LCOV - code coverage report
Current view: top level - pebble/sstable - writer.go (source / functions) Hit Total Coverage
Test: 2024-05-07 08:15Z f03e7efe - meta test only.lcov Lines: 1038 1457 71.2 %
Date: 2024-05-07 08:16:33 Functions: 0 0 -

          Line data    Source code
       1             : // Copyright 2011 The LevelDB-Go and Pebble Authors. All rights reserved. Use
       2             : // of this source code is governed by a BSD-style license that can be found in
       3             : // the LICENSE file.
       4             : 
       5             : package sstable
       6             : 
       7             : import (
       8             :         "bytes"
       9             :         "encoding/binary"
      10             :         "fmt"
      11             :         "math"
      12             :         "runtime"
      13             :         "slices"
      14             :         "sort"
      15             :         "sync"
      16             : 
      17             :         "github.com/cespare/xxhash/v2"
      18             :         "github.com/cockroachdb/errors"
      19             :         "github.com/cockroachdb/pebble/internal/base"
      20             :         "github.com/cockroachdb/pebble/internal/bytealloc"
      21             :         "github.com/cockroachdb/pebble/internal/cache"
      22             :         "github.com/cockroachdb/pebble/internal/crc"
      23             :         "github.com/cockroachdb/pebble/internal/invariants"
      24             :         "github.com/cockroachdb/pebble/internal/keyspan"
      25             :         "github.com/cockroachdb/pebble/internal/private"
      26             :         "github.com/cockroachdb/pebble/internal/rangedel"
      27             :         "github.com/cockroachdb/pebble/internal/rangekey"
      28             :         "github.com/cockroachdb/pebble/objstorage"
      29             : )
      30             : 
      31             : // encodedBHPEstimatedSize estimates the size of the encoded BlockHandleWithProperties.
      32             : // It would also be nice to account for the length of the data block properties here,
      33             : // but isn't necessary since this is an estimate.
      34             : const encodedBHPEstimatedSize = binary.MaxVarintLen64 * 2
      35             : 
      36             : var errWriterClosed = errors.New("pebble: writer is closed")
      37             : 
      38             : // WriterMetadata holds info about a finished sstable.
      39             : type WriterMetadata struct {
      40             :         Size          uint64
      41             :         SmallestPoint InternalKey
      42             :         // LargestPoint, LargestRangeKey, LargestRangeDel should not be accessed
      43             :         // before Writer.Close is called, because they may only be set on
      44             :         // Writer.Close.
      45             :         LargestPoint     InternalKey
      46             :         SmallestRangeDel InternalKey
      47             :         LargestRangeDel  InternalKey
      48             :         SmallestRangeKey InternalKey
      49             :         LargestRangeKey  InternalKey
      50             :         HasPointKeys     bool
      51             :         HasRangeDelKeys  bool
      52             :         HasRangeKeys     bool
      53             :         SmallestSeqNum   uint64
      54             :         LargestSeqNum    uint64
      55             :         Properties       Properties
      56             : }
      57             : 
      58             : // SetSmallestPointKey sets the smallest point key to the given key.
      59             : // NB: this method set the "absolute" smallest point key. Any existing key is
      60             : // overridden.
      61           1 : func (m *WriterMetadata) SetSmallestPointKey(k InternalKey) {
      62           1 :         m.SmallestPoint = k
      63           1 :         m.HasPointKeys = true
      64           1 : }
      65             : 
      66             : // SetSmallestRangeDelKey sets the smallest rangedel key to the given key.
      67             : // NB: this method set the "absolute" smallest rangedel key. Any existing key is
      68             : // overridden.
      69           1 : func (m *WriterMetadata) SetSmallestRangeDelKey(k InternalKey) {
      70           1 :         m.SmallestRangeDel = k
      71           1 :         m.HasRangeDelKeys = true
      72           1 : }
      73             : 
      74             : // SetSmallestRangeKey sets the smallest range key to the given key.
      75             : // NB: this method set the "absolute" smallest range key. Any existing key is
      76             : // overridden.
      77           1 : func (m *WriterMetadata) SetSmallestRangeKey(k InternalKey) {
      78           1 :         m.SmallestRangeKey = k
      79           1 :         m.HasRangeKeys = true
      80           1 : }
      81             : 
      82             : // SetLargestPointKey sets the largest point key to the given key.
      83             : // NB: this method set the "absolute" largest point key. Any existing key is
      84             : // overridden.
      85           1 : func (m *WriterMetadata) SetLargestPointKey(k InternalKey) {
      86           1 :         m.LargestPoint = k
      87           1 :         m.HasPointKeys = true
      88           1 : }
      89             : 
      90             : // SetLargestRangeDelKey sets the largest rangedel key to the given key.
      91             : // NB: this method set the "absolute" largest rangedel key. Any existing key is
      92             : // overridden.
      93           1 : func (m *WriterMetadata) SetLargestRangeDelKey(k InternalKey) {
      94           1 :         m.LargestRangeDel = k
      95           1 :         m.HasRangeDelKeys = true
      96           1 : }
      97             : 
      98             : // SetLargestRangeKey sets the largest range key to the given key.
      99             : // NB: this method set the "absolute" largest range key. Any existing key is
     100             : // overridden.
     101           1 : func (m *WriterMetadata) SetLargestRangeKey(k InternalKey) {
     102           1 :         m.LargestRangeKey = k
     103           1 :         m.HasRangeKeys = true
     104           1 : }
     105             : 
     106           1 : func (m *WriterMetadata) updateSeqNum(seqNum uint64) {
     107           1 :         if m.SmallestSeqNum > seqNum {
     108           1 :                 m.SmallestSeqNum = seqNum
     109           1 :         }
     110           1 :         if m.LargestSeqNum < seqNum {
     111           1 :                 m.LargestSeqNum = seqNum
     112           1 :         }
     113             : }
     114             : 
     115             : // flushDecisionOptions holds parameters to inform the sstable block flushing
     116             : // heuristics.
     117             : type flushDecisionOptions struct {
     118             :         blockSize          int
     119             :         blockSizeThreshold int
     120             :         // sizeClassAwareThreshold takes precedence over blockSizeThreshold when the
     121             :         // Writer is aware of the allocator's size classes.
     122             :         sizeClassAwareThreshold int
     123             : }
     124             : 
     125             : // Writer is a table writer.
     126             : type Writer struct {
     127             :         writable objstorage.Writable
     128             :         meta     WriterMetadata
     129             :         err      error
     130             :         // cacheID and fileNum are used to remove blocks written to the sstable from
     131             :         // the cache, providing a defense in depth against bugs which cause cache
     132             :         // collisions.
