter)
    1036             : }
    1037             : 
    1038             : // NumLevels is the number of levels a Version contains.
    1039             : const NumLevels = 7
    1040             : 
    1041             : // NewVersion constructs a new Version with the provided files. It requires
    1042             : // the provided files are already well-ordered. It's intended for testing.
    1043             : func NewVersion(
    1044             :         comparer *base.Comparer, flushSplitBytes int64, files [NumLevels][]*FileMetadata,
    1045           1 : ) *Version {
    1046           1 :         v := &Version{
    1047           1 :                 cmp: comparer,
    1048           1 :         }
    1049           1 :         for l := range files {
    1050           1 :                 // NB: We specifically insert `files` into the B-Tree in the order
    1051           1 :                 // they appear within `files`. Some tests depend on this behavior in
    1052           1 :                 // order to test consistency checking, etc. Once we've constructed the
    1053           1 :                 // initial B-Tree, we swap out the btreeCmp for the correct one.
    1054           1 :                 // TODO(jackson): Adjust or remove the tests and remove this.
    1055           1 :                 v.Levels[l].tree, _ = makeBTree(btreeCmpSpecificOrder(files[l]), files[l])
    1056           1 :                 v.Levels[l].level = l
    1057           1 :                 if l == 0 {
    1058           1 :                         v.Levels[l].tree.cmp = btreeCmpSeqNum
    1059           1 :                 } else {
    1060           1 :                         v.Levels[l].tree.cmp = btreeCmpSmallestKey(comparer.Compare)
    1061           1 :                 }
    1062           1 :                 for _, f := range files[l] {
    1063           1 :                         v.Levels[l].totalSize += f.Size
    1064           1 :                 }
    1065             :         }
    1066           1 :         if err := v.InitL0Sublevels(flushSplitBytes); err != nil {
    1067           0 :                 panic(err)
    1068             :         }
    1069           1 :         return v
    1070             : }
    1071             : 
    1072             : // TestingNewVersion returns a blank Version, used for tests.
    1073           1 : func TestingNewVersion(comparer *base.Comparer) *Version {
    1074           1 :         return &Version{
    1075           1 :                 cmp: comparer,
    1076           1 :         }
    1077           1 : }
    1078             : 
    1079             : // Version is a collection of file metadata for on-disk tables at various
    1080             : // levels. In-memory DBs are written to level-0 tables, and compactions
    1081             : // migrate data from level N to level N+1. The tables map internal keys (which
    1082             : // are a user key, a delete or set bit, and a sequence number) to user values.
    1083             : //
    1084             : // The tables at level 0 are sorted by largest sequence number. Due to file
    1085             : // ingestion, there may be overlap in the ranges of sequence numbers contain in
    1086             : // level 0 sstables. In particular, it is valid for one level 0 sstable to have
    1087             : // the seqnum range [1,100] while an adjacent sstable has the seqnum range
    1088             : // [50,50]. This occurs when the [50,50] table was ingested and given a global
    1089             : // seqnum. The ingestion code will have ensured that the [50,50] sstable will
    1090             : // not have any keys that overlap with the [1,100] in the seqnum range
    1091             : // [1,49]. The range of internal keys [fileMetadata.smallest,
    1092             : // fileMetadata.largest] in each level 0 table may overlap.
    1093             : //
    1094             : // The tables at any non-0 level are sorted by their internal key range and any
    1095             : // two tables at the same non-0 level do not overlap.
    1096             : //
    1097             : // The internal key ranges of two tables at different levels X and Y may
    1098             : // overlap, for any X != Y.
    1099             : //
    1100             : // Finally, for every internal key in a table at level X, there is no internal
    1101             : // key in a higher level table that has both the same user key and a higher
    1102             : // sequence number.
    1103             : type Version struct {
    1104             :         refs atomic.Int32
    1105             : 
    1106             :         // The level 0 sstables are organized in a series of sublevels. Similar to
    1107             :         // the seqnum invariant in normal levels, there is no internal key in a
    1108             :         // higher level table that has both the same user key and a higher sequence
    1109             :         // number. Within a sublevel, tables are sorted by their internal key range
    1110             :         // and any two tables at the same sublevel do not overlap. Unlike the normal
    1111             :         // levels, sublevel n contains older tables (lower sequence numbers) than
    1112             :         // sublevel n+1.
    1113             :         //
    1114             :         // The L0Sublevels struct is mostly used for compaction picking. As most
    1115             :         // internal data structures in it are only necessary for compaction picking
    1116             :         // and not for iterator creation, the reference to L0Sublevels is nil'd
    1117             :         // after this version becomes the non-newest version, to reduce memory
    1118             :         // usage.
