LCOV - code coverage report
Current view: top level - pebble/sstable - writer.go (source / functions) Hit Total Coverage
Test: 2024-04-02 08:15Z eae0efc2 - tests + meta.lcov Lines: 1257 1409 89.2 %
Date: 2024-04-02 08:16:45 Functions: 0 0 -

          Line data    Source code
       1             : // Copyright 2011 The LevelDB-Go and Pebble Authors. All rights reserved. Use
       2             : // of this source code is governed by a BSD-style license that can be found in
       3             : // the LICENSE file.
       4             : 
       5             : package sstable
       6             : 
       7             : import (
       8             :         "bytes"
       9             :         "encoding/binary"
      10             :         "fmt"
      11             :         "math"
      12             :         "runtime"
      13             :         "sort"
      14             :         "sync"
      15             : 
      16             :         "github.com/cespare/xxhash/v2"
      17             :         "github.com/cockroachdb/errors"
      18             :         "github.com/cockroachdb/pebble/internal/base"
      19             :         "github.com/cockroachdb/pebble/internal/bytealloc"
      20             :         "github.com/cockroachdb/pebble/internal/cache"
      21             :         "github.com/cockroachdb/pebble/internal/crc"
      22             :         "github.com/cockroachdb/pebble/internal/invariants"
      23             :         "github.com/cockroachdb/pebble/internal/keyspan"
      24             :         "github.com/cockroachdb/pebble/internal/private"
      25             :         "github.com/cockroachdb/pebble/internal/rangekey"
      26             :         "github.com/cockroachdb/pebble/objstorage"
      27             : )
      28             : 
      29             : // encodedBHPEstimatedSize estimates the size of the encoded BlockHandleWithProperties.
      30             : // It would also be nice to account for the length of the data block properties here,
      31             : // but isn't necessary since this is an estimate.
      32             : const encodedBHPEstimatedSize = binary.MaxVarintLen64 * 2
      33             : 
      34             : var errWriterClosed = errors.New("pebble: writer is closed")
      35             : 
      36             : // WriterMetadata holds info about a finished sstable.
      37             : type WriterMetadata struct {
      38             :         Size          uint64
      39             :         SmallestPoint InternalKey
      40             :         // LargestPoint, LargestRangeKey, LargestRangeDel should not be accessed
      41             :         // before Writer.Close is called, because they may only be set on
      42             :         // Writer.Close.
      43             :         LargestPoint     InternalKey
      44             :         SmallestRangeDel InternalKey
      45             :         LargestRangeDel  InternalKey
      46             :         SmallestRangeKey InternalKey
      47             :         LargestRangeKey  InternalKey
      48             :         HasPointKeys     bool
      49             :         HasRangeDelKeys  bool
      50             :         HasRangeKeys     bool
      51             :         SmallestSeqNum   uint64
      52             :         LargestSeqNum    uint64
      53             :         Properties       Properties
      54             : }
      55             : 
      56             : // SetSmallestPointKey sets the smallest point key to the given key.
      57             : // NB: this method set the "absolute" smallest point key. Any existing key is
      58             : // overridden.
      59           2 : func (m *WriterMetadata) SetSmallestPointKey(k InternalKey) {
      60           2 :         m.SmallestPoint = k
      61           2 :         m.HasPointKeys = true
      62           2 : }
      63             : 
      64             : // SetSmallestRangeDelKey sets the smallest rangedel key to the given key.
      65             : // NB: this method set the "absolute" smallest rangedel key. Any existing key is
      66             : // overridden.
      67           2 : func (m *WriterMetadata) SetSmallestRangeDelKey(k InternalKey) {
      68           2 :         m.SmallestRangeDel = k
      69           2 :         m.HasRangeDelKeys = true
      70           2 : }
      71             : 
      72             : // SetSmallestRangeKey sets the smallest range key to the given key.
      73             : // NB: this method set the "absolute" smallest range key. Any existing key is
      74             : // overridden.
      75           2 : func (m *WriterMetadata) SetSmallestRangeKey(k InternalKey) {
      76           2 :         m.SmallestRangeKey = k
      77           2 :         m.HasRangeKeys = true
      78           2 : }
      79             : 
      80             : // SetLargestPointKey sets the largest point key to the given key.
      81             : // NB: this method set the "absolute" largest point key. Any existing key is
      82             : // overridden.
      83           2 : func (m *WriterMetadata) SetLargestPointKey(k InternalKey) {
      84           2 :         m.LargestPoint = k
      85           2 :         m.HasPointKeys = true
      86           2 : }
      87             : 
      88             : // SetLargestRangeDelKey sets the largest rangedel key to the given key.
      89             : // NB: this method set the "absolute" largest rangedel key. Any existing key is
      90             : // overridden.
      91           2 : func (m *WriterMetadata) SetLargestRangeDelKey(k InternalKey) {
      92           2 :         m.LargestRangeDel = k
      93           2 :         m.HasRangeDelKeys = true
      94           2 : }
      95             : 
      96             : // SetLargestRangeKey sets the largest range key to the given key.
      97             : // NB: this method set the "absolute" largest range key. Any existing key is
      98             : // overridden.
      99           2 : func (m *WriterMetadata) SetLargestRangeKey(k InternalKey) {
     100           2 :         m.LargestRangeKey = k
     101           2 :         m.HasRangeKeys = true
     102           2 : }
     103             : 
     104           2 : func (m *WriterMetadata) updateSeqNum(seqNum uint64) {
     105           2 :         if m.SmallestSeqNum > seqNum {
     106           2 :                 m.SmallestSeqNum = seqNum
     107           2 :         }
     108           2 :         if m.LargestSeqNum < seqNum {
     109           2 :                 m.LargestSeqNum = seqNum
     110           2 :         }
     111             : }
     112             : 
     113             : // Writer is a table writer.
     114             : type Writer struct {
     115             :         writable objstorage.Writable
     116             :         meta     WriterMetadata
     117             :         err      error
     118             :         // cacheID and fileNum are used to remove blocks written to the sstable from
     119             :         // the cache, providing a defense in depth against bugs which cause cache
     120             :         // collisions.
     121             :         cacheID uint64
     122             :         fileNum base.DiskFileNum
     123             :         // The following fields are copied from Options.
     124             :         blockSize               int
     125             :         blockSizeThreshold      int
     126             :         indexBlockSize          int
     127             :         indexBlockSizeThreshold int
     128             :         compare                 Compare
     129             :         split                   Split
     130             :         formatKey               base.FormatKey
     131             :         compression             Compression
     132             :         separator               Separator
     133             :         successor               Successor
     134             :         tableFormat             TableFormat
     135             :         isStrictObsolete        bool
     136             :         writingToLowestLevel    bool
     137             :         cache                   *cache.Cache
     138             :         restartInterval         int
     139             :         checksumType            ChecksumType
     140             :         // disableKeyOrderChecks disables the checks that keys are added to an
     141             :         // sstable in order. It is intended for internal use only in the construction
     142             :         // of invalid sstables for testing. See tool/make_test_sstables.go.
     143             :         disableKeyOrderChecks bool
     144             :         // With two level indexes, the index/filter of a SST file is partitioned into
     145             :         // smaller blocks with an additional top-level index on them. When reading an
     146             :         // index/filter, only the top-level index is loaded into memory. The two level
     147             :         // index/filter then uses the top-level index to load on demand into the block
     148             :         // cache the partitions that are required to perform the index/filter query.
     149             :         //
     150             :         // Two level indexes are enabled automatically when there is more than one
     151             :         // index block.
     152             :         //
     153             :         // This is useful when there are very large index blocks, which generally occurs
     154             :         // with the usage of large keys. With large index blocks, the index blocks fight
     155             :         // the data blocks for block cache space and the index blocks are likely to be
     156             :         // re-read many times from the disk. The top level index, which has a much
     157             :         // smaller memory footprint, can be used to prevent the entire index block from
     158             :         // being loaded into the block cache.
     159             :         twoLevelIndex bool
     160             :         // Internal flag to allow creation of range-del-v1 format blocks. Only used
     161             :         // for testing. Note that v2 format blocks are backwards compatible with v1
     162             :         // format blocks.
     163             :         rangeDelV1Format    bool
     164             :         indexBlock          *indexBlockBuf
     165             :         rangeDelBlock       blockWriter
     166             :         rangeKeyBlock       blockWriter
     167             :         topLevelIndexBlock  blockWriter
     168             :         props               Properties
     169             :         blockPropCollectors []BlockPropertyCollector
     170             :         obsoleteCollector   obsoleteKeyBlockPropertyCollector
     171             :         blockPropsEncoder   blockPropertiesEncoder
     172             :         // filter accumulates the filter block. If populated, the filter ingests
     173             :         // either the output of w.split (i.e. a prefix extractor) if w.split is not
     174             :         // nil, or the full keys otherwise.
     175             :         filter          filterWriter
     176             :         indexPartitions []indexBlockAndBlockProperties
     177             : 
     178             :         // indexBlockAlloc is used to bulk-allocate byte slices used to store index
     179             :         // blocks in indexPartitions. These live until the index finishes.
     180             :         indexBlockAlloc []byte
     181             :         // indexSepAlloc is used to bulk-allocate index block separator slices stored
     182             :         // in indexPartitions. These live until the index finishes.
     183             :         indexSepAlloc bytealloc.A
     184             : 
     185             :         // To allow potentially overlapping (i.e. un-fragmented) range keys spans to
     186             :         // be added to the Writer, a keyspan.Fragmenter is used to retain the keys
     187             :         // and values, emitting fragmented, coalesced spans as appropriate. Range
     188             :         // keys must be added in order of their start user-key.
     189             :         fragmenter        keyspan.Fragmenter
     190             :         rangeKeyEncoder   rangekey.Encoder
     191             :         rangeKeysBySuffix keyspan.KeysBySuffix
     192             :         rangeKeySpan      keyspan.Span
     193             :         rkBuf             []byte
     194             :         // dataBlockBuf consists of the state which is currently owned by and used by
     195             :         // the Writer client goroutine. This state can be handed off to other goroutines.
     196             :         dataBlockBuf *dataBlockBuf
     197             :         // blockBuf consists of the state which is owned by and used by the Writer client
     198             :         // goroutine.
     199             :         blockBuf blockBuf
     200             : 
     201             :         coordination coordinationState
     202             : 
     203             :         // Information (other than the byte slice) about the last point key, to
     204             :         // avoid extracting it again.
     205             :         lastPointKeyInfo pointKeyInfo
     206             : 
     207             :         // For value blocks.
     208             :         shortAttributeExtractor   base.ShortAttributeExtractor
     209             :         requiredInPlaceValueBound UserKeyPrefixBound
     210             :         // When w.tableFormat >= TableFormatPebblev3, valueBlockWriter is nil iff
     211             :         // WriterOptions.DisableValueBlocks was true.
     212             :         valueBlockWriter *valueBlockWriter
     213             : }
     214             : 
     215             : type pointKeyInfo struct {
     216             :         trailer uint64
     217             :         // Only computed when w.valueBlockWriter is not nil.
     218             :         userKeyLen int
     219             :         // prefixLen uses w.split, if not nil. Only computed when w.valueBlockWriter
     220             :         // is not nil.
     221             :         prefixLen int
     222             :         // True iff the point was marked obsolete.
     223             :         isObsolete bool
     224             : }
     225             : 
     226             : type coordinationState struct {
     227             :         parallelismEnabled bool
     228             : 
     229             :         // writeQueue is used to write data blocks to disk. The writeQueue is primarily
     230             :         // used to maintain the order in which data blocks must be written to disk. For
     231             :         // this reason, every single data block write must be done through the writeQueue.
     232             :         writeQueue *writeQueue
     233             : 
     234             :         sizeEstimate dataBlockEstimates
     235             : }
     236             : 
     237           2 : func (c *coordinationState) init(parallelismEnabled bool, writer *Writer) {
     238           2 :         c.parallelismEnabled = parallelismEnabled
     239           2 :         // useMutex is false regardless of parallelismEnabled, because we do not do
     240           2 :         // parallel compression yet.
     241           2 :         c.sizeEstimate.useMutex = false
     242           2 : 
     243           2 :         // writeQueueSize determines the size of the write queue, or the number
     244           2 :         // of items which can be added to the queue without blocking. By default, we
     245           2 :         // use a writeQueue size of 0, since we won't be doing any block writes in
     246           2 :         // parallel.
     247           2 :         writeQueueSize := 0
     248           2 :         if parallelismEnabled {
     249           2 :                 writeQueueSize = runtime.GOMAXPROCS(0)
     250           2 :         }
     251           2 :         c.writeQueue = newWriteQueue(writeQueueSize, writer)
     252             : }
     253             : 
     254             : // sizeEstimate is a general purpose helper for estimating two kinds of sizes:
     255             : // A. The compressed sstable size, which is useful for deciding when to start
     256             : //
     257             : //      a new sstable during flushes or compactions. In practice, we use this in
     258             : //      estimating the data size (excluding the index).
     259             : //
     260             : // B. The size of index blocks to decide when to start a new index block.
     261             : //
     262             : // There are some terminology peculiarities which are due to the origin of
     263             : // sizeEstimate for use case A with parallel compression enabled (for which
     264             : // the code has not been merged). Specifically this relates to the terms
     265             : // "written" and "compressed".
     266             : //   - The notion of "written" for case A is sufficiently defined by saying that
     267             : //     the data block is compressed. Waiting for the actual data block write to
     268             : //     happen can result in unnecessary estimation, when we already know how big
     269             : //     it will be in compressed form. Additionally, with the forthcoming value
     270             : //     blocks containing older MVCC values, these compressed block will be held
     271             : //     in-memory until late in the sstable writing, and we do want to accurately
     272             : //     account for them without waiting for the actual write.
     273             : //     For case B, "written" means that the index entry has been fully
     274             : //     generated, and has been added to the uncompressed block buffer for that
     275             : //     index block. It does not include actually writing a potentially
     276             : //     compressed index block.
     277             : //   - The notion of "compressed" is to differentiate between a "inflight" size
     278             : //     and the actual size, and is handled via computing a compression ratio
     279             : //     observed so far (defaults to 1).
     280             : //     For case A, this is actual data block compression, so the "inflight" size
     281             : //     is uncompressed blocks (that are no longer being written to) and the
     282             : //     "compressed" size is after they have been compressed.
     283             : //     For case B the inflight size is for a key-value pair in the index for
     284             : //     which the value size (the encoded size of the BlockHandleWithProperties)
     285             : //     is not accurately known, while the compressed size is the size of that
     286             : //     entry when it has been added to the (in-progress) index ssblock.
     287             : //
     288             : // Usage: To update state, one can optionally provide an inflight write value
     289             : // using addInflight (used for case B). When something is "written" the state
     290             : // can be updated using either writtenWithDelta or writtenWithTotal, which
     291             : // provide the actual delta size or the total size (latter must be
     292             : // monotonically non-decreasing). If there were no calls to addInflight, there
     293             : // isn't any real estimation happening here. So case A does not do any real
     294             : // estimation. However, when we introduce parallel compression, there will be
     295             : // estimation in that the client goroutine will call addInFlight and the
     296             : // compression goroutines will call writtenWithDelta.
     297             : type sizeEstimate struct {
     298             :         // emptySize is the size when there is no inflight data, and numEntries is 0.
     299             :         // emptySize is constant once set.
     300             :         emptySize uint64
     301             : 
     302             :         // inflightSize is the estimated size of some inflight data which hasn't
     303             :         // been written yet.
     304             :         inflightSize uint64
     305             : 
     306             :         // totalSize is the total size of the data which has already been written.
     307             :         totalSize uint64
     308             : 
     309             :         // numWrittenEntries is the total number of entries which have already been
     310             :         // written.
     311             :         numWrittenEntries uint64
     312             :         // numInflightEntries is the total number of entries which are inflight, and
     313             :         // haven't been written.
     314             :         numInflightEntries uint64
     315             : 
     316             :         // maxEstimatedSize stores the maximum result returned from sizeEstimate.size.