     133             :         cacheID uint64
     134             :         fileNum base.DiskFileNum
     135             :         // dataBlockOptions and indexBlockOptions are used to configure the sstable
     136             :         // block flush heuristics.
     137             :         dataBlockOptions  flushDecisionOptions
     138             :         indexBlockOptions flushDecisionOptions
     139             :         // The following fields are copied from Options.
     140             :         compare              Compare
     141             :         split                Split
     142             :         formatKey            base.FormatKey
     143             :         compression          Compression
     144             :         separator            Separator
     145             :         successor            Successor
     146             :         tableFormat          TableFormat
     147             :         isStrictObsolete     bool
     148             :         writingToLowestLevel bool
     149             :         cache                *cache.Cache
     150             :         restartInterval      int
     151             :         checksumType         ChecksumType
     152             :         // disableKeyOrderChecks disables the checks that keys are added to an
     153             :         // sstable in order. It is intended for internal use only in the construction
     154             :         // of invalid sstables for testing. See tool/make_test_sstables.go.
     155             :         disableKeyOrderChecks bool
     156             :         // With two level indexes, the index/filter of a SST file is partitioned into
     157             :         // smaller blocks with an additional top-level index on them. When reading an
     158             :         // index/filter, only the top-level index is loaded into memory. The two level
     159             :         // index/filter then uses the top-level index to load on demand into the block
     160             :         // cache the partitions that are required to perform the index/filter query.
     161             :         //
     162             :         // Two level indexes are enabled automatically when there is more than one
     163             :         // index block.
     164             :         //
     165             :         // This is useful when there are very large index blocks, which generally occurs
     166             :         // with the usage of large keys. With large index blocks, the index blocks fight
     167             :         // the data blocks for block cache space and the index blocks are likely to be
     168             :         // re-read many times from the disk. The top level index, which has a much
     169             :         // smaller memory footprint, can be used to prevent the entire index block from
     170             :         // being loaded into the block cache.
     171             :         twoLevelIndex bool
     172             :         // Internal flag to allow creation of range-del-v1 format blocks. Only used
     173             :         // for testing. Note that v2 format blocks are backwards compatible with v1
     174             :         // format blocks.
     175             :         rangeDelV1Format    bool
     176             :         indexBlock          *indexBlockBuf
     177             :         rangeDelBlock       blockWriter
     178             :         rangeKeyBlock       blockWriter
     179             :         topLevelIndexBlock  blockWriter
     180             :         props               Properties
     181             :         blockPropCollectors []BlockPropertyCollector
     182             :         obsoleteCollector   obsoleteKeyBlockPropertyCollector
     183             :         blockPropsEncoder   blockPropertiesEncoder
     184             :         // filter accumulates the filter block. If populated, the filter ingests
     185             :         // either the output of w.split (i.e. a prefix extractor) if w.split is not
     186             :         // nil, or the full keys otherwise.
     187             :         filter          filterWriter
     188             :         indexPartitions []indexBlockAndBlockProperties
     189             : 
     190             :         // indexBlockAlloc is used to bulk-allocate byte slices used to store index
     191             :         // blocks in indexPartitions. These live until the index finishes.
     192             :         indexBlockAlloc []byte
     193             :         // indexSepAlloc is used to bulk-allocate index block separator slices stored
     194             :         // in indexPartitions. These live until the index finishes.
     195             :         indexSepAlloc bytealloc.A
     196             : 
     197             :         // To allow potentially overlapping (i.e. un-fragmented) range keys spans to
     198             :         // be added to the Writer, a keyspan.Fragmenter is used to retain the keys
     199             :         // and values, emitting fragmented, coalesced spans as appropriate. Range
     200             :         // keys must be added in order of their start user-key.
     201             :         fragmenter        keyspan.Fragmenter
     202             :         rangeKeyEncoder   rangekey.Encoder
     203             :         rangeKeysBySuffix keyspan.KeysBySuffix
     204             :         rangeKeySpan      keyspan.Span
     205             :         rkBuf             []byte
     206             :         // dataBlockBuf consists of the state which is currently owned by and used by
     207             :         // the Writer client goroutine. This state can be handed off to other goroutines.
     208             :         dataBlockBuf *dataBlockBuf
     209             :         // blockBuf consists of the state which is owned by and used by the Writer client
     210             :         // goroutine.
     211             :         blockBuf blockBuf
     212             : 
     213             :         coordination coordinationState
     214             : 
     215             :         // Information (other than the byte slice) about the last point key, to
     216             :         // avoid extracting it again.
     217             :         lastPointKeyInfo pointKeyInfo
     218             : 
     219             :         // For value blocks.
     220             :         shortAttributeExtractor   base.ShortAttributeExtractor
     221             :         requiredInPlaceValueBound UserKeyPrefixBound
     222             :         // When w.tableFormat >= TableFormatPebblev3, valueBlockWriter is nil iff
     223             :         // WriterOptions.DisableValueBlocks was true.
     224             :         valueBlockWriter *valueBlockWriter
     225             : 
     226             :         allocatorSizeClasses []int
     227             : }
     228             : 
     229             : type pointKeyInfo struct {
     230             :         trailer uint64
     231             :         // Only computed when w.valueBlockWriter is not nil.
     232             :         userKeyLen int
     233             :         // prefixLen uses w.split, if not nil. Only computed when w.valueBlockWriter
     234             :         // is not nil.
     235             :         prefixLen int
     236             :         // True iff the point was marked obsolete.
     237             :         isObsolete bool
     238             : }
     239             : 
     240             : type coordinationState struct {
     241             :         parallelismEnabled bool
     242             : 
     243             :         // writeQueue is used to write data blocks to disk. The writeQueue is primarily
     244             :         // used to maintain the order in which data blocks must be written to disk. For
     245             :         // this reason, every single data block write must be done through the writeQueue.
     246             :         writeQueue *writeQueue
     247             : 
     248             :         sizeEstimate dataBlockEstimates
     249             : }
     250             : 
     251           1 : func (c *coordinationState) init(parallelismEnabled bool, writer *Writer) {
     252           1 :         c.parallelismEnabled = parallelismEnabled
     253           1 :         // useMutex is false regardless of parallelismEnabled, because we do not do
     254           1 :         // parallel compression yet.
     255           1 :         c.sizeEstimate.useMutex = false
     256           1 : 
     257           1 :         // writeQueueSize determines the size of the write queue, or the number
     258           1 :         // of items which can be added to the queue without blocking. By default, we
     259           1 :         // use a writeQueue size of 0, since we won't be doing any block writes in
     260           1 :         // parallel.