    1119             :         //
    1120             :         // L0Sublevels.Levels contains L0 files ordered by sublevels. All the files
    1121             :         // in Levels[0] are in L0Sublevels.Levels. L0SublevelFiles is also set to
    1122             :         // a reference to that slice, as that slice is necessary for iterator
    1123             :         // creation and needs to outlast L0Sublevels.
    1124             :         L0Sublevels     *L0Sublevels
    1125             :         L0SublevelFiles []LevelSlice
    1126             : 
    1127             :         Levels [NumLevels]LevelMetadata
    1128             : 
    1129             :         // RangeKeyLevels holds a subset of the same files as Levels that contain range
    1130             :         // keys (i.e. fileMeta.HasRangeKeys == true). The memory amplification of this
    1131             :         // duplication should be minimal, as range keys are expected to be rare.
    1132             :         RangeKeyLevels [NumLevels]LevelMetadata
    1133             : 
    1134             :         // The callback to invoke when the last reference to a version is
    1135             :         // removed. Will be called with list.mu held.
    1136             :         Deleted func(obsolete []*FileBacking)
    1137             : 
    1138             :         // Stats holds aggregated stats about the version maintained from
    1139             :         // version to version.
    1140             :         Stats struct {
    1141             :                 // MarkedForCompaction records the count of files marked for
    1142             :                 // compaction within the version.
    1143             :                 MarkedForCompaction int
    1144             :         }
    1145             : 
    1146             :         cmp *base.Comparer
    1147             : 
    1148             :         // The list the version is linked into.
    1149             :         list *VersionList
    1150             : 
    1151             :         // The next/prev link for the versionList doubly-linked list of versions.
    1152             :         prev, next *Version
    1153             : }
    1154             : 
    1155             : // String implements fmt.Stringer, printing the FileMetadata for each level in
    1156             : // the Version.
    1157           1 : func (v *Version) String() string {
    1158           1 :         return v.string(false)
    1159           1 : }
    1160             : 
    1161             : // DebugString returns an alternative format to String() which includes sequence
    1162             : // number and kind information for the sstable boundaries.
    1163           1 : func (v *Version) DebugString() string {
    1164           1 :         return v.string(true)
    1165           1 : }
    1166             : 
    1167           1 : func describeSublevels(format base.FormatKey, verbose bool, sublevels []LevelSlice) string {
    1168           1 :         var buf bytes.Buffer
    1169           1 :         for sublevel := len(sublevels) - 1; sublevel >= 0; sublevel-- {
    1170           1 :                 fmt.Fprintf(&buf, "L0.%d:\n", sublevel)
    1171           1 :                 sublevels[sublevel].Each(func(f *FileMetadata) {
    1172           1 :                         fmt.Fprintf(&buf, "  %s\n", f.DebugString(format, verbose))
    1173           1 :                 })
    1174             :         }
    1175           1 :         return buf.String()
    1176             : }
    1177             : 
    1178           1 : func (v *Version) string(verbose bool) string {
    1179           1 :         var buf bytes.Buffer
    1180           1 :         if len(v.L0SublevelFiles) > 0 {
    1181           1 :                 fmt.Fprintf(&buf, "%s", describeSublevels(v.cmp.FormatKey, verbose, v.L0SublevelFiles))
    1182           1 :         }
    1183           1 :         for level := 1; level < NumLevels; level++ {
    1184           1 :                 if v.Levels[level].Empty() {
    1185           1 :                         continue
    1186             :                 }
    1187           1 :                 fmt.Fprintf(&buf, "L%d:\n", level)
    1188           1 :                 iter := v.Levels[level].Iter()
    1189           1 :                 for f := iter.First(); f != nil; f = iter.Next() {
    1190           1 :                         fmt.Fprintf(&buf, "  %s\n", f.DebugString(v.cmp.FormatKey, verbose))
    1191           1 :                 }
    1192             :         }
    1193           1 :         return buf.String()
    1194             : }
    1195             : 
    1196             : // ParseVersionDebug parses a Version from its DebugString output.
