LCOV - code coverage report
Current view: top level - pebble - db.go (source / functions) Hit Total Coverage
Test: 2024-04-08 08:16Z 45b7a800 - tests + meta.lcov Lines: 1421 1611 88.2 %
Date: 2024-04-08 08:17:22 Functions: 0 0 -

          Line data    Source code
       1             : // Copyright 2012 The LevelDB-Go and Pebble Authors. All rights reserved. Use
       2             : // of this source code is governed by a BSD-style license that can be found in
       3             : // the LICENSE file.
       4             : 
       5             : // Package pebble provides an ordered key/value store.
       6             : package pebble // import "github.com/cockroachdb/pebble"
       7             : 
       8             : import (
       9             :         "context"
      10             :         "fmt"
      11             :         "io"
      12             :         "strconv"
      13             :         "sync"
      14             :         "sync/atomic"
      15             :         "time"
      16             : 
      17             :         "github.com/cockroachdb/errors"
      18             :         "github.com/cockroachdb/pebble/internal/arenaskl"
      19             :         "github.com/cockroachdb/pebble/internal/base"
      20             :         "github.com/cockroachdb/pebble/internal/invalidating"
      21             :         "github.com/cockroachdb/pebble/internal/invariants"
      22             :         "github.com/cockroachdb/pebble/internal/keyspan"
      23             :         "github.com/cockroachdb/pebble/internal/keyspan/keyspanimpl"
      24             :         "github.com/cockroachdb/pebble/internal/manifest"
      25             :         "github.com/cockroachdb/pebble/internal/manual"
      26             :         "github.com/cockroachdb/pebble/objstorage"
      27             :         "github.com/cockroachdb/pebble/objstorage/remote"
      28             :         "github.com/cockroachdb/pebble/rangekey"
      29             :         "github.com/cockroachdb/pebble/record"
      30             :         "github.com/cockroachdb/pebble/sstable"
      31             :         "github.com/cockroachdb/pebble/vfs"
      32             :         "github.com/cockroachdb/pebble/vfs/atomicfs"
      33             :         "github.com/cockroachdb/pebble/wal"
      34             :         "github.com/cockroachdb/tokenbucket"
      35             :         "github.com/prometheus/client_golang/prometheus"
      36             : )
      37             : 
      38             : const (
      39             :         // minTableCacheSize is the minimum size of the table cache, for a single db.
      40             :         minTableCacheSize = 64
      41             : 
      42             :         // numNonTableCacheFiles is an approximation for the number of files
      43             :         // that we don't use for table caches, for a given db.
      44             :         numNonTableCacheFiles = 10
      45             : )
      46             : 
      47             : var (
      48             :         // ErrNotFound is returned when a get operation does not find the requested
      49             :         // key.
      50             :         ErrNotFound = base.ErrNotFound
      51             :         // ErrClosed is panicked when an operation is performed on a closed snapshot or
      52             :         // DB. Use errors.Is(err, ErrClosed) to check for this error.
      53             :         ErrClosed = errors.New("pebble: closed")
      54             :         // ErrReadOnly is returned when a write operation is performed on a read-only
      55             :         // database.
      56             :         ErrReadOnly = errors.New("pebble: read-only")
      57             :         // errNoSplit indicates that the user is trying to perform a range key
      58             :         // operation but the configured Comparer does not provide a Split
      59             :         // implementation.
      60             :         errNoSplit = errors.New("pebble: Comparer.Split required for range key operations")
      61             : )
      62             : 
      63             : // Reader is a readable key/value store.
      64             : //
      65             : // It is safe to call Get and NewIter from concurrent goroutines.
      66             : type Reader interface {
      67             :         // Get gets the value for the given key. It returns ErrNotFound if the DB
      68             :         // does not contain the key.
      69             :         //
      70             :         // The caller should not modify the contents of the returned slice, but it is
      71             :         // safe to modify the contents of the argument after Get returns. The
      72             :         // returned slice will remain valid until the returned Closer is closed. On
      73             :         // success, the caller MUST call closer.Close() or a memory leak will occur.
      74             :         Get(key []byte) (value []byte, closer io.Closer, err error)
      75             : 
      76             :         // NewIter returns an iterator that is unpositioned (Iterator.Valid() will
      77             :         // return false). The iterator can be positioned via a call to SeekGE,
      78             :         // SeekLT, First or Last.
      79             :         NewIter(o *IterOptions) (*Iterator, error)
      80             : 
      81             :         // NewIterWithContext is like NewIter, and additionally accepts a context
      82             :         // for tracing.
      83             :         NewIterWithContext(ctx context.Context, o *IterOptions) (*Iterator, error)
      84             : 
      85             :         // Close closes the Reader. It may or may not close any underlying io.Reader
      86             :         // or io.Writer, depending on how the DB was created.
      87             :         //
      88             :         // It is not safe to close a DB until all outstanding iterators are closed.
      89             :         // It is valid to call Close multiple times. Other methods should not be
      90             :         // called after the DB has been closed.
      91             :         Close() error
      92             : }
      93             : 
      94             : // Writer is a writable key/value store.
      95             : //
      96             : // Goroutine safety is dependent on the specific implementation.
      97             : type Writer interface {
      98             :         // Apply the operations contained in the batch to the DB.
      99             :         //
     100             :         // It is safe to modify the contents of the arguments after Apply returns.
     101             :         Apply(batch *Batch, o *WriteOptions) error
     102             : 
     103             :         // Delete deletes the value for the given key. Deletes are blind all will
     104             :         // succeed even if the given key does not exist.
     105             :         //
     106             :         // It is safe to modify the contents of the arguments after Delete returns.
     107             :         Delete(key []byte, o *WriteOptions) error
     108             : 
     109             :         // DeleteSized behaves identically to Delete, but takes an additional
     110             :         // argument indicating the size of the value being deleted. DeleteSized
     111             :         // should be preferred when the caller has the expectation that there exists
     112             :         // a single internal KV pair for the key (eg, the key has not been
     113             :         // overwritten recently), and the caller knows the size of its value.
     114             :         //
     115             :         // DeleteSized will record the value size within the tombstone and use it to
     116             :         // inform compaction-picking heuristics which strive to reduce space
     117             :         // amplification in the LSM. This "calling your shot" mechanic allows the
     118             :         // storage engine to more accurately estimate and reduce space
     119             :         // amplification.
     120             :         //
     121             :         // It is safe to modify the contents of the arguments after DeleteSized
     122             :         // returns.
     123             :         DeleteSized(key []byte, valueSize uint32, _ *WriteOptions) error
     124             : 
     125             :         // SingleDelete is similar to Delete in that it deletes the value for the given key. Like Delete,
     126             :         // it is a blind operation that will succeed even if the given key does not exist.
     127             :         //
     128             :         // WARNING: Undefined (non-deterministic) behavior will result if a key is overwritten and
     129             :         // then deleted using SingleDelete. The record may appear deleted immediately, but be
     130             :         // resurrected at a later time after compactions have been performed. Or the record may
     131             :         // be deleted permanently. A Delete operation lays down a "tombstone" which shadows all
     132             :         // previous versions of a key. The SingleDelete operation is akin to "anti-matter" and will
     133             :         // only delete the most recently written version for a key. These different semantics allow
     134             :         // the DB to avoid propagating a SingleDelete operation during a compaction as soon as the
     135             :         // corresponding Set operation is encountered. These semantics require extreme care to handle
     136             :         // properly. Only use if you have a workload where the performance gain is critical and you
     137             :         // can guarantee that a record is written once and then deleted once.
     138             :         //
     139             :         // SingleDelete is internally transformed into a Delete if the most recent record for a key is either
     140             :         // a Merge or Delete record.
     141             :         //
     142             :         // It is safe to modify the contents of the arguments after SingleDelete returns.
     143             :         SingleDelete(key []byte, o *WriteOptions) error
     144             : 
     145             :         // DeleteRange deletes all of the point keys (and values) in the range
     146             :         // [start,end) (inclusive on start, exclusive on end). DeleteRange does NOT
     147             :         // delete overlapping range keys (eg, keys set via RangeKeySet).
     148             :         //
     149             :         // It is safe to modify the contents of the arguments after DeleteRange
     150             :         // returns.
     151             :         DeleteRange(start, end []byte, o *WriteOptions) error
     152             : 
     153             :         // LogData adds the specified to the batch. The data will be written to the
     154             :         // WAL, but not added to memtables or sstables. Log data is never indexed,
     155             :         // which makes it useful for testing WAL performance.
     156             :         //
     157             :         // It is safe to modify the contents of the argument after LogData returns.
     158             :         LogData(data []byte, opts *WriteOptions) error
     159             : 
     160             :         // Merge merges the value for the given key. The details of the merge are
     161             :         // dependent upon the configured merge operation.
     162             :         //
     163             :         // It is safe to modify the contents of the arguments after Merge returns.
     164             :         Merge(key, value []byte, o *WriteOptions) error
     165             : 
     166             :         // Set sets the value for the given key. It overwrites any previous value
     167             :         // for that key; a DB is not a multi-map.
     168             :         //
     169             :         // It is safe to modify the contents of the arguments after Set returns.
     170             :         Set(key, value []byte, o *WriteOptions) error
     171             : 
     172             :         // RangeKeySet sets a range key mapping the key range [start, end) at the MVCC
     173             :         // timestamp suffix to value. The suffix is optional. If any portion of the key
     174             :         // range [start, end) is already set by a range key with the same suffix value,
     175             :         // RangeKeySet overrides it.
     176             :         //
     177             :         // It is safe to modify the contents of the arguments after RangeKeySet returns.
     178             :         RangeKeySet(start, end, suffix, value []byte, opts *WriteOptions) error
     179             : 
     180             :         // RangeKeyUnset removes a range key mapping the key range [start, end) at the
     181             :         // MVCC timestamp suffix. The suffix may be omitted to remove an unsuffixed
     182             :         // range key. RangeKeyUnset only removes portions of range keys that fall within
     183             :         // the [start, end) key span, and only range keys with suffixes that exactly
     184             :         // match the unset suffix.
     185             :         //
     186             :         // It is safe to modify the contents of the arguments after RangeKeyUnset
     187             :         // returns.
     188             :         RangeKeyUnset(start, end, suffix []byte, opts *WriteOptions) error
     189             : 
     190             :         // RangeKeyDelete deletes all of the range keys in the range [start,end)
     191             :         // (inclusive on start, exclusive on end). It does not delete point keys (for
     192             :         // that use DeleteRange). RangeKeyDelete removes all range keys within the
     193             :         // bounds, including those with or without suffixes.
     194             :         //
     195             :         // It is safe to modify the contents of the arguments after RangeKeyDelete
     196             :         // returns.
     197             :         RangeKeyDelete(start, end []byte, opts *WriteOptions) error
     198             : }
     199             : 
     200             : // CPUWorkHandle represents a handle used by the CPUWorkPermissionGranter API.
     201             : type CPUWorkHandle interface {
     202             :         // Permitted indicates whether Pebble can use additional CPU resources.
     203             :         Permitted() bool
     204             : }
     205             : 
     206             : // CPUWorkPermissionGranter is used to request permission to opportunistically
     207             : // use additional CPUs to speed up internal background work.
     208             : type CPUWorkPermissionGranter interface {
     209             :         // GetPermission returns a handle regardless of whether permission is granted
     210             :         // or not. In the latter case, the handle is only useful for recording
     211             :         // the CPU time actually spent on this calling goroutine.
     212             :         GetPermission(time.Duration) CPUWorkHandle
     213             :         // CPUWorkDone must be called regardless of whether CPUWorkHandle.Permitted
     214             :         // returns true or false.
     215             :         CPUWorkDone(CPUWorkHandle)
     216             : }
     217             : 
     218             : // Use a default implementation for the CPU work granter to avoid excessive nil
     219             : // checks in the code.
     220             : type defaultCPUWorkHandle struct{}
     221             : 
     222           2 : func (d defaultCPUWorkHandle) Permitted() bool {
     223           2 :         return false
     224           2 : }
     225             : 
     226             : type defaultCPUWorkGranter struct{}
     227             : 
     228           2 : func (d defaultCPUWorkGranter) GetPermission(_ time.Duration) CPUWorkHandle {
     229           2 :         return defaultCPUWorkHandle{}
     230           2 : }
     231             : 
     232           2 : func (d defaultCPUWorkGranter) CPUWorkDone(_ CPUWorkHandle) {}
     233             : 
     234             : // DB provides a concurrent, persistent ordered key/value store.
     235             : //
     236             : // A DB's basic operations (Get, Set, Delete) should be self-explanatory. Get
     237             : // and Delete will return ErrNotFound if the requested key is not in the store.
     238             : // Callers are free to ignore this error.
     239             : //
     240             : // A DB also allows for iterating over the key/value pairs in key order. If d
     241             : // is a DB, the code below prints all key/value pairs whose keys are 'greater
     242             : // than or equal to' k:
     243             : //
     244             : //      iter := d.NewIter(readOptions)
     245             : //      for iter.SeekGE(k); iter.Valid(); iter.Next() {
     246             : //              fmt.Printf("key=%q value=%q\n", iter.Key(), iter.Value())
     247             : //      }
     248             : //      return iter.Close()
     249             : //
     250             : // The Options struct holds the optional parameters for the DB, including a
     251             : // Comparer to define a 'less than' relationship over keys. It is always valid
     252             : // to pass a nil *Options, which means to use the default parameter values. Any
     253             : // zero field of a non-nil *Options also means to use the default value for
     254             : // that parameter. Thus, the code below uses a custom Comparer, but the default
     255             : // values for every other parameter:
     256             : //
     257             : //      db := pebble.Open(&Options{
     258             : //              Comparer: myComparer,
     259             : //      })
     260             : type DB struct {
     261             :         // The count and size of referenced memtables. This includes memtables
     262             :         // present in DB.mu.mem.queue, as well as memtables that have been flushed
     263             :         // but are still referenced by an inuse readState, as well as up to one
     264             :         // memTable waiting to be reused and stored in d.memTableRecycle.
     265             :         memTableCount    atomic.Int64
     266             :         memTableReserved atomic.Int64 // number of bytes reserved in the cache for memtables
     267             :         // memTableRecycle holds a pointer to an obsolete memtable. The next
     268             :         // memtable allocation will reuse this memtable if it has not already been
     269             :         // recycled.
     270             :         memTableRecycle atomic.Pointer[memTable]
     271             : 
     272             :         // The logical size of the current WAL.
     273             :         logSize atomic.Uint64
     274             : 
     275             :         // The number of bytes available on disk.
     276             :         diskAvailBytes atomic.Uint64
     277             : 
     278             :         cacheID        uint64
     279             :         dirname        string
     280             :         opts           *Options
     281             :         cmp            Compare
     282             :         equal          Equal
     283             :         merge          Merge
     284             :         split          Split
     285             :         abbreviatedKey AbbreviatedKey
     286             :         // The threshold for determining when a batch is "large" and will skip being
     287             :         // inserted into a memtable.
     288             :         largeBatchThreshold uint64
     289             :         // The current OPTIONS file number.
     290             :         optionsFileNum base.DiskFileNum
     291             :         // The on-disk size of the current OPTIONS file.
     292             :         optionsFileSize uint64
     293             : 
     294             :         // objProvider is used to access and manage SSTs.
     295             :         objProvider objstorage.Provider
     296             : 
     297             :         fileLock *Lock
     298             :         dataDir  vfs.File
     299             : 
     300             :         tableCache           *tableCacheContainer
     301             :         newIters             tableNewIters
     302             :         tableNewRangeKeyIter keyspanimpl.TableNewSpanIter
     303             : 
     304             :         commit *commitPipeline
     305             : 
     306             :         // readState provides access to the state needed for reading without needing
     307             :         // to acquire DB.mu.
     308             :         readState struct {
     309             :                 sync.RWMutex
     310             :                 val *readState
     311             :         }
     312             : 
     313             :         closed   *atomic.Value
     314             :         closedCh chan struct{}
     315             : 
     316             :         cleanupManager *cleanupManager
     317             : 
     318             :         // During an iterator close, we may asynchronously schedule read compactions.
     319             :         // We want to wait for those goroutines to finish, before closing the DB.
     320             :         // compactionShedulers.Wait() should not be called while the DB.mu is held.
     321             :         compactionSchedulers sync.WaitGroup
     322             : 
     323             :         // The main mutex protecting internal DB state. This mutex encompasses many
     324             :         // fields because those fields need to be accessed and updated atomically. In
     325             :         // particular, the current version, log.*, mem.*, and snapshot list need to
     326             :         // be accessed and updated atomically during compaction.
     327             :         //
     328             :         // Care is taken to avoid holding DB.mu during IO operations. Accomplishing
     329             :         // this sometimes requires releasing DB.mu in a method that was called with
     330             :         // it held. See versionSet.logAndApply() and DB.makeRoomForWrite() for
     331             :         // examples. This is a common pattern, so be careful about expectations that
     332             :         // DB.mu will be held continuously across a set of calls.
     333             :         mu struct {
     334             :                 sync.Mutex
     335             : 
     336             :                 formatVers struct {
     337             :                         // vers is the database's current format major version.
     338             :                         // Backwards-incompatible features are gated behind new
     339             :                         // format major versions and not enabled until a database's
     340             :                         // version is ratcheted upwards.
     341             :                         //
     342             :                         // Although this is under the `mu` prefix, readers may read vers
     343             :                         // atomically without holding d.mu. Writers must only write to this
     344             :                         // value through finalizeFormatVersUpgrade which requires d.mu is
     345             :                         // held.
     346             :                         vers atomic.Uint64
     347             :                         // marker is the atomic marker for the format major version.
     348             :                         // When a database's version is ratcheted upwards, the
     349             :                         // marker is moved in order to atomically record the new
     350             :                         // version.
     351             :                         marker *atomicfs.Marker
     352             :                         // ratcheting when set to true indicates that the database is
     353             :                         // currently in the process of ratcheting the format major version
     354             :                         // to vers + 1. As a part of ratcheting the format major version,
     355             :                         // migrations may drop and re-acquire the mutex.
     356             :                         ratcheting bool
     357             :                 }
     358             : 
     359             :                 // The ID of the next job. Job IDs are passed to event listener
     360             :                 // notifications and act as a mechanism for tying together the events and
     361             :                 // log messages for a single job such as a flush, compaction, or file
     362             :                 // ingestion. Job IDs are not serialized to disk or used for correctness.
     363             :                 nextJobID JobID
     364             : 
     365             :                 // The collection of immutable versions and state about the log and visible
     366             :                 // sequence numbers. Use the pointer here to ensure the atomic fields in
     367             :                 // version set are aligned properly.
     368             :                 versions *versionSet
     369             : 
     370             :                 log struct {
     371             :                         // manager is not protected by mu, but calls to Create must be
     372             :                         // serialized, and happen after the previous writer is closed.
     373             :                         manager wal.Manager
     374             :                         // The number of input bytes to the log. This is the raw size of the
     375             :                         // batches written to the WAL, without the overhead of the record
     376             :                         // envelopes.
     377             :                         bytesIn uint64
     378             :                         // The Writer is protected by commitPipeline.mu. This allows log writes
     379             :                         // to be performed without holding DB.mu, but requires both
     380             :                         // commitPipeline.mu and DB.mu to be held when rotating the WAL/memtable
     381             :                         // (i.e. makeRoomForWrite). Can be nil.