     261           1 :         writeQueueSize := 0
     262           1 :         if parallelismEnabled {
     263           1 :                 writeQueueSize = runtime.GOMAXPROCS(0)
     264           1 :         }
     265           1 :         c.writeQueue = newWriteQueue(writeQueueSize, writer)
     266             : }
     267             : 
     268             : // sizeEstimate is a general purpose helper for estimating two kinds of sizes:
     269             : // A. The compressed sstable size, which is useful for deciding when to start
     270             : //
     271             : //      a new sstable during flushes or compactions. In practice, we use this in
     272             : //      estimating the data size (excluding the index).
     273             : //
     274             : // B. The size of index blocks to decide when to start a new index block.
     275             : //
     276             : // There are some terminology peculiarities which are due to the origin of
     277             : // sizeEstimate for use case A with parallel compression enabled (for which
     278             : // the code has not been merged). Specifically this relates to the terms
     279             : // "written" and "compressed".
     280             : //   - The notion of "written" for case A is sufficiently defined by saying that
     281             : //     the data block is compressed. Waiting for the actual data block write to
     282             : //     happen can result in unnecessary estimation, when we already know how big
     283             : //     it will be in compressed form. Additionally, with the forthcoming value
     284             : //     blocks containing older MVCC values, these compressed block will be held
     285             : //     in-memory until late in the sstable writing, and we do want to accurately
     286             : //     account for them without waiting for the actual write.
     287             : //     For case B, "written" means that the index entry has been fully
     288             : //     generated, and has been added to the uncompressed block buffer for that
     289             : //     index block. It does not include actually writing a potentially
     290             : //     compressed index block.
     291             : //   - The notion of "compressed" is to differentiate between a "inflight" size
     292             : //     and the actual size, and is handled via computing a compression ratio
     293             : //     observed so far (defaults to 1).
     294             : //     For case A, this is actual data block compression, so the "inflight" size
     295             : //     is uncompressed blocks (that are no longer being written to) and the
     296             : //     "compressed" size is after they have been compressed.
     297             : //     For case B the inflight size is for a key-value pair in the index for
     298             : //     which the value size (the encoded size of the BlockHandleWithProperties)
     299             : //     is not accurately known, while the compressed size is the size of that
     300             : //     entry when it has been added to the (in-progress) index ssblock.
     301             : //
     302             : // Usage: To update state, one can optionally provide an inflight write value
     303             : // using addInflight (used for case B). When something is "written" the state
     304             : // can be updated using either writtenWithDelta or writtenWithTotal, which
     305             : // provide the actual delta size or the total size (latter must be
     306             : // monotonically non-decreasing). If there were no calls to addInflight, there
     307             : // isn't any real estimation happening here. So case A does not do any real
     308             : // estimation. However, when we introduce parallel compression, there will be
     309             : // estimation in that the client goroutine will call addInFlight and the
     310             : // compression goroutines will call writtenWithDelta.
     311             : type sizeEstimate struct {
     312             :         // emptySize is the size when there is no inflight data, and numEntries is 0.
     313             :         // emptySize is constant once set.
     314             :         emptySize uint64
     315             : 
     316             :         // inflightSize is the estimated size of some inflight data which hasn't
     317             :         // been written yet.
     318             :         inflightSize uint64
     319             : 
     320             :         // totalSize is the total size of the data which has already been written.
     321             :         totalSize uint64
     322             : 
     323             :         // numWrittenEntries is the total number of entries which have already been
     324             :         // written.
     325             :         numWrittenEntries uint64
     326             :         // numInflightEntries is the total number of entries which are inflight, and
     327             :         // haven't been written.
     328             :         numInflightEntries uint64
     329             : 
     330             :         // maxEstimatedSize stores the maximum result returned from sizeEstimate.size.
     331             :         // It ensures that values returned from subsequent calls to Writer.EstimatedSize
     332             :         // never decrease.
     333             :         maxEstimatedSize uint64
     334             : 
     335             :         // We assume that the entries added to the sizeEstimate can be compressed.
     336             :         // For this reason, we keep track of a compressedSize and an uncompressedSize
     337             :         // to compute a compression ratio for the inflight entries. If the entries
     338             :         // aren't being compressed, then compressedSize and uncompressedSize must be
     339             :         // equal.
     340             :         compressedSize   uint64
     341             :         uncompressedSize uint64
     342             : }
     343             : 
     344           1 : func (s *sizeEstimate) init(emptySize uint64) {
     345           1 :         s.emptySize = emptySize
     346           1 : }
     347             : 
     348           1 : func (s *sizeEstimate) size() uint64 {
     349           1 :         ratio := float64(1)
     350           1 :         if s.uncompressedSize > 0 {
     351           1 :                 ratio = float64(s.compressedSize) / float64(s.uncompressedSize)
     352           1 :         }
     353           1 :         estimatedInflightSize := uint64(float64(s.inflightSize) * ratio)
     354           1 :         total := s.totalSize + estimatedInflightSize
     355           1 :         if total > s.maxEstimatedSize {
     356           1 :                 s.maxEstimatedSize = total
     357           1 :         } else {
     358           1 :                 total = s.maxEstimatedSize
     359           1 :         }
     360             : 
     361           1 :         if total == 0 {
     362           1 :                 return s.emptySize
     363           1 :         }
     364             : 
     365           1 :         return total
     366             : }
     367             : 
     368           1 : func (s *sizeEstimate) numTotalEntries() uint64 {
     369           1 :         return s.numWrittenEntries + s.numInflightEntries
     370           1 : }
     371             : 
     372           1 : func (s *sizeEstimate) addInflight(size int) {
     373           1 :         s.numInflightEntries++
     374           1 :         s.inflightSize += uint64(size)
     375           1 : }
     376             : 
     377           1 : func (s *sizeEstimate) writtenWithTotal(newTotalSize uint64, inflightSize int) {
     378           1 :         finalEntrySize := int(newTotalSize - s.totalSize)
     379           1 :         s.writtenWithDelta(finalEntrySize, inflightSize)
     380           1 : }
     381             : 
     382           1 : func (s *sizeEstimate) writtenWithDelta(finalEntrySize int, inflightSize int) {
     383           1 :         if inflightSize > 0 {
     384           1 :                 // This entry was previously inflight, so we should decrement inflight
     385           1 :                 // entries and update the "compression" stats for future estimation.
     386           1 :                 s.numInflightEntries--
     387           1 :                 s.inflightSize -= uint64(inflightSize)
     388           1 :                 s.uncompressedSize += uint64(inflightSize)
     389           1 :                 s.compressedSize += uint64(finalEntrySize)
     390           1 :         }
     391           1 :         s.numWrittenEntries++
     392           1 :         s.totalSize += uint64(finalEntrySize)
     393             : }
     394             : 
     395           1 : func (s *sizeEstimate) clear() {
     396           1 :         *s = sizeEstimate{emptySize: s.emptySize}
     397           1 : }
     398             : 
     399             : type indexBlockBuf struct {
     400             :         // block will only be accessed from the writeQueue.