    1197           1 : func ParseVersionDebug(comparer *base.Comparer, flushSplitBytes int64, s string) (*Version, error) {
    1198           1 :         var files [NumLevels][]*FileMetadata
    1199           1 :         level := -1
    1200           1 :         for _, l := range strings.Split(s, "\n") {
    1201           1 :                 if l == "" {
    1202           1 :                         continue
    1203             :                 }
    1204           1 :                 p := makeDebugParser(l)
    1205           1 :                 if l, ok := p.TryLevel(); ok {
    1206           1 :                         level = l
    1207           1 :                         continue
    1208             :                 }
    1209             : 
    1210           1 :                 if level == -1 {
    1211           0 :                         return nil, errors.Errorf("version string must start with a level")
    1212           0 :                 }
    1213           1 :                 m, err := ParseFileMetadataDebug(l)
    1214           1 :                 if err != nil {
    1215           0 :                         return nil, err
    1216           0 :                 }
    1217           1 :                 files[level] = append(files[level], m)
    1218             :         }
    1219             :         // L0 files are printed from higher sublevel to lower, which means in a
    1220             :         // partial order that represents newest to oldest. Reverse the order of L0
    1221             :         // files to ensure we construct the same sublevels.
    1222           1 :         slices.Reverse(files[0])
    1223           1 :         return NewVersion(comparer, flushSplitBytes, files), nil
    1224             : }
    1225             : 
    1226             : // Refs returns the number of references to the version.
    1227           1 : func (v *Version) Refs() int32 {
    1228           1 :         return v.refs.Load()
    1229           1 : }
    1230             : 
    1231             : // Ref increments the version refcount.
    1232           1 : func (v *Version) Ref() {
    1233           1 :         v.refs.Add(1)
    1234           1 : }
    1235             : 
    1236             : // Unref decrements the version refcount. If the last reference to the version
    1237             : // was removed, the version is removed from the list of versions and the
    1238             : // Deleted callback is invoked. Requires that the VersionList mutex is NOT
    1239             : // locked.
    1240           1 : func (v *Version) Unref() {
    1241           1 :         if v.refs.Add(-1) == 0 {
    1242           1 :                 l := v.list
    1243           1 :                 l.mu.Lock()
    1244           1 :                 l.Remove(v)
    1245           1 :                 v.Deleted(v.unrefFiles())
    1246           1 :                 l.mu.Unlock()
    1247           1 :         }
    1248             : }
    1249             : 
    1250             : // UnrefLocked decrements the version refcount. If the last reference to the
    1251             : // version was removed, the version is removed from the list of versions and
    1252             : // the Deleted callback is invoked. Requires that the VersionList mutex is
    1253             : // already locked.
    1254           1 : func (v *Version) UnrefLocked() {
    1255           1 :         if v.refs.Add(-1) == 0 {
    1256           1 :                 v.list.Remove(v)
    1257           1 :                 v.Deleted(v.unrefFiles())
    1258           1 :         }
    1259             : }
    1260             : 
    1261           1 : func (v *Version) unrefFiles() []*FileBacking {
    1262           1 :         var obsolete []*FileBacking
    1263           1 :         for _, lm := range v.Levels {
    1264           1 :                 obsolete = append(obsolete, lm.release()...)
    1265           1 :         }
    1266           1 :         for _, lm := range v.RangeKeyLevels {
    1267           1 :                 obsolete = append(obsolete, lm.release()...)
    1268           1 :         }
    1269           1 :         return obsolete
    1270             : }
    1271             : 
    1272             : // Next returns the next version in the list of versions.
    1273           0 : func (v *Version) Next() *Version {
    1274           0 :         return v.next
    1275           0 : }
    1276             : 
    1277             : // InitL0Sublevels initializes the L0Sublevels
    1278           1 : func (v *Version) InitL0Sublevels(flushSplitBytes int64) error {
    1279           1 :         var err error
    1280           1 :         v.L0Sublevels, err = NewL0Sublevels(&v.Levels[0], v.cmp.Compare, v.cmp.FormatKey, flushSplitBytes)
    1281           1 :         if err == nil && v.L0Sublevels != nil {
    1282           1 :                 v.L0SublevelFiles = v.L0Sublevels.Levels
    1283           1 :         }
    1284           1 :         return err
    1285             : }
    1286             : 
    1287             : // CalculateInuseKeyRanges examines file metadata in levels [level, maxLevel]
    1288             : // within bounds [smallest,largest], returning an ordered slice of key ranges
    1289             : // that include all keys that exist within levels [level, maxLevel] and within
    1290             : // [smallest,largest].
    1291             : func (v *Version) CalculateInuseKeyRanges(
    1292             :         level, maxLevel int, smallest, largest []byte,
    1293           1 : ) []UserKeyRange {
    1294           1 :         // Use two slices, alternating which one is input and which one is output
    1295           1 :         // as we descend the LSM.