     317             :         // It ensures that values returned from subsequent calls to Writer.EstimatedSize
     318             :         // never decrease.
     319             :         maxEstimatedSize uint64
     320             : 
     321             :         // We assume that the entries added to the sizeEstimate can be compressed.
     322             :         // For this reason, we keep track of a compressedSize and an uncompressedSize
     323             :         // to compute a compression ratio for the inflight entries. If the entries
     324             :         // aren't being compressed, then compressedSize and uncompressedSize must be
     325             :         // equal.
     326             :         compressedSize   uint64
     327             :         uncompressedSize uint64
     328             : }
     329             : 
     330           2 : func (s *sizeEstimate) init(emptySize uint64) {
     331           2 :         s.emptySize = emptySize
     332           2 : }
     333             : 
     334           2 : func (s *sizeEstimate) size() uint64 {
     335           2 :         ratio := float64(1)
     336           2 :         if s.uncompressedSize > 0 {
     337           2 :                 ratio = float64(s.compressedSize) / float64(s.uncompressedSize)
     338           2 :         }
     339           2 :         estimatedInflightSize := uint64(float64(s.inflightSize) * ratio)
     340           2 :         total := s.totalSize + estimatedInflightSize
     341           2 :         if total > s.maxEstimatedSize {
     342           2 :                 s.maxEstimatedSize = total
     343           2 :         } else {
     344           2 :                 total = s.maxEstimatedSize
     345           2 :         }
     346             : 
     347           2 :         if total == 0 {
     348           2 :                 return s.emptySize
     349           2 :         }
     350             : 
     351           2 :         return total
     352             : }
     353             : 
     354           2 : func (s *sizeEstimate) numTotalEntries() uint64 {
     355           2 :         return s.numWrittenEntries + s.numInflightEntries
     356           2 : }
     357             : 
     358           2 : func (s *sizeEstimate) addInflight(size int) {
     359           2 :         s.numInflightEntries++
     360           2 :         s.inflightSize += uint64(size)
     361           2 : }
     362             : 
     363           2 : func (s *sizeEstimate) writtenWithTotal(newTotalSize uint64, inflightSize int) {
     364           2 :         finalEntrySize := int(newTotalSize - s.totalSize)
     365           2 :         s.writtenWithDelta(finalEntrySize, inflightSize)
     366           2 : }
     367             : 
     368           2 : func (s *sizeEstimate) writtenWithDelta(finalEntrySize int, inflightSize int) {
     369           2 :         if inflightSize > 0 {
     370           2 :                 // This entry was previously inflight, so we should decrement inflight
     371           2 :                 // entries and update the "compression" stats for future estimation.
     372           2 :                 s.numInflightEntries--
     373           2 :                 s.inflightSize -= uint64(inflightSize)
     374           2 :                 s.uncompressedSize += uint64(inflightSize)
     375           2 :                 s.compressedSize += uint64(finalEntrySize)
     376           2 :         }
     377           2 :         s.numWrittenEntries++
     378           2 :         s.totalSize += uint64(finalEntrySize)
     379             : }
     380             : 
     381           2 : func (s *sizeEstimate) clear() {
     382           2 :         *s = sizeEstimate{emptySize: s.emptySize}
     383           2 : }
     384             : 
     385             : type indexBlockBuf struct {
     386             :         // block will only be accessed from the writeQueue.
     387             :         block blockWriter
     388             : 
     389             :         size struct {
     390             :                 useMutex bool
     391             :                 mu       sync.Mutex
     392             :                 estimate sizeEstimate
     393             :         }
     394             : 
     395             :         // restartInterval matches indexBlockBuf.block.restartInterval. We store it twice, because the `block`
     396             :         // must only be accessed from the writeQueue goroutine.
     397             :         restartInterval int
     398             : }
     399             : 
     400           2 : func (i *indexBlockBuf) clear() {
     401           2 :         i.block.clear()
     402           2 :         if i.size.useMutex {
     403           2 :                 i.size.mu.Lock()
     404           2 :                 defer i.size.mu.Unlock()
     405           2 :         }
     406           2 :         i.size.estimate.clear()
     407           2 :         i.restartInterval = 0
     408             : }
     409             : 
     410             : var indexBlockBufPool = sync.Pool{
     411           2 :         New: func() interface{} {
     412           2 :                 return &indexBlockBuf{}
     413           2 :         },
     414             : }
     415             : 
     416             : const indexBlockRestartInterval = 1
     417             : 
     418           2 : func newIndexBlockBuf(useMutex bool) *indexBlockBuf {
     419           2 :         i := indexBlockBufPool.Get().(*indexBlockBuf)
     420           2 :         i.size.useMutex = useMutex
     421           2 :         i.restartInterval = indexBlockRestartInterval
     422           2 :         i.block.restartInterval = indexBlockRestartInterval
     423           2 :         i.size.estimate.init(emptyBlockSize)
     424           2 :         return i
     425           2 : }
     426             : 
     427             : func (i *indexBlockBuf) shouldFlush(
     428             :         sep InternalKey, valueLen, targetBlockSize, sizeThreshold int,
     429           2 : ) bool {
     430           2 :         if i.size.useMutex {
     431           2 :                 i.size.mu.Lock()
     432           2 :                 defer i.size.mu.Unlock()
     433           2 :         }
     434             : 
     435           2 :         nEntries := i.size.estimate.numTotalEntries()
     436           2 :         return shouldFlush(
     437           2 :                 sep, valueLen, i.restartInterval, int(i.size.estimate.size()),
     438           2 :                 int(nEntries), targetBlockSize, sizeThreshold)
     439             : }
     440             : 
     441           2 : func (i *indexBlockBuf) add(key InternalKey, value []byte, inflightSize int) {
     442           2 :         i.block.add(key, value)
     443           2 :         size := i.block.estimatedSize()
     444           2 :         if i.size.useMutex {
     445           2 :                 i.size.mu.Lock()
     446           2 :                 defer i.size.mu.Unlock()
     447           2 :         }
     448           2 :         i.size.estimate.writtenWithTotal(uint64(size), inflightSize)
     449             : }
     450             : 
     451           2 : func (i *indexBlockBuf) finish() []byte {
     452           2 :         b := i.block.finish()
     453           2 :         return b
     454           2 : }
     455             : 
     456           2 : func (i *indexBlockBuf) addInflight(inflightSize int) {
     457           2 :         if i.size.useMutex {
     458           2 :                 i.size.mu.Lock()
     459           2 :                 defer i.size.mu.Unlock()
     460           2 :         }
     461           2 :         i.size.estimate.addInflight(inflightSize)
     462             : }
     463             : 
     464           2 : func (i *indexBlockBuf) estimatedSize() uint64 {
     465           2 :         if i.size.useMutex {
     466           2 :                 i.size.mu.Lock()
     467           2 :                 defer i.size.mu.Unlock()
     468           2 :         }
     469             : 
     470             :         // Make sure that the size estimation works as expected when parallelism
     471             :         // is disabled.
     472           2 :         if invariants.Enabled && !i.size.useMutex {
     473           2 :                 if i.size.estimate.inflightSize != 0 {
     474           0 :                         panic("unexpected inflight entry in index block size estimation")
     475             :                 }
     476             : 
     477             :                 // NB: The i.block should only be accessed from the writeQueue goroutine,
     478             :                 // when parallelism is enabled. We break that invariant here, but that's
     479             :                 // okay since parallelism is disabled.
     480           2 :                 if i.size.estimate.size() != uint64(i.block.estimatedSize()) {
     481           0 :                         panic("index block size estimation sans parallelism is incorrect")
     482             :                 }
     483             :         }
     484           2 :         return i.size.estimate.size()
     485             : }
     486             : 
     487             : // sizeEstimate is used for sstable size estimation. sizeEstimate can be
     488             : // accessed by the Writer client and compressionQueue goroutines. Fields
     489             : // should only be read/updated through the functions defined on the
     490             : // *sizeEstimate type.
     491             : type dataBlockEstimates struct {
     492             :         // If we don't do block compression in parallel, then we don't need to take
     493             :         // the performance hit of synchronizing using this mutex.
     494             :         useMutex bool
     495             :         mu       sync.Mutex
     496             : 
     497             :         estimate sizeEstimate
     498             : }
     499             : 
     500             : // inflightSize is the uncompressed block size estimate which has been
     501             : // previously provided to addInflightDataBlock(). If addInflightDataBlock()
     502             : // has not been called, this must be set to 0. compressedSize is the
     503             : // compressed size of the block.
     504           2 : func (d *dataBlockEstimates) dataBlockCompressed(compressedSize int, inflightSize int) {
     505           2 :         if d.useMutex {
     506           0 :                 d.mu.Lock()
     507           0 :                 defer d.mu.Unlock()
     508           0 :         }
     509           2 :         d.estimate.writtenWithDelta(compressedSize+blockTrailerLen, inflightSize)
     510             : }
     511             : 
     512             : // size is an estimated size of datablock data which has been written to disk.
     513           2 : func (d *dataBlockEstimates) size() uint64 {
     514           2 :         if d.useMutex {
     515           0 :                 d.mu.Lock()
     516           0 :                 defer d.mu.Unlock()
     517           0 :         }
     518             :         // If there is no parallel compression, there should not be any inflight bytes.
     519           2 :         if invariants.Enabled && !d.useMutex {
     520           2 :                 if d.estimate.inflightSize != 0 {
     521           0 :                         panic("unexpected inflight entry in data block size estimation")
     522             :                 }
     523             :         }
     524           2 :         return d.estimate.size()
     525             : }
     526             : 
     527             : // Avoid linter unused error.
     528             : var _ = (&dataBlockEstimates{}).addInflightDataBlock
     529             : 
     530             : // NB: unused since no parallel compression.
     531           0 : func (d *dataBlockEstimates) addInflightDataBlock(size int) {
     532           0 :         if d.useMutex {
     533           0 :                 d.mu.Lock()
     534           0 :                 defer d.mu.Unlock()
     535           0 :         }
     536             : 
     537           0 :         d.estimate.addInflight(size)
     538             : }
     539             : 
     540             : var writeTaskPool = sync.Pool{
     541           2 :         New: func() interface{} {
     542           2 :                 t := &writeTask{}
     543           2 :                 t.compressionDone = make(chan bool, 1)
     544           2 :                 return t
     545           2 :         },
     546             : }
     547             : 
     548             : type checksummer struct {
     549             :         checksumType ChecksumType
     550             :         xxHasher     *xxhash.Digest
     551             : }
     552             : 
     553           2 : func (c *checksummer) checksum(block []byte, blockType []byte) (checksum uint32) {
     554           2 :         // Calculate the checksum.
     555           2 :         switch c.checksumType {
     556           2 :         case ChecksumTypeCRC32c:
     557           2 :                 checksum = crc.New(block).Update(blockType).Value()
     558           1 :         case ChecksumTypeXXHash64:
     559           1 :                 if c.xxHasher == nil {
     560           1 :                         c.xxHasher = xxhash.New()
     561           1 :                 } else {
     562           1 :                         c.xxHasher.Reset()
     563           1 :                 }
     564           1 :                 c.xxHasher.Write(block)
     565           1 :                 c.xxHasher.Write(blockType)
     566           1 :                 checksum = uint32(c.xxHasher.Sum64())
     567           0 :         default:
     568           0 :                 panic(errors.Newf("unsupported checksum type: %d", c.checksumType))
     569             :         }
     570           2 :         return checksum
     571             : }
     572             : 
     573             : type blockBuf struct {
     574             :         // tmp is a scratch buffer, large enough to hold either footerLen bytes,
     575             :         // blockTrailerLen bytes, (5 * binary.MaxVarintLen64) bytes, and most
     576             :         // likely large enough for a block handle with properties.
     577             :         tmp [blockHandleLikelyMaxLen]byte
     578             :         // compressedBuf is the destination buffer for compression. It is re-used over the
     579             :         // lifetime of the blockBuf, avoiding the allocation of a temporary buffer for each block.
     580             :         compressedBuf []byte
     581             :         checksummer   checksummer
     582             : }
     583             : 
     584           2 : func (b *blockBuf) clear() {
     585           2 :         // We can't assign b.compressedBuf[:0] to compressedBuf because snappy relies
     586           2 :         // on the length of the buffer, and not the capacity to determine if it needs
     587           2 :         // to make an allocation.
     588           2 :         *b = blockBuf{
     589           2 :                 compressedBuf: b.compressedBuf, checksummer: b.checksummer,
     590           2 :         }
     591           2 : }
     592             : 
     593             : // A dataBlockBuf holds all the state required to compress and write a data block to disk.
     594             : // A dataBlockBuf begins its lifecycle owned by the Writer client goroutine. The Writer
     595             : // client goroutine adds keys to the sstable, writing directly into a dataBlockBuf's blockWriter
     596             : // until the block is full. Once a dataBlockBuf's block is full, the dataBlockBuf may be passed
     597             : // to other goroutines for compression and file I/O.
     598             : type dataBlockBuf struct {
     599             :         blockBuf
     600             :         dataBlock blockWriter
     601             : 
     602             :         // uncompressed is a reference to a byte slice which is owned by the dataBlockBuf. It is the
     603             :         // next byte slice to be compressed. The uncompressed byte slice will be backed by the
     604             :         // dataBlock.buf.
     605             :         uncompressed []byte
     606             :         // compressed is a reference to a byte slice which is owned by the dataBlockBuf. It is the
     607             :         // compressed byte slice which must be written to disk. The compressed byte slice may be
     608             :         // backed by the dataBlock.buf, or the dataBlockBuf.compressedBuf, depending on whether
     609             :         // we use the result of the compression.
     610             :         compressed []byte
     611             : 
     612             :         // We're making calls to BlockPropertyCollectors from the Writer client goroutine. We need to
     613             :         // pass the encoded block properties over to the write queue. To prevent copies, and allocations,
     614             :         // we give each dataBlockBuf, a blockPropertiesEncoder.
     615             :         blockPropsEncoder blockPropertiesEncoder
     616             :         // dataBlockProps is set when Writer.finishDataBlockProps is called. The dataBlockProps slice is
     617             :         // a shallow copy of the internal buffer of the dataBlockBuf.blockPropsEncoder.
     618             :         dataBlockProps []byte
     619             : 
     620             :         // sepScratch is reusable scratch space for computing separator keys.
     621             :         sepScratch []byte
     622             : }
     623             : 
     624           2 : func (d *dataBlockBuf) clear() {
     625           2 :         d.blockBuf.clear()
     626           2 :         d.dataBlock.clear()
     627           2 : 
     628           2 :         d.uncompressed = nil
     629           2 :         d.compressed = nil
     630           2 :         d.dataBlockProps = nil
     631           2 :         d.sepScratch = d.sepScratch[:0]
     632           2 : }
     633             : 
     634             : var dataBlockBufPool = sync.Pool{
     635           2 :         New: func() interface{} {
     636           2 :                 return &dataBlockBuf{}
     637           2 :         },
     638             : }
     639             : 
     640           2 : func newDataBlockBuf(restartInterval int, checksumType ChecksumType) *dataBlockBuf {
     641           2 :         d := dataBlockBufPool.Get().(*dataBlockBuf)
     642           2 :         d.dataBlock.restartInterval = restartInterval
     643           2 :         d.checksummer.checksumType = checksumType
     644           2 :         return d
     645           2 : }
     646             : 
     647           2 : func (d *dataBlockBuf) finish() {
     648           2 :         d.uncompressed = d.dataBlock.finish()
     649           2 : }
     650             : 
     651           2 : func (d *dataBlockBuf) compressAndChecksum(c Compression) {
     652           2 :         d.compressed = compressAndChecksum(d.uncompressed, c, &d.blockBuf)
     653           2 : }
     654             : 
     655             : func (d *dataBlockBuf) shouldFlush(
     656             :         key InternalKey, valueLen, targetBlockSize, sizeThreshold int,
     657           2 : ) bool {
     658           2 :         return shouldFlush(
     659           2 :                 key, valueLen, d.dataBlock.restartInterval, d.dataBlock.estimatedSize(),
     660           2 :                 d.dataBlock.nEntries, targetBlockSize, sizeThreshold)
     661           2 : }
     662             : 
     663             : type indexBlockAndBlockProperties struct {
     664             :         nEntries int
     665             :         // sep is the last key added to this block, for computing a separator later.