     382             :                         writer  wal.Writer
     383             :                         metrics struct {
     384             :                                 // fsyncLatency has its own internal synchronization, and is not
     385             :                                 // protected by mu.
     386             :                                 fsyncLatency prometheus.Histogram
     387             :                                 // Updated whenever a wal.Writer is closed.
     388             :                                 record.LogWriterMetrics
     389             :                         }
     390             :                 }
     391             : 
     392             :                 mem struct {
     393             :                         // The current mutable memTable.
     394             :                         mutable *memTable
     395             :                         // Queue of flushables (the mutable memtable is at end). Elements are
     396             :                         // added to the end of the slice and removed from the beginning. Once an
     397             :                         // index is set it is never modified making a fixed slice immutable and
     398             :                         // safe for concurrent reads.
     399             :                         queue flushableList
     400             :                         // nextSize is the size of the next memtable. The memtable size starts at
     401             :                         // min(256KB,Options.MemTableSize) and doubles each time a new memtable
     402             :                         // is allocated up to Options.MemTableSize. This reduces the memory
     403             :                         // footprint of memtables when lots of DB instances are used concurrently
     404             :                         // in test environments.
     405             :                         nextSize uint64
     406             :                 }
     407             : 
     408             :                 compact struct {
     409             :                         // Condition variable used to signal when a flush or compaction has
     410             :                         // completed. Used by the write-stall mechanism to wait for the stall
     411             :                         // condition to clear. See DB.makeRoomForWrite().
     412             :                         cond sync.Cond
     413             :                         // True when a flush is in progress.
     414             :                         flushing bool
     415             :                         // The number of ongoing non-download compactions.
     416             :                         compactingCount int
     417             :                         // The number of download compactions.
     418             :                         downloadingCount int
     419             :                         // The list of deletion hints, suggesting ranges for delete-only
     420             :                         // compactions.
     421             :                         deletionHints []deleteCompactionHint
     422             :                         // The list of manual compactions. The next manual compaction to perform
     423             :                         // is at the start of the list. New entries are added to the end.
     424             :                         manual []*manualCompaction
     425             :                         // downloads is the list of pending download tasks. The next download to
     426             :                         // perform is at the start of the list. New entries are added to the end.
     427             :                         downloads []*downloadSpanTask
     428             :                         // inProgress is the set of in-progress flushes and compactions.
     429             :                         // It's used in the calculation of some metrics and to initialize L0
     430             :                         // sublevels' state. Some of the compactions contained within this
     431             :                         // map may have already committed an edit to the version but are
     432             :                         // lingering performing cleanup, like deleting obsolete files.
     433             :                         inProgress map[*compaction]struct{}
     434             : 
     435             :                         // rescheduleReadCompaction indicates to an iterator that a read compaction
     436             :                         // should be scheduled.
     437             :                         rescheduleReadCompaction bool
     438             : 
     439             :                         // readCompactions is a readCompactionQueue which keeps track of the
     440             :                         // compactions which we might have to perform.
     441             :                         readCompactions readCompactionQueue
     442             : 
     443             :                         // The cumulative duration of all completed compactions since Open.
     444             :                         // Does not include flushes.
     445             :                         duration time.Duration
     446             :                         // Flush throughput metric.
     447             :                         flushWriteThroughput ThroughputMetric
     448             :                         // The idle start time for the flush "loop", i.e., when the flushing
     449             :                         // bool above transitions to false.
     450             :                         noOngoingFlushStartTime time.Time
     451             :                 }
     452             : 
     453             :                 // Non-zero when file cleaning is disabled. The disabled count acts as a
     454             :                 // reference count to prohibit file cleaning. See
     455             :                 // DB.{disable,Enable}FileDeletions().
     456             :                 disableFileDeletions int
     457             : 
     458             :                 snapshots struct {
     459             :                         // The list of active snapshots.
     460             :                         snapshotList
     461             : 
     462             :                         // The cumulative count and size of snapshot-pinned keys written to
     463             :                         // sstables.
     464             :                         cumulativePinnedCount uint64
     465             :                         cumulativePinnedSize  uint64
     466             :                 }
     467             : 
     468             :                 tableStats struct {
     469             :                         // Condition variable used to signal the completion of a
     470             :                         // job to collect table stats.
     471             :                         cond sync.Cond
     472             :                         // True when a stat collection operation is in progress.
     473             :                         loading bool
     474             :                         // True if stat collection has loaded statistics for all tables
     475             :                         // other than those listed explicitly in pending. This flag starts
     476             :                         // as false when a database is opened and flips to true once stat
     477             :                         // collection has caught up.
     478             :                         loadedInitial bool
     479             :                         // A slice of files for which stats have not been computed.
     480             :                         // Compactions, ingests, flushes append files to be processed. An
     481             :                         // active stat collection goroutine clears the list and processes
     482             :                         // them.
     483             :                         pending []manifest.NewFileEntry
     484             :                 }
     485             : 
     486             :                 tableValidation struct {
     487             :                         // cond is a condition variable used to signal the completion of a
     488             :                         // job to validate one or more sstables.
     489             :                         cond sync.Cond
     490             :                         // pending is a slice of metadata for sstables waiting to be
     491             :                         // validated. Only physical sstables should be added to the pending
     492             :                         // queue.
     493             :                         pending []newFileEntry
     494             :                         // validating is set to true when validation is running.
     495             :                         validating bool
     496             :                 }
     497             :         }
     498             : 
     499             :         // Normally equal to time.Now() but may be overridden in tests.
     500             :         timeNow func() time.Time
     501             :         // the time at database Open; may be used to compute metrics like effective
     502             :         // compaction concurrency
     503             :         openedAt time.Time
     504             : }
     505             : 
     506             : var _ Reader = (*DB)(nil)
     507             : var _ Writer = (*DB)(nil)
     508             : 
     509             : // TestOnlyWaitForCleaning MUST only be used in tests.
     510           1 : func (d *DB) TestOnlyWaitForCleaning() {
     511           1 :         d.cleanupManager.Wait()
     512           1 : }
     513             : 
     514             : // Get gets the value for the given key. It returns ErrNotFound if the DB does
     515             : // not contain the key.
     516             : //
     517             : // The caller should not modify the contents of the returned slice, but it is
     518             : // safe to modify the contents of the argument after Get returns. The returned
     519             : // slice will remain valid until the returned Closer is closed. On success, the
     520             : // caller MUST call closer.Close() or a memory leak will occur.
     521           2 : func (d *DB) Get(key []byte) ([]byte, io.Closer, error) {
     522           2 :         return d.getInternal(key, nil /* batch */, nil /* snapshot */)
     523           2 : }
     524             : 
     525             : type getIterAlloc struct {
     526             :         dbi    Iterator
     527             :         keyBuf []byte
     528             :         get    getIter
     529             : }
     530             : 
     531             : var getIterAllocPool = sync.Pool{
     532           2 :         New: func() interface{} {
     533           2 :                 return &getIterAlloc{}
     534           2 :         },
     535             : }
     536             : 
     537           2 : func (d *DB) getInternal(key []byte, b *Batch, s *Snapshot) ([]byte, io.Closer, error) {
     538           2 :         if err := d.closed.Load(); err != nil {
     539           1 :                 panic(err)
     540             :         }
     541             : 
     542             :         // Grab and reference the current readState. This prevents the underlying
     543             :         // files in the associated version from being deleted if there is a current
     544             :         // compaction. The readState is unref'd by Iterator.Close().
     545           2 :         readState := d.loadReadState()
     546           2 : 
     547           2 :         // Determine the seqnum to read at after grabbing the read state (current and
     548           2 :         // memtables) above.
     549           2 :         var seqNum uint64
     550           2 :         if s != nil {
     551           2 :                 seqNum = s.seqNum
     552           2 :         } else {
     553           2 :                 seqNum = d.mu.versions.visibleSeqNum.Load()
     554           2 :         }
     555             : 
     556           2 :         buf := getIterAllocPool.Get().(*getIterAlloc)
     557           2 : 
     558           2 :         get := &buf.get
     559           2 :         *get = getIter{
     560           2 :                 logger:   d.opts.Logger,
     561           2 :                 comparer: d.opts.Comparer,
     562           2 :                 newIters: d.newIters,
     563           2 :                 snapshot: seqNum,
     564           2 :                 key:      key,
     565           2 :                 batch:    b,
     566           2 :                 mem:      readState.memtables,
     567           2 :                 l0:       readState.current.L0SublevelFiles,
     568           2 :                 version:  readState.current,
     569           2 :         }
     570           2 : 
     571           2 :         // Strip off memtables which cannot possibly contain the seqNum being read
     572           2 :         // at.
     573           2 :         for len(get.mem) > 0 {
     574           2 :                 n := len(get.mem)
     575           2 :                 if logSeqNum := get.mem[n-1].logSeqNum; logSeqNum < seqNum {
     576           2 :                         break
     577             :                 }
     578           2 :                 get.mem = get.mem[:n-1]
     579             :         }
     580             : 
     581           2 :         i := &buf.dbi
     582           2 :         pointIter := get
     583           2 :         *i = Iterator{
     584           2 :                 ctx:          context.Background(),
     585           2 :                 getIterAlloc: buf,
     586           2 :                 iter:         pointIter,
     587           2 :                 pointIter:    pointIter,
     588           2 :                 merge:        d.merge,
     589           2 :                 comparer:     *d.opts.Comparer,
     590           2 :                 readState:    readState,
     591           2 :                 keyBuf:       buf.keyBuf,
     592           2 :         }
     593           2 : 
     594           2 :         if !i.First() {
     595           2 :                 err := i.Close()
     596           2 :                 if err != nil {
     597           1 :                         return nil, nil, err
     598           1 :                 }
     599           2 :                 return nil, nil, ErrNotFound
     600             :         }
     601           2 :         return i.Value(), i, nil
     602             : }
     603             : 
     604             : // Set sets the value for the given key. It overwrites any previous value
     605             : // for that key; a DB is not a multi-map.
     606             : //
     607             : // It is safe to modify the contents of the arguments after Set returns.
     608           2 : func (d *DB) Set(key, value []byte, opts *WriteOptions) error {
     609           2 :         b := newBatch(d)
     610           2 :         _ = b.Set(key, value, opts)
     611           2 :         if err := d.Apply(b, opts); err != nil {
     612           1 :                 return err
     613           1 :         }
     614             :         // Only release the batch on success.
     615           2 :         return b.Close()
     616             : }
     617             : 
     618             : // Delete deletes the value for the given key. Deletes are blind all will
     619             : // succeed even if the given key does not exist.
     620             : //
     621             : // It is safe to modify the contents of the arguments after Delete returns.
     622           2 : func (d *DB) Delete(key []byte, opts *WriteOptions) error {
     623           2 :         b := newBatch(d)
     624           2 :         _ = b.Delete(key, opts)
     625           2 :         if err := d.Apply(b, opts); err != nil {
     626           1 :                 return err
     627           1 :         }
     628             :         // Only release the batch on success.
     629           2 :         return b.Close()
     630             : }
     631             : 
     632             : // DeleteSized behaves identically to Delete, but takes an additional
     633             : // argument indicating the size of the value being deleted. DeleteSized
     634             : // should be preferred when the caller has the expectation that there exists
     635             : // a single internal KV pair for the key (eg, the key has not been
     636             : // overwritten recently), and the caller knows the size of its value.
     637             : //
     638             : // DeleteSized will record the value size within the tombstone and use it to
     639             : // inform compaction-picking heuristics which strive to reduce space
     640             : // amplification in the LSM. This "calling your shot" mechanic allows the
     641             : // storage engine to more accurately estimate and reduce space amplification.
     642             : //
     643             : // It is safe to modify the contents of the arguments after DeleteSized
     644             : // returns.
     645           2 : func (d *DB) DeleteSized(key []byte, valueSize uint32, opts *WriteOptions) error {
     646           2 :         b := newBatch(d)
     647           2 :         _ = b.DeleteSized(key, valueSize, opts)
     648           2 :         if err := d.Apply(b, opts); err != nil {
     649           0 :                 return err
     650           0 :         }
     651             :         // Only release the batch on success.
     652           2 :         return b.Close()
     653             : }
     654             : 
     655             : // SingleDelete adds an action to the batch that single deletes the entry for key.
     656             : // See Writer.SingleDelete for more details on the semantics of SingleDelete.
     657             : //
     658             : // It is safe to modify the contents of the arguments after SingleDelete returns.
     659           2 : func (d *DB) SingleDelete(key []byte, opts *WriteOptions) error {
     660           2 :         b := newBatch(d)
     661           2 :         _ = b.SingleDelete(key, opts)
     662           2 :         if err := d.Apply(b, opts); err != nil {
     663           0 :                 return err
     664           0 :         }
     665             :         // Only release the batch on success.
     666           2 :         return b.Close()
     667             : }
     668             : 
     669             : // DeleteRange deletes all of the keys (and values) in the range [start,end)
     670             : // (inclusive on start, exclusive on end).
     671             : //
     672             : // It is safe to modify the contents of the arguments after DeleteRange
     673             : // returns.
     674           2 : func (d *DB) DeleteRange(start, end []byte, opts *WriteOptions) error {
     675           2 :         b := newBatch(d)
     676           2 :         _ = b.DeleteRange(start, end, opts)
     677           2 :         if err := d.Apply(b, opts); err != nil {
     678           1 :                 return err
     679           1 :         }
     680             :         // Only release the batch on success.
     681           2 :         return b.Close()
     682             : }
     683             : 
     684             : // Merge adds an action to the DB that merges the value at key with the new
     685             : // value. The details of the merge are dependent upon the configured merge
     686             : // operator.
     687             : //
     688             : // It is safe to modify the contents of the arguments after Merge returns.
     689           2 : func (d *DB) Merge(key, value []byte, opts *WriteOptions) error {
     690           2 :         b := newBatch(d)
     691           2 :         _ = b.Merge(key, value, opts)
     692           2 :         if err := d.Apply(b, opts); err != nil {
     693           1 :                 return err
     694           1 :         }
     695             :         // Only release the batch on success.
     696           2 :         return b.Close()
     697             : }
     698             : 
     699             : // LogData adds the specified to the batch. The data will be written to the
     700             : // WAL, but not added to memtables or sstables. Log data is never indexed,
     701             : // which makes it useful for testing WAL performance.
     702             : //
     703             : // It is safe to modify the contents of the argument after LogData returns.
     704           2 : func (d *DB) LogData(data []byte, opts *WriteOptions) error {
     705           2 :         b := newBatch(d)
     706           2 :         _ = b.LogData(data, opts)
     707           2 :         if err := d.Apply(b, opts); err != nil {
     708           1 :                 return err
     709           1 :         }
     710             :         // Only release the batch on success.
     711           2 :         return b.Close()
     712             : }
     713             : 
     714             : // RangeKeySet sets a range key mapping the key range [start, end) at the MVCC
     715             : // timestamp suffix to value. The suffix is optional. If any portion of the key
     716             : // range [start, end) is already set by a range key with the same suffix value,
     717             : // RangeKeySet overrides it.
     718             : //
     719             : // It is safe to modify the contents of the arguments after RangeKeySet returns.
     720           2 : func (d *DB) RangeKeySet(start, end, suffix, value []byte, opts *WriteOptions) error {
     721           2 :         b := newBatch(d)
     722           2 :         _ = b.RangeKeySet(start, end, suffix, value, opts)
     723           2 :         if err := d.Apply(b, opts); err != nil {
     724           0 :                 return err
     725           0 :         }
     726             :         // Only release the batch on success.
     727           2 :         return b.Close()
     728             : }
     729             : 
     730             : // RangeKeyUnset removes a range key mapping the key range [start, end) at the
     731             : // MVCC timestamp suffix. The suffix may be omitted to remove an unsuffixed
     732             : // range key. RangeKeyUnset only removes portions of range keys that fall within
     733             : // the [start, end) key span, and only range keys with suffixes that exactly
     734             : // match the unset suffix.
     735             : //
     736             : // It is safe to modify the contents of the arguments after RangeKeyUnset
     737             : // returns.
     738           2 : func (d *DB) RangeKeyUnset(start, end, suffix []byte, opts *WriteOptions) error {
     739           2 :         b := newBatch(d)
     740           2 :         _ = b.RangeKeyUnset(start, end, suffix, opts)
     741           2 :         if err := d.Apply(b, opts); err != nil {
     742           0 :                 return err
     743           0 :         }
     744             :         // Only release the batch on success.
     745           2 :         return b.Close()
     746             : }
     747             : 
     748             : // RangeKeyDelete deletes all of the range keys in the range [start,end)
     749             : // (inclusive on start, exclusive on end). It does not delete point keys (for
     750             : // that use DeleteRange). RangeKeyDelete removes all range keys within the
     751             : // bounds, including those with or without suffixes.
     752             : //
     753             : // It is safe to modify the contents of the arguments after RangeKeyDelete
     754             : // returns.
     755           2 : func (d *DB) RangeKeyDelete(start, end []byte, opts *WriteOptions) error {
     756           2 :         b := newBatch(d)
     757           2 :         _ = b.RangeKeyDelete(start, end, opts)
     758           2 :         if err := d.Apply(b, opts); err != nil {
     759           0 :                 return err
     760           0 :         }
     761             :         // Only release the batch on success.
     762           2 :         return b.Close()
     763             : }
     764             : 
     765             : // Apply the operations contained in the batch to the DB. If the batch is large
     766             : // the contents of the batch may be retained by the database. If that occurs
     767             : // the batch contents will be cleared preventing the caller from attempting to
     768             : // reuse them.
     769             : //
     770             : // It is safe to modify the contents of the arguments after Apply returns.
     771             : //
     772             : // Apply returns ErrInvalidBatch if the provided batch is invalid in any way.
     773           2 : func (d *DB) Apply(batch *Batch, opts *WriteOptions) error {
     774           2 :         return d.applyInternal(batch, opts, false)
     775           2 : }
     776             : 
     777             : // ApplyNoSyncWait must only be used when opts.Sync is true and the caller
     778             : // does not want to wait for the WAL fsync to happen. The method will return
     779             : // once the mutation is applied to the memtable and is visible (note that a
     780             : // mutation is visible before the WAL sync even in the wait case, so we have
     781             : // not weakened the durability semantics). The caller must call Batch.SyncWait
     782             : // to wait for the WAL fsync. The caller must not Close the batch without
     783             : // first calling Batch.SyncWait.
     784             : //
     785             : // RECOMMENDATION: Prefer using Apply unless you really understand why you
     786             : // need ApplyNoSyncWait.
     787             : // EXPERIMENTAL: API/feature subject to change. Do not yet use outside
     788             : // CockroachDB.