    1296           1 :         var input, output []UserKeyRange
    1297           1 : 
    1298           1 :         // L0 requires special treatment, since sstables within L0 may overlap.
    1299           1 :         // We use the L0 Sublevels structure to efficiently calculate the merged
    1300           1 :         // in-use key ranges.
    1301           1 :         if level == 0 {
    1302           1 :                 output = v.L0Sublevels.InUseKeyRanges(smallest, largest)
    1303           1 :                 level++
    1304           1 :         }
    1305             : 
    1306           1 :         bounds := base.UserKeyBoundsInclusive(smallest, largest)
    1307           1 :         for ; level <= maxLevel; level++ {
    1308           1 :                 // NB: We always treat `largest` as inclusive for simplicity, because
    1309           1 :                 // there's little consequence to calculating slightly broader in-use key
    1310           1 :                 // ranges.
    1311           1 :                 overlaps := v.Overlaps(level, bounds)
    1312           1 :                 iter := overlaps.Iter()
    1313           1 : 
    1314           1 :                 // We may already have in-use key ranges from higher levels. Iterate
    1315           1 :                 // through both our accumulated in-use key ranges and this level's
    1316           1 :                 // files, merging the two.
    1317           1 :                 //
    1318           1 :                 // Tables higher within the LSM have broader key spaces. We use this
    1319           1 :                 // when possible to seek past a level's files that are contained by
    1320           1 :                 // our current accumulated in-use key ranges. This helps avoid
    1321           1 :                 // per-sstable work during flushes or compactions in high levels which
    1322           1 :                 // overlap the majority of the LSM's sstables.
    1323           1 :                 input, output = output, input
    1324           1 :                 output = output[:0]
    1325           1 : 
    1326           1 :                 var currFile *FileMetadata
    1327           1 :                 var currAccum *UserKeyRange
    1328           1 :                 if len(input) > 0 {
    1329           1 :                         currAccum, input = &input[0], input[1:]
    1330           1 :                 }
    1331           1 :                 cmp := v.cmp.Compare
    1332           1 : 
    1333           1 :                 // If we have an accumulated key range and its start is ≤ smallest,
    1334           1 :                 // we can seek to the accumulated range's end. Otherwise, we need to
    1335           1 :                 // start at the first overlapping file within the level.
    1336           1 :                 if currAccum != nil && v.cmp.Compare(currAccum.Start, smallest) <= 0 {
    1337           1 :                         currFile = seekGT(&iter, cmp, currAccum.End)
    1338           1 :                 } else {
    1339           1 :                         currFile = iter.First()
    1340           1 :                 }
    1341             : 
    1342           1 :                 for currFile != nil || currAccum != nil {
    1343           1 :                         // If we've exhausted either the files in the level or the
    1344           1 :                         // accumulated key ranges, we just need to append the one we have.
    1345           1 :                         // If we have both a currFile and a currAccum, they either overlap
    1346           1 :                         // or they're disjoint. If they're disjoint, we append whichever
    1347           1 :                         // one sorts first and move on to the next file or range. If they
    1348           1 :                         // overlap, we merge them into currAccum and proceed to the next
    1349           1 :                         // file.
    1350           1 :                         switch {
    1351           1 :                         case currAccum == nil || (currFile != nil && cmp(currFile.Largest.UserKey, currAccum.Start) < 0):
    1352           1 :                                 // This file is strictly before the current accumulated range,
    1353           1 :                                 // or there are no more accumulated ranges.
    1354           1 :                                 output = append(output, UserKeyRange{
    1355           1 :                                         Start: currFile.Smallest.UserKey,
    1356           1 :                                         End:   currFile.Largest.UserKey,
    1357           1 :                                 })
    1358           1 :                                 currFile = iter.Next()
    1359           1 :                         case currFile == nil || (currAccum != nil && cmp(currAccum.End, currFile.Smallest.UserKey) < 0):
    1360           1 :                                 // The current accumulated key range is strictly before the
    1361           1 :                                 // current file, or there are no more files.
    1362           1 :                                 output = append(output, *currAccum)
    1363           1 :                                 currAccum = nil
    1364           1 :                                 if len(input) > 0 {
    1365           1 :                                         currAccum, input = &input[0], input[1:]
    1366           1 :                                 }
    1367           1 :                         default:
    1368           1 :                                 // The current accumulated range and the current file overlap.
    1369           1 :                                 // Adjust the accumulated range to be the union.