     666             :         sep        InternalKey
     667             :         properties []byte
     668             :         // block is the encoded block produced by blockWriter.finish.
     669             :         block []byte
     670             : }
     671             : 
     672             : // Set sets the value for the given key. The sequence number is set to 0.
     673             : // Intended for use to externally construct an sstable before ingestion into a
     674             : // DB. For a given Writer, the keys passed to Set must be in strictly increasing
     675             : // order.
     676             : //
     677             : // TODO(peter): untested
     678           2 : func (w *Writer) Set(key, value []byte) error {
     679           2 :         if w.err != nil {
     680           0 :                 return w.err
     681           0 :         }
     682           2 :         if w.isStrictObsolete {
     683           0 :                 return errors.Errorf("use AddWithForceObsolete")
     684           0 :         }
     685             :         // forceObsolete is false based on the assumption that no RANGEDELs in the
     686             :         // sstable delete the added points.
     687           2 :         return w.addPoint(base.MakeInternalKey(key, 0, InternalKeyKindSet), value, false)
     688             : }
     689             : 
     690             : // Delete deletes the value for the given key. The sequence number is set to
     691             : // 0. Intended for use to externally construct an sstable before ingestion into
     692             : // a DB.
     693             : //
     694             : // TODO(peter): untested
     695           1 : func (w *Writer) Delete(key []byte) error {
     696           1 :         if w.err != nil {
     697           0 :                 return w.err
     698           0 :         }
     699           1 :         if w.isStrictObsolete {
     700           0 :                 return errors.Errorf("use AddWithForceObsolete")
     701           0 :         }
     702             :         // forceObsolete is false based on the assumption that no RANGEDELs in the
     703             :         // sstable delete the added points.
     704           1 :         return w.addPoint(base.MakeInternalKey(key, 0, InternalKeyKindDelete), nil, false)
     705             : }
     706             : 
     707             : // DeleteRange deletes all of the keys (and values) in the range [start,end)
     708             : // (inclusive on start, exclusive on end). The sequence number is set to
     709             : // 0. Intended for use to externally construct an sstable before ingestion into
     710             : // a DB.
     711             : //
     712             : // TODO(peter): untested
     713           2 : func (w *Writer) DeleteRange(start, end []byte) error {
     714           2 :         if w.err != nil {
     715           0 :                 return w.err
     716           0 :         }
     717           2 :         return w.addTombstone(base.MakeInternalKey(start, 0, InternalKeyKindRangeDelete), end)
     718             : }
     719             : 
     720             : // Merge adds an action to the DB that merges the value at key with the new
     721             : // value. The details of the merge are dependent upon the configured merge
     722             : // operator. The sequence number is set to 0. Intended for use to externally
     723             : // construct an sstable before ingestion into a DB.
     724             : //
     725             : // TODO(peter): untested
     726           0 : func (w *Writer) Merge(key, value []byte) error {
     727           0 :         if w.err != nil {
     728           0 :                 return w.err
     729           0 :         }
     730           0 :         if w.isStrictObsolete {
     731           0 :                 return errors.Errorf("use AddWithForceObsolete")
     732           0 :         }
     733             :         // forceObsolete is false based on the assumption that no RANGEDELs in the
     734             :         // sstable that delete the added points. If the user configured this writer
     735             :         // to be strict-obsolete, addPoint will reject the addition of this MERGE.
     736           0 :         return w.addPoint(base.MakeInternalKey(key, 0, InternalKeyKindMerge), value, false)
     737             : }
     738             : 
     739             : // Add adds a key/value pair to the table being written. For a given Writer,
     740             : // the keys passed to Add must be in increasing order. The exception to this
     741             : // rule is range deletion tombstones. Range deletion tombstones need to be
     742             : // added ordered by their start key, but they can be added out of order from
     743             : // point entries. Additionally, range deletion tombstones must be fragmented
     744             : // (i.e. by keyspan.Fragmenter).
     745           2 : func (w *Writer) Add(key InternalKey, value []byte) error {
     746           2 :         if w.isStrictObsolete {
     747           0 :                 return errors.Errorf("use AddWithForceObsolete")
     748           0 :         }
     749           2 :         return w.AddWithForceObsolete(key, value, false)
     750             : }
     751             : 
     752             : // AddWithForceObsolete must be used when writing a strict-obsolete sstable.
     753             : //
     754             : // forceObsolete indicates whether the caller has determined that this key is
     755             : // obsolete even though it may be the latest point key for this userkey. This
     756             : // should be set to true for keys obsoleted by RANGEDELs, and is required for
     757             : // strict-obsolete sstables.
     758             : //
     759             : // Note that there are two properties, S1 and S2 (see comment in format.go)
     760             : // that strict-obsolete ssts must satisfy. S2, due to RANGEDELs, is solely the
     761             : // responsibility of the caller. S1 is solely the responsibility of the
     762             : // callee.
     763           2 : func (w *Writer) AddWithForceObsolete(key InternalKey, value []byte, forceObsolete bool) error {
     764           2 :         if w.err != nil {
     765           0 :                 return w.err
     766           0 :         }
     767             : 
     768           2 :         switch key.Kind() {
     769           2 :         case InternalKeyKindRangeDelete:
     770           2 :                 return w.addTombstone(key, value)
     771             :         case base.InternalKeyKindRangeKeyDelete,
     772             :                 base.InternalKeyKindRangeKeySet,
     773           0 :                 base.InternalKeyKindRangeKeyUnset:
     774           0 :                 w.err = errors.Errorf(
     775           0 :                         "pebble: range keys must be added via one of the RangeKey* functions")
     776           0 :                 return w.err
     777             :         }
     778           2 :         return w.addPoint(key, value, forceObsolete)
     779             : }
     780             : 
     781           2 : func (w *Writer) makeAddPointDecisionV2(key InternalKey) error {
     782           2 :         prevTrailer := w.lastPointKeyInfo.trailer
     783           2 :         w.lastPointKeyInfo.trailer = key.Trailer
     784           2 :         if w.dataBlockBuf.dataBlock.nEntries == 0 {
     785           2 :                 return nil
     786           2 :         }
     787           2 :         if !w.disableKeyOrderChecks {
     788           2 :                 prevPointUserKey := w.dataBlockBuf.dataBlock.getCurUserKey()
     789           2 :                 cmpUser := w.compare(prevPointUserKey, key.UserKey)
     790           2 :                 if cmpUser > 0 || (cmpUser == 0 && prevTrailer <= key.Trailer) {
     791           1 :                         return errors.Errorf(
     792           1 :                                 "pebble: keys must be added in strictly increasing order: %s, %s",
     793           1 :                                 InternalKey{UserKey: prevPointUserKey, Trailer: prevTrailer}.Pretty(w.formatKey),
     794           1 :                                 key.Pretty(w.formatKey))
     795           1 :                 }
     796             :         }
     797           2 :         return nil
     798             : }
     799             : 
     800             : // REQUIRES: at least one point has been written to the Writer.
     801           2 : func (w *Writer) getLastPointUserKey() []byte {
     802           2 :         if w.dataBlockBuf.dataBlock.nEntries == 0 {
     803           0 :                 panic(errors.AssertionFailedf("no point keys added to writer"))
     804             :         }
     805           2 :         return w.dataBlockBuf.dataBlock.getCurUserKey()
     806             : }
     807             : 
     808             : // REQUIRES: w.tableFormat >= TableFormatPebblev3
     809             : func (w *Writer) makeAddPointDecisionV3(
     810             :         key InternalKey, valueLen int,
     811           2 : ) (setHasSamePrefix bool, writeToValueBlock bool, isObsolete bool, err error) {
     812           2 :         prevPointKeyInfo := w.lastPointKeyInfo
     813           2 :         w.lastPointKeyInfo.userKeyLen = len(key.UserKey)
     814           2 :         w.lastPointKeyInfo.prefixLen = w.split(key.UserKey)
     815           2 :         w.lastPointKeyInfo.trailer = key.Trailer
     816           2 :         w.lastPointKeyInfo.isObsolete = false
     817           2 :         if !w.meta.HasPointKeys {
     818           2 :                 return false, false, false, nil
     819           2 :         }
     820           2 :         keyKind := base.TrailerKind(key.Trailer)
     821           2 :         prevPointUserKey := w.getLastPointUserKey()
     822           2 :         prevPointKey := InternalKey{UserKey: prevPointUserKey, Trailer: prevPointKeyInfo.trailer}
     823           2 :         prevKeyKind := base.TrailerKind(prevPointKeyInfo.trailer)
     824           2 :         considerWriteToValueBlock := prevKeyKind == InternalKeyKindSet &&
     825           2 :                 keyKind == InternalKeyKindSet
     826           2 :         if considerWriteToValueBlock && !w.requiredInPlaceValueBound.IsEmpty() {
     827           1 :                 keyPrefix := key.UserKey[:w.lastPointKeyInfo.prefixLen]
     828           1 :                 cmpUpper := w.compare(
     829           1 :                         w.requiredInPlaceValueBound.Upper, keyPrefix)
     830           1 :                 if cmpUpper <= 0 {
     831           1 :                         // Common case for CockroachDB. Make it empty since all future keys in
     832           1 :                         // this sstable will also have cmpUpper <= 0.
     833           1 :                         w.requiredInPlaceValueBound = UserKeyPrefixBound{}
     834           1 :                 } else if w.compare(keyPrefix, w.requiredInPlaceValueBound.Lower) >= 0 {
     835           1 :                         considerWriteToValueBlock = false
     836           1 :                 }
     837             :         }
     838             :         // cmpPrefix is initialized iff considerWriteToValueBlock.
     839           2 :         var cmpPrefix int
     840           2 :         var cmpUser int
     841           2 :         if considerWriteToValueBlock {
     842           2 :                 // Compare the prefixes.
     843           2 :                 cmpPrefix = w.compare(prevPointUserKey[:prevPointKeyInfo.prefixLen],
     844           2 :                         key.UserKey[:w.lastPointKeyInfo.prefixLen])
     845           2 :                 cmpUser = cmpPrefix
     846           2 :                 if cmpPrefix == 0 {
     847           2 :                         // Need to compare suffixes to compute cmpUser.
     848           2 :                         cmpUser = w.compare(prevPointUserKey[prevPointKeyInfo.prefixLen:],
     849           2 :                                 key.UserKey[w.lastPointKeyInfo.prefixLen:])
     850           2 :                 }
     851           2 :         } else {
     852           2 :                 cmpUser = w.compare(prevPointUserKey, key.UserKey)
     853           2 :         }
     854             :         // Ensure that no one adds a point key kind without considering the obsolete
     855             :         // handling for that kind.
     856           2 :         switch keyKind {
     857             :         case InternalKeyKindSet, InternalKeyKindSetWithDelete, InternalKeyKindMerge,
     858           2 :                 InternalKeyKindDelete, InternalKeyKindSingleDelete, InternalKeyKindDeleteSized:
     859           0 :         default:
     860           0 :                 panic(errors.AssertionFailedf("unexpected key kind %s", keyKind.String()))
     861             :         }
     862             :         // If same user key, then the current key is obsolete if any of the
     863             :         // following is true:
     864             :         // C1 The prev key was obsolete.
     865             :         // C2 The prev key was not a MERGE. When the previous key is a MERGE we must
     866             :         //    preserve SET* and MERGE since their values will be merged into the
     867             :         //    previous key. We also must preserve DEL* since there may be an older
     868             :         //    SET*/MERGE in a lower level that must not be merged with the MERGE --
     869             :         //    if we omit the DEL* that lower SET*/MERGE will become visible.
     870             :         //
     871             :         // Regardless of whether it is the same user key or not
     872             :         // C3 The current key is some kind of point delete, and we are writing to
     873             :         //    the lowest level, then it is also obsolete. The correctness of this
     874             :         //    relies on the same user key not spanning multiple sstables in a level.
     875             :         //
     876             :         // C1 ensures that for a user key there is at most one transition from
     877             :         // !obsolete to obsolete. Consider a user key k, for which the first n keys
     878             :         // are not obsolete. We consider the various value of n:
     879             :         //
     880             :         // n = 0: This happens due to forceObsolete being set by the caller, or due
     881             :         // to C3. forceObsolete must only be set due a RANGEDEL, and that RANGEDEL
     882             :         // must also delete all the lower seqnums for the same user key. C3 triggers
     883             :         // due to a point delete and that deletes all the lower seqnums for the same
     884             :         // user key.
     885             :         //
     886             :         // n = 1: This is the common case. It happens when the first key is not a
     887             :         // MERGE, or the current key is some kind of point delete.
     888             :         //
     889             :         // n > 1: This is due to a sequence of MERGE keys, potentially followed by a
     890             :         // single non-MERGE key.
     891           2 :         isObsoleteC1AndC2 := cmpUser == 0 &&
     892           2 :                 (prevPointKeyInfo.isObsolete || prevKeyKind != InternalKeyKindMerge)
     893           2 :         isObsoleteC3 := w.writingToLowestLevel &&
     894           2 :                 (keyKind == InternalKeyKindDelete || keyKind == InternalKeyKindSingleDelete ||
     895           2 :                         keyKind == InternalKeyKindDeleteSized)
     896           2 :         isObsolete = isObsoleteC1AndC2 || isObsoleteC3
     897           2 :         // TODO(sumeer): storing isObsolete SET and SETWITHDEL in value blocks is
     898           2 :         // possible, but requires some care in documenting and checking invariants.
     899           2 :         // There is code that assumes nothing in value blocks because of single MVCC
     900           2 :         // version (those should be ok). We have to ensure setHasSamePrefix is
     901           2 :         // correctly initialized here etc.
     902           2 : 
     903           2 :         if !w.disableKeyOrderChecks &&
     904           2 :                 (cmpUser > 0 || (cmpUser == 0 && prevPointKeyInfo.trailer <= key.Trailer)) {
     905           1 :                 return false, false, false, errors.Errorf(
     906           1 :                         "pebble: keys must be added in strictly increasing order: %s, %s",
     907           1 :                         prevPointKey.Pretty(w.formatKey), key.Pretty(w.formatKey))
     908           1 :         }
     909           2 :         if !considerWriteToValueBlock {
     910           2 :                 return false, false, isObsolete, nil
     911           2 :         }
     912             :         // NB: it is possible that cmpUser == 0, i.e., these two SETs have identical
     913             :         // user keys (because of an open snapshot). This should be the rare case.
     914           2 :         setHasSamePrefix = cmpPrefix == 0
     915           2 :         // Use of 0 here is somewhat arbitrary. Given the minimum 3 byte encoding of
     916           2 :         // valueHandle, this should be > 3. But tiny values are common in test and
     917           2 :         // unlikely in production, so we use 0 here for better test coverage.
     918           2 :         const tinyValueThreshold = 0
     919           2 :         // NB: setting WriterOptions.DisableValueBlocks does not disable the
     920           2 :         // setHasSamePrefix optimization.
     921           2 :         considerWriteToValueBlock = setHasSamePrefix && valueLen > tinyValueThreshold && w.valueBlockWriter != nil
     922           2 :         return setHasSamePrefix, considerWriteToValueBlock, isObsolete, nil
     923             : }
     924             : 
     925           2 : func (w *Writer) addPoint(key InternalKey, value []byte, forceObsolete bool) error {
     926           2 :         if w.isStrictObsolete && key.Kind() == InternalKeyKindMerge {
     927           1 :                 return errors.Errorf("MERGE not supported in a strict-obsolete sstable")
     928           1 :         }
     929           2 :         var err error
     930           2 :         var setHasSameKeyPrefix, writeToValueBlock, addPrefixToValueStoredWithKey bool
     931           2 :         var isObsolete bool
     932           2 :         maxSharedKeyLen := len(key.UserKey)
     933           2 :         if w.tableFormat >= TableFormatPebblev3 {
     934           2 :                 // maxSharedKeyLen is limited to the prefix of the preceding key. If the
     935           2 :                 // preceding key was in a different block, then the blockWriter will
     936           2 :                 // ignore this maxSharedKeyLen.