     789           2 : func (d *DB) ApplyNoSyncWait(batch *Batch, opts *WriteOptions) error {
     790           2 :         if !opts.Sync {
     791           0 :                 return errors.Errorf("cannot request asynchonous apply when WriteOptions.Sync is false")
     792           0 :         }
     793           2 :         return d.applyInternal(batch, opts, true)
     794             : }
     795             : 
     796             : // REQUIRES: noSyncWait => opts.Sync
     797           2 : func (d *DB) applyInternal(batch *Batch, opts *WriteOptions, noSyncWait bool) error {
     798           2 :         if err := d.closed.Load(); err != nil {
     799           1 :                 panic(err)
     800             :         }
     801           2 :         if batch.committing {
     802           0 :                 panic("pebble: batch already committing")
     803             :         }
     804           2 :         if batch.applied.Load() {
     805           0 :                 panic("pebble: batch already applied")
     806             :         }
     807           2 :         if d.opts.ReadOnly {
     808           1 :                 return ErrReadOnly
     809           1 :         }
     810           2 :         if batch.db != nil && batch.db != d {
     811           1 :                 panic(fmt.Sprintf("pebble: batch db mismatch: %p != %p", batch.db, d))
     812             :         }
     813             : 
     814           2 :         sync := opts.GetSync()
     815           2 :         if sync && d.opts.DisableWAL {
     816           0 :                 return errors.New("pebble: WAL disabled")
     817           0 :         }
     818             : 
     819           2 :         if fmv := d.FormatMajorVersion(); fmv < batch.minimumFormatMajorVersion {
     820           0 :                 panic(fmt.Sprintf(
     821           0 :                         "pebble: batch requires at least format major version %d (current: %d)",
     822           0 :                         batch.minimumFormatMajorVersion, fmv,
     823           0 :                 ))
     824             :         }
     825             : 
     826           2 :         if batch.countRangeKeys > 0 {
     827           2 :                 if d.split == nil {
     828           0 :                         return errNoSplit
     829           0 :                 }
     830             :         }
     831           2 :         batch.committing = true
     832           2 : 
     833           2 :         if batch.db == nil {
     834           1 :                 if err := batch.refreshMemTableSize(); err != nil {
     835           0 :                         return err
     836           0 :                 }
     837             :         }
     838           2 :         if batch.memTableSize >= d.largeBatchThreshold {
     839           2 :                 var err error
     840           2 :                 batch.flushable, err = newFlushableBatch(batch, d.opts.Comparer)
     841           2 :                 if err != nil {
     842           0 :                         return err
     843           0 :                 }
     844             :         }
     845           2 :         if err := d.commit.Commit(batch, sync, noSyncWait); err != nil {
     846           0 :                 // There isn't much we can do on an error here. The commit pipeline will be
     847           0 :                 // horked at this point.
     848           0 :                 d.opts.Logger.Fatalf("pebble: fatal commit error: %v", err)
     849           0 :         }
     850             :         // If this is a large batch, we need to clear the batch contents as the
     851             :         // flushable batch may still be present in the flushables queue.
     852             :         //
     853             :         // TODO(peter): Currently large batches are written to the WAL. We could
     854             :         // skip the WAL write and instead wait for the large batch to be flushed to
     855             :         // an sstable. For a 100 MB batch, this might actually be faster. For a 1
     856             :         // GB batch this is almost certainly faster.
     857           2 :         if batch.flushable != nil {
     858           2 :                 batch.data = nil
     859           2 :         }
     860           2 :         return nil
     861             : }
     862             : 
     863           2 : func (d *DB) commitApply(b *Batch, mem *memTable) error {
     864           2 :         if b.flushable != nil {
     865           2 :                 // This is a large batch which was already added to the immutable queue.
     866           2 :                 return nil
     867           2 :         }
     868           2 :         err := mem.apply(b, b.SeqNum())
     869           2 :         if err != nil {
     870           0 :                 return err
     871           0 :         }
     872             : 
     873             :         // If the batch contains range tombstones and the database is configured
     874             :         // to flush range deletions, schedule a delayed flush so that disk space
     875             :         // may be reclaimed without additional writes or an explicit flush.
     876           2 :         if b.countRangeDels > 0 && d.opts.FlushDelayDeleteRange > 0 {
     877           2 :                 d.mu.Lock()
     878           2 :                 d.maybeScheduleDelayedFlush(mem, d.opts.FlushDelayDeleteRange)
     879           2 :                 d.mu.Unlock()
     880           2 :         }
     881             : 
     882             :         // If the batch contains range keys and the database is configured to flush
     883             :         // range keys, schedule a delayed flush so that the range keys are cleared
     884             :         // from the memtable.
     885           2 :         if b.countRangeKeys > 0 && d.opts.FlushDelayRangeKey > 0 {
     886           2 :                 d.mu.Lock()
     887           2 :                 d.maybeScheduleDelayedFlush(mem, d.opts.FlushDelayRangeKey)
     888           2 :                 d.mu.Unlock()
     889           2 :         }
     890             : 
     891           2 :         if mem.writerUnref() {
     892           2 :                 d.mu.Lock()
     893           2 :                 d.maybeScheduleFlush()
     894           2 :                 d.mu.Unlock()
     895           2 :         }
     896           2 :         return nil
     897             : }
     898             : 
     899           2 : func (d *DB) commitWrite(b *Batch, syncWG *sync.WaitGroup, syncErr *error) (*memTable, error) {
     900           2 :         var size int64
     901           2 :         repr := b.Repr()
     902           2 : 
     903           2 :         if b.flushable != nil {
     904           2 :                 // We have a large batch. Such batches are special in that they don't get
     905           2 :                 // added to the memtable, and are instead inserted into the queue of
     906           2 :                 // memtables. The call to makeRoomForWrite with this batch will force the
     907           2 :                 // current memtable to be flushed. We want the large batch to be part of
     908           2 :                 // the same log, so we add it to the WAL here, rather than after the call
     909           2 :                 // to makeRoomForWrite().
     910           2 :                 //
     911           2 :                 // Set the sequence number since it was not set to the correct value earlier
     912           2 :                 // (see comment in newFlushableBatch()).
     913           2 :                 b.flushable.setSeqNum(b.SeqNum())
     914           2 :                 if !d.opts.DisableWAL {
     915           2 :                         var err error
     916           2 :                         size, err = d.mu.log.writer.WriteRecord(repr, wal.SyncOptions{Done: syncWG, Err: syncErr}, b.refData)
     917           2 :                         if err != nil {
     918           0 :                                 panic(err)
     919             :                         }
     920             :                 }
     921             :         }
     922             : 
     923           2 :         d.mu.Lock()
     924           2 : 
     925           2 :         var err error
     926           2 :         if !b.ingestedSSTBatch {
     927           2 :                 // Batches which contain keys of kind InternalKeyKindIngestSST will
     928           2 :                 // never be applied to the memtable, so we don't need to make room for
     929           2 :                 // write. For the other cases, switch out the memtable if there was not
     930           2 :                 // enough room to store the batch.
     931           2 :                 err = d.makeRoomForWrite(b)
     932           2 :         }
     933             : 
     934           2 :         if err == nil && !d.opts.DisableWAL {
     935           2 :                 d.mu.log.bytesIn += uint64(len(repr))
     936           2 :         }
     937             : 
     938             :         // Grab a reference to the memtable while holding DB.mu. Note that for
     939             :         // non-flushable batches (b.flushable == nil) makeRoomForWrite() added a
     940             :         // reference to the memtable which will prevent it from being flushed until
     941             :         // we unreference it. This reference is dropped in DB.commitApply().
     942           2 :         mem := d.mu.mem.mutable
     943           2 : 
     944           2 :         d.mu.Unlock()
     945           2 :         if err != nil {
     946           0 :                 return nil, err
     947           0 :         }
     948             : 
     949           2 :         if d.opts.DisableWAL {
     950           2 :                 return mem, nil
     951           2 :         }
     952             : 
     953           2 :         if b.flushable == nil {
     954           2 :                 size, err = d.mu.log.writer.WriteRecord(repr, wal.SyncOptions{Done: syncWG, Err: syncErr}, b.refData)
     955           2 :                 if err != nil {
     956           0 :                         panic(err)
     957             :                 }
     958             :         }
     959             : 
     960           2 :         d.logSize.Store(uint64(size))
     961           2 :         return mem, err
     962             : }
     963             : 
     964             : type iterAlloc struct {
     965             :         dbi                 Iterator
     966             :         keyBuf              []byte
     967             :         boundsBuf           [2][]byte
     968             :         prefixOrFullSeekKey []byte
     969             :         merging             mergingIter
     970             :         mlevels             [3 + numLevels]mergingIterLevel
     971             :         levels              [3 + numLevels]levelIter
     972             :         levelsPositioned    [3 + numLevels]bool
     973             : }
     974             : 
     975             : var iterAllocPool = sync.Pool{
     976           2 :         New: func() interface{} {
     977           2 :                 return &iterAlloc{}
     978           2 :         },
     979             : }
     980             : 
     981             : // snapshotIterOpts denotes snapshot-related iterator options when calling
     982             : // newIter. These are the possible cases for a snapshotIterOpts:
     983             : //   - No snapshot: All fields are zero values.
     984             : //   - Classic snapshot: Only `seqNum` is set. The latest readState will be used
     985             : //     and the specified seqNum will be used as the snapshot seqNum.
     986             : //   - EventuallyFileOnlySnapshot (EFOS) behaving as a classic snapshot. Only
     987             : //     the `seqNum` is set. The latest readState will be used
     988             : //     and the specified seqNum will be used as the snapshot seqNum.
     989             : //   - EFOS in file-only state: Only `seqNum` and `vers` are set. All the
     990             : //     relevant SSTs are referenced by the *version.
     991             : //   - EFOS that has been excised but is in alwaysCreateIters mode (tests only).
     992             : //     Only `seqNum` and `readState` are set.
     993             : type snapshotIterOpts struct {
     994             :         seqNum    uint64
     995             :         vers      *version
     996             :         readState *readState
     997             : }
     998             : 
     999             : type batchIterOpts struct {
    1000             :         batchOnly bool
    1001             : }
    1002             : type newIterOpts struct {
    1003             :         snapshot snapshotIterOpts
    1004             :         batch    batchIterOpts
    1005             : }
    1006             : 
    1007             : // newIter constructs a new iterator, merging in batch iterators as an extra
    1008             : // level.
    1009             : func (d *DB) newIter(
    1010             :         ctx context.Context, batch *Batch, internalOpts newIterOpts, o *IterOptions,
    1011           2 : ) *Iterator {
    1012           2 :         if internalOpts.batch.batchOnly {
    1013           1 :                 if batch == nil {
    1014           0 :                         panic("batchOnly is true, but batch is nil")
    1015             :                 }
    1016           1 :                 if internalOpts.snapshot.vers != nil {
    1017           0 :                         panic("batchOnly is true, but snapshotIterOpts is initialized")
    1018             :                 }
    1019             :         }
    1020           2 :         if err := d.closed.Load(); err != nil {
    1021           1 :                 panic(err)
    1022             :         }
    1023           2 :         seqNum := internalOpts.snapshot.seqNum
    1024           2 :         if o != nil && o.RangeKeyMasking.Suffix != nil && o.KeyTypes != IterKeyTypePointsAndRanges {
    1025           0 :                 panic("pebble: range key masking requires IterKeyTypePointsAndRanges")
    1026             :         }
    1027           2 :         if (batch != nil || seqNum != 0) && (o != nil && o.OnlyReadGuaranteedDurable) {
    1028           1 :                 // We could add support for OnlyReadGuaranteedDurable on snapshots if
    1029           1 :                 // there was a need: this would require checking that the sequence number
    1030           1 :                 // of the snapshot has been flushed, by comparing with
    1031           1 :                 // DB.mem.queue[0].logSeqNum.
    1032           1 :                 panic("OnlyReadGuaranteedDurable is not supported for batches or snapshots")
    1033             :         }
    1034           2 :         var readState *readState
    1035           2 :         var newIters tableNewIters
    1036           2 :         var newIterRangeKey keyspanimpl.TableNewSpanIter
    1037           2 :         if !internalOpts.batch.batchOnly {
    1038           2 :                 // Grab and reference the current readState. This prevents the underlying
    1039           2 :                 // files in the associated version from being deleted if there is a current
    1040           2 :                 // compaction. The readState is unref'd by Iterator.Close().
    1041           2 :                 if internalOpts.snapshot.vers == nil {
    1042           2 :                         if internalOpts.snapshot.readState != nil {
    1043           0 :                                 readState = internalOpts.snapshot.readState
    1044           0 :                                 readState.ref()
    1045           2 :                         } else {
    1046           2 :                                 // NB: loadReadState() calls readState.ref().
    1047           2 :                                 readState = d.loadReadState()
    1048           2 :                         }
    1049           2 :                 } else {
    1050           2 :                         // vers != nil
    1051           2 :                         internalOpts.snapshot.vers.Ref()
    1052           2 :                 }
    1053             : 
    1054             :                 // Determine the seqnum to read at after grabbing the read state (current and
    1055             :                 // memtables) above.
    1056           2 :                 if seqNum == 0 {
    1057           2 :                         seqNum = d.mu.versions.visibleSeqNum.Load()
    1058           2 :                 }
    1059           2 :                 newIters = d.newIters
    1060           2 :                 newIterRangeKey = d.tableNewRangeKeyIter
    1061             :         }
    1062             : 
    1063             :         // Bundle various structures under a single umbrella in order to allocate
    1064             :         // them together.
    1065           2 :         buf := iterAllocPool.Get().(*iterAlloc)
    1066           2 :         dbi := &buf.dbi
    1067           2 :         *dbi = Iterator{
    1068           2 :                 ctx:                 ctx,
    1069           2 :                 alloc:               buf,
    1070           2 :                 merge:               d.merge,
    1071           2 :                 comparer:            *d.opts.Comparer,
    1072           2 :                 readState:           readState,
    1073           2 :                 version:             internalOpts.snapshot.vers,
    1074           2 :                 keyBuf:              buf.keyBuf,
    1075           2 :                 prefixOrFullSeekKey: buf.prefixOrFullSeekKey,
    1076           2 :                 boundsBuf:           buf.boundsBuf,
    1077           2 :                 batch:               batch,
    1078           2 :                 newIters:            newIters,
    1079           2 :                 newIterRangeKey:     newIterRangeKey,
    1080           2 :                 seqNum:              seqNum,
    1081           2 :                 batchOnlyIter:       internalOpts.batch.batchOnly,
    1082           2 :         }
    1083           2 :         if o != nil {
    1084           2 :                 dbi.opts = *o
    1085           2 :                 dbi.processBounds(o.LowerBound, o.UpperBound)
    1086           2 :         }
    1087           2 :         dbi.opts.logger = d.opts.Logger
    1088           2 :         if d.opts.private.disableLazyCombinedIteration {
    1089           1 :                 dbi.opts.disableLazyCombinedIteration = true
    1090           1 :         }
    1091           2 :         if batch != nil {
    1092           2 :                 dbi.batchSeqNum = dbi.batch.nextSeqNum()
    1093           2 :         }
    1094           2 :         return finishInitializingIter(ctx, buf)
    1095             : }
    1096             : 
    1097             : // finishInitializingIter is a helper for doing the non-trivial initialization
    1098             : // of an Iterator. It's invoked to perform the initial initialization of an
    1099             : // Iterator during NewIter or Clone, and to perform reinitialization due to a
    1100             : // change in IterOptions by a call to Iterator.SetOptions.
    1101           2 : func finishInitializingIter(ctx context.Context, buf *iterAlloc) *Iterator {
    1102           2 :         // Short-hand.
    1103           2 :         dbi := &buf.dbi
    1104           2 :         var memtables flushableList
    1105           2 :         if dbi.readState != nil {
    1106           2 :                 memtables = dbi.readState.memtables
    1107           2 :         }
    1108           2 :         if dbi.opts.OnlyReadGuaranteedDurable {
    1109           1 :                 memtables = nil
    1110           2 :         } else {
    1111           2 :                 // We only need to read from memtables which contain sequence numbers older
    1112           2 :                 // than seqNum. Trim off newer memtables.
    1113           2 :                 for i := len(memtables) - 1; i >= 0; i-- {
    1114           2 :                         if logSeqNum := memtables[i].logSeqNum; logSeqNum < dbi.seqNum {
    1115           2 :                                 break
    1116             :                         }
    1117           2 :                         memtables = memtables[:i]
    1118             :                 }
    1119             :         }
    1120             : 
    1121           2 :         if dbi.opts.pointKeys() {
    1122           2 :                 // Construct the point iterator, initializing dbi.pointIter to point to
    1123           2 :                 // dbi.merging. If this is called during a SetOptions call and this
    1124           2 :                 // Iterator has already initialized dbi.merging, constructPointIter is a
    1125           2 :                 // noop and an initialized pointIter already exists in dbi.pointIter.
    1126           2 :                 dbi.constructPointIter(ctx, memtables, buf)
    1127           2 :                 dbi.iter = dbi.pointIter
    1128           2 :         } else {
    1129           2 :                 dbi.iter = emptyIter
    1130           2 :         }
    1131             : 
    1132           2 :         if dbi.opts.rangeKeys() {
    1133           2 :                 dbi.rangeKeyMasking.init(dbi, dbi.comparer.Compare, dbi.comparer.Split)
    1134           2 : 
    1135           2 :                 // When iterating over both point and range keys, don't create the
    1136           2 :                 // range-key iterator stack immediately if we can avoid it. This
    1137           2 :                 // optimization takes advantage of the expected sparseness of range
    1138           2 :                 // keys, and configures the point-key iterator to dynamically switch to
    1139           2 :                 // combined iteration when it observes a file containing range keys.
    1140           2 :                 //
    1141           2 :                 // Lazy combined iteration is not possible if a batch or a memtable
    1142           2 :                 // contains any range keys.
    1143           2 :                 useLazyCombinedIteration := dbi.rangeKey == nil &&
    1144           2 :                         dbi.opts.KeyTypes == IterKeyTypePointsAndRanges &&
    1145           2 :                         (dbi.batch == nil || dbi.batch.countRangeKeys == 0) &&
    1146           2 :                         !dbi.opts.disableLazyCombinedIteration
    1147           2 :                 if useLazyCombinedIteration {
    1148           2 :                         // The user requested combined iteration, and there's no indexed
    1149           2 :                         // batch currently containing range keys that would prevent lazy
    1150           2 :                         // combined iteration. Check the memtables to see if they contain
    1151           2 :                         // any range keys.
    1152           2 :                         for i := range memtables {
    1153           2 :                                 if memtables[i].containsRangeKeys() {
    1154           2 :                                         useLazyCombinedIteration = false
    1155           2 :                                         break
    1156             :                                 }
    1157             :                         }
    1158             :                 }
    1159             : 
    1160           2 :                 if useLazyCombinedIteration {
    1161           2 :                         dbi.lazyCombinedIter = lazyCombinedIter{
    1162           2 :                                 parent:    dbi,
    1163           2 :                                 pointIter: dbi.pointIter,
    1164           2 :                                 combinedIterState: combinedIterState{
    1165           2 :                                         initialized: false,
    1166           2 :                                 },
    1167           2 :                         }
    1168           2 :                         dbi.iter = &dbi.lazyCombinedIter
    1169           2 :                         dbi.iter = invalidating.MaybeWrapIfInvariants(dbi.iter)
    1170           2 :                 } else {
    1171           2 :                         dbi.lazyCombinedIter.combinedIterState = combinedIterState{
    1172           2 :                                 initialized: true,
    1173           2 :                         }
    1174           2 :                         if dbi.rangeKey == nil {
    1175           2 :                                 dbi.rangeKey = iterRangeKeyStateAllocPool.Get().(*iteratorRangeKeyState)
    1176           2 :                                 dbi.rangeKey.init(dbi.comparer.Compare, dbi.comparer.Split, &dbi.opts)
    1177           2 :                                 dbi.constructRangeKeyIter()
    1178           2 :                         } else {
    1179           2 :                                 dbi.rangeKey.iterConfig.SetBounds(dbi.opts.LowerBound, dbi.opts.UpperBound)
    1180           2 :                         }
    1181             : 
    1182             :                         // Wrap the point iterator (currently dbi.iter) with an interleaving
    1183             :                         // iterator that interleaves range keys pulled from
    1184             :                         // dbi.rangeKey.rangeKeyIter.