    1370           1 :                                 if cmp(currFile.Smallest.UserKey, currAccum.Start) < 0 {
    1371           1 :                                         currAccum.Start = currFile.Smallest.UserKey
    1372           1 :                                 }
    1373           1 :                                 if cmp(currFile.Largest.UserKey, currAccum.End) > 0 {
    1374           1 :                                         currAccum.End = currFile.Largest.UserKey
    1375           1 :                                 }
    1376             : 
    1377             :                                 // Extending `currAccum`'s end boundary may have caused it to
    1378             :                                 // overlap with `input` key ranges that we haven't processed
    1379             :                                 // yet. Merge any such key ranges.
    1380           1 :                                 for len(input) > 0 && cmp(input[0].Start, currAccum.End) <= 0 {
    1381           1 :                                         if cmp(input[0].End, currAccum.End) > 0 {
    1382           1 :                                                 currAccum.End = input[0].End
    1383           1 :                                         }
    1384           1 :                                         input = input[1:]
    1385             :                                 }
    1386             :                                 // Seek the level iterator past our current accumulated end.
    1387           1 :                                 currFile = seekGT(&iter, cmp, currAccum.End)
    1388             :                         }
    1389             :                 }
    1390             :         }
    1391           1 :         return output
    1392             : }
    1393             : 
    1394           1 : func seekGT(iter *LevelIterator, cmp base.Compare, key []byte) *FileMetadata {
    1395           1 :         f := iter.SeekGE(cmp, key)
    1396           1 :         for f != nil && cmp(f.Largest.UserKey, key) == 0 {
    1397           1 :                 f = iter.Next()
    1398           1 :         }
    1399           1 :         return f
    1400             : }
    1401             : 
    1402             : // Contains returns a boolean indicating whether the provided file exists in
    1403             : // the version at the given level. If level is non-zero then Contains binary
    1404             : // searches among the files. If level is zero, Contains scans the entire
    1405             : // level.
    1406           1 : func (v *Version) Contains(level int, m *FileMetadata) bool {
    1407           1 :         iter := v.Levels[level].Iter()
    1408           1 :         if level > 0 {
    1409           1 :                 overlaps := v.Overlaps(level, m.UserKeyBounds())
    1410           1 :                 iter = overlaps.Iter()
    1411           1 :         }
    1412           1 :         for f := iter.First(); f != nil; f = iter.Next() {
    1413           1 :                 if f == m {
    1414           1 :                         return true
    1415           1 :                 }
    1416             :         }
    1417           1 :         return false
    1418             : }
    1419             : 
    1420             : // Overlaps returns all elements of v.files[level] whose user key range
    1421             : // intersects the given bounds. If level is non-zero then the user key bounds of
    1422             : // v.files[level] are assumed to not overlap (although they may touch). If level
    1423             : // is zero then that assumption cannot be made, and the given bounds are
    1424             : // expanded to the union of those matching bounds so far and the computation is
    1425             : // repeated until the bounds stabilize.
    1426             : // The returned files are a subsequence of the input files, i.e., the ordering
    1427             : // is not changed.
    1428           1 : func (v *Version) Overlaps(level int, bounds base.UserKeyBounds) LevelSlice {
    1429           1 :         if level == 0 {
    1430           1 :                 // Indices that have been selected as overlapping.
    1431           1 :                 l0 := v.Levels[level]
    1432           1 :                 l0Iter := l0.Iter()
    1433           1 :                 selectedIndices := make([]bool, l0.Len())
    1434           1 :                 numSelected := 0
    1435           1 :                 var slice LevelSlice
    1436           1 :                 for {
    1437           1 :                         restart := false
    1438           1 :                         for i, meta := 0, l0Iter.First(); meta != nil; i, meta = i+1, l0Iter.Next() {
    1439           1 :                                 selected := selectedIndices[i]
    1440           1 :                                 if selected {
    1441           1 :                                         continue
    1442             :                                 }
    1443           1 :                                 if !meta.Overlaps(v.cmp.Compare, &bounds) {
    1444           1 :                                         // meta is completely outside the specified range; skip it.
    1445           1 :                                         continue
    1446             :                                 }
    1447             :                                 // Overlaps.
    1448           1 :                                 selectedIndices[i] = true
    1449           1 :                                 numSelected++
    1450           1 : 
    1451           1 :                                 // Since this is L0, check if the newly added fileMetadata has expanded
    1452           1 :                                 // the range. We expand the range immediately for files we have
    1453           1 :                                 // remaining to check in this loop. All already checked and unselected
    1454           1 :                                 // files will need to be rechecked via the restart below.