     401             :         block blockWriter
     402             : 
     403             :         size struct {
     404             :                 useMutex bool
     405             :                 mu       sync.Mutex
     406             :                 estimate sizeEstimate
     407             :         }
     408             : 
     409             :         // restartInterval matches indexBlockBuf.block.restartInterval. We store it twice, because the `block`
     410             :         // must only be accessed from the writeQueue goroutine.
     411             :         restartInterval int
     412             : }
     413             : 
     414           1 : func (i *indexBlockBuf) clear() {
     415           1 :         i.block.clear()
     416           1 :         if i.size.useMutex {
     417           1 :                 i.size.mu.Lock()
     418           1 :                 defer i.size.mu.Unlock()
     419           1 :         }
     420           1 :         i.size.estimate.clear()
     421           1 :         i.restartInterval = 0
     422             : }
     423             : 
     424             : var indexBlockBufPool = sync.Pool{
     425           1 :         New: func() interface{} {
     426           1 :                 return &indexBlockBuf{}
     427           1 :         },
     428             : }
     429             : 
     430             : const indexBlockRestartInterval = 1
     431             : 
     432           1 : func newIndexBlockBuf(useMutex bool) *indexBlockBuf {
     433           1 :         i := indexBlockBufPool.Get().(*indexBlockBuf)
     434           1 :         i.size.useMutex = useMutex
     435           1 :         i.restartInterval = indexBlockRestartInterval
     436           1 :         i.block.restartInterval = indexBlockRestartInterval
     437           1 :         i.size.estimate.init(emptyBlockSize)
     438           1 :         return i
     439           1 : }
     440             : 
     441             : func (i *indexBlockBuf) shouldFlush(
     442             :         sep InternalKey, valueLen int, flushOptions flushDecisionOptions, sizeClassHints []int,
     443           1 : ) bool {
     444           1 :         if i.size.useMutex {
     445           1 :                 i.size.mu.Lock()
     446           1 :                 defer i.size.mu.Unlock()
     447           1 :         }
     448             : 
     449           1 :         nEntries := i.size.estimate.numTotalEntries()
     450           1 :         return shouldFlushWithHints(
     451           1 :                 sep.Size(), valueLen, i.restartInterval, int(i.size.estimate.size()),
     452           1 :                 int(nEntries), flushOptions, sizeClassHints)
     453             : }
     454             : 
     455           1 : func (i *indexBlockBuf) add(key InternalKey, value []byte, inflightSize int) {
     456           1 :         i.block.add(key, value)
     457           1 :         size := i.block.estimatedSize()
     458           1 :         if i.size.useMutex {
     459           1 :                 i.size.mu.Lock()
     460           1 :                 defer i.size.mu.Unlock()
     461           1 :         }
     462           1 :         i.size.estimate.writtenWithTotal(uint64(size), inflightSize)
     463             : }
     464             : 
     465           1 : func (i *indexBlockBuf) finish() []byte {
     466           1 :         b := i.block.finish()
     467           1 :         return b
     468           1 : }
     469             : 
     470           1 : func (i *indexBlockBuf) addInflight(inflightSize int) {
     471           1 :         if i.size.useMutex {
     472           1 :                 i.size.mu.Lock()
     473           1 :                 defer i.size.mu.Unlock()
     474           1 :         }
     475           1 :         i.size.estimate.addInflight(inflightSize)
     476             : }
     477             : 
     478           1 : func (i *indexBlockBuf) estimatedSize() uint64 {
     479           1 :         if i.size.useMutex {
     480           1 :                 i.size.mu.Lock()
     481           1 :                 defer i.size.mu.Unlock()
     482           1 :         }
     483             : 
     484             :         // Make sure that the size estimation works as expected when parallelism
     485             :         // is disabled.
     486           1 :         if invariants.Enabled && !i.size.useMutex {
     487           1 :                 if i.size.estimate.inflightSize != 0 {
     488           0 :                         panic("unexpected inflight entry in index block size estimation")
     489             :                 }
     490             : 
     491             :                 // NB: The i.block should only be accessed from the writeQueue goroutine,
     492             :                 // when parallelism is enabled. We break that invariant here, but that's
     493             :                 // okay since parallelism is disabled.
     494           1 :                 if i.size.estimate.size() != uint64(i.block.estimatedSize()) {
     495           0 :                         panic("index block size estimation sans parallelism is incorrect")
     496             :                 }
     497             :         }
     498           1 :         return i.size.estimate.size()
     499             : }
     500             : 
     501             : // sizeEstimate is used for sstable size estimation. sizeEstimate can be
     502             : // accessed by the Writer client and compressionQueue goroutines. Fields
     503             : // should only be read/updated through the functions defined on the
     504             : // *sizeEstimate type.
     505             : type dataBlockEstimates struct {
     506             :         // If we don't do block compression in parallel, then we don't need to take
     507             :         // the performance hit of synchronizing using this mutex.
     508             :         useMutex bool
     509             :         mu       sync.Mutex
     510             : 
     511             :         estimate sizeEstimate
     512             : }
     513             : 
     514             : // inflightSize is the uncompressed block size estimate which has been
     515             : // previously provided to addInflightDataBlock(). If addInflightDataBlock()
     516             : // has not been called, this must be set to 0. compressedSize is the
     517             : // compressed size of the block.
     518           1 : func (d *dataBlockEstimates) dataBlockCompressed(compressedSize int, inflightSize int) {
     519           1 :         if d.useMutex {
     520           0 :                 d.mu.Lock()
     521           0 :                 defer d.mu.Unlock()
     522           0 :         }
     523           1 :         d.estimate.writtenWithDelta(compressedSize+blockTrailerLen, inflightSize)
     524             : }
     525             : 
     526             : // size is an estimated size of datablock data which has been written to disk.
     527           1 : func (d *dataBlockEstimates) size() uint64 {
     528           1 :         if d.useMutex {
     529           0 :                 d.mu.Lock()
     530           0 :                 defer d.mu.Unlock()
     531           0 :         }
     532             :         // If there is no parallel compression, there should not be any inflight bytes.
     533           1 :         if invariants.Enabled && !d.useMutex {
     534           1 :                 if d.estimate.inflightSize != 0 {
     535           0 :                         panic("unexpected inflight entry in data block size estimation")
     536             :                 }
     537             :         }
     538           1 :         return d.estimate.size()
     539             : }
     540             : 
     541             : // Avoid linter unused error.