    1185             :                         //
    1186             :                         // NB: The interleaving iterator is always reinitialized, even if
    1187             :                         // dbi already had an initialized range key iterator, in case the point
    1188             :                         // iterator changed or the range key masking suffix changed.
    1189           2 :                         dbi.rangeKey.iiter.Init(&dbi.comparer, dbi.iter, dbi.rangeKey.rangeKeyIter,
    1190           2 :                                 keyspan.InterleavingIterOpts{
    1191           2 :                                         Mask:       &dbi.rangeKeyMasking,
    1192           2 :                                         LowerBound: dbi.opts.LowerBound,
    1193           2 :                                         UpperBound: dbi.opts.UpperBound,
    1194           2 :                                 })
    1195           2 :                         dbi.iter = &dbi.rangeKey.iiter
    1196             :                 }
    1197           2 :         } else {
    1198           2 :                 // !dbi.opts.rangeKeys()
    1199           2 :                 //
    1200           2 :                 // Reset the combined iterator state. The initialized=true ensures the
    1201           2 :                 // iterator doesn't unnecessarily try to switch to combined iteration.
    1202           2 :                 dbi.lazyCombinedIter.combinedIterState = combinedIterState{initialized: true}
    1203           2 :         }
    1204           2 :         return dbi
    1205             : }
    1206             : 
    1207             : // ScanInternal scans all internal keys within the specified bounds, truncating
    1208             : // any rangedels and rangekeys to those bounds if they span past them. For use
    1209             : // when an external user needs to be aware of all internal keys that make up a
    1210             : // key range.
    1211             : //
    1212             : // Keys deleted by range deletions must not be returned or exposed by this
    1213             : // method, while the range deletion deleting that key must be exposed using
    1214             : // visitRangeDel. Keys that would be masked by range key masking (if an
    1215             : // appropriate prefix were set) should be exposed, alongside the range key
    1216             : // that would have masked it. This method also collapses all point keys into
    1217             : // one InternalKey; so only one internal key at most per user key is returned
    1218             : // to visitPointKey.
    1219             : //
    1220             : // If visitSharedFile is not nil, ScanInternal iterates in skip-shared iteration
    1221             : // mode. In this iteration mode, sstables in levels L5 and L6 are skipped, and
    1222             : // their metadatas truncated to [lower, upper) and passed into visitSharedFile.
    1223             : // ErrInvalidSkipSharedIteration is returned if visitSharedFile is not nil and an
    1224             : // sstable in L5 or L6 is found that is not in shared storage according to
    1225             : // provider.IsShared, or an sstable in those levels contains a newer key than the
    1226             : // snapshot sequence number (only applicable for snapshot.ScanInternal). Examples
    1227             : // of when this could happen could be if Pebble started writing sstables before a
    1228             : // creator ID was set (as creator IDs are necessary to enable shared storage)
    1229             : // resulting in some lower level SSTs being on non-shared storage. Skip-shared
    1230             : // iteration is invalid in those cases.
    1231             : func (d *DB) ScanInternal(
    1232             :         ctx context.Context,
    1233             :         categoryAndQoS sstable.CategoryAndQoS,
    1234             :         lower, upper []byte,
    1235             :         visitPointKey func(key *InternalKey, value LazyValue, iterInfo IteratorLevel) error,
    1236             :         visitRangeDel func(start, end []byte, seqNum uint64) error,
    1237             :         visitRangeKey func(start, end []byte, keys []rangekey.Key) error,
    1238             :         visitSharedFile func(sst *SharedSSTMeta) error,
    1239             :         visitExternalFile func(sst *ExternalFile) error,
    1240           2 : ) error {
    1241           2 :         scanInternalOpts := &scanInternalOptions{
    1242           2 :                 CategoryAndQoS:    categoryAndQoS,
    1243           2 :                 visitPointKey:     visitPointKey,
    1244           2 :                 visitRangeDel:     visitRangeDel,
    1245           2 :                 visitRangeKey:     visitRangeKey,
    1246           2 :                 visitSharedFile:   visitSharedFile,
    1247           2 :                 visitExternalFile: visitExternalFile,
    1248           2 :                 IterOptions: IterOptions{
    1249           2 :                         KeyTypes:   IterKeyTypePointsAndRanges,
    1250           2 :                         LowerBound: lower,
    1251           2 :                         UpperBound: upper,
    1252           2 :                 },
    1253           2 :         }
    1254           2 :         iter, err := d.newInternalIter(ctx, snapshotIterOpts{} /* snapshot */, scanInternalOpts)
    1255           2 :         if err != nil {
    1256           0 :                 return err
    1257           0 :         }
    1258           2 :         defer iter.close()
    1259           2 :         return scanInternalImpl(ctx, lower, upper, iter, scanInternalOpts)
    1260             : }
    1261             : 
    1262             : // newInternalIter constructs and returns a new scanInternalIterator on this db.
    1263             : // If o.skipSharedLevels is true, levels below sharedLevelsStart are *not* added
    1264             : // to the internal iterator.
    1265             : //
    1266             : // TODO(bilal): This method has a lot of similarities with db.newIter as well as
    1267             : // finishInitializingIter. Both pairs of methods should be refactored to reduce
    1268             : // this duplication.
    1269             : func (d *DB) newInternalIter(
    1270             :         ctx context.Context, sOpts snapshotIterOpts, o *scanInternalOptions,
    1271           2 : ) (*scanInternalIterator, error) {
    1272           2 :         if err := d.closed.Load(); err != nil {
    1273           0 :                 panic(err)
    1274             :         }
    1275             :         // Grab and reference the current readState. This prevents the underlying
    1276             :         // files in the associated version from being deleted if there is a current
    1277             :         // compaction. The readState is unref'd by Iterator.Close().
    1278           2 :         var readState *readState
    1279           2 :         if sOpts.vers == nil {
    1280           2 :                 if sOpts.readState != nil {
    1281           0 :                         readState = sOpts.readState
    1282           0 :                         readState.ref()
    1283           2 :                 } else {
    1284           2 :                         readState = d.loadReadState()
    1285           2 :                 }
    1286             :         }
    1287           2 :         if sOpts.vers != nil {
    1288           1 :                 sOpts.vers.Ref()
    1289           1 :         }
    1290             : 
    1291             :         // Determine the seqnum to read at after grabbing the read state (current and
    1292             :         // memtables) above.
    1293           2 :         seqNum := sOpts.seqNum
    1294           2 :         if seqNum == 0 {
    1295           2 :                 seqNum = d.mu.versions.visibleSeqNum.Load()
    1296           2 :         }
    1297             : 
    1298             :         // Bundle various structures under a single umbrella in order to allocate
    1299             :         // them together.
    1300           2 :         buf := iterAllocPool.Get().(*iterAlloc)
    1301           2 :         dbi := &scanInternalIterator{
    1302           2 :                 ctx:             ctx,
    1303           2 :                 db:              d,
    1304           2 :                 comparer:        d.opts.Comparer,
    1305           2 :                 merge:           d.opts.Merger.Merge,
    1306           2 :                 readState:       readState,
    1307           2 :                 version:         sOpts.vers,
    1308           2 :                 alloc:           buf,
    1309           2 :                 newIters:        d.newIters,
    1310           2 :                 newIterRangeKey: d.tableNewRangeKeyIter,
    1311           2 :                 seqNum:          seqNum,
    1312           2 :                 mergingIter:     &buf.merging,
    1313           2 :         }
    1314           2 :         dbi.opts = *o
    1315           2 :         dbi.opts.logger = d.opts.Logger
    1316           2 :         if d.opts.private.disableLazyCombinedIteration {
    1317           1 :                 dbi.opts.disableLazyCombinedIteration = true
    1318           1 :         }
    1319           2 :         return finishInitializingInternalIter(buf, dbi)
    1320             : }
    1321             : 
    1322             : func finishInitializingInternalIter(
    1323             :         buf *iterAlloc, i *scanInternalIterator,
    1324           2 : ) (*scanInternalIterator, error) {
    1325           2 :         // Short-hand.
    1326           2 :         var memtables flushableList
    1327           2 :         if i.readState != nil {
    1328           2 :                 memtables = i.readState.memtables
    1329           2 :         }
    1330             :         // We only need to read from memtables which contain sequence numbers older
    1331             :         // than seqNum. Trim off newer memtables.
    1332           2 :         for j := len(memtables) - 1; j >= 0; j-- {
    1333           2 :                 if logSeqNum := memtables[j].logSeqNum; logSeqNum < i.seqNum {
    1334           2 :                         break
    1335             :                 }
    1336           2 :                 memtables = memtables[:j]
    1337             :         }
    1338           2 :         i.initializeBoundBufs(i.opts.LowerBound, i.opts.UpperBound)
    1339           2 : 
    1340           2 :         if err := i.constructPointIter(i.opts.CategoryAndQoS, memtables, buf); err != nil {
    1341           0 :                 return nil, err
    1342           0 :         }
    1343             : 
    1344             :         // For internal iterators, we skip the lazy combined iteration optimization
    1345             :         // entirely, and create the range key iterator stack directly.
    1346           2 :         i.rangeKey = iterRangeKeyStateAllocPool.Get().(*iteratorRangeKeyState)
    1347           2 :         i.rangeKey.init(i.comparer.Compare, i.comparer.Split, &i.opts.IterOptions)
    1348           2 :         if err := i.constructRangeKeyIter(); err != nil {
    1349           0 :                 return nil, err
    1350           0 :         }
    1351             : 
    1352             :         // Wrap the point iterator (currently i.iter) with an interleaving
    1353             :         // iterator that interleaves range keys pulled from
    1354             :         // i.rangeKey.rangeKeyIter.
    1355           2 :         i.rangeKey.iiter.Init(i.comparer, i.iter, i.rangeKey.rangeKeyIter,
    1356           2 :                 keyspan.InterleavingIterOpts{
    1357           2 :                         LowerBound: i.opts.LowerBound,
    1358           2 :                         UpperBound: i.opts.UpperBound,
    1359           2 :                 })
    1360           2 :         i.iter = &i.rangeKey.iiter
    1361           2 : 
    1362           2 :         return i, nil
    1363             : }
    1364             : 
    1365             : func (i *Iterator) constructPointIter(
    1366             :         ctx context.Context, memtables flushableList, buf *iterAlloc,
    1367           2 : ) {
    1368           2 :         if i.pointIter != nil {
    1369           2 :                 // Already have one.
    1370           2 :                 return
    1371           2 :         }
    1372           2 :         internalOpts := internalIterOpts{stats: &i.stats.InternalStats}
    1373           2 :         if i.opts.RangeKeyMasking.Filter != nil {
    1374           2 :                 internalOpts.boundLimitedFilter = &i.rangeKeyMasking
    1375           2 :         }
    1376             : 
    1377             :         // Merging levels and levels from iterAlloc.
    1378           2 :         mlevels := buf.mlevels[:0]
    1379           2 :         levels := buf.levels[:0]
    1380           2 : 
    1381           2 :         // We compute the number of levels needed ahead of time and reallocate a slice if
    1382           2 :         // the array from the iterAlloc isn't large enough. Doing this allocation once
    1383           2 :         // should improve the performance.
    1384           2 :         numMergingLevels := 0
    1385           2 :         numLevelIters := 0
    1386           2 :         if i.batch != nil {
    1387           2 :                 numMergingLevels++
    1388           2 :         }
    1389             : 
    1390           2 :         var current *version
    1391           2 :         if !i.batchOnlyIter {
    1392           2 :                 numMergingLevels += len(memtables)
    1393           2 : 
    1394           2 :                 current = i.version
    1395           2 :                 if current == nil {
    1396           2 :                         current = i.readState.current
    1397           2 :                 }
    1398           2 :                 numMergingLevels += len(current.L0SublevelFiles)
    1399           2 :                 numLevelIters += len(current.L0SublevelFiles)
    1400           2 :                 for level := 1; level < len(current.Levels); level++ {
    1401           2 :                         if current.Levels[level].Empty() {
    1402           2 :                                 continue
    1403             :                         }
    1404           2 :                         numMergingLevels++
    1405           2 :                         numLevelIters++
    1406             :                 }
    1407             :         }
    1408             : 
    1409           2 :         if numMergingLevels > cap(mlevels) {
    1410           2 :                 mlevels = make([]mergingIterLevel, 0, numMergingLevels)
    1411           2 :         }
    1412           2 :         if numLevelIters > cap(levels) {
    1413           2 :                 levels = make([]levelIter, 0, numLevelIters)
    1414           2 :         }
    1415             : 
    1416             :         // Top-level is the batch, if any.
    1417           2 :         if i.batch != nil {
    1418           2 :                 if i.batch.index == nil {
    1419           0 :                         // This isn't an indexed batch. We shouldn't have gotten this far.
    1420           0 :                         panic(errors.AssertionFailedf("creating an iterator over an unindexed batch"))
    1421           2 :                 } else {
    1422           2 :                         i.batch.initInternalIter(&i.opts, &i.batchPointIter)
    1423           2 :                         i.batch.initRangeDelIter(&i.opts, &i.batchRangeDelIter, i.batchSeqNum)
    1424           2 :                         // Only include the batch's rangedel iterator if it's non-empty.
    1425           2 :                         // This requires some subtle logic in the case a rangedel is later
    1426           2 :                         // written to the batch and the view of the batch is refreshed
    1427           2 :                         // during a call to SetOptions—in this case, we need to reconstruct
    1428           2 :                         // the point iterator to add the batch rangedel iterator.
    1429           2 :                         var rangeDelIter keyspan.FragmentIterator
    1430           2 :                         if i.batchRangeDelIter.Count() > 0 {
    1431           2 :                                 rangeDelIter = &i.batchRangeDelIter
    1432           2 :                         }
    1433           2 :                         mlevels = append(mlevels, mergingIterLevel{
    1434           2 :                                 iter:         &i.batchPointIter,
    1435           2 :                                 rangeDelIter: rangeDelIter,
    1436           2 :                         })
    1437             :                 }
    1438             :         }
    1439             : 
    1440           2 :         if !i.batchOnlyIter {
    1441           2 :                 // Next are the memtables.
    1442           2 :                 for j := len(memtables) - 1; j >= 0; j-- {
    1443           2 :                         mem := memtables[j]
    1444           2 :                         mlevels = append(mlevels, mergingIterLevel{
    1445           2 :                                 iter:         mem.newIter(&i.opts),
    1446           2 :                                 rangeDelIter: mem.newRangeDelIter(&i.opts),
    1447           2 :                         })
    1448           2 :                 }
    1449             : 
    1450             :                 // Next are the file levels: L0 sub-levels followed by lower levels.
    1451           2 :                 mlevelsIndex := len(mlevels)
    1452           2 :                 levelsIndex := len(levels)
    1453           2 :                 mlevels = mlevels[:numMergingLevels]
    1454           2 :                 levels = levels[:numLevelIters]
    1455           2 :                 i.opts.snapshotForHideObsoletePoints = buf.dbi.seqNum
    1456           2 :                 addLevelIterForFiles := func(files manifest.LevelIterator, level manifest.Level) {
    1457           2 :                         li := &levels[levelsIndex]
    1458           2 : 
    1459           2 :                         li.init(ctx, i.opts, &i.comparer, i.newIters, files, level, internalOpts)
    1460           2 :                         li.initRangeDel(&mlevels[mlevelsIndex].rangeDelIter)
    1461           2 :                         li.initBoundaryContext(&mlevels[mlevelsIndex].levelIterBoundaryContext)
    1462           2 :                         li.initCombinedIterState(&i.lazyCombinedIter.combinedIterState)
    1463           2 :                         mlevels[mlevelsIndex].levelIter = li
    1464           2 :                         mlevels[mlevelsIndex].iter = invalidating.MaybeWrapIfInvariants(li)
    1465           2 : 
    1466           2 :                         levelsIndex++
    1467           2 :                         mlevelsIndex++
    1468           2 :                 }
    1469             : 
    1470             :                 // Add level iterators for the L0 sublevels, iterating from newest to
    1471             :                 // oldest.
    1472           2 :                 for i := len(current.L0SublevelFiles) - 1; i >= 0; i-- {
    1473           2 :                         addLevelIterForFiles(current.L0SublevelFiles[i].Iter(), manifest.L0Sublevel(i))
    1474           2 :                 }
    1475             : 
    1476             :                 // Add level iterators for the non-empty non-L0 levels.
    1477           2 :                 for level := 1; level < len(current.Levels); level++ {
    1478           2 :                         if current.Levels[level].Empty() {
    1479           2 :                                 continue
    1480             :                         }
    1481           2 :                         addLevelIterForFiles(current.Levels[level].Iter(), manifest.Level(level))
    1482             :                 }
    1483             :         }
    1484           2 :         buf.merging.init(&i.opts, &i.stats.InternalStats, i.comparer.Compare, i.comparer.Split, mlevels...)
    1485           2 :         if len(mlevels) <= cap(buf.levelsPositioned) {
    1486           2 :                 buf.merging.levelsPositioned = buf.levelsPositioned[:len(mlevels)]
    1487           2 :         }
    1488           2 :         buf.merging.snapshot = i.seqNum
    1489           2 :         buf.merging.batchSnapshot = i.batchSeqNum
    1490           2 :         buf.merging.combinedIterState = &i.lazyCombinedIter.combinedIterState
    1491           2 :         i.pointIter = invalidating.MaybeWrapIfInvariants(&buf.merging).(topLevelIterator)
    1492           2 :         i.merging = &buf.merging
    1493             : }
    1494             : 
    1495             : // NewBatch returns a new empty write-only batch. Any reads on the batch will
    1496             : // return an error. If the batch is committed it will be applied to the DB.
    1497           2 : func (d *DB) NewBatch() *Batch {
    1498           2 :         return newBatch(d)
    1499           2 : }
    1500             : 
    1501             : // NewBatchWithSize is mostly identical to NewBatch, but it will allocate the
    1502             : // the specified memory space for the internal slice in advance.
    1503           0 : func (d *DB) NewBatchWithSize(size int) *Batch {
    1504           0 :         return newBatchWithSize(d, size)
    1505           0 : }
    1506             : 
    1507             : // NewIndexedBatch returns a new empty read-write batch. Any reads on the batch
    1508             : // will read from both the batch and the DB. If the batch is committed it will
    1509             : // be applied to the DB. An indexed batch is slower that a non-indexed batch
    1510             : // for insert operations. If you do not need to perform reads on the batch, use
    1511             : // NewBatch instead.
    1512           2 : func (d *DB) NewIndexedBatch() *Batch {
    1513           2 :         return newIndexedBatch(d, d.opts.Comparer)
    1514           2 : }
    1515             : 
    1516             : // NewIndexedBatchWithSize is mostly identical to NewIndexedBatch, but it will
    1517             : // allocate the specified memory space for the internal slice in advance.
    1518           0 : func (d *DB) NewIndexedBatchWithSize(size int) *Batch {
    1519           0 :         return newIndexedBatchWithSize(d, d.opts.Comparer, size)
    1520           0 : }
    1521             : 
    1522             : // NewIter returns an iterator that is unpositioned (Iterator.Valid() will
    1523             : // return false). The iterator can be positioned via a call to SeekGE, SeekLT,
    1524             : // First or Last. The iterator provides a point-in-time view of the current DB
    1525             : // state. This view is maintained by preventing file deletions and preventing
    1526             : // memtables referenced by the iterator from being deleted. Using an iterator
    1527             : // to maintain a long-lived point-in-time view of the DB state can lead to an
    1528             : // apparent memory and disk usage leak. Use snapshots (see NewSnapshot) for
    1529             : // point-in-time snapshots which avoids these problems.