    1455           1 :                                 if v.cmp.Compare(meta.Smallest.UserKey, bounds.Start) < 0 {
    1456           1 :                                         bounds.Start = meta.Smallest.UserKey
    1457           1 :                                         restart = true
    1458           1 :                                 }
    1459           1 :                                 if !bounds.End.IsUpperBoundForInternalKey(v.cmp.Compare, meta.Largest) {
    1460           1 :                                         bounds.End = base.UserKeyExclusiveIf(meta.Largest.UserKey, meta.Largest.IsExclusiveSentinel())
    1461           1 :                                         restart = true
    1462           1 :                                 }
    1463             :                         }
    1464             : 
    1465           1 :                         if !restart {
    1466           1 :                                 // Construct a B-Tree containing only the matching items.
    1467           1 :                                 var tr btree
    1468           1 :                                 tr.cmp = v.Levels[level].tree.cmp
    1469           1 :                                 for i, meta := 0, l0Iter.First(); meta != nil; i, meta = i+1, l0Iter.Next() {
    1470           1 :                                         if selectedIndices[i] {
    1471           1 :                                                 err := tr.Insert(meta)
    1472           1 :                                                 if err != nil {
    1473           0 :                                                         panic(err)
    1474             :                                                 }
    1475             :                                         }
    1476             :                                 }
    1477           1 :                                 slice = newLevelSlice(tr.Iter())
    1478           1 :                                 // TODO(jackson): Avoid the oddity of constructing and
    1479           1 :                                 // immediately releasing a B-Tree. Make LevelSlice an
    1480           1 :                                 // interface?
    1481           1 :                                 tr.Release()
    1482           1 :                                 break
    1483             :                         }
    1484             :                         // Continue looping to retry the files that were not selected.
    1485             :                 }
    1486           1 :                 return slice
    1487             :         }
    1488             : 
    1489           1 :         return overlaps(v.Levels[level].Iter(), v.cmp.Compare, bounds)
    1490             : }
    1491             : 
    1492             : // IterAllLevelsAndSublevels calls fn with an iterator for each L0 sublevel
    1493             : // (from top to bottom), then once for each level below L0.
    1494           1 : func (v *Version) IterAllLevelsAndSublevels(fn func(it LevelIterator, level int, sublevel int)) {
    1495           1 :         for sublevel := len(v.L0SublevelFiles) - 1; sublevel >= 0; sublevel-- {
    1496           1 :                 fn(v.L0SublevelFiles[sublevel].Iter(), 0, sublevel)
    1497           1 :         }
    1498           1 :         for level := 1; level < NumLevels; level++ {
    1499           1 :                 fn(v.Levels[level].Iter(), level, invalidSublevel)
    1500           1 :         }
    1501             : }
    1502             : 
    1503             : // CheckOrdering checks that the files are consistent with respect to
    1504             : // increasing file numbers (for level 0 files) and increasing and non-
    1505             : // overlapping internal key ranges (for level non-0 files).
    1506           1 : func (v *Version) CheckOrdering() error {
    1507           1 :         for sublevel := len(v.L0SublevelFiles) - 1; sublevel >= 0; sublevel-- {
    1508           1 :                 sublevelIter := v.L0SublevelFiles[sublevel].Iter()
    1509           1 :                 if err := CheckOrdering(v.cmp.Compare, v.cmp.FormatKey, L0Sublevel(sublevel), sublevelIter); err != nil {
    1510           0 :                         return base.CorruptionErrorf("%s\n%s", err, v.DebugString())
    1511           0 :                 }
    1512             :         }
    1513             : 
    1514           1 :         for level, lm := range v.Levels {
    1515           1 :                 if err := CheckOrdering(v.cmp.Compare, v.cmp.FormatKey, Level(level), lm.Iter()); err != nil {
    1516           1 :                         return base.CorruptionErrorf("%s\n%s", err, v.DebugString())
    1517           1 :                 }
    1518             :         }
    1519           1 :         return nil
    1520             : }
    1521             : 
    1522             : // VersionList holds a list of versions. The versions are ordered from oldest
    1523             : // to newest.
    1524             : type VersionList struct {
    1525             :         mu   *sync.Mutex
    1526             :         root Version
    1527             : }
    1528             : 
    1529             : // Init initializes the version list.
    1530           1 : func (l *VersionList) Init(mu *sync.Mutex) {
    1531           1 :         l.mu = mu
    1532           1 :         l.root.next = &l.root
    1533           1 :         l.root.prev = &l.root
    1534           1 : }
    1535             : 
    1536             : // Empty returns true if the list is empty, and false otherwise.