     542             : var _ = (&dataBlockEstimates{}).addInflightDataBlock
     543             : 
     544             : // NB: unused since no parallel compression.
     545           0 : func (d *dataBlockEstimates) addInflightDataBlock(size int) {
     546           0 :         if d.useMutex {
     547           0 :                 d.mu.Lock()
     548           0 :                 defer d.mu.Unlock()
     549           0 :         }
     550             : 
     551           0 :         d.estimate.addInflight(size)
     552             : }
     553             : 
     554             : var writeTaskPool = sync.Pool{
     555           1 :         New: func() interface{} {
     556           1 :                 t := &writeTask{}
     557           1 :                 t.compressionDone = make(chan bool, 1)
     558           1 :                 return t
     559           1 :         },
     560             : }
     561             : 
     562             : type checksummer struct {
     563             :         checksumType ChecksumType
     564             :         xxHasher     *xxhash.Digest
     565             : }
     566             : 
     567           1 : func (c *checksummer) checksum(block []byte, blockType []byte) (checksum uint32) {
     568           1 :         // Calculate the checksum.
     569           1 :         switch c.checksumType {
     570           1 :         case ChecksumTypeCRC32c:
     571           1 :                 checksum = crc.New(block).Update(blockType).Value()
     572           0 :         case ChecksumTypeXXHash64:
     573           0 :                 if c.xxHasher == nil {
     574           0 :                         c.xxHasher = xxhash.New()
     575           0 :                 } else {
     576           0 :                         c.xxHasher.Reset()
     577           0 :                 }
     578           0 :                 c.xxHasher.Write(block)
     579           0 :                 c.xxHasher.Write(blockType)
     580           0 :                 checksum = uint32(c.xxHasher.Sum64())
     581           0 :         default:
     582           0 :                 panic(errors.Newf("unsupported checksum type: %d", c.checksumType))
     583             :         }
     584           1 :         return checksum
     585             : }
     586             : 
     587             : type blockBuf struct {
     588             :         // tmp is a scratch buffer, large enough to hold either footerLen bytes,
     589             :         // blockTrailerLen bytes, (5 * binary.MaxVarintLen64) bytes, and most
     590             :         // likely large enough for a block handle with properties.
     591             :         tmp [blockHandleLikelyMaxLen]byte
     592             :         // compressedBuf is the destination buffer for compression. It is re-used over the
     593             :         // lifetime of the blockBuf, avoiding the allocation of a temporary buffer for each block.
     594             :         compressedBuf []byte
     595             :         checksummer   checksummer
     596             : }
     597             : 
     598           1 : func (b *blockBuf) clear() {
     599           1 :         // We can't assign b.compressedBuf[:0] to compressedBuf because snappy relies
     600           1 :         // on the length of the buffer, and not the capacity to determine if it needs
     601           1 :         // to make an allocation.
     602           1 :         *b = blockBuf{
     603           1 :                 compressedBuf: b.compressedBuf, checksummer: b.checksummer,
     604           1 :         }
     605           1 : }
     606             : 
     607             : // A dataBlockBuf holds all the state required to compress and write a data block to disk.
     608             : // A dataBlockBuf begins its lifecycle owned by the Writer client goroutine. The Writer
     609             : // client goroutine adds keys to the sstable, writing directly into a dataBlockBuf's blockWriter
     610             : // until the block is full. Once a dataBlockBuf's block is full, the dataBlockBuf may be passed
     611             : // to other goroutines for compression and file I/O.
     612             : type dataBlockBuf struct {
     613             :         blockBuf
     614             :         dataBlock blockWriter
     615             : 
     616             :         // uncompressed is a reference to a byte slice which is owned by the dataBlockBuf. It is the
     617             :         // next byte slice to be compressed. The uncompressed byte slice will be backed by the
     618             :         // dataBlock.buf.
     619             :         uncompressed []byte
     620             :         // compressed is a reference to a byte slice which is owned by the dataBlockBuf. It is the
     621             :         // compressed byte slice which must be written to disk. The compressed byte slice may be
     622             :         // backed by the dataBlock.buf, or the dataBlockBuf.compressedBuf, depending on whether
     623             :         // we use the result of the compression.
     624             :         compressed []byte
     625             : 
     626             :         // We're making calls to BlockPropertyCollectors from the Writer client goroutine. We need to
     627             :         // pass the encoded block properties over to the write queue. To prevent copies, and allocations,
     628             :         // we give each dataBlockBuf, a blockPropertiesEncoder.
     629             :         blockPropsEncoder blockPropertiesEncoder
     630             :         // dataBlockProps is set when Writer.finishDataBlockProps is called. The dataBlockProps slice is
     631             :         // a shallow copy of the internal buffer of the dataBlockBuf.blockPropsEncoder.
     632             :         dataBlockProps []byte
     633             : 
     634             :         // sepScratch is reusable scratch space for computing separator keys.
     635             :         sepScratch []byte
     636             : }
     637             : 
     638           1 : func (d *dataBlockBuf) clear() {
     639           1 :         d.blockBuf.clear()
     640           1 :         d.dataBlock.clear()
     641           1 : 
     642           1 :         d.uncompressed = nil
     643           1 :         d.compressed = nil
     644           1 :         d.dataBlockProps = nil
     645           1 :         d.sepScratch = d.sepScratch[:0]
     646           1 : }
     647             : 
     648             : var dataBlockBufPool = sync.Pool{
     649           1 :         New: func() interface{} {
     650           1 :                 return &dataBlockBuf{}
     651           1 :         },
     652             : }
     653             : 
     654           1 : func newDataBlockBuf(restartInterval int, checksumType ChecksumType) *dataBlockBuf {
     655           1 :         d := dataBlockBufPool.Get().(*dataBlockBuf)
     656           1 :         d.dataBlock.restartInterval = restartInterval
     657           1 :         d.checksummer.checksumType = checksumType
     658           1 :         return d
     659           1 : }
     660             : 
     661           1 : func (d *dataBlockBuf) finish() {
     662           1 :         d.uncompressed = d.dataBlock.finish()
     663           1 : }
     664             : 
     665           1 : func (d *dataBlockBuf) compressAndChecksum(c Compression) {
     666           1 :         d.compressed = compressAndChecksum(d.uncompressed, c, &d.blockBuf)
     667           1 : }
     668             : 
     669             : func (d *dataBlockBuf) shouldFlush(
     670             :         key InternalKey, valueLen int, flushOptions flushDecisionOptions, sizeClassHints []int,
     671           1 : ) bool {
     672           1 :         return shouldFlushWithHints(
     673           1 :                 key.Size(), valueLen, d.dataBlock.restartInterval, d.dataBlock.estimatedSize(),
     674           1 :                 d.dataBlock.nEntries, flushOptions, sizeClassHints)
     675           1 : }
     676             : 
     677             : type indexBlockAndBlockProperties struct {
     678             :         nEntries int
     679             :         // sep is the last key added to this block, for computing a separator later.