     937           2 :                 maxSharedKeyLen = w.lastPointKeyInfo.prefixLen
     938           2 :                 setHasSameKeyPrefix, writeToValueBlock, isObsolete, err =
     939           2 :                         w.makeAddPointDecisionV3(key, len(value))
     940           2 :                 addPrefixToValueStoredWithKey = base.TrailerKind(key.Trailer) == InternalKeyKindSet
     941           2 :         } else {
     942           2 :                 err = w.makeAddPointDecisionV2(key)
     943           2 :         }
     944           2 :         if err != nil {
     945           1 :                 return err
     946           1 :         }
     947           2 :         isObsolete = w.tableFormat >= TableFormatPebblev4 && (isObsolete || forceObsolete)
     948           2 :         w.lastPointKeyInfo.isObsolete = isObsolete
     949           2 :         var valueStoredWithKey []byte
     950           2 :         var prefix valuePrefix
     951           2 :         var valueStoredWithKeyLen int
     952           2 :         if writeToValueBlock {
     953           2 :                 vh, err := w.valueBlockWriter.addValue(value)
     954           2 :                 if err != nil {
     955           0 :                         return err
     956           0 :                 }
     957           2 :                 n := encodeValueHandle(w.blockBuf.tmp[:], vh)
     958           2 :                 valueStoredWithKey = w.blockBuf.tmp[:n]
     959           2 :                 valueStoredWithKeyLen = len(valueStoredWithKey) + 1
     960           2 :                 var attribute base.ShortAttribute
     961           2 :                 if w.shortAttributeExtractor != nil {
     962           1 :                         // TODO(sumeer): for compactions, it is possible that the input sstable
     963           1 :                         // already has this value in the value section and so we have already
     964           1 :                         // extracted the ShortAttribute. Avoid extracting it again. This will
     965           1 :                         // require changing the Writer.Add interface.
     966           1 :                         if attribute, err = w.shortAttributeExtractor(
     967           1 :                                 key.UserKey, w.lastPointKeyInfo.prefixLen, value); err != nil {
     968           0 :                                 return err
     969           0 :                         }
     970             :                 }
     971           2 :                 prefix = makePrefixForValueHandle(setHasSameKeyPrefix, attribute)
     972           2 :         } else {
     973           2 :                 valueStoredWithKey = value
     974           2 :                 valueStoredWithKeyLen = len(value)
     975           2 :                 if addPrefixToValueStoredWithKey {
     976           2 :                         valueStoredWithKeyLen++
     977           2 :                 }
     978           2 :                 prefix = makePrefixForInPlaceValue(setHasSameKeyPrefix)
     979             :         }
     980             : 
     981           2 :         if err := w.maybeFlush(key, valueStoredWithKeyLen); err != nil {
     982           1 :                 return err
     983           1 :         }
     984             : 
     985           2 :         for i := range w.blockPropCollectors {
     986           2 :                 v := value
     987           2 :                 if addPrefixToValueStoredWithKey {
     988           2 :                         // Values for SET are not required to be in-place, and in the future may
     989           2 :                         // not even be read by the compaction, so pass nil values. Block
     990           2 :                         // property collectors in such Pebble DB's must not look at the value.
     991           2 :                         v = nil
     992           2 :                 }
     993           2 :                 if err := w.blockPropCollectors[i].Add(key, v); err != nil {
     994           1 :                         w.err = err
     995           1 :                         return err
     996           1 :                 }
     997             :         }
     998           2 :         if w.tableFormat >= TableFormatPebblev4 {
     999           2 :                 w.obsoleteCollector.AddPoint(isObsolete)
    1000           2 :         }
    1001             : 
    1002           2 :         w.maybeAddToFilter(key.UserKey)
    1003           2 :         w.dataBlockBuf.dataBlock.addWithOptionalValuePrefix(
    1004           2 :                 key, isObsolete, valueStoredWithKey, maxSharedKeyLen, addPrefixToValueStoredWithKey, prefix,
    1005           2 :                 setHasSameKeyPrefix)
    1006           2 : 
    1007           2 :         w.meta.updateSeqNum(key.SeqNum())
    1008           2 : 
    1009           2 :         if !w.meta.HasPointKeys {
    1010           2 :                 k := w.dataBlockBuf.dataBlock.getCurKey()
    1011           2 :                 // NB: We need to ensure that SmallestPoint.UserKey is set, so we create
    1012           2 :                 // an InternalKey which is semantically identical to the key, but won't
    1013           2 :                 // have a nil UserKey. We do this, because key.UserKey could be nil, and
    1014           2 :                 // we don't want SmallestPoint.UserKey to be nil.
    1015           2 :                 //
    1016           2 :                 // todo(bananabrick): Determine if it's okay to have a nil SmallestPoint
    1017           2 :                 // .UserKey now that we don't rely on a nil UserKey to determine if the
    1018           2 :                 // key has been set or not.
    1019           2 :                 w.meta.SetSmallestPointKey(k.Clone())
    1020           2 :         }
    1021             : 
    1022           2 :         w.props.NumEntries++
    1023           2 :         switch key.Kind() {
    1024           2 :         case InternalKeyKindDelete, InternalKeyKindSingleDelete:
    1025           2 :                 w.props.NumDeletions++
    1026           2 :                 w.props.RawPointTombstoneKeySize += uint64(len(key.UserKey))
    1027           2 :         case InternalKeyKindDeleteSized:
    1028           2 :                 var size uint64
    1029           2 :                 if len(value) > 0 {
    1030           2 :                         var n int
    1031           2 :                         size, n = binary.Uvarint(value)
    1032           2 :                         if n <= 0 {
    1033           0 :                                 w.err = errors.Newf("%s key's value (%x) does not parse as uvarint",
    1034           0 :                                         errors.Safe(key.Kind().String()), value)
    1035           0 :                                 return w.err
    1036           0 :                         }
    1037             :                 }
    1038           2 :                 w.props.NumDeletions++
    1039           2 :                 w.props.NumSizedDeletions++
    1040           2 :                 w.props.RawPointTombstoneKeySize += uint64(len(key.UserKey))
    1041           2 :                 w.props.RawPointTombstoneValueSize += size
    1042           2 :         case InternalKeyKindMerge:
    1043           2 :                 w.props.NumMergeOperands++
    1044             :         }
    1045           2 :         w.props.RawKeySize += uint64(key.Size())
    1046           2 :         w.props.RawValueSize += uint64(len(value))
    1047           2 :         return nil
    1048             : }
    1049             : 
    1050           1 : func (w *Writer) prettyTombstone(k InternalKey, value []byte) fmt.Formatter {
    1051           1 :         return keyspan.Span{
    1052           1 :                 Start: k.UserKey,
    1053           1 :                 End:   value,
    1054           1 :                 Keys:  []keyspan.Key{{Trailer: k.Trailer}},
    1055           1 :         }.Pretty(w.formatKey)
    1056           1 : }
    1057             : 
    1058           2 : func (w *Writer) addTombstone(key InternalKey, value []byte) error {
    1059           2 :         if !w.disableKeyOrderChecks && !w.rangeDelV1Format && w.rangeDelBlock.nEntries > 0 {
    1060           2 :                 // Check that tombstones are being added in fragmented order. If the two
    1061           2 :                 // tombstones overlap, their start and end keys must be identical.
    1062           2 :                 prevKey := w.rangeDelBlock.getCurKey()
    1063           2 :                 switch c := w.compare(prevKey.UserKey, key.UserKey); {
    1064           0 :                 case c > 0:
    1065           0 :                         w.err = errors.Errorf("pebble: keys must be added in order: %s, %s",
    1066           0 :                                 prevKey.Pretty(w.formatKey), key.Pretty(w.formatKey))
    1067           0 :                         return w.err
    1068           2 :                 case c == 0:
    1069           2 :                         prevValue := w.rangeDelBlock.curValue
    1070           2 :                         if w.compare(prevValue, value) != 0 {
    1071           1 :                                 w.err = errors.Errorf("pebble: overlapping tombstones must be fragmented: %s vs %s",
    1072           1 :                                         w.prettyTombstone(prevKey, prevValue),
    1073           1 :                                         w.prettyTombstone(key, value))
    1074           1 :                                 return w.err
    1075           1 :                         }
    1076           2 :                         if prevKey.SeqNum() <= key.SeqNum() {
    1077           1 :                                 w.err = errors.Errorf("pebble: keys must be added in strictly increasing order: %s, %s",
    1078           1 :                                         prevKey.Pretty(w.formatKey), key.Pretty(w.formatKey))
    1079           1 :                                 return w.err
    1080           1 :                         }
    1081           2 :                 default:
    1082           2 :                         prevValue := w.rangeDelBlock.curValue
    1083           2 :                         if w.compare(prevValue, key.UserKey) > 0 {
    1084           1 :                                 w.err = errors.Errorf("pebble: overlapping tombstones must be fragmented: %s vs %s",
    1085           1 :                                         w.prettyTombstone(prevKey, prevValue),
    1086           1 :                                         w.prettyTombstone(key, value))
    1087           1 :                                 return w.err
    1088           1 :                         }
    1089             :                 }
    1090             :         }
    1091             : 
    1092           2 :         if key.Trailer == InternalKeyRangeDeleteSentinel {
    1093           0 :                 w.err = errors.Errorf("pebble: cannot add range delete sentinel: %s", key.Pretty(w.formatKey))
    1094           0 :                 return w.err
    1095           0 :         }
    1096             : 
    1097           2 :         w.meta.updateSeqNum(key.SeqNum())
    1098           2 : 
    1099           2 :         switch {
    1100           1 :         case w.rangeDelV1Format:
    1101           1 :                 // Range tombstones are not fragmented in the v1 (i.e. RocksDB) range
    1102           1 :                 // deletion block format, so we need to track the largest range tombstone
    1103           1 :                 // end key as every range tombstone is added.
    1104           1 :                 //
    1105           1 :                 // Note that writing the v1 format is only supported for tests.
    1106           1 :                 if w.props.NumRangeDeletions == 0 {
    1107           1 :                         w.meta.SetSmallestRangeDelKey(key.Clone())
    1108           1 :                         w.meta.SetLargestRangeDelKey(base.MakeRangeDeleteSentinelKey(value).Clone())
    1109           1 :                 } else {
    1110           1 :                         if base.InternalCompare(w.compare, w.meta.SmallestRangeDel, key) > 0 {
    1111           1 :                                 w.meta.SetSmallestRangeDelKey(key.Clone())
    1112           1 :                         }
    1113           1 :                         end := base.MakeRangeDeleteSentinelKey(value)
    1114           1 :                         if base.InternalCompare(w.compare, w.meta.LargestRangeDel, end) < 0 {
    1115           1 :                                 w.meta.SetLargestRangeDelKey(end.Clone())
    1116           1 :                         }
    1117             :                 }
    1118             : 
    1119           2 :         default:
    1120           2 :                 // Range tombstones are fragmented in the v2 range deletion block format,
    1121           2 :                 // so the start key of the first range tombstone added will be the smallest
    1122           2 :                 // range tombstone key. The largest range tombstone key will be determined
    1123           2 :                 // in Writer.Close() as the end key of the last range tombstone added.
    1124           2 :                 if w.props.NumRangeDeletions == 0 {
    1125           2 :                         w.meta.SetSmallestRangeDelKey(key.Clone())
    1126           2 :                 }
    1127             :         }
    1128             : 
    1129           2 :         w.props.NumEntries++
    1130           2 :         w.props.NumDeletions++
    1131           2 :         w.props.NumRangeDeletions++
    1132           2 :         w.props.RawKeySize += uint64(key.Size())
    1133           2 :         w.props.RawValueSize += uint64(len(value))
    1134           2 :         w.rangeDelBlock.add(key, value)
    1135           2 :         return nil
    1136             : }
    1137             : 
    1138             : // RangeKeySet sets a range between start (inclusive) and end (exclusive) with
    1139             : // the given suffix to the given value. The resulting range key is given the
    1140             : // sequence number zero, with the expectation that the resulting sstable will be
    1141             : // ingested.
    1142             : //
    1143             : // Keys must be added to the table in increasing order of start key. Spans are
    1144             : // not required to be fragmented. The same suffix may not be set or unset twice
    1145             : // over the same keyspan, because it would result in inconsistent state. Both
    1146             : // the Set and Unset would share the zero sequence number, and a key cannot be
    1147             : // both simultaneously set and unset.
    1148           1 : func (w *Writer) RangeKeySet(start, end, suffix, value []byte) error {
    1149           1 :         return w.addRangeKeySpan(keyspan.Span{
    1150           1 :                 Start: w.tempRangeKeyCopy(start),
    1151           1 :                 End:   w.tempRangeKeyCopy(end),
    1152           1 :                 Keys: []keyspan.Key{
    1153           1 :                         {
    1154           1 :                                 Trailer: base.MakeTrailer(0, base.InternalKeyKindRangeKeySet),
    1155           1 :                                 Suffix:  w.tempRangeKeyCopy(suffix),
    1156           1 :                                 Value:   w.tempRangeKeyCopy(value),
    1157           1 :                         },
    1158           1 :                 },
    1159           1 :         })
    1160           1 : }
    1161             : 
    1162             : // RangeKeyUnset un-sets a range between start (inclusive) and end (exclusive)
    1163             : // with the given suffix. The resulting range key is given the
    1164             : // sequence number zero, with the expectation that the resulting sstable will be
    1165             : // ingested.
    1166             : //
    1167             : // Keys must be added to the table in increasing order of start key. Spans are
    1168             : // not required to be fragmented. The same suffix may not be set or unset twice
    1169             : // over the same keyspan, because it would result in inconsistent state. Both
    1170             : // the Set and Unset would share the zero sequence number, and a key cannot be
    1171             : // both simultaneously set and unset.
    1172           1 : func (w *Writer) RangeKeyUnset(start, end, suffix []byte) error {
    1173           1 :         return w.addRangeKeySpan(keyspan.Span{
    1174           1 :                 Start: w.tempRangeKeyCopy(start),
    1175           1 :                 End:   w.tempRangeKeyCopy(end),
    1176           1 :                 Keys: []keyspan.Key{
    1177           1 :                         {
    1178           1 :                                 Trailer: base.MakeTrailer(0, base.InternalKeyKindRangeKeyUnset),
    1179           1 :                                 Suffix:  w.tempRangeKeyCopy(suffix),
    1180           1 :                         },
    1181           1 :                 },
    1182           1 :         })
    1183           1 : }
    1184             : 
    1185             : // RangeKeyDelete deletes a range between start (inclusive) and end (exclusive).
    1186             : //
    1187             : // Keys must be added to the table in increasing order of start key. Spans are
    1188             : // not required to be fragmented.
    1189           1 : func (w *Writer) RangeKeyDelete(start, end []byte) error {
    1190           1 :         return w.addRangeKeySpan(keyspan.Span{
    1191           1 :                 Start: w.tempRangeKeyCopy(start),
    1192           1 :                 End:   w.tempRangeKeyCopy(end),
    1193           1 :                 Keys: []keyspan.Key{
    1194           1 :                         {Trailer: base.MakeTrailer(0, base.InternalKeyKindRangeKeyDelete)},
    1195           1 :                 },
    1196           1 :         })
    1197           1 : }
    1198             : 
    1199             : // AddRangeKey adds a range key set, unset, or delete key/value pair to the
    1200             : // table being written.
    1201             : //
    1202             : // Range keys must be supplied in strictly ascending order of start key (i.e.