    1537           1 : func (l *VersionList) Empty() bool {
    1538           1 :         return l.root.next == &l.root
    1539           1 : }
    1540             : 
    1541             : // Front returns the oldest version in the list. Note that this version is only
    1542             : // valid if Empty() returns true.
    1543           1 : func (l *VersionList) Front() *Version {
    1544           1 :         return l.root.next
    1545           1 : }
    1546             : 
    1547             : // Back returns the newest version in the list. Note that this version is only
    1548             : // valid if Empty() returns true.
    1549           1 : func (l *VersionList) Back() *Version {
    1550           1 :         return l.root.prev
    1551           1 : }
    1552             : 
    1553             : // PushBack adds a new version to the back of the list. This new version
    1554             : // becomes the "newest" version in the list.
    1555           1 : func (l *VersionList) PushBack(v *Version) {
    1556           1 :         if v.list != nil || v.prev != nil || v.next != nil {
    1557           0 :                 panic("pebble: version list is inconsistent")
    1558             :         }
    1559           1 :         v.prev = l.root.prev
    1560           1 :         v.prev.next = v
    1561           1 :         v.next = &l.root
    1562           1 :         v.next.prev = v
    1563           1 :         v.list = l
    1564           1 :         // Let L0Sublevels on the second newest version get GC'd, as it is no longer
    1565           1 :         // necessary. See the comment in Version.
    1566           1 :         v.prev.L0Sublevels = nil
    1567             : }
    1568             : 
    1569             : // Remove removes the specified version from the list.
    1570           1 : func (l *VersionList) Remove(v *Version) {
    1571           1 :         if v == &l.root {
    1572           0 :                 panic("pebble: cannot remove version list root node")
    1573             :         }
    1574           1 :         if v.list != l {
    1575           0 :                 panic("pebble: version list is inconsistent")
    1576             :         }
    1577           1 :         v.prev.next = v.next
    1578           1 :         v.next.prev = v.prev
    1579           1 :         v.next = nil // avoid memory leaks
    1580           1 :         v.prev = nil // avoid memory leaks
    1581           1 :         v.list = nil // avoid memory leaks
    1582             : }
    1583             : 
    1584             : // CheckOrdering checks that the files are consistent with respect to
    1585             : // seqnums (for level 0 files -- see detailed comment below) and increasing and non-
    1586             : // overlapping internal key ranges (for non-level 0 files).
    1587           1 : func CheckOrdering(cmp Compare, format base.FormatKey, level Level, files LevelIterator) error {
    1588           1 :         // The invariants to check for L0 sublevels are the same as the ones to
    1589           1 :         // check for all other levels. However, if L0 is not organized into
    1590           1 :         // sublevels, or if all L0 files are being passed in, we do the legacy L0
    1591           1 :         // checks, defined in the detailed comment below.
    1592           1 :         if level == Level(0) {
    1593           1 :                 // We have 2 kinds of files:
    1594           1 :                 // - Files with exactly one sequence number: these could be either ingested files
    1595           1 :                 //   or flushed files. We cannot tell the difference between them based on FileMetadata,
    1596           1 :                 //   so our consistency checking here uses the weaker checks assuming it is a narrow
    1597           1 :                 //   flushed file. We cannot error on ingested files having sequence numbers coincident
    1598           1 :                 //   with flushed files as the seemingly ingested file could just be a flushed file
    1599           1 :                 //   with just one key in it which is a truncated range tombstone sharing sequence numbers
    1600           1 :                 //   with other files in the same flush.
    1601           1 :                 // - Files with multiple sequence numbers: these are necessarily flushed files.
    1602           1 :                 //
    1603           1 :                 // Three cases of overlapping sequence numbers:
    1604           1 :                 // Case 1:
    1605           1 :                 // An ingested file contained in the sequence numbers of the flushed file -- it must be
    1606           1 :                 // fully contained (not coincident with either end of the flushed file) since the memtable
    1607           1 :                 // must have been at [a, b-1] (where b > a) when the ingested file was assigned sequence
    1608           1 :                 // num b, and the memtable got a subsequent update that was given sequence num b+1, before
    1609           1 :                 // being flushed.
    1610           1 :                 //
    1611           1 :                 // So a sequence [1000, 1000] [1002, 1002] [1000, 2000] is invalid since the first and
    1612           1 :                 // third file are inconsistent with each other. So comparing adjacent files is insufficient
    1613           1 :                 // for consistency checking.
    1614           1 :                 //
    1615           1 :                 // Visually we have something like
    1616           1 :                 // x------y x-----------yx-------------y (flushed files where x, y are the endpoints)
    1617           1 :                 //     y       y  y        y             (y's represent ingested files)
    1618           1 :                 // And these are ordered in increasing order of y. Note that y's must be unique.