     680             :         sep        InternalKey
     681             :         properties []byte
     682             :         // block is the encoded block produced by blockWriter.finish.
     683             :         block []byte
     684             : }
     685             : 
     686             : // Set sets the value for the given key. The sequence number is set to 0.
     687             : // Intended for use to externally construct an sstable before ingestion into a
     688             : // DB. For a given Writer, the keys passed to Set must be in strictly increasing
     689             : // order.
     690             : //
     691             : // TODO(peter): untested
     692           1 : func (w *Writer) Set(key, value []byte) error {
     693           1 :         if w.err != nil {
     694           0 :                 return w.err
     695           0 :         }
     696           1 :         if w.isStrictObsolete {
     697           0 :                 return errors.Errorf("use AddWithForceObsolete")
     698           0 :         }
     699             :         // forceObsolete is false based on the assumption that no RANGEDELs in the
     700             :         // sstable delete the added points.
     701           1 :         return w.addPoint(base.MakeInternalKey(key, 0, InternalKeyKindSet), value, false)
     702             : }
     703             : 
     704             : // Delete deletes the value for the given key. The sequence number is set to
     705             : // 0. Intended for use to externally construct an sstable before ingestion into
     706             : // a DB.
     707             : //
     708             : // TODO(peter): untested
     709           0 : func (w *Writer) Delete(key []byte) error {
     710           0 :         if w.err != nil {
     711           0 :                 return w.err
     712           0 :         }
     713           0 :         if w.isStrictObsolete {
     714           0 :                 return errors.Errorf("use AddWithForceObsolete")
     715           0 :         }
     716             :         // forceObsolete is false based on the assumption that no RANGEDELs in the
     717             :         // sstable delete the added points.
     718           0 :         return w.addPoint(base.MakeInternalKey(key, 0, InternalKeyKindDelete), nil, false)
     719             : }
     720             : 
     721             : // DeleteRange deletes all of the keys (and values) in the range [start,end)
     722             : // (inclusive on start, exclusive on end). The sequence number is set to
     723             : // 0. Intended for use to externally construct an sstable before ingestion into
     724             : // a DB.
     725             : //
     726             : // TODO(peter): untested
     727           1 : func (w *Writer) DeleteRange(start, end []byte) error {
     728           1 :         if w.err != nil {
     729           0 :                 return w.err
     730           0 :         }
     731           1 :         return w.addTombstone(base.MakeInternalKey(start, 0, InternalKeyKindRangeDelete), end)
     732             : }
     733             : 
     734             : // Merge adds an action to the DB that merges the value at key with the new
     735             : // value. The details of the merge are dependent upon the configured merge
     736             : // operator. The sequence number is set to 0. Intended for use to externally
     737             : // construct an sstable before ingestion into a DB.
     738             : //
     739             : // TODO(peter): untested
     740           0 : func (w *Writer) Merge(key, value []byte) error {
     741           0 :         if w.err != nil {
     742           0 :                 return w.err
     743           0 :         }
     744           0 :         if w.isStrictObsolete {
     745           0 :                 return errors.Errorf("use AddWithForceObsolete")
     746           0 :         }
     747             :         // forceObsolete is false based on the assumption that no RANGEDELs in the
     748             :         // sstable that delete the added points. If the user configured this writer
     749             :         // to be strict-obsolete, addPoint will reject the addition of this MERGE.
     750           0 :         return w.addPoint(base.MakeInternalKey(key, 0, InternalKeyKindMerge), value, false)
     751             : }
     752             : 
     753             : // Add adds a key/value pair to the table being written. For a given Writer,
     754             : // the keys passed to Add must be in increasing order. The exception to this
     755             : // rule is range deletion tombstones. Range deletion tombstones need to be
     756             : // added ordered by their start key, but they can be added out of order from
     757             : // point entries. Additionally, range deletion tombstones must be fragmented
     758             : // (i.e. by keyspan.Fragmenter).
     759           1 : func (w *Writer) Add(key InternalKey, value []byte) error {
     760           1 :         if w.isStrictObsolete {
     761           0 :                 return errors.Errorf("use AddWithForceObsolete")
     762           0 :         }
     763           1 :         return w.AddWithForceObsolete(key, value, false)
     764             : }
     765             : 
     766             : // AddWithForceObsolete must be used when writing a strict-obsolete sstable.
     767             : //
     768             : // forceObsolete indicates whether the caller has determined that this key is
     769             : // obsolete even though it may be the latest point key for this userkey. This
     770             : // should be set to true for keys obsoleted by RANGEDELs, and is required for
     771             : // strict-obsolete sstables.
     772             : //
     773             : // Note that there are two properties, S1 and S2 (see comment in format.go)
     774             : // that strict-obsolete ssts must satisfy. S2, due to RANGEDELs, is solely the
     775             : // responsibility of the caller. S1 is solely the responsibility of the
     776             : // callee.
     777           1 : func (w *Writer) AddWithForceObsolete(key InternalKey, value []byte, forceObsolete bool) error {
     778           1 :         if w.err != nil {
     779           0 :                 return w.err
     780           0 :         }
     781             : 
     782           1 :         switch key.Kind() {
     783           1 :         case InternalKeyKindRangeDelete:
     784           1 :                 return w.addTombstone(key, value)
     785             :         case base.InternalKeyKindRangeKeyDelete,
     786             :                 base.InternalKeyKindRangeKeySet,
     787           0 :                 base.InternalKeyKindRangeKeyUnset:
     788           0 :                 w.err = errors.Errorf(
     789           0 :                         "pebble: range keys must be added via one of the RangeKey* functions")
     790           0 :                 return w.err
     791             :         }
     792           1 :         return w.addPoint(key, value, forceObsolete)
     793             : }
     794             : 
     795           1 : func (w *Writer) makeAddPointDecisionV2(key InternalKey) error {
     796           1 :         prevTrailer := w.lastPointKeyInfo.trailer
     797           1 :         w.lastPointKeyInfo.trailer = key.Trailer
     798           1 :         if w.dataBlockBuf.dataBlock.nEntries == 0 {
     799           1 :                 return nil
     800           1 :         }
     801           1 :         if !w.disableKeyOrderChecks {
     802           1 :                 prevPointUserKey := w.dataBlockBuf.dataBlock.getCurUserKey()
     803           1 :                 cmpUser := w.compare(prevPointUserKey, key.UserKey)
     804           1 :                 if cmpUser > 0 || (cmpUser == 0 && prevTrailer <= key.Trailer) {
     805           0 :                         return errors.Errorf(
     806           0 :                                 "pebble: keys must be added in strictly increasing order: %s, %s",
     807           0 :                                 InternalKey{UserKey: prevPointUserKey, Trailer: prevTrailer}.Pretty(w.formatKey),
     808           0 :                                 key.Pretty(w.formatKey))
     809           0 :                 }
     810             :         }
     811           1 :         return nil
     812             : }
     813             : 
     814             : // REQUIRES: at least one point has been written to the Writer.