    1203             : // user key ascending, sequence number descending, and key type descending).
    1204             : // Ranges added must also be supplied in fragmented span order - i.e. other than
    1205             : // spans that are perfectly aligned (same start and end keys), spans may not
    1206             : // overlap. Range keys may be added out of order relative to point keys and
    1207             : // range deletions.
    1208           2 : func (w *Writer) AddRangeKey(key InternalKey, value []byte) error {
    1209           2 :         if w.err != nil {
    1210           0 :                 return w.err
    1211           0 :         }
    1212           2 :         return w.addRangeKey(key, value)
    1213             : }
    1214             : 
    1215           1 : func (w *Writer) addRangeKeySpan(span keyspan.Span) error {
    1216           1 :         if w.compare(span.Start, span.End) >= 0 {
    1217           0 :                 return errors.Errorf(
    1218           0 :                         "pebble: start key must be strictly less than end key",
    1219           0 :                 )
    1220           0 :         }
    1221           1 :         if w.fragmenter.Start() != nil && w.compare(w.fragmenter.Start(), span.Start) > 0 {
    1222           1 :                 return errors.Errorf("pebble: spans must be added in order: %s > %s",
    1223           1 :                         w.formatKey(w.fragmenter.Start()), w.formatKey(span.Start))
    1224           1 :         }
    1225             :         // Add this span to the fragmenter.
    1226           1 :         w.fragmenter.Add(span)
    1227           1 :         return w.err
    1228             : }
    1229             : 
    1230           1 : func (w *Writer) encodeRangeKeySpan(span keyspan.Span) {
    1231           1 :         // This method is the emit function of the Fragmenter.
    1232           1 :         //
    1233           1 :         // NB: The span should only contain range keys and be internally consistent
    1234           1 :         // (eg, no duplicate suffixes, no additional keys after a RANGEKEYDEL).
    1235           1 :         //
    1236           1 :         // We use w.rangeKeysBySuffix and w.rangeKeySpan to avoid allocations.
    1237           1 : 
    1238           1 :         // Sort the keys by suffix. Iteration doesn't *currently* depend on it, but
    1239           1 :         // we may want to in the future.
    1240           1 :         w.rangeKeysBySuffix.Cmp = w.compare
    1241           1 :         w.rangeKeysBySuffix.Keys = span.Keys
    1242           1 :         sort.Sort(&w.rangeKeysBySuffix)
    1243           1 : 
    1244           1 :         w.rangeKeySpan = span
    1245           1 :         w.rangeKeySpan.Keys = w.rangeKeysBySuffix.Keys
    1246           1 :         w.err = firstError(w.err, w.rangeKeyEncoder.Encode(&w.rangeKeySpan))
    1247           1 : }
    1248             : 
    1249           2 : func (w *Writer) addRangeKey(key InternalKey, value []byte) error {
    1250           2 :         if !w.disableKeyOrderChecks && w.rangeKeyBlock.nEntries > 0 {
    1251           2 :                 prevStartKey := w.rangeKeyBlock.getCurKey()
    1252           2 :                 prevEndKey, _, ok := rangekey.DecodeEndKey(prevStartKey.Kind(), w.rangeKeyBlock.curValue)
    1253           2 :                 if !ok {
    1254           0 :                         // We panic here as we should have previously decoded and validated this
    1255           0 :                         // key and value when it was first added to the range key block.
    1256           0 :                         panic(errors.Errorf("pebble: invalid end key for span: %s",
    1257           0 :                                 prevStartKey.Pretty(w.formatKey)))
    1258             :                 }
    1259             : 
    1260           2 :                 curStartKey := key
    1261           2 :                 curEndKey, _, ok := rangekey.DecodeEndKey(curStartKey.Kind(), value)
    1262           2 :                 if !ok {
    1263           0 :                         w.err = errors.Errorf("pebble: invalid end key for span: %s",
    1264           0 :                                 curStartKey.Pretty(w.formatKey))
    1265           0 :                         return w.err
    1266           0 :                 }
    1267             : 
    1268             :                 // Start keys must be strictly increasing.
    1269           2 :                 if base.InternalCompare(w.compare, prevStartKey, curStartKey) >= 0 {
    1270           1 :                         w.err = errors.Errorf(
    1271           1 :                                 "pebble: range keys starts must be added in increasing order: %s, %s",
    1272           1 :                                 prevStartKey.Pretty(w.formatKey), key.Pretty(w.formatKey))
    1273           1 :                         return w.err
    1274           1 :                 }
    1275             : 
    1276             :                 // Start keys are increasing. If the start user keys are equal, the
    1277             :                 // end keys must be equal (i.e. aligned spans).
    1278           2 :                 if w.compare(prevStartKey.UserKey, curStartKey.UserKey) == 0 {
    1279           2 :                         if w.compare(prevEndKey, curEndKey) != 0 {
    1280           1 :                                 w.err = errors.Errorf("pebble: overlapping range keys must be fragmented: %s, %s",
    1281           1 :                                         prevStartKey.Pretty(w.formatKey),
    1282           1 :                                         curStartKey.Pretty(w.formatKey))
    1283           1 :                                 return w.err
    1284           1 :                         }
    1285           2 :                 } else if w.compare(prevEndKey, curStartKey.UserKey) > 0 {
    1286           1 :                         // If the start user keys are NOT equal, the spans must be disjoint (i.e.
    1287           1 :                         // no overlap).
    1288           1 :                         // NOTE: the inequality excludes zero, as we allow the end key of the
    1289           1 :                         // lower span be the same as the start key of the upper span, because
    1290           1 :                         // the range end key is considered an exclusive bound.
    1291           1 :                         w.err = errors.Errorf("pebble: overlapping range keys must be fragmented: %s, %s",
    1292           1 :                                 prevStartKey.Pretty(w.formatKey),
    1293           1 :                                 curStartKey.Pretty(w.formatKey))
    1294           1 :                         return w.err
    1295           1 :                 }
    1296             :         }
    1297             : 
    1298             :         // TODO(travers): Add an invariant-gated check to ensure that suffix-values
    1299             :         // are sorted within coalesced spans.
    1300             : 
    1301             :         // Range-keys and point-keys are intended to live in "parallel" keyspaces.
    1302             :         // However, we track a single seqnum in the table metadata that spans both of
    1303             :         // these keyspaces.
    1304             :         // TODO(travers): Consider tracking range key seqnums separately.
    1305           2 :         w.meta.updateSeqNum(key.SeqNum())
    1306           2 : 
    1307           2 :         // Range tombstones are fragmented, so the start key of the first range key
    1308           2 :         // added will be the smallest. The largest range key is determined in
    1309           2 :         // Writer.Close() as the end key of the last range key added to the block.
    1310           2 :         if w.props.NumRangeKeys() == 0 {
    1311           2 :                 w.meta.SetSmallestRangeKey(key.Clone())
    1312           2 :         }
    1313             : 
    1314             :         // Update block properties.
    1315           2 :         w.props.RawRangeKeyKeySize += uint64(key.Size())
    1316           2 :         w.props.RawRangeKeyValueSize += uint64(len(value))
    1317           2 :         switch key.Kind() {
    1318           2 :         case base.InternalKeyKindRangeKeyDelete:
    1319           2 :                 w.props.NumRangeKeyDels++
    1320           2 :         case base.InternalKeyKindRangeKeySet:
    1321           2 :                 w.props.NumRangeKeySets++
    1322           2 :         case base.InternalKeyKindRangeKeyUnset:
    1323           2 :                 w.props.NumRangeKeyUnsets++
    1324           0 :         default:
    1325           0 :                 panic(errors.Errorf("pebble: invalid range key type: %s", key.Kind()))
    1326             :         }
    1327             : 
    1328           2 :         for i := range w.blockPropCollectors {
    1329           2 :                 if err := w.blockPropCollectors[i].Add(key, value); err != nil {
    1330           0 :                         return err
    1331           0 :                 }
    1332             :         }
    1333             : 
    1334             :         // Add the key to the block.
    1335           2 :         w.rangeKeyBlock.add(key, value)
    1336           2 :         return nil
    1337             : }
    1338             : 
    1339             : // tempRangeKeyBuf returns a slice of length n from the Writer's rkBuf byte
    1340             : // slice. Any byte written to the returned slice is retained for the lifetime of
    1341             : // the Writer.
    1342           1 : func (w *Writer) tempRangeKeyBuf(n int) []byte {
    1343           1 :         if cap(w.rkBuf)-len(w.rkBuf) < n {
    1344           1 :                 size := len(w.rkBuf) + 2*n
    1345           1 :                 if size < 2*cap(w.rkBuf) {
    1346           1 :                         size = 2 * cap(w.rkBuf)
    1347           1 :                 }
    1348           1 :                 buf := make([]byte, len(w.rkBuf), size)
    1349           1 :                 copy(buf, w.rkBuf)
    1350           1 :                 w.rkBuf = buf
    1351             :         }
    1352           1 :         b := w.rkBuf[len(w.rkBuf) : len(w.rkBuf)+n]
    1353           1 :         w.rkBuf = w.rkBuf[:len(w.rkBuf)+n]
    1354           1 :         return b
    1355             : }
    1356             : 
    1357             : // tempRangeKeyCopy returns a copy of the provided slice, stored in the Writer's
    1358             : // range key buffer.
    1359           1 : func (w *Writer) tempRangeKeyCopy(k []byte) []byte {
    1360           1 :         if len(k) == 0 {
    1361           1 :                 return nil
    1362           1 :         }
    1363           1 :         buf := w.tempRangeKeyBuf(len(k))
    1364           1 :         copy(buf, k)
    1365           1 :         return buf
    1366             : }
    1367             : 
    1368           2 : func (w *Writer) maybeAddToFilter(key []byte) {
    1369           2 :         if w.filter != nil {
    1370           2 :                 prefix := key[:w.split(key)]
    1371           2 :                 w.filter.addKey(prefix)
    1372           2 :         }
    1373             : }
    1374             : 
    1375           2 : func (w *Writer) flush(key InternalKey) error {
    1376           2 :         // We're finishing a data block.
    1377           2 :         err := w.finishDataBlockProps(w.dataBlockBuf)
    1378           2 :         if err != nil {
    1379           1 :                 return err
    1380           1 :         }
    1381           2 :         w.dataBlockBuf.finish()
    1382           2 :         w.dataBlockBuf.compressAndChecksum(w.compression)
    1383           2 :         // Since dataBlockEstimates.addInflightDataBlock was never called, the
    1384           2 :         // inflightSize is set to 0.
    1385           2 :         w.coordination.sizeEstimate.dataBlockCompressed(len(w.dataBlockBuf.compressed), 0)
    1386           2 : 
    1387           2 :         // Determine if the index block should be flushed. Since we're accessing the
    1388           2 :         // dataBlockBuf.dataBlock.curKey here, we have to make sure that once we start
    1389           2 :         // to pool the dataBlockBufs, the curKey isn't used by the Writer once the
    1390           2 :         // dataBlockBuf is added back to a sync.Pool. In this particular case, the
    1391           2 :         // byte slice which supports "sep" will eventually be copied when "sep" is
    1392           2 :         // added to the index block.
    1393           2 :         prevKey := w.dataBlockBuf.dataBlock.getCurKey()
    1394           2 :         sep := w.indexEntrySep(prevKey, key, w.dataBlockBuf)
    1395           2 :         // We determine that we should flush an index block from the Writer client
    1396           2 :         // goroutine, but we actually finish the index block from the writeQueue.
    1397           2 :         // When we determine that an index block should be flushed, we need to call
    1398           2 :         // BlockPropertyCollector.FinishIndexBlock. But block property collector
    1399           2 :         // calls must happen sequentially from the Writer client. Therefore, we need
    1400           2 :         // to determine that we are going to flush the index block from the Writer
    1401           2 :         // client.
    1402           2 :         shouldFlushIndexBlock := supportsTwoLevelIndex(w.tableFormat) && w.indexBlock.shouldFlush(
    1403           2 :                 sep, encodedBHPEstimatedSize, w.indexBlockSize, w.indexBlockSizeThreshold,
    1404           2 :         )
    1405           2 : 
    1406           2 :         var indexProps []byte
    1407           2 :         var flushableIndexBlock *indexBlockBuf
    1408           2 :         if shouldFlushIndexBlock {
    1409           2 :                 flushableIndexBlock = w.indexBlock
    1410           2 :                 w.indexBlock = newIndexBlockBuf(w.coordination.parallelismEnabled)
    1411           2 :                 // Call BlockPropertyCollector.FinishIndexBlock, since we've decided to
    1412           2 :                 // flush the index block.
    1413           2 :                 indexProps, err = w.finishIndexBlockProps()
    1414           2 :                 if err != nil {
    1415           1 :                         return err
    1416           1 :                 }
    1417             :         }
    1418             : 
    1419             :         // We've called BlockPropertyCollector.FinishDataBlock, and, if necessary,
    1420             :         // BlockPropertyCollector.FinishIndexBlock. Since we've decided to finish
    1421             :         // the data block, we can call
    1422             :         // BlockPropertyCollector.AddPrevDataBlockToIndexBlock.
    1423           2 :         w.addPrevDataBlockToIndexBlockProps()
    1424           2 : 
    1425           2 :         // Schedule a write.
    1426           2 :         writeTask := writeTaskPool.Get().(*writeTask)
    1427           2 :         // We're setting compressionDone to indicate that compression of this block
    1428           2 :         // has already been completed.
    1429           2 :         writeTask.compressionDone <- true
    1430           2 :         writeTask.buf = w.dataBlockBuf
    1431           2 :         writeTask.indexEntrySep = sep
    1432           2 :         writeTask.currIndexBlock = w.indexBlock
    1433           2 :         writeTask.indexInflightSize = sep.Size() + encodedBHPEstimatedSize
    1434           2 :         writeTask.finishedIndexProps = indexProps
    1435           2 :         writeTask.flushableIndexBlock = flushableIndexBlock
    1436           2 : 
    1437           2 :         // The writeTask corresponds to an unwritten index entry.
    1438           2 :         w.indexBlock.addInflight(writeTask.indexInflightSize)
    1439           2 : 
    1440           2 :         w.dataBlockBuf = nil
    1441           2 :         if w.coordination.parallelismEnabled {
    1442           2 :                 w.coordination.writeQueue.add(writeTask)
    1443           2 :         } else {
    1444           2 :                 err = w.coordination.writeQueue.addSync(writeTask)
    1445           2 :         }
    1446           2 :         w.dataBlockBuf = newDataBlockBuf(w.restartInterval, w.checksumType)
    1447           2 : 
    1448           2 :         return err
    1449             : }
    1450             : 
    1451           2 : func (w *Writer) maybeFlush(key InternalKey, valueLen int) error {
    1452           2 :         if !w.dataBlockBuf.shouldFlush(key, valueLen, w.blockSize, w.blockSizeThreshold) {
    1453           2 :                 return nil
    1454           2 :         }
    1455             : 
    1456           2 :         err := w.flush(key)
    1457           2 : 
    1458           2 :         if err != nil {
    1459           1 :                 w.err = err
    1460           1 :                 return err
    1461           1 :         }
    1462             : 
    1463           2 :         return nil
    1464             : }
    1465             : 
    1466             : // dataBlockBuf.dataBlockProps set by this method must be encoded before any future use of the
    1467             : // dataBlockBuf.blockPropsEncoder, since the properties slice will get reused by the
    1468             : // blockPropsEncoder.