    1530           2 : func (d *DB) NewIter(o *IterOptions) (*Iterator, error) {
    1531           2 :         return d.NewIterWithContext(context.Background(), o)
    1532           2 : }
    1533             : 
    1534             : // NewIterWithContext is like NewIter, and additionally accepts a context for
    1535             : // tracing.
    1536           2 : func (d *DB) NewIterWithContext(ctx context.Context, o *IterOptions) (*Iterator, error) {
    1537           2 :         return d.newIter(ctx, nil /* batch */, newIterOpts{}, o), nil
    1538           2 : }
    1539             : 
    1540             : // NewSnapshot returns a point-in-time view of the current DB state. Iterators
    1541             : // created with this handle will all observe a stable snapshot of the current
    1542             : // DB state. The caller must call Snapshot.Close() when the snapshot is no
    1543             : // longer needed. Snapshots are not persisted across DB restarts (close ->
    1544             : // open). Unlike the implicit snapshot maintained by an iterator, a snapshot
    1545             : // will not prevent memtables from being released or sstables from being
    1546             : // deleted. Instead, a snapshot prevents deletion of sequence numbers
    1547             : // referenced by the snapshot.
    1548           2 : func (d *DB) NewSnapshot() *Snapshot {
    1549           2 :         if err := d.closed.Load(); err != nil {
    1550           1 :                 panic(err)
    1551             :         }
    1552             : 
    1553           2 :         d.mu.Lock()
    1554           2 :         s := &Snapshot{
    1555           2 :                 db:     d,
    1556           2 :                 seqNum: d.mu.versions.visibleSeqNum.Load(),
    1557           2 :         }
    1558           2 :         d.mu.snapshots.pushBack(s)
    1559           2 :         d.mu.Unlock()
    1560           2 :         return s
    1561             : }
    1562             : 
    1563             : // NewEventuallyFileOnlySnapshot returns a point-in-time view of the current DB
    1564             : // state, similar to NewSnapshot, but with consistency constrained to the
    1565             : // provided set of key ranges. See the comment at EventuallyFileOnlySnapshot for
    1566             : // its semantics.
    1567           2 : func (d *DB) NewEventuallyFileOnlySnapshot(keyRanges []KeyRange) *EventuallyFileOnlySnapshot {
    1568           2 :         if err := d.closed.Load(); err != nil {
    1569           0 :                 panic(err)
    1570             :         }
    1571           2 :         for i := range keyRanges {
    1572           2 :                 if i > 0 && d.cmp(keyRanges[i-1].End, keyRanges[i].Start) > 0 {
    1573           0 :                         panic("pebble: key ranges for eventually-file-only-snapshot not in order")
    1574             :                 }
    1575             :         }
    1576           2 :         return d.makeEventuallyFileOnlySnapshot(keyRanges)
    1577             : }
    1578             : 
    1579             : // Close closes the DB.
    1580             : //
    1581             : // It is not safe to close a DB until all outstanding iterators are closed
    1582             : // or to call Close concurrently with any other DB method. It is not valid
    1583             : // to call any of a DB's methods after the DB has been closed.
    1584           2 : func (d *DB) Close() error {
    1585           2 :         // Lock the commit pipeline for the duration of Close. This prevents a race
    1586           2 :         // with makeRoomForWrite. Rotating the WAL in makeRoomForWrite requires
    1587           2 :         // dropping d.mu several times for I/O. If Close only holds d.mu, an
    1588           2 :         // in-progress WAL rotation may re-acquire d.mu only once the database is
    1589           2 :         // closed.
    1590           2 :         //
    1591           2 :         // Additionally, locking the commit pipeline makes it more likely that
    1592           2 :         // (illegal) concurrent writes will observe d.closed.Load() != nil, creating
    1593           2 :         // more understable panics if the database is improperly used concurrently
    1594           2 :         // during Close.
    1595           2 :         d.commit.mu.Lock()
    1596           2 :         defer d.commit.mu.Unlock()
    1597           2 :         d.mu.Lock()
    1598           2 :         defer d.mu.Unlock()
    1599           2 :         if err := d.closed.Load(); err != nil {
    1600           1 :                 panic(err)
    1601             :         }
    1602             : 
    1603             :         // Clear the finalizer that is used to check that an unreferenced DB has been
    1604             :         // closed. We're closing the DB here, so the check performed by that
    1605             :         // finalizer isn't necessary.
    1606             :         //
    1607             :         // Note: this is a no-op if invariants are disabled or race is enabled.
    1608           2 :         invariants.SetFinalizer(d.closed, nil)
    1609           2 : 
    1610           2 :         d.closed.Store(errors.WithStack(ErrClosed))
    1611           2 :         close(d.closedCh)
    1612           2 : 
    1613           2 :         defer d.opts.Cache.Unref()
    1614           2 : 
    1615           2 :         for d.mu.compact.compactingCount > 0 || d.mu.compact.downloadingCount > 0 || d.mu.compact.flushing {
    1616           2 :                 d.mu.compact.cond.Wait()
    1617           2 :         }
    1618           2 :         for d.mu.tableStats.loading {
    1619           2 :                 d.mu.tableStats.cond.Wait()
    1620           2 :         }
    1621           2 :         for d.mu.tableValidation.validating {
    1622           1 :                 d.mu.tableValidation.cond.Wait()
    1623           1 :         }
    1624             : 
    1625           2 :         var err error
    1626           2 :         if n := len(d.mu.compact.inProgress); n > 0 {
    1627           1 :                 err = errors.Errorf("pebble: %d unexpected in-progress compactions", errors.Safe(n))
    1628           1 :         }
    1629           2 :         err = firstError(err, d.mu.formatVers.marker.Close())
    1630           2 :         err = firstError(err, d.tableCache.close())
    1631           2 :         if !d.opts.ReadOnly {
    1632           2 :                 if d.mu.log.writer != nil {
    1633           2 :                         _, err2 := d.mu.log.writer.Close()
    1634           2 :                         err = firstError(err, err2)
    1635           2 :                 }
    1636           1 :         } else if d.mu.log.writer != nil {
    1637           0 :                 panic("pebble: log-writer should be nil in read-only mode")
    1638             :         }
    1639           2 :         err = firstError(err, d.mu.log.manager.Close())
    1640           2 :         err = firstError(err, d.fileLock.Close())
    1641           2 : 
    1642           2 :         // Note that versionSet.close() only closes the MANIFEST. The versions list
    1643           2 :         // is still valid for the checks below.
    1644           2 :         err = firstError(err, d.mu.versions.close())
    1645           2 : 
    1646           2 :         err = firstError(err, d.dataDir.Close())
    1647           2 : 
    1648           2 :         d.readState.val.unrefLocked()
    1649           2 : 
    1650           2 :         current := d.mu.versions.currentVersion()
    1651           2 :         for v := d.mu.versions.versions.Front(); true; v = v.Next() {
    1652           2 :                 refs := v.Refs()
    1653           2 :                 if v == current {
    1654           2 :                         if refs != 1 {
    1655           1 :                                 err = firstError(err, errors.Errorf("leaked iterators: current\n%s", v))
    1656           1 :                         }
    1657           2 :                         break
    1658             :                 }
    1659           0 :                 if refs != 0 {
    1660           0 :                         err = firstError(err, errors.Errorf("leaked iterators:\n%s", v))
    1661           0 :                 }
    1662             :         }
    1663             : 
    1664           2 :         for _, mem := range d.mu.mem.queue {
    1665           2 :                 // Usually, we'd want to delete the files returned by readerUnref. But
    1666           2 :                 // in this case, even if we're unreferencing the flushables, the
    1667           2 :                 // flushables aren't obsolete. They will be reconstructed during WAL
    1668           2 :                 // replay.
    1669           2 :                 mem.readerUnrefLocked(false)
    1670           2 :         }
    1671             :         // If there's an unused, recycled memtable, we need to release its memory.
    1672           2 :         if obsoleteMemTable := d.memTableRecycle.Swap(nil); obsoleteMemTable != nil {
    1673           2 :                 d.freeMemTable(obsoleteMemTable)
    1674           2 :         }
    1675           2 :         if reserved := d.memTableReserved.Load(); reserved != 0 {
    1676           1 :                 err = firstError(err, errors.Errorf("leaked memtable reservation: %d", errors.Safe(reserved)))
    1677           1 :         }
    1678             : 
    1679             :         // Since we called d.readState.val.unrefLocked() above, we are expected to
    1680             :         // manually schedule deletion of obsolete files.
    1681           2 :         if len(d.mu.versions.obsoleteTables) > 0 {
    1682           2 :                 d.deleteObsoleteFiles(d.newJobIDLocked())
    1683           2 :         }
    1684             : 
    1685           2 :         d.mu.Unlock()
    1686           2 :         d.compactionSchedulers.Wait()
    1687           2 : 
    1688           2 :         // Wait for all cleaning jobs to finish.
    1689           2 :         d.cleanupManager.Close()
    1690           2 : 
    1691           2 :         // Sanity check metrics.
    1692           2 :         if invariants.Enabled {
    1693           2 :                 m := d.Metrics()
    1694           2 :                 if m.Compact.NumInProgress > 0 || m.Compact.InProgressBytes > 0 {
    1695           0 :                         d.mu.Lock()
    1696           0 :                         panic(fmt.Sprintf("invalid metrics on close:\n%s", m))
    1697             :                 }
    1698             :         }
    1699             : 
    1700           2 :         d.mu.Lock()
    1701           2 : 
    1702           2 :         // As a sanity check, ensure that there are no zombie tables. A non-zero count
    1703           2 :         // hints at a reference count leak.
    1704           2 :         if ztbls := len(d.mu.versions.zombieTables); ztbls > 0 {
    1705           0 :                 err = firstError(err, errors.Errorf("non-zero zombie file count: %d", ztbls))
    1706           0 :         }
    1707             : 
    1708           2 :         err = firstError(err, d.objProvider.Close())
    1709           2 : 
    1710           2 :         // If the options include a closer to 'close' the filesystem, close it.
    1711           2 :         if d.opts.private.fsCloser != nil {
    1712           2 :                 d.opts.private.fsCloser.Close()
    1713           2 :         }
    1714             : 
    1715             :         // Return an error if the user failed to close all open snapshots.
    1716           2 :         if v := d.mu.snapshots.count(); v > 0 {
    1717           0 :                 err = firstError(err, errors.Errorf("leaked snapshots: %d open snapshots on DB %p", v, d))
    1718           0 :         }
    1719             : 
    1720           2 :         return err
    1721             : }
    1722             : 
    1723             : // Compact the specified range of keys in the database.
    1724           2 : func (d *DB) Compact(start, end []byte, parallelize bool) error {
    1725           2 :         if err := d.closed.Load(); err != nil {
    1726           1 :                 panic(err)
    1727             :         }
    1728           2 :         if d.opts.ReadOnly {
    1729           1 :                 return ErrReadOnly
    1730           1 :         }
    1731           2 :         if d.cmp(start, end) >= 0 {
    1732           2 :                 return errors.Errorf("Compact start %s is not less than end %s",
    1733           2 :                         d.opts.Comparer.FormatKey(start), d.opts.Comparer.FormatKey(end))
    1734           2 :         }
    1735             : 
    1736           2 :         d.mu.Lock()
    1737           2 :         maxLevelWithFiles := 1
    1738           2 :         cur := d.mu.versions.currentVersion()
    1739           2 :         for level := 0; level < numLevels; level++ {
    1740           2 :                 overlaps := cur.Overlaps(level, base.UserKeyBoundsInclusive(start, end))
    1741           2 :                 if !overlaps.Empty() {
    1742           2 :                         maxLevelWithFiles = level + 1
    1743           2 :                 }
    1744             :         }
    1745             : 
    1746             :         // Determine if any memtable overlaps with the compaction range. We wait for
    1747             :         // any such overlap to flush (initiating a flush if necessary).
    1748           2 :         mem, err := func() (*flushableEntry, error) {
    1749           2 :                 // Check to see if any files overlap with any of the memtables. The queue
    1750           2 :                 // is ordered from oldest to newest with the mutable memtable being the
    1751           2 :                 // last element in the slice. We want to wait for the newest table that
    1752           2 :                 // overlaps.
    1753           2 :                 for i := len(d.mu.mem.queue) - 1; i >= 0; i-- {
    1754           2 :                         mem := d.mu.mem.queue[i]
    1755           2 :                         var anyOverlaps bool
    1756           2 :                         mem.computePossibleOverlaps(func(b bounded) shouldContinue {
    1757           2 :                                 anyOverlaps = true
    1758           2 :                                 return stopIteration
    1759           2 :                         }, KeyRange{Start: start, End: end})
    1760           2 :                         if !anyOverlaps {
    1761           2 :                                 continue
    1762             :                         }
    1763           2 :                         var err error
    1764           2 :                         if mem.flushable == d.mu.mem.mutable {
    1765           2 :                                 // We have to hold both commitPipeline.mu and DB.mu when calling
    1766           2 :                                 // makeRoomForWrite(). Lock order requirements elsewhere force us to
    1767           2 :                                 // unlock DB.mu in order to grab commitPipeline.mu first.
    1768           2 :                                 d.mu.Unlock()
    1769           2 :                                 d.commit.mu.Lock()
    1770           2 :                                 d.mu.Lock()
    1771           2 :                                 defer d.commit.mu.Unlock()
    1772           2 :                                 if mem.flushable == d.mu.mem.mutable {
    1773           2 :                                         // Only flush if the active memtable is unchanged.
    1774           2 :                                         err = d.makeRoomForWrite(nil)
    1775           2 :                                 }
    1776             :                         }
    1777           2 :                         mem.flushForced = true
    1778           2 :                         d.maybeScheduleFlush()
    1779           2 :                         return mem, err
    1780             :                 }
    1781           2 :                 return nil, nil
    1782             :         }()
    1783             : 
    1784           2 :         d.mu.Unlock()
    1785           2 : 
    1786           2 :         if err != nil {
    1787           0 :                 return err
    1788           0 :         }
    1789           2 :         if mem != nil {
    1790           2 :                 <-mem.flushed
    1791           2 :         }
    1792             : 
    1793           2 :         for level := 0; level < maxLevelWithFiles; {
    1794           2 :                 for {
    1795           2 :                         if err := d.manualCompact(
    1796           2 :                                 start, end, level, parallelize); err != nil {
    1797           1 :                                 if errors.Is(err, ErrCancelledCompaction) {
    1798           1 :                                         continue
    1799             :                                 }
    1800           1 :                                 return err
    1801             :                         }
    1802           2 :                         break
    1803             :                 }
    1804           2 :                 level++
    1805           2 :                 if level == numLevels-1 {
    1806           2 :                         // A manual compaction of the bottommost level occurred.
    1807           2 :                         // There is no next level to try and compact.
    1808           2 :                         break
    1809             :                 }
    1810             :         }
    1811           2 :         return nil
    1812             : }
    1813             : 
    1814           2 : func (d *DB) manualCompact(start, end []byte, level int, parallelize bool) error {
    1815           2 :         d.mu.Lock()
    1816           2 :         curr := d.mu.versions.currentVersion()
    1817           2 :         files := curr.Overlaps(level, base.UserKeyBoundsInclusive(start, end))
    1818           2 :         if files.Empty() {
    1819           2 :                 d.mu.Unlock()
    1820           2 :                 return nil
    1821           2 :         }
    1822             : 
    1823           2 :         var compactions []*manualCompaction
    1824           2 :         if parallelize {
    1825           2 :                 compactions = append(compactions, d.splitManualCompaction(start, end, level)...)
    1826           2 :         } else {
    1827           2 :                 compactions = append(compactions, &manualCompaction{
    1828           2 :                         level: level,
    1829           2 :                         done:  make(chan error, 1),
    1830           2 :                         start: start,
    1831           2 :                         end:   end,
    1832           2 :                 })
    1833           2 :         }
    1834           2 :         d.mu.compact.manual = append(d.mu.compact.manual, compactions...)
    1835           2 :         d.maybeScheduleCompaction()
    1836           2 :         d.mu.Unlock()
    1837           2 : 
    1838           2 :         // Each of the channels is guaranteed to be eventually sent to once. After a
    1839           2 :         // compaction is possibly picked in d.maybeScheduleCompaction(), either the
    1840           2 :         // compaction is dropped, executed after being scheduled, or retried later.
    1841           2 :         // Assuming eventual progress when a compaction is retried, all outcomes send
    1842           2 :         // a value to the done channel. Since the channels are buffered, it is not
    1843           2 :         // necessary to read from each channel, and so we can exit early in the event
    1844           2 :         // of an error.
    1845           2 :         for _, compaction := range compactions {
    1846           2 :                 if err := <-compaction.done; err != nil {
    1847           1 :                         return err
    1848           1 :                 }
    1849             :         }
    1850           2 :         return nil
    1851             : }
    1852             : 
    1853             : // splitManualCompaction splits a manual compaction over [start,end] on level
    1854             : // such that the resulting compactions have no key overlap.
    1855             : func (d *DB) splitManualCompaction(
    1856             :         start, end []byte, level int,
    1857           2 : ) (splitCompactions []*manualCompaction) {
    1858           2 :         curr := d.mu.versions.currentVersion()
    1859           2 :         endLevel := level + 1
    1860           2 :         baseLevel := d.mu.versions.picker.getBaseLevel()
    1861           2 :         if level == 0 {
    1862           2 :                 endLevel = baseLevel
    1863           2 :         }
    1864           2 :         keyRanges := curr.CalculateInuseKeyRanges(level, endLevel, start, end)
    1865           2 :         for _, keyRange := range keyRanges {
    1866           2 :                 splitCompactions = append(splitCompactions, &manualCompaction{
    1867           2 :                         level: level,
    1868           2 :                         done:  make(chan error, 1),
    1869           2 :                         start: keyRange.Start,
    1870           2 :                         end:   keyRange.End,
    1871           2 :                         split: true,
    1872           2 :                 })
    1873           2 :         }
    1874           2 :         return splitCompactions
    1875             : }
    1876             : 
    1877             : // Flush the memtable to stable storage.
    1878           2 : func (d *DB) Flush() error {
    1879           2 :         flushDone, err := d.AsyncFlush()
    1880           2 :         if err != nil {
    1881           1 :                 return err
    1882           1 :         }
    1883           2 :         <-flushDone
    1884           2 :         return nil
    1885             : }
    1886             : 
    1887             : // AsyncFlush asynchronously flushes the memtable to stable storage.
    1888             : //
    1889             : // If no error is returned, the caller can receive from the returned channel in
    1890             : // order to wait for the flush to complete.
    1891           2 : func (d *DB) AsyncFlush() (<-chan struct{}, error) {
    1892           2 :         if err := d.closed.Load(); err != nil {
    1893           1 :                 panic(err)
    1894             :         }
    1895           2 :         if d.opts.ReadOnly {
    1896           1 :                 return nil, ErrReadOnly
    1897           1 :         }
    1898             : 
    1899           2 :         d.commit.mu.Lock()
    1900           2 :         defer d.commit.mu.Unlock()
    1901           2 :         d.mu.Lock()
    1902           2 :         defer d.mu.Unlock()
    1903           2 :         flushed := d.mu.mem.queue[len(d.mu.mem.queue)-1].flushed
    1904           2 :         err := d.makeRoomForWrite(nil)
    1905           2 :         if err != nil {
    1906           0 :                 return nil, err
    1907           0 :         }
    1908           2 :         return flushed, nil
    1909             : }
    1910             : 
    1911             : // Metrics returns metrics about the database.