    1619           1 :                 //
    1620           1 :                 // Case 2:
    1621           1 :                 // A flushed file that did not overlap in keys with any file in any level, but does overlap
    1622           1 :                 // in the file key intervals. This file is placed in L0 since it overlaps in the file
    1623           1 :                 // key intervals but since it has no overlapping data, it is assigned a sequence number
    1624           1 :                 // of 0 in RocksDB. We handle this case for compatibility with RocksDB.
    1625           1 :                 //
    1626           1 :                 // Case 3:
    1627           1 :                 // A sequence of flushed files that overlap in sequence numbers with one another,
    1628           1 :                 // but do not overlap in keys inside the sstables. These files correspond to
    1629           1 :                 // partitioned flushes or the results of intra-L0 compactions of partitioned
    1630           1 :                 // flushes.
    1631           1 :                 //
    1632           1 :                 // Since these types of SSTables violate most other sequence number
    1633           1 :                 // overlap invariants, and handling this case is important for compatibility
    1634           1 :                 // with future versions of pebble, this method relaxes most L0 invariant
    1635           1 :                 // checks.
    1636           1 : 
    1637           1 :                 var prev *FileMetadata
    1638           1 :                 for f := files.First(); f != nil; f, prev = files.Next(), f {
    1639           1 :                         if prev == nil {
    1640           1 :                                 continue
    1641             :                         }
    1642             :                         // Validate that the sorting is sane.
    1643           1 :                         if prev.LargestSeqNum == 0 && f.LargestSeqNum == prev.LargestSeqNum {
    1644           1 :                                 // Multiple files satisfying case 2 mentioned above.
    1645           1 :                         } else if !prev.lessSeqNum(f) {
    1646           1 :                                 return base.CorruptionErrorf("L0 files %s and %s are not properly ordered: <#%d-#%d> vs <#%d-#%d>",
    1647           1 :                                         errors.Safe(prev.FileNum), errors.Safe(f.FileNum),
    1648           1 :                                         errors.Safe(prev.SmallestSeqNum), errors.Safe(prev.LargestSeqNum),
    1649           1 :                                         errors.Safe(f.SmallestSeqNum), errors.Safe(f.LargestSeqNum))
    1650           1 :                         }
    1651             :                 }
    1652           1 :         } else {
    1653           1 :                 var prev *FileMetadata
    1654           1 :                 for f := files.First(); f != nil; f, prev = files.Next(), f {
    1655           1 :                         if err := f.Validate(cmp, format); err != nil {
    1656           1 :                                 return errors.Wrapf(err, "%s ", level)
    1657           1 :                         }
    1658           1 :                         if prev != nil {
    1659           1 :                                 if prev.cmpSmallestKey(f, cmp) >= 0 {
    1660           1 :                                         return base.CorruptionErrorf("%s files %s and %s are not properly ordered: [%s-%s] vs [%s-%s]",
    1661           1 :                                                 errors.Safe(level), errors.Safe(prev.FileNum), errors.Safe(f.FileNum),
    1662           1 :                                                 prev.Smallest.Pretty(format), prev.Largest.Pretty(format),
    1663           1 :                                                 f.Smallest.Pretty(format), f.Largest.Pretty(format))
    1664           1 :                                 }
    1665             : 
    1666             :                                 // In all supported format major version, split user keys are
    1667             :                                 // prohibited, so both files cannot contain keys with the same user
    1668             :                                 // keys. If the bounds have the same user key, the previous file's
    1669             :                                 // boundary must have a Trailer indicating that it's exclusive.
    1670           1 :                                 if v := cmp(prev.Largest.UserKey, f.Smallest.UserKey); v > 0 || (v == 0 && !prev.Largest.IsExclusiveSentinel()) {
    1671           1 :                                         return base.CorruptionErrorf("%s files %s and %s have overlapping ranges: [%s-%s] vs [%s-%s]",
    1672           1 :                                                 errors.Safe(level), errors.Safe(prev.FileNum), errors.Safe(f.FileNum),
    1673           1 :                                                 prev.Smallest.Pretty(format), prev.Largest.Pretty(format),
    1674           1 :                                                 f.Smallest.Pretty(format), f.Largest.Pretty(format))
    1675           1 :                                 }
    1676             :                         }
    1677             :                 }
    1678             :         }
    1679           1 :         return nil
    1680             : }

Generated by: LCOV version 1.14