    1469           2 : func (w *Writer) finishDataBlockProps(buf *dataBlockBuf) error {
    1470           2 :         if len(w.blockPropCollectors) == 0 {
    1471           2 :                 return nil
    1472           2 :         }
    1473           2 :         var err error
    1474           2 :         buf.blockPropsEncoder.resetProps()
    1475           2 :         for i := range w.blockPropCollectors {
    1476           2 :                 scratch := buf.blockPropsEncoder.getScratchForProp()
    1477           2 :                 if scratch, err = w.blockPropCollectors[i].FinishDataBlock(scratch); err != nil {
    1478           1 :                         return err
    1479           1 :                 }
    1480           2 :                 if len(scratch) > 0 {
    1481           2 :                         buf.blockPropsEncoder.addProp(shortID(i), scratch)
    1482           2 :                 }
    1483             :         }
    1484             : 
    1485           2 :         buf.dataBlockProps = buf.blockPropsEncoder.unsafeProps()
    1486           2 :         return nil
    1487             : }
    1488             : 
    1489             : // The BlockHandleWithProperties returned by this method must be encoded before any future use of
    1490             : // the Writer.blockPropsEncoder, since the properties slice will get reused by the blockPropsEncoder.
    1491             : // maybeAddBlockPropertiesToBlockHandle should only be called if block is being written synchronously
    1492             : // with the Writer client.
    1493             : func (w *Writer) maybeAddBlockPropertiesToBlockHandle(
    1494             :         bh BlockHandle,
    1495           2 : ) (BlockHandleWithProperties, error) {
    1496           2 :         err := w.finishDataBlockProps(w.dataBlockBuf)
    1497           2 :         if err != nil {
    1498           0 :                 return BlockHandleWithProperties{}, err
    1499           0 :         }
    1500           2 :         return BlockHandleWithProperties{BlockHandle: bh, Props: w.dataBlockBuf.dataBlockProps}, nil
    1501             : }
    1502             : 
    1503           2 : func (w *Writer) indexEntrySep(prevKey, key InternalKey, dataBlockBuf *dataBlockBuf) InternalKey {
    1504           2 :         // Make a rough guess that we want key-sized scratch to compute the separator.
    1505           2 :         if cap(dataBlockBuf.sepScratch) < key.Size() {
    1506           2 :                 dataBlockBuf.sepScratch = make([]byte, 0, key.Size()*2)
    1507           2 :         }
    1508             : 
    1509           2 :         var sep InternalKey
    1510           2 :         if key.UserKey == nil && key.Trailer == 0 {
    1511           2 :                 sep = prevKey.Successor(w.compare, w.successor, dataBlockBuf.sepScratch[:0])
    1512           2 :         } else {
    1513           2 :                 sep = prevKey.Separator(w.compare, w.separator, dataBlockBuf.sepScratch[:0], key)
    1514           2 :         }
    1515           2 :         return sep
    1516             : }
    1517             : 
    1518             : // addIndexEntry adds an index entry for the specified key and block handle.
    1519             : // addIndexEntry can be called from both the Writer client goroutine, and the
    1520             : // writeQueue goroutine. If the flushIndexBuf != nil, then the indexProps, as
    1521             : // they're used when the index block is finished.
    1522             : //
    1523             : // Invariant:
    1524             : //  1. addIndexEntry must not store references to the sep InternalKey, the tmp
    1525             : //     byte slice, bhp.Props. That is, these must be either deep copied or
    1526             : //     encoded.
    1527             : //  2. addIndexEntry must not hold references to the flushIndexBuf, and the writeTo
    1528             : //     indexBlockBufs.
    1529             : func (w *Writer) addIndexEntry(
    1530             :         sep InternalKey,
    1531             :         bhp BlockHandleWithProperties,
    1532             :         tmp []byte,
    1533             :         flushIndexBuf *indexBlockBuf,
    1534             :         writeTo *indexBlockBuf,
    1535             :         inflightSize int,
    1536             :         indexProps []byte,
    1537           2 : ) error {
    1538           2 :         if bhp.Length == 0 {
    1539           0 :                 // A valid blockHandle must be non-zero.
    1540           0 :                 // In particular, it must have a non-zero length.
    1541           0 :                 return nil
    1542           0 :         }
    1543             : 
    1544           2 :         encoded := encodeBlockHandleWithProperties(tmp, bhp)
    1545           2 : 
    1546           2 :         if flushIndexBuf != nil {
    1547           2 :                 if cap(w.indexPartitions) == 0 {
    1548           2 :                         w.indexPartitions = make([]indexBlockAndBlockProperties, 0, 32)
    1549           2 :                 }
    1550             :                 // Enable two level indexes if there is more than one index block.
    1551           2 :                 w.twoLevelIndex = true
    1552           2 :                 if err := w.finishIndexBlock(flushIndexBuf, indexProps); err != nil {
    1553           0 :                         return err
    1554           0 :                 }
    1555             :         }
    1556             : 
    1557           2 :         writeTo.add(sep, encoded, inflightSize)
    1558           2 :         return nil
    1559             : }
    1560             : 
    1561           2 : func (w *Writer) addPrevDataBlockToIndexBlockProps() {
    1562           2 :         for i := range w.blockPropCollectors {
    1563           2 :                 w.blockPropCollectors[i].AddPrevDataBlockToIndexBlock()
    1564           2 :         }
    1565             : }
    1566             : 
    1567             : // addIndexEntrySync adds an index entry for the specified key and block handle.
    1568             : // Writer.addIndexEntry is only called synchronously once Writer.Close is called.
    1569             : // addIndexEntrySync should only be called if we're sure that index entries
    1570             : // aren't being written asynchronously.
    1571             : //
    1572             : // Invariant:
    1573             : //  1. addIndexEntrySync must not store references to the prevKey, key InternalKey's,
    1574             : //     the tmp byte slice. That is, these must be either deep copied or encoded.
    1575             : //
    1576             : // TODO: Improve coverage of this method. e.g. tests passed without the line
    1577             : // `w.twoLevelIndex = true` previously.
    1578             : func (w *Writer) addIndexEntrySync(
    1579             :         prevKey, key InternalKey, bhp BlockHandleWithProperties, tmp []byte,
    1580           2 : ) error {
    1581           2 :         return w.addIndexEntrySep(w.indexEntrySep(prevKey, key, w.dataBlockBuf), bhp, tmp)
    1582           2 : }
    1583             : 
    1584             : func (w *Writer) addIndexEntrySep(
    1585             :         sep InternalKey, bhp BlockHandleWithProperties, tmp []byte,
    1586           2 : ) error {
    1587           2 :         shouldFlush := supportsTwoLevelIndex(
    1588           2 :                 w.tableFormat) && w.indexBlock.shouldFlush(
    1589           2 :                 sep, encodedBHPEstimatedSize, w.indexBlockSize, w.indexBlockSizeThreshold,
    1590           2 :         )
    1591           2 :         var flushableIndexBlock *indexBlockBuf
    1592           2 :         var props []byte
    1593           2 :         var err error
    1594           2 :         if shouldFlush {
    1595           2 :                 flushableIndexBlock = w.indexBlock
    1596           2 :                 w.indexBlock = newIndexBlockBuf(w.coordination.parallelismEnabled)
    1597           2 :                 w.twoLevelIndex = true
    1598           2 :                 // Call BlockPropertyCollector.FinishIndexBlock, since we've decided to
    1599           2 :                 // flush the index block.
    1600           2 :                 props, err = w.finishIndexBlockProps()
    1601           2 :                 if err != nil {
    1602           0 :                         return err
    1603           0 :                 }
    1604             :         }
    1605             : 
    1606           2 :         err = w.addIndexEntry(sep, bhp, tmp, flushableIndexBlock, w.indexBlock, 0, props)
    1607           2 :         if flushableIndexBlock != nil {
    1608           2 :                 flushableIndexBlock.clear()
    1609           2 :                 indexBlockBufPool.Put(flushableIndexBlock)
    1610           2 :         }
    1611           2 :         w.addPrevDataBlockToIndexBlockProps()
    1612           2 :         return err
    1613             : }
    1614             : 
    1615             : func shouldFlush(
    1616             :         key InternalKey,
    1617             :         valueLen int,
    1618             :         restartInterval, estimatedBlockSize, numEntries, targetBlockSize, sizeThreshold int,
    1619           2 : ) bool {
    1620           2 :         if numEntries == 0 {
    1621           2 :                 return false
    1622           2 :         }
    1623             : 
    1624           2 :         if estimatedBlockSize >= targetBlockSize {
    1625           2 :                 return true
    1626           2 :         }
    1627             : 
    1628             :         // The block is currently smaller than the target size.
    1629           2 :         if estimatedBlockSize <= sizeThreshold {
    1630           2 :                 // The block is smaller than the threshold size at which we'll consider
    1631           2 :                 // flushing it.
    1632           2 :                 return false
    1633           2 :         }
    1634             : 
    1635           2 :         newSize := estimatedBlockSize + key.Size() + valueLen
    1636           2 :         if numEntries%restartInterval == 0 {
    1637           2 :                 newSize += 4
    1638           2 :         }
    1639           2 :         newSize += 4                              // varint for shared prefix length
    1640           2 :         newSize += uvarintLen(uint32(key.Size())) // varint for unshared key bytes
    1641           2 :         newSize += uvarintLen(uint32(valueLen))   // varint for value size
    1642           2 :         // Flush if the block plus the new entry is larger than the target size.
    1643           2 :         return newSize > targetBlockSize
    1644             : }
    1645             : 
    1646           2 : func cloneKeyWithBuf(k InternalKey, a bytealloc.A) (bytealloc.A, InternalKey) {
    1647           2 :         if len(k.UserKey) == 0 {
    1648           0 :                 return a, k
    1649           0 :         }
    1650           2 :         a, keyCopy := a.Copy(k.UserKey)
    1651           2 :         return a, InternalKey{UserKey: keyCopy, Trailer: k.Trailer}
    1652             : }
    1653             : 
    1654             : // Invariants: The byte slice returned by finishIndexBlockProps is heap-allocated
    1655             : //
    1656             : //      and has its own lifetime, independent of the Writer and the blockPropsEncoder,
    1657             : //
    1658             : // and it is safe to:
    1659             : //  1. Reuse w.blockPropsEncoder without first encoding the byte slice returned.
    1660             : //  2. Store the byte slice in the Writer since it is a copy and not supported by
    1661             : //     an underlying buffer.
    1662           2 : func (w *Writer) finishIndexBlockProps() ([]byte, error) {
    1663           2 :         w.blockPropsEncoder.resetProps()
    1664           2 :         for i := range w.blockPropCollectors {
    1665           2 :                 scratch := w.blockPropsEncoder.getScratchForProp()
    1666           2 :                 var err error
    1667           2 :                 if scratch, err = w.blockPropCollectors[i].FinishIndexBlock(scratch); err != nil {
    1668           1 :                         return nil, err
    1669           1 :                 }
    1670           2 :                 if len(scratch) > 0 {
    1671           2 :                         w.blockPropsEncoder.addProp(shortID(i), scratch)
    1672           2 :                 }
    1673             :         }
    1674           2 :         return w.blockPropsEncoder.props(), nil
    1675             : }
    1676             : 
    1677             : // finishIndexBlock finishes the current index block and adds it to the top
    1678             : // level index block. This is only used when two level indexes are enabled.
    1679             : //
    1680             : // Invariants:
    1681             : //  1. The props slice passed into finishedIndexBlock must not be a
    1682             : //     owned by any other struct, since it will be stored in the Writer.indexPartitions
    1683             : //     slice.
    1684             : //  2. None of the buffers owned by indexBuf will be shallow copied and stored elsewhere.
    1685             : //     That is, it must be safe to reuse indexBuf after finishIndexBlock has been called.
    1686           2 : func (w *Writer) finishIndexBlock(indexBuf *indexBlockBuf, props []byte) error {
    1687           2 :         part := indexBlockAndBlockProperties{
    1688           2 :                 nEntries: indexBuf.block.nEntries, properties: props,
    1689           2 :         }
    1690           2 :         w.indexSepAlloc, part.sep = cloneKeyWithBuf(
    1691           2 :                 indexBuf.block.getCurKey(), w.indexSepAlloc,
    1692           2 :         )
    1693           2 :         bk := indexBuf.finish()
    1694           2 :         if len(w.indexBlockAlloc) < len(bk) {
    1695           2 :                 // Allocate enough bytes for approximately 16 index blocks.
    1696           2 :                 w.indexBlockAlloc = make([]byte, len(bk)*16)
    1697           2 :         }
    1698           2 :         n := copy(w.indexBlockAlloc, bk)
    1699           2 :         part.block = w.indexBlockAlloc[:n:n]
    1700           2 :         w.indexBlockAlloc = w.indexBlockAlloc[n:]
    1701           2 :         w.indexPartitions = append(w.indexPartitions, part)
    1702           2 :         return nil
    1703             : }
    1704             : 
    1705           2 : func (w *Writer) writeTwoLevelIndex() (BlockHandle, error) {
    1706           2 :         props, err := w.finishIndexBlockProps()
    1707           2 :         if err != nil {
    1708           0 :                 return BlockHandle{}, err
    1709           0 :         }
    1710             :         // Add the final unfinished index.
    1711           2 :         if err = w.finishIndexBlock(w.indexBlock, props); err != nil {
    1712           0 :                 return BlockHandle{}, err
    1713           0 :         }
    1714             : 
    1715           2 :         for i := range w.indexPartitions {
    1716           2 :                 b := &w.indexPartitions[i]
    1717           2 :                 w.props.NumDataBlocks += uint64(b.nEntries)
    1718           2 : 
    1719           2 :                 data := b.block
    1720           2 :                 w.props.IndexSize += uint64(len(data))
    1721           2 :                 bh, err := w.writeBlock(data, w.compression, &w.blockBuf)
    1722           2 :                 if err != nil {
    1723           0 :                         return BlockHandle{}, err
    1724           0 :                 }
    1725           2 :                 bhp := BlockHandleWithProperties{
    1726           2 :                         BlockHandle: bh,
    1727           2 :                         Props:       b.properties,
    1728           2 :                 }
    1729           2 :                 encoded := encodeBlockHandleWithProperties(w.blockBuf.tmp[:], bhp)
    1730           2 :                 w.topLevelIndexBlock.add(b.sep, encoded)
    1731             :         }
    1732             : 
    1733             :         // NB: RocksDB includes the block trailer length in the index size
    1734             :         // property, though it doesn't include the trailer in the top level
    1735             :         // index size property.
    1736           2 :         w.props.IndexPartitions = uint64(len(w.indexPartitions))
    1737           2 :         w.props.TopLevelIndexSize = uint64(w.topLevelIndexBlock.estimatedSize())
    1738           2 :         w.props.IndexSize += w.props.TopLevelIndexSize + blockTrailerLen
    1739           2 : 
    1740           2 :         return w.writeBlock(w.topLevelIndexBlock.finish(), w.compression, &w.blockBuf)
    1741             : }
    1742             : 
    1743           2 : func compressAndChecksum(b []byte, compression Compression, blockBuf *blockBuf) []byte {
    1744           2 :         // Compress the buffer, discarding the result if the improvement isn't at
    1745           2 :         // least 12.5%.
    1746           2 :         blockType, compressed := compressBlock(compression, b, blockBuf.compressedBuf)
    1747           2 :         if blockType != noCompressionBlockType && cap(compressed) > cap(blockBuf.compressedBuf) {
    1748           2 :                 blockBuf.compressedBuf = compressed[:cap(compressed)]
    1749           2 :         }
    1750           2 :         if len(compressed) < len(b)-len(b)/8 {
    1751           2 :                 b = compressed
    1752           2 :         } else {
    1753           2 :                 blockType = noCompressionBlockType
    1754           2 :         }
    1755             : 
    1756           2 :         blockBuf.tmp[0] = byte(blockType)
    1757           2 : 
    1758           2 :         // Calculate the checksum.
    1759           2 :         checksum := blockBuf.checksummer.checksum(b, blockBuf.tmp[:1])
    1760           2 :         binary.LittleEndian.PutUint32(blockBuf.tmp[1:5], checksum)
    1761           2 :         return b
    1762             : }
    1763             : 
    1764           2 : func (w *Writer) writeCompressedBlock(block []byte, blockTrailerBuf []byte) (BlockHandle, error) {
    1765           2 :         bh := BlockHandle{Offset: w.meta.Size, Length: uint64(len(block))}
    1766           2 : 
    1767           2 :         if w.cacheID != 0 && w.fileNum != 0 {
    1768           2 :                 // Remove the block being written from the cache. This provides defense in
    1769           2 :                 // depth against bugs which cause cache collisions.