     815           1 : func (w *Writer) getLastPointUserKey() []byte {
     816           1 :         if w.dataBlockBuf.dataBlock.nEntries == 0 {
     817           0 :                 panic(errors.AssertionFailedf("no point keys added to writer"))
     818             :         }
     819           1 :         return w.dataBlockBuf.dataBlock.getCurUserKey()
     820             : }
     821             : 
     822             : // REQUIRES: w.tableFormat >= TableFormatPebblev3
     823             : func (w *Writer) makeAddPointDecisionV3(
     824             :         key InternalKey, valueLen int,
     825           1 : ) (setHasSamePrefix bool, writeToValueBlock bool, isObsolete bool, err error) {
     826           1 :         prevPointKeyInfo := w.lastPointKeyInfo
     827           1 :         w.lastPointKeyInfo.userKeyLen = len(key.UserKey)
     828           1 :         w.lastPointKeyInfo.prefixLen = w.split(key.UserKey)
     829           1 :         w.lastPointKeyInfo.trailer = key.Trailer
     830           1 :         w.lastPointKeyInfo.isObsolete = false
     831           1 :         if !w.meta.HasPointKeys {
     832           1 :                 return false, false, false, nil
     833           1 :         }
     834           1 :         keyKind := base.TrailerKind(key.Trailer)
     835           1 :         prevPointUserKey := w.getLastPointUserKey()
     836           1 :         prevPointKey := InternalKey{UserKey: prevPointUserKey, Trailer: prevPointKeyInfo.trailer}
     837           1 :         prevKeyKind := base.TrailerKind(prevPointKeyInfo.trailer)
     838           1 :         considerWriteToValueBlock := prevKeyKind == InternalKeyKindSet &&
     839           1 :                 keyKind == InternalKeyKindSet
     840           1 :         if considerWriteToValueBlock && !w.requiredInPlaceValueBound.IsEmpty() {
     841           0 :                 keyPrefix := key.UserKey[:w.lastPointKeyInfo.prefixLen]
     842           0 :                 cmpUpper := w.compare(
     843           0 :                         w.requiredInPlaceValueBound.Upper, keyPrefix)
     844           0 :                 if cmpUpper <= 0 {
     845           0 :                         // Common case for CockroachDB. Make it empty since all future keys in
     846           0 :                         // this sstable will also have cmpUpper <= 0.
     847           0 :                         w.requiredInPlaceValueBound = UserKeyPrefixBound{}
     848           0 :                 } else if w.compare(keyPrefix, w.requiredInPlaceValueBound.Lower) >= 0 {
     849           0 :                         considerWriteToValueBlock = false
     850           0 :                 }
     851             :         }
     852             :         // cmpPrefix is initialized iff considerWriteToValueBlock.
     853           1 :         var cmpPrefix int
     854           1 :         var cmpUser int
     855           1 :         if considerWriteToValueBlock {
     856           1 :                 // Compare the prefixes.
     857           1 :                 cmpPrefix = w.compare(prevPointUserKey[:prevPointKeyInfo.prefixLen],
     858           1 :                         key.UserKey[:w.lastPointKeyInfo.prefixLen])
     859           1 :                 cmpUser = cmpPrefix
     860           1 :                 if cmpPrefix == 0 {
     861           1 :                         // Need to compare suffixes to compute cmpUser.
     862           1 :                         cmpUser = w.compare(prevPointUserKey[prevPointKeyInfo.prefixLen:],
     863           1 :                                 key.UserKey[w.lastPointKeyInfo.prefixLen:])
     864           1 :                 }
     865           1 :         } else {
     866           1 :                 cmpUser = w.compare(prevPointUserKey, key.UserKey)
     867           1 :         }
     868             :         // Ensure that no one adds a point key kind without considering the obsolete
     869             :         // handling for that kind.
     870           1 :         switch keyKind {
     871             :         case InternalKeyKindSet, InternalKeyKindSetWithDelete, InternalKeyKindMerge,
     872           1 :                 InternalKeyKindDelete, InternalKeyKindSingleDelete, InternalKeyKindDeleteSized:
     873           0 :         default:
     874           0 :                 panic(errors.AssertionFailedf("unexpected key kind %s", keyKind.String()))
     875             :         }
     876             :         // If same user key, then the current key is obsolete if any of the
     877             :         // following is true:
     878             :         // C1 The prev key was obsolete.
     879             :         // C2 The prev key was not a MERGE. When the previous key is a MERGE we must
     880             :         //    preserve SET* and MERGE since their values will be merged into the
     881             :         //    previous key. We also must preserve DEL* since there may be an older
     882             :         //    SET*/MERGE in a lower level that must not be merged with the MERGE --
     883             :         //    if we omit the DEL* that lower SET*/MERGE will become visible.
     884             :         //
     885             :         // Regardless of whether it is the same user key or not
     886             :         // C3 The current key is some kind of point delete, and we are writing to
     887             :         //    the lowest level, then it is also obsolete. The correctness of this
     888             :         //    relies on the same user key not spanning multiple sstables in a level.
     889             :         //
     890             :         // C1 ensures that for a user key there is at most one transition from
     891             :         // !obsolete to obsolete. Consider a user key k, for which the first n keys
     892             :         // are not obsolete. We consider the various value of n:
     893             :         //
     894             :         // n = 0: This happens due to forceObsolete being set by the caller, or due
     895             :         // to C3. forceObsolete must only be set due a RANGEDEL, and that RANGEDEL
     896             :         // must also delete all the lower seqnums for the same user key. C3 triggers
     897             :         // due to a point delete and that deletes all the lower seqnums for the same
     898             :         // user key.
     899             :         //
     900             :         // n = 1: This is the common case. It happens when the first key is not a
     901             :         // MERGE, or the current key is some kind of point delete.
     902             :         //
     903             :         // n > 1: This is due to a sequence of MERGE keys, potentially followed by a
     904             :         // single non-MERGE key.