    1912           2 : func (d *DB) Metrics() *Metrics {
    1913           2 :         metrics := &Metrics{}
    1914           2 :         walStats := d.mu.log.manager.Stats()
    1915           2 : 
    1916           2 :         d.mu.Lock()
    1917           2 :         vers := d.mu.versions.currentVersion()
    1918           2 :         *metrics = d.mu.versions.metrics
    1919           2 :         metrics.Compact.EstimatedDebt = d.mu.versions.picker.estimatedCompactionDebt(0)
    1920           2 :         metrics.Compact.InProgressBytes = d.mu.versions.atomicInProgressBytes.Load()
    1921           2 :         // TODO(radu): split this to separate the download compactions.
    1922           2 :         metrics.Compact.NumInProgress = int64(d.mu.compact.compactingCount + d.mu.compact.downloadingCount)
    1923           2 :         metrics.Compact.MarkedFiles = vers.Stats.MarkedForCompaction
    1924           2 :         metrics.Compact.Duration = d.mu.compact.duration
    1925           2 :         for c := range d.mu.compact.inProgress {
    1926           1 :                 if c.kind != compactionKindFlush {
    1927           1 :                         metrics.Compact.Duration += d.timeNow().Sub(c.beganAt)
    1928           1 :                 }
    1929             :         }
    1930             : 
    1931           2 :         for _, m := range d.mu.mem.queue {
    1932           2 :                 metrics.MemTable.Size += m.totalBytes()
    1933           2 :         }
    1934           2 :         metrics.Snapshots.Count = d.mu.snapshots.count()
    1935           2 :         if metrics.Snapshots.Count > 0 {
    1936           0 :                 metrics.Snapshots.EarliestSeqNum = d.mu.snapshots.earliest()
    1937           0 :         }
    1938           2 :         metrics.Snapshots.PinnedKeys = d.mu.snapshots.cumulativePinnedCount
    1939           2 :         metrics.Snapshots.PinnedSize = d.mu.snapshots.cumulativePinnedSize
    1940           2 :         metrics.MemTable.Count = int64(len(d.mu.mem.queue))
    1941           2 :         metrics.MemTable.ZombieCount = d.memTableCount.Load() - metrics.MemTable.Count
    1942           2 :         metrics.MemTable.ZombieSize = uint64(d.memTableReserved.Load()) - metrics.MemTable.Size
    1943           2 :         metrics.WAL.ObsoleteFiles = int64(walStats.ObsoleteFileCount)
    1944           2 :         metrics.WAL.ObsoletePhysicalSize = walStats.ObsoleteFileSize
    1945           2 :         metrics.WAL.Files = int64(walStats.LiveFileCount)
    1946           2 :         // The current WAL's size (d.logSize) is the logical size, which may be less
    1947           2 :         // than the WAL's physical size if it was recycled. walStats.LiveFileSize
    1948           2 :         // includes the physical size of all live WALs, but for the current WAL it
    1949           2 :         // reflects the physical size when it was opened. So it is possible that
    1950           2 :         // d.atomic.logSize has exceeded that physical size. We allow for this
    1951           2 :         // anomaly.
    1952           2 :         metrics.WAL.PhysicalSize = walStats.LiveFileSize
    1953           2 :         metrics.WAL.BytesIn = d.mu.log.bytesIn // protected by d.mu
    1954           2 :         metrics.WAL.Size = d.logSize.Load()
    1955           2 :         for i, n := 0, len(d.mu.mem.queue)-1; i < n; i++ {
    1956           2 :                 metrics.WAL.Size += d.mu.mem.queue[i].logSize
    1957           2 :         }
    1958           2 :         metrics.WAL.BytesWritten = metrics.Levels[0].BytesIn + metrics.WAL.Size
    1959           2 :         metrics.WAL.Failover = walStats.Failover
    1960           2 : 
    1961           2 :         if p := d.mu.versions.picker; p != nil {
    1962           2 :                 compactions := d.getInProgressCompactionInfoLocked(nil)
    1963           2 :                 for level, score := range p.getScores(compactions) {
    1964           2 :                         metrics.Levels[level].Score = score
    1965           2 :                 }
    1966             :         }
    1967           2 :         metrics.Table.ZombieCount = int64(len(d.mu.versions.zombieTables))
    1968           2 :         for _, info := range d.mu.versions.zombieTables {
    1969           1 :                 metrics.Table.ZombieSize += info.FileSize
    1970           1 :                 if info.isLocal {
    1971           1 :                         metrics.Table.Local.ZombieSize += info.FileSize
    1972           1 :                 }
    1973             :         }
    1974           2 :         metrics.private.optionsFileSize = d.optionsFileSize
    1975           2 : 
    1976           2 :         // TODO(jackson): Consider making these metrics optional.
    1977           2 :         metrics.Keys.RangeKeySetsCount = countRangeKeySetFragments(vers)
    1978           2 :         metrics.Keys.TombstoneCount = countTombstones(vers)
    1979           2 : 
    1980           2 :         d.mu.versions.logLock()
    1981           2 :         metrics.private.manifestFileSize = uint64(d.mu.versions.manifest.Size())
    1982           2 :         backingCount, backingTotalSize := d.mu.versions.virtualBackings.Stats()
    1983           2 :         metrics.Table.BackingTableCount = uint64(backingCount)
    1984           2 :         metrics.Table.BackingTableSize = backingTotalSize
    1985           2 :         d.mu.versions.logUnlock()
    1986           2 : 
    1987           2 :         metrics.LogWriter.FsyncLatency = d.mu.log.metrics.fsyncLatency
    1988           2 :         if err := metrics.LogWriter.Merge(&d.mu.log.metrics.LogWriterMetrics); err != nil {
    1989           0 :                 d.opts.Logger.Errorf("metrics error: %s", err)
    1990           0 :         }
    1991           2 :         metrics.Flush.WriteThroughput = d.mu.compact.flushWriteThroughput
    1992           2 :         if d.mu.compact.flushing {
    1993           1 :                 metrics.Flush.NumInProgress = 1
    1994           1 :         }
    1995           2 :         for i := 0; i < numLevels; i++ {
    1996           2 :                 metrics.Levels[i].Additional.ValueBlocksSize = valueBlocksSizeForLevel(vers, i)
    1997           2 :         }
    1998             : 
    1999           2 :         d.mu.Unlock()
    2000           2 : 
    2001           2 :         metrics.BlockCache = d.opts.Cache.Metrics()
    2002           2 :         metrics.TableCache, metrics.Filter = d.tableCache.metrics()
    2003           2 :         metrics.TableIters = int64(d.tableCache.iterCount())
    2004           2 :         metrics.CategoryStats = d.tableCache.dbOpts.sstStatsCollector.GetStats()
    2005           2 : 
    2006           2 :         metrics.SecondaryCacheMetrics = d.objProvider.Metrics()
    2007           2 : 
    2008           2 :         metrics.Uptime = d.timeNow().Sub(d.openedAt)
    2009           2 : 
    2010           2 :         return metrics
    2011             : }
    2012             : 
    2013             : // sstablesOptions hold the optional parameters to retrieve TableInfo for all sstables.
    2014             : type sstablesOptions struct {
    2015             :         // set to true will return the sstable properties in TableInfo
    2016             :         withProperties bool
    2017             : 
    2018             :         // if set, return sstables that overlap the key range (end-exclusive)
    2019             :         start []byte
    2020             :         end   []byte
    2021             : 
    2022             :         withApproximateSpanBytes bool
    2023             : }
    2024             : 
    2025             : // SSTablesOption set optional parameter used by `DB.SSTables`.
    2026             : type SSTablesOption func(*sstablesOptions)
    2027             : 
    2028             : // WithProperties enable return sstable properties in each TableInfo.
    2029             : //
    2030             : // NOTE: if most of the sstable properties need to be read from disk,
    2031             : // this options may make method `SSTables` quite slow.
    2032           1 : func WithProperties() SSTablesOption {
    2033           1 :         return func(opt *sstablesOptions) {
    2034           1 :                 opt.withProperties = true
    2035           1 :         }
    2036             : }
    2037             : 
    2038             : // WithKeyRangeFilter ensures returned sstables overlap start and end (end-exclusive)
    2039             : // if start and end are both nil these properties have no effect.
    2040           1 : func WithKeyRangeFilter(start, end []byte) SSTablesOption {
    2041           1 :         return func(opt *sstablesOptions) {
    2042           1 :                 opt.end = end
    2043           1 :                 opt.start = start
    2044           1 :         }
    2045             : }
    2046             : 
    2047             : // WithApproximateSpanBytes enables capturing the approximate number of bytes that
    2048             : // overlap the provided key span for each sstable.
    2049             : // NOTE: this option can only be used with WithKeyRangeFilter and WithProperties
    2050             : // provided.
    2051           1 : func WithApproximateSpanBytes() SSTablesOption {
    2052           1 :         return func(opt *sstablesOptions) {
    2053           1 :                 opt.withApproximateSpanBytes = true
    2054           1 :         }
    2055             : }
    2056             : 
    2057             : // BackingType denotes the type of storage backing a given sstable.
    2058             : type BackingType int
    2059             : 
    2060             : const (
    2061             :         // BackingTypeLocal denotes an sstable stored on local disk according to the
    2062             :         // objprovider. This file is completely owned by us.
    2063             :         BackingTypeLocal BackingType = iota
    2064             :         // BackingTypeShared denotes an sstable stored on shared storage, created
    2065             :         // by this Pebble instance and possibly shared by other Pebble instances.
    2066             :         // These types of files have lifecycle managed by Pebble.
    2067             :         BackingTypeShared
    2068             :         // BackingTypeSharedForeign denotes an sstable stored on shared storage,
    2069             :         // created by a Pebble instance other than this one. These types of files have
    2070             :         // lifecycle managed by Pebble.
    2071             :         BackingTypeSharedForeign
    2072             :         // BackingTypeExternal denotes an sstable stored on external storage,
    2073             :         // not owned by any Pebble instance and with no refcounting/cleanup methods
    2074             :         // or lifecycle management. An example of an external file is a file restored
    2075             :         // from a backup.
    2076             :         BackingTypeExternal
    2077             : )
    2078             : 
    2079             : // SSTableInfo export manifest.TableInfo with sstable.Properties alongside
    2080             : // other file backing info.
    2081             : type SSTableInfo struct {
    2082             :         manifest.TableInfo
    2083             :         // Virtual indicates whether the sstable is virtual.
    2084             :         Virtual bool
    2085             :         // BackingSSTNum is the disk file number associated with the backing sstable.
    2086             :         // If Virtual is false, BackingSSTNum == PhysicalTableDiskFileNum(FileNum).
    2087             :         BackingSSTNum base.DiskFileNum
    2088             :         // BackingType is the type of storage backing this sstable.
    2089             :         BackingType BackingType
    2090             :         // Locator is the remote.Locator backing this sstable, if the backing type is
    2091             :         // not BackingTypeLocal.
    2092             :         Locator remote.Locator
    2093             : 
    2094             :         // Properties is the sstable properties of this table. If Virtual is true,
    2095             :         // then the Properties are associated with the backing sst.
    2096             :         Properties *sstable.Properties
    2097             : }
    2098             : 
    2099             : // SSTables retrieves the current sstables. The returned slice is indexed by
    2100             : // level and each level is indexed by the position of the sstable within the
    2101             : // level. Note that this information may be out of date due to concurrent
    2102             : // flushes and compactions.
    2103           1 : func (d *DB) SSTables(opts ...SSTablesOption) ([][]SSTableInfo, error) {
    2104           1 :         opt := &sstablesOptions{}
    2105           1 :         for _, fn := range opts {
    2106           1 :                 fn(opt)
    2107           1 :         }
    2108             : 
    2109           1 :         if opt.withApproximateSpanBytes && !opt.withProperties {
    2110           1 :                 return nil, errors.Errorf("Cannot use WithApproximateSpanBytes without WithProperties option.")
    2111           1 :         }
    2112           1 :         if opt.withApproximateSpanBytes && (opt.start == nil || opt.end == nil) {
    2113           1 :                 return nil, errors.Errorf("Cannot use WithApproximateSpanBytes without WithKeyRangeFilter option.")
    2114           1 :         }
    2115             : 
    2116             :         // Grab and reference the current readState.
    2117           1 :         readState := d.loadReadState()
    2118           1 :         defer readState.unref()
    2119           1 : 
    2120           1 :         // TODO(peter): This is somewhat expensive, especially on a large
    2121           1 :         // database. It might be worthwhile to unify TableInfo and FileMetadata and
    2122           1 :         // then we could simply return current.Files. Note that RocksDB is doing
    2123           1 :         // something similar to the current code, so perhaps it isn't too bad.
    2124           1 :         srcLevels := readState.current.Levels
    2125           1 :         var totalTables int
    2126           1 :         for i := range srcLevels {
    2127           1 :                 totalTables += srcLevels[i].Len()
    2128           1 :         }
    2129             : 
    2130           1 :         destTables := make([]SSTableInfo, totalTables)
    2131           1 :         destLevels := make([][]SSTableInfo, len(srcLevels))
    2132           1 :         for i := range destLevels {
    2133           1 :                 iter := srcLevels[i].Iter()
    2134           1 :                 j := 0
    2135           1 :                 for m := iter.First(); m != nil; m = iter.Next() {
    2136           1 :                         if opt.start != nil && opt.end != nil {
    2137           1 :                                 b := base.UserKeyBoundsEndExclusive(opt.start, opt.end)
    2138           1 :                                 if !m.Overlaps(d.opts.Comparer.Compare, &b) {
    2139           1 :                                         continue
    2140             :                                 }
    2141             :                         }
    2142           1 :                         destTables[j] = SSTableInfo{TableInfo: m.TableInfo()}
    2143           1 :                         if opt.withProperties {
    2144           1 :                                 p, err := d.tableCache.getTableProperties(
    2145           1 :                                         m,
    2146           1 :                                 )
    2147           1 :                                 if err != nil {
    2148           0 :                                         return nil, err
    2149           0 :                                 }
    2150           1 :                                 destTables[j].Properties = p
    2151             :                         }
    2152           1 :                         destTables[j].Virtual = m.Virtual
    2153           1 :                         destTables[j].BackingSSTNum = m.FileBacking.DiskFileNum
    2154           1 :                         objMeta, err := d.objProvider.Lookup(fileTypeTable, m.FileBacking.DiskFileNum)
    2155           1 :                         if err != nil {
    2156           0 :                                 return nil, err
    2157           0 :                         }
    2158           1 :                         if objMeta.IsRemote() {
    2159           0 :                                 if objMeta.IsShared() {
    2160           0 :                                         if d.objProvider.IsSharedForeign(objMeta) {
    2161           0 :                                                 destTables[j].BackingType = BackingTypeSharedForeign
    2162           0 :                                         } else {
    2163           0 :                                                 destTables[j].BackingType = BackingTypeShared
    2164           0 :                                         }
    2165           0 :                                 } else {
    2166           0 :                                         destTables[j].BackingType = BackingTypeExternal
    2167           0 :                                 }
    2168           0 :                                 destTables[j].Locator = objMeta.Remote.Locator
    2169           1 :                         } else {
    2170           1 :                                 destTables[j].BackingType = BackingTypeLocal
    2171           1 :                         }
    2172             : 
    2173           1 :                         if opt.withApproximateSpanBytes {
    2174           1 :                                 var spanBytes uint64
    2175           1 :                                 if m.ContainedWithinSpan(d.opts.Comparer.Compare, opt.start, opt.end) {
    2176           0 :                                         spanBytes = m.Size
    2177           1 :                                 } else {
    2178           1 :                                         size, err := d.tableCache.estimateSize(m, opt.start, opt.end)
    2179           1 :                                         if err != nil {
    2180           0 :                                                 return nil, err
    2181           0 :                                         }
    2182           1 :                                         spanBytes = size
    2183             :                                 }
    2184           1 :                                 propertiesCopy := *destTables[j].Properties
    2185           1 : 
    2186           1 :                                 // Deep copy user properties so approximate span bytes can be added.
    2187           1 :                                 propertiesCopy.UserProperties = make(map[string]string, len(destTables[j].Properties.UserProperties)+1)
    2188           1 :                                 for k, v := range destTables[j].Properties.UserProperties {
    2189           0 :                                         propertiesCopy.UserProperties[k] = v
    2190           0 :                                 }
    2191           1 :                                 propertiesCopy.UserProperties["approximate-span-bytes"] = strconv.FormatUint(spanBytes, 10)
    2192           1 :                                 destTables[j].Properties = &propertiesCopy
    2193             :                         }
    2194           1 :                         j++
    2195             :                 }
    2196           1 :                 destLevels[i] = destTables[:j]
    2197           1 :                 destTables = destTables[j:]
    2198             :         }
    2199             : 
    2200           1 :         return destLevels, nil
    2201             : }
    2202             : 
    2203             : // EstimateDiskUsage returns the estimated filesystem space used in bytes for
    2204             : // storing the range `[start, end]`. The estimation is computed as follows:
    2205             : //
    2206             : //   - For sstables fully contained in the range the whole file size is included.
    2207             : //   - For sstables partially contained in the range the overlapping data block sizes
    2208             : //     are included. Even if a data block partially overlaps, or we cannot determine
    2209             : //     overlap due to abbreviated index keys, the full data block size is included in
    2210             : //     the estimation. Note that unlike fully contained sstables, none of the
    2211             : //     meta-block space is counted for partially overlapped files.
    2212             : //   - For virtual sstables, we use the overlap between start, end and the virtual
    2213             : //     sstable bounds to determine disk usage.
    2214             : //   - There may also exist WAL entries for unflushed keys in this range. This
    2215             : //     estimation currently excludes space used for the range in the WAL.
    2216           1 : func (d *DB) EstimateDiskUsage(start, end []byte) (uint64, error) {
    2217           1 :         bytes, _, _, err := d.EstimateDiskUsageByBackingType(start, end)
    2218           1 :         return bytes, err
    2219           1 : }
    2220             : 
    2221             : // EstimateDiskUsageByBackingType is like EstimateDiskUsage but additionally
    2222             : // returns the subsets of that size in remote ane external files.
    2223             : func (d *DB) EstimateDiskUsageByBackingType(
    2224             :         start, end []byte,
    2225           1 : ) (totalSize, remoteSize, externalSize uint64, _ error) {
    2226           1 :         if err := d.closed.Load(); err != nil {
    2227           0 :                 panic(err)
    2228             :         }
    2229           1 :         if d.opts.Comparer.Compare(start, end) > 0 {
    2230           0 :                 return 0, 0, 0, errors.New("invalid key-range specified (start > end)")
    2231           0 :         }
    2232             : 
    2233             :         // Grab and reference the current readState. This prevents the underlying
    2234             :         // files in the associated version from being deleted if there is a concurrent
    2235             :         // compaction.
    2236           1 :         readState := d.loadReadState()
    2237           1 :         defer readState.unref()
    2238           1 : 
    2239           1 :         for level, files := range readState.current.Levels {
    2240           1 :                 iter := files.Iter()
    2241           1 :                 if level > 0 {
    2242           1 :                         // We can only use `Overlaps` to restrict `files` at L1+ since at L0 it
    2243           1 :                         // expands the range iteratively until it has found a set of files that
    2244           1 :                         // do not overlap any other L0 files outside that set.