    1770           2 :                 //
    1771           2 :                 // TODO(peter): Alternatively, we could add the uncompressed value to the
    1772           2 :                 // cache.
    1773           2 :                 w.cache.Delete(w.cacheID, w.fileNum, bh.Offset)
    1774           2 :         }
    1775             : 
    1776             :         // Write the bytes to the file.
    1777           2 :         if err := w.writable.Write(block); err != nil {
    1778           0 :                 return BlockHandle{}, err
    1779           0 :         }
    1780           2 :         w.meta.Size += uint64(len(block))
    1781           2 :         if err := w.writable.Write(blockTrailerBuf[:blockTrailerLen]); err != nil {
    1782           0 :                 return BlockHandle{}, err
    1783           0 :         }
    1784           2 :         w.meta.Size += blockTrailerLen
    1785           2 : 
    1786           2 :         return bh, nil
    1787             : }
    1788             : 
    1789             : // Write implements io.Writer. This is analogous to writeCompressedBlock for
    1790             : // blocks that already incorporate the trailer, and don't need the callee to
    1791             : // return a BlockHandle.
    1792           2 : func (w *Writer) Write(blockWithTrailer []byte) (n int, err error) {
    1793           2 :         offset := w.meta.Size
    1794           2 :         if w.cacheID != 0 && w.fileNum != 0 {
    1795           2 :                 // Remove the block being written from the cache. This provides defense in
    1796           2 :                 // depth against bugs which cause cache collisions.
    1797           2 :                 //
    1798           2 :                 // TODO(peter): Alternatively, we could add the uncompressed value to the
    1799           2 :                 // cache.
    1800           2 :                 w.cache.Delete(w.cacheID, w.fileNum, offset)
    1801           2 :         }
    1802           2 :         w.meta.Size += uint64(len(blockWithTrailer))
    1803           2 :         if err := w.writable.Write(blockWithTrailer); err != nil {
    1804           0 :                 return 0, err
    1805           0 :         }
    1806           2 :         return len(blockWithTrailer), nil
    1807             : }
    1808             : 
    1809             : func (w *Writer) writeBlock(
    1810             :         b []byte, compression Compression, blockBuf *blockBuf,
    1811           2 : ) (BlockHandle, error) {
    1812           2 :         b = compressAndChecksum(b, compression, blockBuf)
    1813           2 :         return w.writeCompressedBlock(b, blockBuf.tmp[:])
    1814           2 : }
    1815             : 
    1816             : // assertFormatCompatibility ensures that the features present on the table are
    1817             : // compatible with the table format version.
    1818           2 : func (w *Writer) assertFormatCompatibility() error {
    1819           2 :         // PebbleDBv1: block properties.
    1820           2 :         if len(w.blockPropCollectors) > 0 && w.tableFormat < TableFormatPebblev1 {
    1821           1 :                 return errors.Newf(
    1822           1 :                         "table format version %s is less than the minimum required version %s for block properties",
    1823           1 :                         w.tableFormat, TableFormatPebblev1,
    1824           1 :                 )
    1825           1 :         }
    1826             : 
    1827             :         // PebbleDBv2: range keys.
    1828           2 :         if w.props.NumRangeKeys() > 0 && w.tableFormat < TableFormatPebblev2 {
    1829           1 :                 return errors.Newf(
    1830           1 :                         "table format version %s is less than the minimum required version %s for range keys",
    1831           1 :                         w.tableFormat, TableFormatPebblev2,
    1832           1 :                 )
    1833           1 :         }
    1834             : 
    1835             :         // PebbleDBv3: value blocks.
    1836           2 :         if (w.props.NumValueBlocks > 0 || w.props.NumValuesInValueBlocks > 0 ||
    1837           2 :                 w.props.ValueBlocksSize > 0) && w.tableFormat < TableFormatPebblev3 {
    1838           0 :                 return errors.Newf(
    1839           0 :                         "table format version %s is less than the minimum required version %s for value blocks",
    1840           0 :                         w.tableFormat, TableFormatPebblev3)
    1841           0 :         }
    1842             : 
    1843             :         // PebbleDBv4: DELSIZED tombstones.
    1844           2 :         if w.props.NumSizedDeletions > 0 && w.tableFormat < TableFormatPebblev4 {
    1845           0 :                 return errors.Newf(
    1846           0 :                         "table format version %s is less than the minimum required version %s for sized deletion tombstones",
    1847           0 :                         w.tableFormat, TableFormatPebblev4)
    1848           0 :         }
    1849           2 :         return nil
    1850             : }
    1851             : 
    1852             : // Close finishes writing the table and closes the underlying file that the
    1853             : // table was written to.
    1854           2 : func (w *Writer) Close() (err error) {
    1855           2 :         defer func() {
    1856           2 :                 if w.valueBlockWriter != nil {
    1857           2 :                         releaseValueBlockWriter(w.valueBlockWriter)
    1858           2 :                         // Defensive code in case Close gets called again. We don't want to put
    1859           2 :                         // the same object to a sync.Pool.
    1860           2 :                         w.valueBlockWriter = nil
    1861           2 :                 }
    1862           2 :                 if w.writable != nil {
    1863           1 :                         w.writable.Abort()
    1864           1 :                         w.writable = nil
    1865           1 :                 }
    1866             :                 // Record any error in the writer (so we can exit early if Close is called
    1867             :                 // again).
    1868           2 :                 if err != nil {
    1869           1 :                         w.err = err
    1870           1 :                 }
    1871             :         }()
    1872             : 
    1873             :         // finish must be called before we check for an error, because finish will
    1874             :         // block until every single task added to the writeQueue has been processed,
    1875             :         // and an error could be encountered while any of those tasks are processed.
    1876           2 :         if err := w.coordination.writeQueue.finish(); err != nil {
    1877           1 :                 return err
    1878           1 :         }
    1879             : 
    1880           2 :         if w.err != nil {
    1881           1 :                 return w.err
    1882           1 :         }
    1883             : 
    1884             :         // The w.meta.LargestPointKey is only used once the Writer is closed, so it is safe to set it
    1885             :         // when the Writer is closed.
    1886             :         //
    1887             :         // The following invariants ensure that setting the largest key at this point of a Writer close
    1888             :         // is correct:
    1889             :         // 1. Keys must only be added to the Writer in an increasing order.
    1890             :         // 2. The current w.dataBlockBuf is guaranteed to have the latest key added to the Writer. This
    1891             :         //    must be true, because a w.dataBlockBuf is only switched out when a dataBlock is flushed,
    1892             :         //    however, if a dataBlock is flushed, then we add a key to the new w.dataBlockBuf in the
    1893             :         //    addPoint function after the flush occurs.
    1894           2 :         if w.dataBlockBuf.dataBlock.nEntries >= 1 {
    1895           2 :                 w.meta.SetLargestPointKey(w.dataBlockBuf.dataBlock.getCurKey().Clone())
    1896           2 :         }
    1897             : 
    1898             :         // Finish the last data block, or force an empty data block if there
    1899             :         // aren't any data blocks at all.
    1900           2 :         if w.dataBlockBuf.dataBlock.nEntries > 0 || w.indexBlock.block.nEntries == 0 {
    1901           2 :                 bh, err := w.writeBlock(w.dataBlockBuf.dataBlock.finish(), w.compression, &w.dataBlockBuf.blockBuf)
    1902           2 :                 if err != nil {
    1903           0 :                         return err
    1904           0 :                 }
    1905           2 :                 bhp, err := w.maybeAddBlockPropertiesToBlockHandle(bh)
    1906           2 :                 if err != nil {
    1907           0 :                         return err
    1908           0 :                 }
    1909           2 :                 prevKey := w.dataBlockBuf.dataBlock.getCurKey()
    1910           2 :                 if err := w.addIndexEntrySync(prevKey, InternalKey{}, bhp, w.dataBlockBuf.tmp[:]); err != nil {
    1911           0 :                         return err
    1912           0 :                 }
    1913             :         }
    1914           2 :         w.props.DataSize = w.meta.Size
    1915           2 : 
    1916           2 :         // Write the filter block.
    1917           2 :         var metaindex rawBlockWriter
    1918           2 :         metaindex.restartInterval = 1
    1919           2 :         if w.filter != nil {
    1920           2 :                 b, err := w.filter.finish()
    1921           2 :                 if err != nil {
    1922           0 :                         return err
    1923           0 :                 }
    1924           2 :                 bh, err := w.writeBlock(b, NoCompression, &w.blockBuf)
    1925           2 :                 if err != nil {
    1926           0 :                         return err
    1927           0 :                 }
    1928           2 :                 n := encodeBlockHandle(w.blockBuf.tmp[:], bh)
    1929           2 :                 metaindex.add(InternalKey{UserKey: []byte(w.filter.metaName())}, w.blockBuf.tmp[:n])
    1930           2 :                 w.props.FilterPolicyName = w.filter.policyName()
    1931           2 :                 w.props.FilterSize = bh.Length
    1932             :         }
    1933             : 
    1934           2 :         var indexBH BlockHandle
    1935           2 :         if w.twoLevelIndex {
    1936           2 :                 w.props.IndexType = twoLevelIndex
    1937           2 :                 // Write the two level index block.
    1938           2 :                 indexBH, err = w.writeTwoLevelIndex()
    1939           2 :                 if err != nil {
    1940           0 :                         return err
    1941           0 :                 }
    1942           2 :         } else {
    1943           2 :                 w.props.IndexType = binarySearchIndex
    1944           2 :                 // NB: RocksDB includes the block trailer length in the index size
    1945           2 :                 // property, though it doesn't include the trailer in the filter size
    1946           2 :                 // property.
    1947           2 :                 w.props.IndexSize = uint64(w.indexBlock.estimatedSize()) + blockTrailerLen
    1948           2 :                 w.props.NumDataBlocks = uint64(w.indexBlock.block.nEntries)
    1949           2 : 
    1950           2 :                 // Write the single level index block.
    1951           2 :                 indexBH, err = w.writeBlock(w.indexBlock.finish(), w.compression, &w.blockBuf)
    1952           2 :                 if err != nil {
    1953           0 :                         return err
    1954           0 :                 }
    1955             :         }
    1956             : 
    1957             :         // Write the range-del block. The block handle must added to the meta index block
    1958             :         // after the properties block has been written. This is because the entries in the
    1959             :         // metaindex block must be sorted by key.
    1960           2 :         var rangeDelBH BlockHandle
    1961           2 :         if w.props.NumRangeDeletions > 0 {
    1962           2 :                 if !w.rangeDelV1Format {
    1963           2 :                         // Because the range tombstones are fragmented in the v2 format, the end
    1964           2 :                         // key of the last added range tombstone will be the largest range
    1965           2 :                         // tombstone key. Note that we need to make this into a range deletion
    1966           2 :                         // sentinel because sstable boundaries are inclusive while the end key of
    1967           2 :                         // a range deletion tombstone is exclusive. A Clone() is necessary as
    1968           2 :                         // rangeDelBlock.curValue is the same slice that will get passed
    1969           2 :                         // into w.writer, and some implementations of vfs.File mutate the
    1970           2 :                         // slice passed into Write(). Also, w.meta will often outlive the
    1971           2 :                         // blockWriter, and so cloning curValue allows the rangeDelBlock's
    1972           2 :                         // internal buffer to get gc'd.
    1973           2 :                         k := base.MakeRangeDeleteSentinelKey(w.rangeDelBlock.curValue).Clone()
    1974           2 :                         w.meta.SetLargestRangeDelKey(k)
    1975           2 :                 }
    1976           2 :                 rangeDelBH, err = w.writeBlock(w.rangeDelBlock.finish(), NoCompression, &w.blockBuf)
    1977           2 :                 if err != nil {
    1978           0 :                         return err
    1979           0 :                 }
    1980             :         }
    1981             : 
    1982             :         // Write the range-key block, flushing any remaining spans from the
    1983             :         // fragmenter first.
    1984           2 :         w.fragmenter.Finish()
    1985           2 : 
    1986           2 :         var rangeKeyBH BlockHandle
    1987           2 :         if w.props.NumRangeKeys() > 0 {
    1988           2 :                 key := w.rangeKeyBlock.getCurKey()
    1989           2 :                 kind := key.Kind()
    1990           2 :                 endKey, _, ok := rangekey.DecodeEndKey(kind, w.rangeKeyBlock.curValue)
    1991           2 :                 if !ok {
    1992           0 :                         return errors.Newf("invalid end key: %s", w.rangeKeyBlock.curValue)
    1993           0 :                 }
    1994           2 :                 k := base.MakeExclusiveSentinelKey(kind, endKey).Clone()
    1995           2 :                 w.meta.SetLargestRangeKey(k)
    1996           2 :                 // TODO(travers): The lack of compression on the range key block matches the
    1997           2 :                 // lack of compression on the range-del block. Revisit whether we want to
    1998           2 :                 // enable compression on this block.
    1999           2 :                 rangeKeyBH, err = w.writeBlock(w.rangeKeyBlock.finish(), NoCompression, &w.blockBuf)
    2000           2 :                 if err != nil {
    2001           0 :                         return err
    2002           0 :                 }
    2003             :         }
    2004             : 
    2005           2 :         if w.valueBlockWriter != nil {
    2006           2 :                 vbiHandle, vbStats, err := w.valueBlockWriter.finish(w, w.meta.Size)
    2007           2 :                 if err != nil {
    2008           0 :                         return err
    2009           0 :                 }
    2010           2 :                 w.props.NumValueBlocks = vbStats.numValueBlocks
    2011           2 :                 w.props.NumValuesInValueBlocks = vbStats.numValuesInValueBlocks
    2012           2 :                 w.props.ValueBlocksSize = vbStats.valueBlocksAndIndexSize
    2013           2 :                 if vbStats.numValueBlocks > 0 {
    2014           2 :                         n := encodeValueBlocksIndexHandle(w.blockBuf.tmp[:], vbiHandle)
    2015           2 :                         metaindex.add(InternalKey{UserKey: []byte(metaValueIndexName)}, w.blockBuf.tmp[:n])
    2016           2 :                 }
    2017             :         }
    2018             : 
    2019             :         // Add the range key block handle to the metaindex block. Note that we add the
    2020             :         // block handle to the metaindex block before the other meta blocks as the
    2021             :         // metaindex block entries must be sorted, and the range key block name sorts
    2022             :         // before the other block names.
    2023           2 :         if w.props.NumRangeKeys() > 0 {
    2024           2 :                 n := encodeBlockHandle(w.blockBuf.tmp[:], rangeKeyBH)
    2025           2 :                 metaindex.add(InternalKey{UserKey: []byte(metaRangeKeyName)}, w.blockBuf.tmp[:n])
    2026           2 :         }
    2027             : 
    2028           2 :         {
    2029           2 :                 // Finish and record the prop collectors if props are not yet recorded.
    2030           2 :                 // Pre-computed props might have been copied by specialized sst creators
    2031           2 :                 // like suffix replacer or a span copier.
    2032           2 :                 if len(w.props.UserProperties) == 0 {
    2033           2 :                         userProps := make(map[string]string)
    2034           2 :                         for i := range w.blockPropCollectors {
    2035           2 :                                 scratch := w.blockPropsEncoder.getScratchForProp()
    2036           2 :                                 // Place the shortID in the first byte.
    2037           2 :                                 scratch = append(scratch, byte(i))
    2038           2 :                                 buf, err := w.blockPropCollectors[i].FinishTable(scratch)
    2039           2 :                                 if err != nil {
    2040           1 :                                         return err
    2041           1 :                                 }
    2042           2 :                                 var prop string
    2043           2 :                                 if len(buf) > 0 {
    2044           2 :                                         prop = string(buf)
    2045           2 :                                 }
    2046             :                                 // NB: The property is populated in the map even if it is the
    2047             :                                 // empty string, since the presence in the map is what indicates
    2048             :                                 // that the block property collector was used when writing.
    2049           2 :                                 userProps[w.blockPropCollectors[i].Name()] = prop
    2050             :                         }
    2051           2 :                         if len(userProps) > 0 {
    2052           2 :                                 w.props.UserProperties = userProps
    2053           2 :                         }
    2054             :                 }
    2055             : 
    2056             :                 // Write the properties block.
    2057           2 :                 var raw rawBlockWriter
    2058           2 :                 // The restart interval is set to infinity because the properties block
    2059           2 :                 // is always read sequentially and cached in a heap located object. This
    2060           2 :                 // reduces table size without a significant impact on performance.
    2061           2 :                 raw.restartInterval = propertiesBlockRestartInterval
    2062           2 :                 w.props.CompressionOptions = rocksDBCompressionOptions
    2063           2 :                 w.props.save(w.tableFormat, &raw)
    2064           2 :                 bh, err := w.writeBlock(raw.finish(), NoCompression, &w.blockBuf)
    2065           2 :                 if err != nil {
    2066           0 :                         return err
    2067           0 :                 }
    2068           2 :                 n := encodeBlockHandle(w.blockBuf.tmp[:], bh)
    2069           2 :                 metaindex.add(InternalKey{UserKey: []byte(metaPropertiesName)}, w.blockBuf.tmp[:n])
    2070             :         }
    2071             : 
    2072             :         // Add the range deletion block handle to the metaindex block.
    2073           2 :         if w.props.NumRangeDeletions > 0 {
    2074           2 :                 n := encodeBlockHandle(w.blockBuf.tmp[:], rangeDelBH)
    2075           2 :                 // The v2 range-del block encoding is backwards compatible with the v1
    2076           2 :                 // encoding. We add meta-index entries for both the old name and the new
    2077           2 :                 // name so that old code can continue to find the range-del block and new
    2078           2 :                 // code knows that the range tombstones in the block are fragmented and
    2079           2 :                 // sorted.
    2080           2 :                 metaindex.add(InternalKey{UserKey: []byte(metaRangeDelName)}, w.blockBuf.tmp[:n])
    2081           2 :                 if !w.rangeDelV1Format {
    2082           2 :                         metaindex.add(InternalKey{UserKey: []byte(metaRangeDelV2Name)}, w.blockBuf.tmp[:n])
    2083           2 :                 }
    2084             :         }
    2085             : 
    2086             :         // Write the metaindex block. It might be an empty block, if the filter
    2087             :         // policy is nil. NoCompression is specified because a) RocksDB never
    2088             :         // compresses the meta-index block and b) RocksDB has some code paths which
    2089             :         // expect the meta-index block to not be compressed.
    2090           2 :         metaindexBH, err := w.writeBlock(metaindex.blockWriter.finish(), NoCompression, &w.blockBuf)
    2091           2 :         if err != nil {
    2092           0 :                 return err
    2093           0 :         }
    2094             : 
    2095             :         // Write the table footer.
    2096           2 :         footer := footer{
    2097           2 :                 format:      w.tableFormat,
    2098           2 :                 checksum:    w.blockBuf.checksummer.checksumType,
    2099           2 :                 metaindexBH: metaindexBH,
    2100           2 :                 indexBH:     indexBH,
    2101           2 :         }
    2102           2 :         encoded := footer.encode(w.blockBuf.tmp[:])
    2103           2 :         if err := w.writable.Write(footer.encode(w.blockBuf.tmp[:])); err != nil {
    2104           0 :                 return err
    2105           0 :         }
    2106           2 :         w.meta.Size += uint64(len(encoded))
    2107           2 :         w.meta.Properties = w.props
    2108           2 : 
    2109           2 :         // Check that the features present in the table are compatible with the format
    2110           2 :         // configured for the table.
    2111           2 :         if err = w.assertFormatCompatibility(); err != nil {
    2112           1 :                 return err
    2113           1 :         }
    2114             : 
    2115           2 :         if err := w.writable.Finish(); err != nil {
    2116           1 :                 w.writable = nil
    2117           1 :                 return err
    2118           1 :         }
    2119           2 :         w.writable = nil
    2120           2 : 
    2121           2 :         w.dataBlockBuf.clear()
    2122           2 :         dataBlockBufPool.Put(w.dataBlockBuf)
    2123           2 :         w.dataBlockBuf = nil
    2124           2 :         w.indexBlock.clear()
    2125           2 :         indexBlockBufPool.Put(w.indexBlock)
    2126           2 :         w.indexBlock = nil
    2127           2 : 
    2128           2 :         // Make any future calls to Set or Close return an error.
    2129           2 :         w.err = errWriterClosed
    2130           2 :         return nil
    2131             : }
    2132             : 
    2133             : // EstimatedSize returns the estimated size of the sstable being written if a
    2134             : // call to Finish() was made without adding additional keys.
    2135           2 : func (w *Writer) EstimatedSize() uint64 {
    2136           2 :         return w.coordination.sizeEstimate.size() +
    2137           2 :                 uint64(w.dataBlockBuf.dataBlock.estimatedSize()) +
    2138           2 :                 w.indexBlock.estimatedSize()
    2139           2 : }
    2140             : 
    2141             : // Metadata returns the metadata for the finished sstable. Only valid to call
    2142             : // after the sstable has been finished.
    2143           2 : func (w *Writer) Metadata() (*WriterMetadata, error) {
    2144           2 :         if w.writable != nil {
    2145           0 :                 return nil, errors.New("pebble: writer is not closed")
    2146           0 :         }
    2147           2 :         return &w.meta, nil
    2148             : }
    2149             : 
    2150             : // WriterOption provide an interface to do work on Writer while it is being
    2151             : // opened.
    2152             : type WriterOption interface {
    2153             :         // writerApply is called on the writer during opening in order to set
    2154             :         // internal parameters.
    2155             :         writerApply(*Writer)
    2156             : }
    2157             : 
    2158             : // PreviousPointKeyOpt is a WriterOption that provides access to the last
    2159             : // point key written to the writer while building a sstable.
    2160             : type PreviousPointKeyOpt struct {
    2161             :         w *Writer
    2162             : }
    2163             : 
    2164             : // UnsafeKey returns the last point key written to the writer to which this
    2165             : // option was passed during creation. The returned key points directly into
    2166             : // a buffer belonging to the Writer. The value's lifetime ends the next time a
    2167             : // point key is added to the Writer.
    2168             : // Invariant: UnsafeKey isn't and shouldn't be called after the Writer is closed.
    2169           2 : func (o PreviousPointKeyOpt) UnsafeKey() base.InternalKey {
    2170           2 :         if o.w == nil {
    2171           0 :                 return base.InvalidInternalKey
    2172           0 :         }
    2173             : 
    2174           2 :         if o.w.dataBlockBuf.dataBlock.nEntries >= 1 {
    2175           2 :                 // o.w.dataBlockBuf.dataBlock.curKey is guaranteed to point to the last point key
    2176           2 :                 // which was added to the Writer.
    2177           2 :                 return o.w.dataBlockBuf.dataBlock.getCurKey()
    2178           2 :         }
    2179           0 :         return base.InternalKey{}
    2180             : }
    2181             : 
    2182           2 : func (o *PreviousPointKeyOpt) writerApply(w *Writer) {
    2183           2 :         o.w = w
    2184           2 : }
    2185             : 
    2186             : // NewWriter returns a new table writer for the file. Closing the writer will
    2187             : // close the file.
    2188           2 : func NewWriter(writable objstorage.Writable, o WriterOptions, extraOpts ...WriterOption) *Writer {
    2189           2 :         o = o.ensureDefaults()
    2190           2 :         w := &Writer{
    2191           2 :                 writable: writable,
    2192           2 :                 meta: WriterMetadata{
    2193           2 :                         SmallestSeqNum: math.MaxUint64,
    2194           2 :                 },
    2195           2 :                 blockSize:               o.BlockSize,
    2196           2 :                 blockSizeThreshold:      (o.BlockSize*o.BlockSizeThreshold + 99) / 100,
    2197           2 :                 indexBlockSize:          o.IndexBlockSize,
    2198           2 :                 indexBlockSizeThreshold: (o.IndexBlockSize*o.BlockSizeThreshold + 99) / 100,
    2199           2 :                 compare:                 o.Comparer.Compare,
    2200           2 :                 split:                   o.Comparer.Split,
    2201           2 :                 formatKey:               o.Comparer.FormatKey,
    2202           2 :                 compression:             o.Compression,
    2203           2 :                 separator:               o.Comparer.Separator,
    2204           2 :                 successor:               o.Comparer.Successor,
    2205           2 :                 tableFormat:             o.TableFormat,
    2206           2 :                 isStrictObsolete:        o.IsStrictObsolete,
    2207           2 :                 writingToLowestLevel:    o.WritingToLowestLevel,
    2208           2 :                 cache:                   o.Cache,
    2209           2 :                 restartInterval:         o.BlockRestartInterval,
    2210           2 :                 checksumType:            o.Checksum,
    2211           2 :                 indexBlock:              newIndexBlockBuf(o.Parallelism),
    2212           2 :                 rangeDelBlock: blockWriter{
    2213           2 :                         restartInterval: 1,
    2214           2 :                 },
    2215           2 :                 rangeKeyBlock: blockWriter{
    2216           2 :                         restartInterval: 1,
    2217           2 :                 },
    2218           2 :                 topLevelIndexBlock: blockWriter{
    2219           2 :                         restartInterval: 1,
    2220           2 :                 },
    2221           2 :                 fragmenter: keyspan.Fragmenter{
    2222           2 :                         Cmp:    o.Comparer.Compare,
    2223           2 :                         Format: o.Comparer.FormatKey,
    2224           2 :                 },
    2225           2 :         }
    2226           2 :         if w.tableFormat >= TableFormatPebblev3 {
    2227           2 :                 w.shortAttributeExtractor = o.ShortAttributeExtractor
    2228           2 :                 w.requiredInPlaceValueBound = o.RequiredInPlaceValueBound
    2229           2 :                 if !o.DisableValueBlocks {
    2230           2 :                         w.valueBlockWriter = newValueBlockWriter(
    2231           2 :                                 w.blockSize, w.blockSizeThreshold, w.compression, w.checksumType, func(compressedSize int) {
    2232           2 :                                         w.coordination.sizeEstimate.dataBlockCompressed(compressedSize, 0)
    2233           2 :                                 })
    2234             :                 }
    2235             :         }
    2236             : 
    2237           2 :         w.dataBlockBuf = newDataBlockBuf(w.restartInterval, w.checksumType)
    2238           2 : 
    2239           2 :         w.blockBuf = blockBuf{
    2240           2 :                 checksummer: checksummer{checksumType: o.Checksum},
    2241           2 :         }
    2242           2 : 
    2243           2 :         w.coordination.init(o.Parallelism, w)
    2244           2 : 
    2245           2 :         if writable == nil {
    2246           0 :                 w.err = errors.New("pebble: nil writable")
    2247           0 :                 return w
    2248           0 :         }
    2249             : 
    2250             :         // Note that WriterOptions are applied in two places; the ones with a
    2251             :         // preApply() method are applied here. The rest are applied down below after
    2252             :         // default properties are set.
    2253           2 :         type preApply interface{ preApply() }
    2254           2 :         for _, opt := range extraOpts {
    2255           2 :                 if _, ok := opt.(preApply); ok {
    2256           2 :                         opt.writerApply(w)
    2257           2 :                 }
    2258             :         }
    2259             : 
    2260           2 :         if o.FilterPolicy != nil {
    2261           2 :                 switch o.FilterType {
    2262           2 :                 case TableFilter:
    2263           2 :                         w.filter = newTableFilterWriter(o.FilterPolicy)
    2264           0 :                 default:
    2265           0 :                         panic(fmt.Sprintf("unknown filter type: %v", o.FilterType))
    2266             :                 }
    2267             :         }
    2268             : 
    2269           2 :         w.props.ComparerName = o.Comparer.Name
    2270           2 :         w.props.CompressionName = o.Compression.String()
    2271           2 :         w.props.MergerName = o.MergerName
    2272           2 :         w.props.PropertyCollectorNames = "[]"
    2273           2 :         w.props.ExternalFormatVersion = rocksDBExternalFormatVersion
    2274           2 : 
    2275           2 :         if len(o.BlockPropertyCollectors) > 0 || w.tableFormat >= TableFormatPebblev4 {
    2276           2 :                 var buf bytes.Buffer
    2277           2 :                 buf.WriteString("[")
    2278           2 :                 numBlockPropertyCollectors := len(o.BlockPropertyCollectors)
    2279           2 :                 if w.tableFormat >= TableFormatPebblev4 {
    2280           2 :                         numBlockPropertyCollectors++
    2281           2 :                 }
    2282             :                 // shortID is a uint8, so we cannot exceed that number of block
    2283             :                 // property collectors.
    2284           2 :                 if numBlockPropertyCollectors > math.MaxUint8 {
    2285           0 :                         w.err = errors.New("pebble: too many block property collectors")
    2286           0 :                         return w
    2287           0 :                 }
    2288           2 :                 if numBlockPropertyCollectors > 0 {
    2289           2 :                         w.blockPropCollectors = make([]BlockPropertyCollector, numBlockPropertyCollectors)
    2290           2 :                 }
    2291           2 :                 if len(o.BlockPropertyCollectors) > 0 {
    2292           2 :                         // The shortID assigned to a collector is the same as its index in
    2293           2 :                         // this slice.
    2294           2 :                         for i := range o.BlockPropertyCollectors {
    2295           2 :                                 w.blockPropCollectors[i] = o.BlockPropertyCollectors[i]()
    2296           2 :                                 if i > 0 {
    2297           1 :                                         buf.WriteString(",")
    2298           1 :                                 }
    2299           2 :                                 buf.WriteString(w.blockPropCollectors[i].Name())
    2300             :                         }
    2301             :                 }
    2302           2 :                 if w.tableFormat >= TableFormatPebblev4 {
    2303           2 :                         if numBlockPropertyCollectors > 1 {
    2304           2 :                                 buf.WriteString(",")
    2305           2 :                         }
    2306           2 :                         w.blockPropCollectors[numBlockPropertyCollectors-1] = &w.obsoleteCollector
    2307           2 :                         buf.WriteString(w.obsoleteCollector.Name())
    2308             :                 }
    2309           2 :                 buf.WriteString("]")
    2310           2 :                 w.props.PropertyCollectorNames = buf.String()
    2311             :         }
    2312             : 
    2313             :         // Apply the remaining WriterOptions that do not have a preApply() method.
    2314           2 :         for _, opt := range extraOpts {
    2315           2 :                 if _, ok := opt.(preApply); ok {
    2316           2 :                         continue
    2317             :                 }
    2318           2 :                 opt.writerApply(w)
    2319             :         }
    2320             : 
    2321             :         // Initialize the range key fragmenter and encoder.
    2322           2 :         w.fragmenter.Emit = w.encodeRangeKeySpan
    2323           2 :         w.rangeKeyEncoder.Emit = w.addRangeKey
    2324           2 :         return w
    2325             : }
    2326             : 
    2327             : // internalGetProperties is a private, internal-use-only function that takes a
    2328             : // Writer and returns a pointer to its Properties, allowing direct mutation.
    2329             : // It's used by internal Pebble flushes and compactions to set internal
    2330             : // properties. It gets installed in private.
    2331           2 : func internalGetProperties(w *Writer) *Properties {
    2332           2 :         return &w.props
    2333           2 : }
    2334             : 
    2335           2 : func init() {
    2336           2 :         private.SSTableWriterDisableKeyOrderChecks = func(i interface{}) {
    2337           1 :                 w := i.(*Writer)
    2338           1 :                 w.disableKeyOrderChecks = true
    2339           1 :         }
    2340           2 :         private.SSTableInternalProperties = internalGetProperties
    2341             : }

Generated by: LCOV version 1.14