    2245           1 :                         overlaps := readState.current.Overlaps(level, base.UserKeyBoundsInclusive(start, end))
    2246           1 :                         iter = overlaps.Iter()
    2247           1 :                 }
    2248           1 :                 for file := iter.First(); file != nil; file = iter.Next() {
    2249           1 :                         if d.opts.Comparer.Compare(start, file.Smallest.UserKey) <= 0 &&
    2250           1 :                                 d.opts.Comparer.Compare(file.Largest.UserKey, end) <= 0 {
    2251           1 :                                 // The range fully contains the file, so skip looking it up in
    2252           1 :                                 // table cache/looking at its indexes, and add the full file size.
    2253           1 :                                 meta, err := d.objProvider.Lookup(fileTypeTable, file.FileBacking.DiskFileNum)
    2254           1 :                                 if err != nil {
    2255           0 :                                         return 0, 0, 0, err
    2256           0 :                                 }
    2257           1 :                                 if meta.IsRemote() {
    2258           0 :                                         remoteSize += file.Size
    2259           0 :                                         if meta.Remote.CleanupMethod == objstorage.SharedNoCleanup {
    2260           0 :                                                 externalSize += file.Size
    2261           0 :                                         }
    2262             :                                 }
    2263           1 :                                 totalSize += file.Size
    2264           1 :                         } else if d.opts.Comparer.Compare(file.Smallest.UserKey, end) <= 0 &&
    2265           1 :                                 d.opts.Comparer.Compare(start, file.Largest.UserKey) <= 0 {
    2266           1 :                                 var size uint64
    2267           1 :                                 var err error
    2268           1 :                                 if file.Virtual {
    2269           0 :                                         err = d.tableCache.withVirtualReader(
    2270           0 :                                                 file.VirtualMeta(),
    2271           0 :                                                 func(r sstable.VirtualReader) (err error) {
    2272           0 :                                                         size, err = r.EstimateDiskUsage(start, end)
    2273           0 :                                                         return err
    2274           0 :                                                 },
    2275             :                                         )
    2276           1 :                                 } else {
    2277           1 :                                         err = d.tableCache.withReader(
    2278           1 :                                                 file.PhysicalMeta(),
    2279           1 :                                                 func(r *sstable.Reader) (err error) {
    2280           1 :                                                         size, err = r.EstimateDiskUsage(start, end)
    2281           1 :                                                         return err
    2282           1 :                                                 },
    2283             :                                         )
    2284             :                                 }
    2285           1 :                                 if err != nil {
    2286           0 :                                         return 0, 0, 0, err
    2287           0 :                                 }
    2288           1 :                                 meta, err := d.objProvider.Lookup(fileTypeTable, file.FileBacking.DiskFileNum)
    2289           1 :                                 if err != nil {
    2290           0 :                                         return 0, 0, 0, err
    2291           0 :                                 }
    2292           1 :                                 if meta.IsRemote() {
    2293           0 :                                         remoteSize += size
    2294           0 :                                         if meta.Remote.CleanupMethod == objstorage.SharedNoCleanup {
    2295           0 :                                                 externalSize += size
    2296           0 :                                         }
    2297             :                                 }
    2298           1 :                                 totalSize += size
    2299             :                         }
    2300             :                 }
    2301             :         }
    2302           1 :         return totalSize, remoteSize, externalSize, nil
    2303             : }
    2304             : 
    2305           2 : func (d *DB) walPreallocateSize() int {
    2306           2 :         // Set the WAL preallocate size to 110% of the memtable size. Note that there
    2307           2 :         // is a bit of apples and oranges in units here as the memtabls size
    2308           2 :         // corresponds to the memory usage of the memtable while the WAL size is the
    2309           2 :         // size of the batches (plus overhead) stored in the WAL.
    2310           2 :         //
    2311           2 :         // TODO(peter): 110% of the memtable size is quite hefty for a block
    2312           2 :         // size. This logic is taken from GetWalPreallocateBlockSize in
    2313           2 :         // RocksDB. Could a smaller preallocation block size be used?
    2314           2 :         size := d.opts.MemTableSize
    2315           2 :         size = (size / 10) + size
    2316           2 :         return int(size)
    2317           2 : }
    2318             : 
    2319           2 : func (d *DB) newMemTable(logNum base.DiskFileNum, logSeqNum uint64) (*memTable, *flushableEntry) {
    2320           2 :         size := d.mu.mem.nextSize
    2321           2 :         if d.mu.mem.nextSize < d.opts.MemTableSize {
    2322           2 :                 d.mu.mem.nextSize *= 2
    2323           2 :                 if d.mu.mem.nextSize > d.opts.MemTableSize {
    2324           1 :                         d.mu.mem.nextSize = d.opts.MemTableSize
    2325           1 :                 }
    2326             :         }
    2327             : 
    2328           2 :         memtblOpts := memTableOptions{
    2329           2 :                 Options:   d.opts,
    2330           2 :                 logSeqNum: logSeqNum,
    2331           2 :         }
    2332           2 : 
    2333           2 :         // Before attempting to allocate a new memtable, check if there's one
    2334           2 :         // available for recycling in memTableRecycle. Large contiguous allocations
    2335           2 :         // can be costly as fragmentation makes it more difficult to find a large
    2336           2 :         // contiguous free space. We've observed 64MB allocations taking 10ms+.
    2337           2 :         //
    2338           2 :         // To reduce these costly allocations, up to 1 obsolete memtable is stashed
    2339           2 :         // in `d.memTableRecycle` to allow a future memtable rotation to reuse
    2340           2 :         // existing memory.
    2341           2 :         var mem *memTable
    2342           2 :         mem = d.memTableRecycle.Swap(nil)
    2343           2 :         if mem != nil && uint64(len(mem.arenaBuf)) != size {
    2344           2 :                 d.freeMemTable(mem)
    2345           2 :                 mem = nil
    2346           2 :         }
    2347           2 :         if mem != nil {
    2348           2 :                 // Carry through the existing buffer and memory reservation.
    2349           2 :                 memtblOpts.arenaBuf = mem.arenaBuf
    2350           2 :                 memtblOpts.releaseAccountingReservation = mem.releaseAccountingReservation
    2351           2 :         } else {
    2352           2 :                 mem = new(memTable)
    2353           2 :                 memtblOpts.arenaBuf = manual.New(int(size))
    2354           2 :                 memtblOpts.releaseAccountingReservation = d.opts.Cache.Reserve(int(size))
    2355           2 :                 d.memTableCount.Add(1)
    2356           2 :                 d.memTableReserved.Add(int64(size))
    2357           2 : 
    2358           2 :                 // Note: this is a no-op if invariants are disabled or race is enabled.
    2359           2 :                 invariants.SetFinalizer(mem, checkMemTable)
    2360           2 :         }
    2361           2 :         mem.init(memtblOpts)
    2362           2 : 
    2363           2 :         entry := d.newFlushableEntry(mem, logNum, logSeqNum)
    2364           2 :         entry.releaseMemAccounting = func() {
    2365           2 :                 // If the user leaks iterators, we may be releasing the memtable after
    2366           2 :                 // the DB is already closed. In this case, we want to just release the
    2367           2 :                 // memory because DB.Close won't come along to free it for us.
    2368           2 :                 if err := d.closed.Load(); err != nil {
    2369           2 :                         d.freeMemTable(mem)
    2370           2 :                         return
    2371           2 :                 }
    2372             : 
    2373             :                 // The next memtable allocation might be able to reuse this memtable.
    2374             :                 // Stash it on d.memTableRecycle.
    2375           2 :                 if unusedMem := d.memTableRecycle.Swap(mem); unusedMem != nil {
    2376           2 :                         // There was already a memtable waiting to be recycled. We're now
    2377           2 :                         // responsible for freeing it.
    2378           2 :                         d.freeMemTable(unusedMem)
    2379           2 :                 }
    2380             :         }
    2381           2 :         return mem, entry
    2382             : }
    2383             : 
    2384           2 : func (d *DB) freeMemTable(m *memTable) {
    2385           2 :         d.memTableCount.Add(-1)
    2386           2 :         d.memTableReserved.Add(-int64(len(m.arenaBuf)))
    2387           2 :         m.free()
    2388           2 : }
    2389             : 
    2390             : func (d *DB) newFlushableEntry(
    2391             :         f flushable, logNum base.DiskFileNum, logSeqNum uint64,
    2392           2 : ) *flushableEntry {
    2393           2 :         fe := &flushableEntry{
    2394           2 :                 flushable:      f,
    2395           2 :                 flushed:        make(chan struct{}),
    2396           2 :                 logNum:         logNum,
    2397           2 :                 logSeqNum:      logSeqNum,
    2398           2 :                 deleteFn:       d.mu.versions.addObsolete,
    2399           2 :                 deleteFnLocked: d.mu.versions.addObsoleteLocked,
    2400           2 :         }
    2401           2 :         fe.readerRefs.Store(1)
    2402           2 :         return fe
    2403           2 : }
    2404             : 
    2405             : // makeRoomForWrite ensures that the memtable has room to hold the contents of
    2406             : // Batch. It reserves the space in the memtable and adds a reference to the
    2407             : // memtable. The caller must later ensure that the memtable is unreferenced. If
    2408             : // the memtable is full, or a nil Batch is provided, the current memtable is
    2409             : // rotated (marked as immutable) and a new mutable memtable is allocated. This
    2410             : // memtable rotation also causes a log rotation.
    2411             : //
    2412             : // Both DB.mu and commitPipeline.mu must be held by the caller. Note that DB.mu
    2413             : // may be released and reacquired.
    2414           2 : func (d *DB) makeRoomForWrite(b *Batch) error {
    2415           2 :         if b != nil && b.ingestedSSTBatch {
    2416           0 :                 panic("pebble: invalid function call")
    2417             :         }
    2418             : 
    2419           2 :         force := b == nil || b.flushable != nil
    2420           2 :         stalled := false
    2421           2 :         for {
    2422           2 :                 if b != nil && b.flushable == nil {
    2423           2 :                         err := d.mu.mem.mutable.prepare(b)
    2424           2 :                         if err != arenaskl.ErrArenaFull {
    2425           2 :                                 if stalled {
    2426           2 :                                         d.opts.EventListener.WriteStallEnd()
    2427           2 :                                 }
    2428           2 :                                 return err
    2429             :                         }
    2430           2 :                 } else if !force {
    2431           2 :                         if stalled {
    2432           2 :                                 d.opts.EventListener.WriteStallEnd()
    2433           2 :                         }
    2434           2 :                         return nil
    2435             :                 }
    2436             :                 // force || err == ErrArenaFull, so we need to rotate the current memtable.
    2437           2 :                 {
    2438           2 :                         var size uint64
    2439           2 :                         for i := range d.mu.mem.queue {
    2440           2 :                                 size += d.mu.mem.queue[i].totalBytes()
    2441           2 :                         }
    2442             :                         // If ElevateWriteStallThresholdForFailover is true, we give an
    2443             :                         // unlimited memory budget for memtables. This is simpler than trying to
    2444             :                         // configure an explicit value, given that memory resources can vary.
    2445             :                         // When using WAL failover in CockroachDB, an OOM risk is worth
    2446             :                         // tolerating for workloads that have a strict latency SLO. Also, an
    2447             :                         // unlimited budget here does not mean that the disk stall in the
    2448             :                         // primary will go unnoticed until the OOM -- CockroachDB is monitoring
    2449             :                         // disk stalls, and we expect it to fail the node after ~60s if the
    2450             :                         // primary is stalled.
    2451           2 :                         if size >= uint64(d.opts.MemTableStopWritesThreshold)*d.opts.MemTableSize &&
    2452           2 :                                 !d.mu.log.manager.ElevateWriteStallThresholdForFailover() {
    2453           2 :                                 // We have filled up the current memtable, but already queued memtables
    2454           2 :                                 // are still flushing, so we wait.
    2455           2 :                                 if !stalled {
    2456           2 :                                         stalled = true
    2457           2 :                                         d.opts.EventListener.WriteStallBegin(WriteStallBeginInfo{
    2458           2 :                                                 Reason: "memtable count limit reached",
    2459           2 :                                         })
    2460           2 :                                 }
    2461           2 :                                 now := time.Now()
    2462           2 :                                 d.mu.compact.cond.Wait()
    2463           2 :                                 if b != nil {
    2464           2 :                                         b.commitStats.MemTableWriteStallDuration += time.Since(now)
    2465           2 :                                 }
    2466           2 :                                 continue
    2467             :                         }
    2468             :                 }
    2469           2 :                 l0ReadAmp := d.mu.versions.currentVersion().L0Sublevels.ReadAmplification()
    2470           2 :                 if l0ReadAmp >= d.opts.L0StopWritesThreshold {
    2471           2 :                         // There are too many level-0 files, so we wait.
    2472           2 :                         if !stalled {
    2473           2 :                                 stalled = true
    2474           2 :                                 d.opts.EventListener.WriteStallBegin(WriteStallBeginInfo{
    2475           2 :                                         Reason: "L0 file count limit exceeded",
    2476           2 :                                 })
    2477           2 :                         }
    2478           2 :                         now := time.Now()
    2479           2 :                         d.mu.compact.cond.Wait()
    2480           2 :                         if b != nil {
    2481           2 :                                 b.commitStats.L0ReadAmpWriteStallDuration += time.Since(now)
    2482           2 :                         }
    2483           2 :                         continue
    2484             :                 }
    2485             : 
    2486           2 :                 var newLogNum base.DiskFileNum
    2487           2 :                 var prevLogSize uint64
    2488           2 :                 if !d.opts.DisableWAL {
    2489           2 :                         now := time.Now()
    2490           2 :                         newLogNum, prevLogSize = d.recycleWAL()
    2491           2 :                         if b != nil {
    2492           2 :                                 b.commitStats.WALRotationDuration += time.Since(now)
    2493           2 :                         }
    2494             :                 }
    2495             : 
    2496           2 :                 immMem := d.mu.mem.mutable
    2497           2 :                 imm := d.mu.mem.queue[len(d.mu.mem.queue)-1]
    2498           2 :                 imm.logSize = prevLogSize
    2499           2 :                 imm.flushForced = imm.flushForced || (b == nil)
    2500           2 : 
    2501           2 :                 // If we are manually flushing and we used less than half of the bytes in
    2502           2 :                 // the memtable, don't increase the size for the next memtable. This
    2503           2 :                 // reduces memtable memory pressure when an application is frequently
    2504           2 :                 // manually flushing.
    2505           2 :                 if (b == nil) && uint64(immMem.availBytes()) > immMem.totalBytes()/2 {
    2506           2 :                         d.mu.mem.nextSize = immMem.totalBytes()
    2507           2 :                 }
    2508             : 
    2509           2 :                 if b != nil && b.flushable != nil {
    2510           2 :                         // The batch is too large to fit in the memtable so add it directly to
    2511           2 :                         // the immutable queue. The flushable batch is associated with the same
    2512           2 :                         // log as the immutable memtable, but logically occurs after it in
    2513           2 :                         // seqnum space. We ensure while flushing that the flushable batch
    2514           2 :                         // is flushed along with the previous memtable in the flushable
    2515           2 :                         // queue. See the top level comment in DB.flush1 to learn how this
    2516           2 :                         // is ensured.
    2517           2 :                         //
    2518           2 :                         // See DB.commitWrite for the special handling of log writes for large
    2519           2 :                         // batches. In particular, the large batch has already written to
    2520           2 :                         // imm.logNum.
    2521           2 :                         entry := d.newFlushableEntry(b.flushable, imm.logNum, b.SeqNum())
    2522           2 :                         // The large batch is by definition large. Reserve space from the cache
    2523           2 :                         // for it until it is flushed.
    2524           2 :                         entry.releaseMemAccounting = d.opts.Cache.Reserve(int(b.flushable.totalBytes()))
    2525           2 :                         d.mu.mem.queue = append(d.mu.mem.queue, entry)
    2526           2 :                 }
    2527             : 
    2528           2 :                 var logSeqNum uint64
    2529           2 :                 if b != nil {
    2530           2 :                         logSeqNum = b.SeqNum()
    2531           2 :                         if b.flushable != nil {
    2532           2 :                                 logSeqNum += uint64(b.Count())
    2533           2 :                         }
    2534           2 :                 } else {
    2535           2 :                         logSeqNum = d.mu.versions.logSeqNum.Load()
    2536           2 :                 }
    2537           2 :                 d.rotateMemtable(newLogNum, logSeqNum, immMem)
    2538           2 :                 force = false
    2539             :         }
    2540             : }
    2541             : 
    2542             : // Both DB.mu and commitPipeline.mu must be held by the caller.
    2543           2 : func (d *DB) rotateMemtable(newLogNum base.DiskFileNum, logSeqNum uint64, prev *memTable) {
    2544           2 :         // Create a new memtable, scheduling the previous one for flushing. We do
    2545           2 :         // this even if the previous memtable was empty because the DB.Flush
    2546           2 :         // mechanism is dependent on being able to wait for the empty memtable to
    2547           2 :         // flush. We can't just mark the empty memtable as flushed here because we
    2548           2 :         // also have to wait for all previous immutable tables to
    2549           2 :         // flush. Additionally, the memtable is tied to particular WAL file and we
    2550           2 :         // want to go through the flush path in order to recycle that WAL file.
    2551           2 :         //
    2552           2 :         // NB: newLogNum corresponds to the WAL that contains mutations that are
    2553           2 :         // present in the new memtable. When immutable memtables are flushed to
    2554           2 :         // disk, a VersionEdit will be created telling the manifest the minimum
    2555           2 :         // unflushed log number (which will be the next one in d.mu.mem.mutable
    2556           2 :         // that was not flushed).
    2557           2 :         //
    2558           2 :         // NB: prev should be the current mutable memtable.
    2559           2 :         var entry *flushableEntry
    2560           2 :         d.mu.mem.mutable, entry = d.newMemTable(newLogNum, logSeqNum)
    2561           2 :         d.mu.mem.queue = append(d.mu.mem.queue, entry)
    2562           2 :         d.updateReadStateLocked(nil)
    2563           2 :         if prev.writerUnref() {
    2564           2 :                 d.maybeScheduleFlush()
    2565           2 :         }
    2566             : }
    2567             : 
    2568             : // Both DB.mu and commitPipeline.mu must be held by the caller. Note that DB.mu
    2569             : // may be released and reacquired.
    2570           2 : func (d *DB) recycleWAL() (newLogNum base.DiskFileNum, prevLogSize uint64) {
    2571           2 :         if d.opts.DisableWAL {
    2572           0 :                 panic("pebble: invalid function call")
    2573             :         }
    2574           2 :         jobID := d.newJobIDLocked()
    2575           2 :         newLogNum = d.mu.versions.getNextDiskFileNum()
    2576           2 : 
    2577           2 :         d.mu.Unlock()
    2578           2 :         // Close the previous log first. This writes an EOF trailer
    2579           2 :         // signifying the end of the file and syncs it to disk. We must
    2580           2 :         // close the previous log before linking the new log file,
    2581           2 :         // otherwise a crash could leave both logs with unclean tails, and
    2582           2 :         // Open will treat the previous log as corrupt.
    2583           2 :         offset, err := d.mu.log.writer.Close()
    2584           2 :         if err != nil {
    2585           0 :                 // What to do here? Stumbling on doesn't seem worthwhile. If we failed to
    2586           0 :                 // close the previous log it is possible we lost a write.
    2587           0 :                 panic(err)
    2588             :         }
    2589           2 :         prevLogSize = uint64(offset)
    2590           2 :         metrics := d.mu.log.writer.Metrics()
    2591           2 : 
    2592           2 :         d.mu.Lock()
    2593           2 :         if err := d.mu.log.metrics.LogWriterMetrics.Merge(&metrics); err != nil {
    2594           0 :                 d.opts.Logger.Errorf("metrics error: %s", err)
    2595           0 :         }
    2596             : 
    2597           2 :         d.mu.Unlock()
    2598           2 :         writer, err := d.mu.log.manager.Create(wal.NumWAL(newLogNum), int(jobID))
    2599           2 :         if err != nil {
    2600           0 :                 panic(err)
    2601             :         }
    2602             : 
    2603           2 :         d.mu.Lock()
    2604           2 :         d.mu.log.writer = writer
    2605           2 :         return newLogNum, prevLogSize
    2606             : }
    2607             : 
    2608           2 : func (d *DB) getEarliestUnflushedSeqNumLocked() uint64 {
    2609           2 :         seqNum := InternalKeySeqNumMax
    2610           2 :         for i := range d.mu.mem.queue {
    2611           2 :                 logSeqNum := d.mu.mem.queue[i].logSeqNum
    2612           2 :                 if seqNum > logSeqNum {
    2613           2 :                         seqNum = logSeqNum
    2614           2 :                 }
    2615             :         }
    2616           2 :         return seqNum
    2617             : }
    2618             : 
    2619           2 : func (d *DB) getInProgressCompactionInfoLocked(finishing *compaction) (rv []compactionInfo) {
    2620           2 :         for c := range d.mu.compact.inProgress {
    2621           2 :                 if len(c.flushing) == 0 && (finishing == nil || c != finishing) {
    2622           2 :                         info := compactionInfo{
    2623           2 :                                 versionEditApplied: c.versionEditApplied,
    2624           2 :                                 inputs:             c.inputs,
    2625           2 :                                 smallest:           c.smallest,
    2626           2 :                                 largest:            c.largest,
    2627           2 :                                 outputLevel:        -1,
    2628           2 :                         }
    2629           2 :                         if c.outputLevel != nil {
    2630           2 :                                 info.outputLevel = c.outputLevel.level
    2631           2 :                         }
    2632           2 :                         rv = append(rv, info)
    2633             :                 }
    2634             :         }
    2635           2 :         return
    2636             : }
    2637             : 
    2638           2 : func inProgressL0Compactions(inProgress []compactionInfo) []manifest.L0Compaction {
    2639           2 :         var compactions []manifest.L0Compaction
    2640           2 :         for _, info := range inProgress {
    2641           2 :                 // Skip in-progress compactions that have already committed; the L0
    2642           2 :                 // sublevels initialization code requires the set of in-progress
    2643           2 :                 // compactions to be consistent with the current version. Compactions
    2644           2 :                 // with versionEditApplied=true are already applied to the current
    2645           2 :                 // version and but are performing cleanup without the database mutex.
    2646           2 :                 if info.versionEditApplied {
    2647           2 :                         continue
    2648             :                 }
    2649           2 :                 l0 := false
    2650           2 :                 for _, cl := range info.inputs {
    2651           2 :                         l0 = l0 || cl.level == 0
    2652           2 :                 }
    2653           2 :                 if !l0 {
    2654           2 :                         continue
    2655             :                 }
    2656           2 :                 compactions = append(compactions, manifest.L0Compaction{
    2657           2 :                         Smallest:  info.smallest,
    2658           2 :                         Largest:   info.largest,
    2659           2 :                         IsIntraL0: info.outputLevel == 0,
    2660           2 :                 })
    2661             :         }
    2662           2 :         return compactions
    2663             : }
    2664             : 
    2665             : // firstError returns the first non-nil error of err0 and err1, or nil if both
    2666             : // are nil.
    2667           2 : func firstError(err0, err1 error) error {
    2668           2 :         if err0 != nil {
    2669           2 :                 return err0
    2670           2 :         }
    2671           2 :         return err1
    2672             : }
    2673             : 
    2674             : // SetCreatorID sets the CreatorID which is needed in order to use shared objects.
    2675             : // Remote object usage is disabled until this method is called the first time.
    2676             : // Once set, the Creator ID is persisted and cannot change.
    2677             : //
    2678             : // Does nothing if SharedStorage was not set in the options when the DB was
    2679             : // opened or if the DB is in read-only mode.
    2680           2 : func (d *DB) SetCreatorID(creatorID uint64) error {
    2681           2 :         if d.opts.Experimental.RemoteStorage == nil || d.opts.ReadOnly {
    2682           0 :                 return nil
    2683           0 :         }
    2684           2 :         return d.objProvider.SetCreatorID(objstorage.CreatorID(creatorID))
    2685             : }
    2686             : 
    2687             : // KeyStatistics keeps track of the number of keys that have been pinned by a
    2688             : // snapshot as well as counts of the different key kinds in the lsm.
    2689             : //
    2690             : // One way of using the accumulated stats, when we only have sets and dels,
    2691             : // and say the counts are represented as del_count, set_count,
    2692             : // del_latest_count, set_latest_count, snapshot_pinned_count.
    2693             : //
    2694             : //   - del_latest_count + set_latest_count is the set of unique user keys
    2695             : //     (unique).
    2696             : //
    2697             : //   - set_latest_count is the set of live unique user keys (live_unique).
    2698             : //
    2699             : //   - Garbage is del_count + set_count - live_unique.
    2700             : //
    2701             : //   - If everything were in the LSM, del_count+set_count-snapshot_pinned_count
    2702             : //     would also be the set of unique user keys (note that
    2703             : //     snapshot_pinned_count is counting something different -- see comment below).
    2704             : //     But snapshot_pinned_count only counts keys in the LSM so the excess here
    2705             : //     must be keys in memtables.
    2706             : type KeyStatistics struct {
    2707             :         // TODO(sumeer): the SnapshotPinned* are incorrect in that these older
    2708             :         // versions can be in a different level. Either fix the accounting or
    2709             :         // rename these fields.
    2710             : 
    2711             :         // SnapshotPinnedKeys represents obsolete keys that cannot be elided during
    2712             :         // a compaction, because they are required by an open snapshot.
    2713             :         SnapshotPinnedKeys int
    2714             :         // SnapshotPinnedKeysBytes is the total number of bytes of all snapshot
    2715             :         // pinned keys.
    2716             :         SnapshotPinnedKeysBytes uint64
    2717             :         // KindsCount is the count for each kind of key. It includes point keys,
    2718             :         // range deletes and range keys.
    2719             :         KindsCount [InternalKeyKindMax + 1]int
    2720             :         // LatestKindsCount is the count for each kind of key when it is the latest
    2721             :         // kind for a user key. It is only populated for point keys.
    2722             :         LatestKindsCount [InternalKeyKindMax + 1]int
    2723             : }
    2724             : 
    2725             : // LSMKeyStatistics is used by DB.ScanStatistics.
    2726             : type LSMKeyStatistics struct {
    2727             :         Accumulated KeyStatistics
    2728             :         // Levels contains statistics only for point keys. Range deletions and range keys will
    2729             :         // appear in Accumulated but not Levels.
    2730             :         Levels [numLevels]KeyStatistics
    2731             :         // BytesRead represents the logical, pre-compression size of keys and values read
    2732             :         BytesRead uint64
    2733             : }
    2734             : 
    2735             : // ScanStatisticsOptions is used by DB.ScanStatistics.
    2736             : type ScanStatisticsOptions struct {
    2737             :         // LimitBytesPerSecond indicates the number of bytes that are able to be read
    2738             :         // per second using ScanInternal.
    2739             :         // A value of 0 indicates that there is no limit set.
    2740             :         LimitBytesPerSecond int64
    2741             : }
    2742             : 
    2743             : // ScanStatistics returns the count of different key kinds within the lsm for a
    2744             : // key span [lower, upper) as well as the number of snapshot keys.
    2745             : func (d *DB) ScanStatistics(
    2746             :         ctx context.Context, lower, upper []byte, opts ScanStatisticsOptions,
    2747           1 : ) (LSMKeyStatistics, error) {
    2748           1 :         stats := LSMKeyStatistics{}
    2749           1 :         var prevKey InternalKey
    2750           1 :         var rateLimitFunc func(key *InternalKey, val LazyValue) error
    2751           1 :         tb := tokenbucket.TokenBucket{}
    2752           1 : 
    2753           1 :         if opts.LimitBytesPerSecond != 0 {
    2754           0 :                 // Each "token" roughly corresponds to a byte that was read.
    2755           0 :                 tb.Init(tokenbucket.TokensPerSecond(opts.LimitBytesPerSecond), tokenbucket.Tokens(1024))
    2756           0 :                 rateLimitFunc = func(key *InternalKey, val LazyValue) error {
    2757           0 :                         return tb.WaitCtx(ctx, tokenbucket.Tokens(key.Size()+val.Len()))
    2758           0 :                 }
    2759             :         }
    2760             : 
    2761           1 :         scanInternalOpts := &scanInternalOptions{
    2762           1 :                 visitPointKey: func(key *InternalKey, value LazyValue, iterInfo IteratorLevel) error {
    2763           1 :                         // If the previous key is equal to the current point key, the current key was
    2764           1 :                         // pinned by a snapshot.
    2765           1 :                         size := uint64(key.Size())
    2766           1 :                         kind := key.Kind()
    2767           1 :                         sameKey := d.equal(prevKey.UserKey, key.UserKey)
    2768           1 :                         if iterInfo.Kind == IteratorLevelLSM && sameKey {
    2769           1 :                                 stats.Levels[iterInfo.Level].SnapshotPinnedKeys++
    2770           1 :                                 stats.Levels[iterInfo.Level].SnapshotPinnedKeysBytes += size
    2771           1 :                                 stats.Accumulated.SnapshotPinnedKeys++
    2772           1 :                                 stats.Accumulated.SnapshotPinnedKeysBytes += size
    2773           1 :                         }
    2774           1 :                         if iterInfo.Kind == IteratorLevelLSM {
    2775           1 :                                 stats.Levels[iterInfo.Level].KindsCount[kind]++
    2776           1 :                         }
    2777           1 :                         if !sameKey {
    2778           1 :                                 if iterInfo.Kind == IteratorLevelLSM {
    2779           1 :                                         stats.Levels[iterInfo.Level].LatestKindsCount[kind]++
    2780           1 :                                 }
    2781           1 :                                 stats.Accumulated.LatestKindsCount[kind]++
    2782             :                         }
    2783             : 
    2784           1 :                         stats.Accumulated.KindsCount[kind]++
    2785           1 :                         prevKey.CopyFrom(*key)
    2786           1 :                         stats.BytesRead += uint64(key.Size() + value.Len())
    2787           1 :                         return nil
    2788             :                 },
    2789           0 :                 visitRangeDel: func(start, end []byte, seqNum uint64) error {
    2790           0 :                         stats.Accumulated.KindsCount[InternalKeyKindRangeDelete]++
    2791           0 :                         stats.BytesRead += uint64(len(start) + len(end))
    2792           0 :                         return nil
    2793           0 :                 },
    2794           0 :                 visitRangeKey: func(start, end []byte, keys []rangekey.Key) error {
    2795           0 :                         stats.BytesRead += uint64(len(start) + len(end))
    2796           0 :                         for _, key := range keys {
    2797           0 :                                 stats.Accumulated.KindsCount[key.Kind()]++
    2798           0 :                                 stats.BytesRead += uint64(len(key.Value) + len(key.Suffix))
    2799           0 :                         }
    2800           0 :                         return nil
    2801             :                 },
    2802             :                 includeObsoleteKeys: true,
    2803             :                 IterOptions: IterOptions{
    2804             :                         KeyTypes:   IterKeyTypePointsAndRanges,
    2805             :                         LowerBound: lower,
    2806             :                         UpperBound: upper,
    2807             :                 },
    2808             :                 rateLimitFunc: rateLimitFunc,
    2809             :         }
    2810           1 :         iter, err := d.newInternalIter(ctx, snapshotIterOpts{}, scanInternalOpts)
    2811           1 :         if err != nil {
    2812           0 :                 return LSMKeyStatistics{}, err
    2813           0 :         }
    2814           1 :         defer iter.close()
    2815           1 : 
    2816           1 :         err = scanInternalImpl(ctx, lower, upper, iter, scanInternalOpts)
    2817           1 : 
    2818           1 :         if err != nil {
    2819           0 :                 return LSMKeyStatistics{}, err
    2820           0 :         }
    2821             : 
    2822           1 :         return stats, nil
    2823             : }
    2824             : 
    2825             : // ObjProvider returns the objstorage.Provider for this database. Meant to be
    2826             : // used for internal purposes only.
    2827           2 : func (d *DB) ObjProvider() objstorage.Provider {
    2828           2 :         return d.objProvider
    2829           2 : }
    2830             : 
    2831           1 : func (d *DB) checkVirtualBounds(m *fileMetadata) {
    2832           1 :         if !invariants.Enabled {
    2833           0 :                 return
    2834           0 :         }
    2835             : 
    2836           1 :         objMeta, err := d.objProvider.Lookup(fileTypeTable, m.FileBacking.DiskFileNum)
    2837           1 :         if err != nil {
    2838           0 :                 panic(err)
    2839             :         }
    2840           1 :         if objMeta.IsExternal() {
    2841           0 :                 // Nothing to do; bounds are expected to be loose.
    2842           0 :                 return
    2843           0 :         }
    2844             : 
    2845           1 :         iters, err := d.newIters(context.TODO(), m, nil, internalIterOpts{}, iterPointKeys|iterRangeDeletions|iterRangeKeys)
    2846           1 :         if err != nil {
    2847           0 :                 panic(errors.Wrap(err, "pebble: error creating iterators"))
    2848             :         }
    2849           1 :         defer iters.CloseAll()
    2850           1 : 
    2851           1 :         if m.HasPointKeys {
    2852           1 :                 pointIter := iters.Point()
    2853           1 :                 rangeDelIter := iters.RangeDeletion()
    2854           1 : 
    2855           1 :                 // Check that the lower bound is tight.
    2856           1 :                 pointKey, _ := pointIter.First()
    2857           1 :                 rangeDel, err := rangeDelIter.First()
    2858           1 :                 if err != nil {
    2859           0 :                         panic(err)
    2860             :                 }
    2861           1 :                 if (rangeDel == nil || d.cmp(rangeDel.SmallestKey().UserKey, m.SmallestPointKey.UserKey) != 0) &&
    2862           1 :                         (pointKey == nil || d.cmp(pointKey.UserKey, m.SmallestPointKey.UserKey) != 0) {
    2863           0 :                         panic(errors.Newf("pebble: virtual sstable %s lower point key bound is not tight", m.FileNum))
    2864             :                 }
    2865             : 
    2866             :                 // Check that the upper bound is tight.
    2867           1 :                 pointKey, _ = pointIter.Last()
    2868           1 :                 rangeDel, err = rangeDelIter.Last()
    2869           1 :                 if err != nil {
    2870           0 :                         panic(err)
    2871             :                 }
    2872           1 :                 if (rangeDel == nil || d.cmp(rangeDel.LargestKey().UserKey, m.LargestPointKey.UserKey) != 0) &&
    2873           1 :                         (pointKey == nil || d.cmp(pointKey.UserKey, m.LargestPointKey.UserKey) != 0) {
    2874           0 :                         panic(errors.Newf("pebble: virtual sstable %s upper point key bound is not tight", m.FileNum))
    2875             :                 }
    2876             : 
    2877             :                 // Check that iterator keys are within bounds.
    2878           1 :                 for key, _ := pointIter.First(); key != nil; key, _ = pointIter.Next() {
    2879           1 :                         if d.cmp(key.UserKey, m.SmallestPointKey.UserKey) < 0 || d.cmp(key.UserKey, m.LargestPointKey.UserKey) > 0 {
    2880           0 :                                 panic(errors.Newf("pebble: virtual sstable %s point key %s is not within bounds", m.FileNum, key.UserKey))
    2881             :                         }
    2882             :                 }
    2883           1 :                 s, err := rangeDelIter.First()
    2884           1 :                 for ; s != nil; s, err = rangeDelIter.Next() {
    2885           1 :                         if d.cmp(s.SmallestKey().UserKey, m.SmallestPointKey.UserKey) < 0 {
    2886           0 :                                 panic(errors.Newf("pebble: virtual sstable %s point key %s is not within bounds", m.FileNum, s.SmallestKey().UserKey))
    2887             :                         }
    2888           1 :                         if d.cmp(s.LargestKey().UserKey, m.LargestPointKey.UserKey) > 0 {
    2889           0 :                                 panic(errors.Newf("pebble: virtual sstable %s point key %s is not within bounds", m.FileNum, s.LargestKey().UserKey))
    2890             :                         }
    2891             :                 }
    2892           1 :                 if err != nil {
    2893           0 :                         panic(err)
    2894             :                 }
    2895             :         }
    2896             : 
    2897           1 :         if !m.HasRangeKeys {
    2898           1 :                 return
    2899           1 :         }
    2900           0 :         rangeKeyIter := iters.RangeKey()
    2901           0 : 
    2902           0 :         // Check that the lower bound is tight.
    2903           0 :         if s, err := rangeKeyIter.First(); err != nil {
    2904           0 :                 panic(err)
    2905           0 :         } else if d.cmp(s.SmallestKey().UserKey, m.SmallestRangeKey.UserKey) != 0 {
    2906           0 :                 panic(errors.Newf("pebble: virtual sstable %s lower range key bound is not tight", m.FileNum))
    2907             :         }
    2908             : 
    2909             :         // Check that upper bound is tight.
    2910           0 :         if s, err := rangeKeyIter.Last(); err != nil {
    2911           0 :                 panic(err)
    2912           0 :         } else if d.cmp(s.LargestKey().UserKey, m.LargestRangeKey.UserKey) != 0 {
    2913           0 :                 panic(errors.Newf("pebble: virtual sstable %s upper range key bound is not tight", m.FileNum))
    2914             :         }
    2915             : 
    2916           0 :         s, err := rangeKeyIter.First()
    2917           0 :         for ; s != nil; s, err = rangeKeyIter.Next() {
    2918           0 :                 if d.cmp(s.SmallestKey().UserKey, m.SmallestRangeKey.UserKey) < 0 {
    2919           0 :                         panic(errors.Newf("pebble: virtual sstable %s point key %s is not within bounds", m.FileNum, s.SmallestKey().UserKey))
    2920             :                 }
    2921           0 :                 if d.cmp(s.LargestKey().UserKey, m.LargestRangeKey.UserKey) > 0 {
    2922           0 :                         panic(errors.Newf("pebble: virtual sstable %s point key %s is not within bounds", m.FileNum, s.LargestKey().UserKey))
    2923             :                 }
    2924             :         }
    2925           0 :         if err != nil {
    2926           0 :                 panic(err)
    2927             :         }
    2928             : }
    2929             : 
    2930             : // DebugString returns a debugging string describing the LSM.
    2931           0 : func (d *DB) DebugString() string {
    2932           0 :         d.mu.Lock()
    2933           0 :         defer d.mu.Unlock()
    2934           0 :         return d.mu.versions.currentVersion().DebugString()
    2935           0 : }

Generated by: LCOV version 1.14