     905           1 :         isObsoleteC1AndC2 := cmpUser == 0 &&
     906           1 :                 (prevPointKeyInfo.isObsolete || prevKeyKind != InternalKeyKindMerge)
     907           1 :         isObsoleteC3 := w.writingToLowestLevel &&
     908           1 :                 (keyKind == InternalKeyKindDelete || keyKind == InternalKeyKindSingleDelete ||
     909           1 :                         keyKind == InternalKeyKindDeleteSized)
     910           1 :         isObsolete = isObsoleteC1AndC2 || isObsoleteC3
     911           1 :         // TODO(sumeer): storing isObsolete SET and SETWITHDEL in value blocks is
     912           1 :         // possible, but requires some care in documenting and checking invariants.
     913           1 :         // There is code that assumes nothing in value blocks because of single MVCC
     914           1 :         // version (those should be ok). We have to ensure setHasSamePrefix is
     915           1 :         // correctly initialized here etc.
     916           1 : 
     917           1 :         if !w.disableKeyOrderChecks &&
     918           1 :                 (cmpUser > 0 || (cmpUser == 0 && prevPointKeyInfo.trailer <= key.Trailer)) {
     919           0 :                 return false, false, false, errors.Errorf(
     920           0 :                         "pebble: keys must be added in strictly increasing order: %s, %s",
     921           0 :                         prevPointKey.Pretty(w.formatKey), key.Pretty(w.formatKey))
     922           0 :         }
     923           1 :         if !considerWriteToValueBlock {
     924           1 :                 return false, false, isObsolete, nil
     925           1 :         }
     926             :         // NB: it is possible that cmpUser == 0, i.e., these two SETs have identical
     927             :         // user keys (because of an open snapshot). This should be the rare case.
     928           1 :         setHasSamePrefix = cmpPrefix == 0
     929           1 :         // Use of 0 here is somewhat arbitrary. Given the minimum 3 byte encoding of
     930           1 :         // valueHandle, this should be > 3. But tiny values are common in test and
     931           1 :         // unlikely in production, so we use 0 here for better test coverage.
     932           1 :         const tinyValueThreshold = 0
     933           1 :         // NB: setting WriterOptions.DisableValueBlocks does not disable the
     934           1 :         // setHasSamePrefix optimization.
     935           1 :         considerWriteToValueBlock = setHasSamePrefix && valueLen > tinyValueThreshold && w.valueBlockWriter != nil
     936           1 :         return setHasSamePrefix, considerWriteToValueBlock, isObsolete, nil
     937             : }
     938             : 
     939           1 : func (w *Writer) addPoint(key InternalKey, value []byte, forceObsolete bool) error {
     940           1 :         if w.isStrictObsolete && key.Kind() == InternalKeyKindMerge {
     941           0 :                 return errors.Errorf("MERGE not supported in a strict-obsolete sstable")
     942           0 :         }
     943           1 :         var err error
     944           1 :         var setHasSameKeyPrefix, writeToValueBlock, addPrefixToValueStoredWithKey bool
     945           1 :         var isObsolete bool
     946           1 :         maxSharedKeyLen := len(key.UserKey)
     947           1 :         if w.tableFormat >= TableFormatPebblev3 {
     948           1 :                 // maxSharedKeyLen is limited to the prefix of the preceding key. If the
     949           1 :                 // preceding key was in a different block, then the blockWriter will
     950           1 :                 // ignore this maxSharedKeyLen.
     951           1 :                 maxSharedKeyLen = w.lastPointKeyInfo.prefixLen
     952           1 :                 setHasSameKeyPrefix, writeToValueBlock, isObsolete, err =
     953           1 :                         w.makeAddPointDecisionV3(key, len(value))
     954           1 :                 addPrefixToValueStoredWithKey = base.TrailerKind(key.Trailer) == InternalKeyKindSet
     955           1 :         } else {
     956           1 :                 err = w.makeAddPointDecisionV2(key)
     957           1 :         }
     958           1 :         if err != nil {
     959           0 :                 return err
     960           0 :         }
     961           1 :         isObsolete = w.tableFormat >= TableFormatPebblev4 && (isObsolete || forceObsolete)
     962           1 :         w.lastPointKeyInfo.isObsolete = isObsolete
     963           1 :         var valueStoredWithKey []byte
     964           1 :         var prefix valuePrefix
     965           1 :         var valueStoredWithKeyLen int
     966           1 :         if writeToValueBlock {
     967           1 :                 vh, err := w.valueBlockWriter.addValue(value)
     968           1 :                 if err != nil {
     969           0 :                         return err
     970           0 :                 }
     971           1 :                 n := encodeValueHandle(w.blockBuf.tmp[:], vh)
     972           1 :                 valueStoredWithKey = w.blockBuf.tmp[:n]
     973           1 :                 valueStoredWithKeyLen = len(valueStoredWithKey) + 1
     974           1 :                 var attribute base.ShortAttribute
     975           1 :                 if w.shortAttributeExtractor != nil {
     976           0 :                         // TODO(sumeer): for compactions, it is possible that the input sstable
     977           0 :                         // already has this value in the value section and so we have already
     978           0 :                         // extracted the ShortAttribute. Avoid extracting it again. This will
     979           0 :                         // require changing the Writer.Add interface.
     980           0 :                         if attribute, err = w.shortAttributeExtractor(
     981           0 :                                 key.UserKey, w.lastPointKeyInfo.prefixLen, value); err != nil {
     982           0 :                                 return err
     983           0 :                         }
     984             :                 }
     985           1 :                 prefix = makePrefixForValueHandle(setHasSameKeyPrefix, attribute)
     986           1 :         } else {
     987           1 :                 valueStoredWithKey = value
     988           1 :                 valueStoredWithKeyLen = len(value)
     989           1 :                 if addPrefixToValueStoredWithKey {
     990           1 :                         valueStoredWithKeyLen++
     991           1 :                 }
     992           1 :                 prefix = makePrefixForInPlaceValue(setHasSameKeyPrefix)
     993             :         }
     994             : 
     995           1 :         if err := w.maybeFlush(key, valueStoredWithKeyLen); err != nil {
     996           0 :                 return err
     997           0 :         }
     998             : 
     999           1 :         for i := range w.blockPropCollectors {
    1000           1 :                 v := value
    1001           1 :                 if addPrefixToValueStoredWithKey {
    1002           1 :                         // Values for SET are not required to be in-place, and in the future may
    1003           1 :                         // not even be read by the compaction, so pass nil values. Block
    1004           1 :                         // property collectors in such Pebble DB's must not look at the value.
    1005           1 :                         v = nil
    1006           1 :                 }
    1007           1 :                 if err := w.blockPropCollectors[i].Add(key, v); err != nil {
    1008           0 :                         w.err = err
    1009           0 :                         return err
    1010           0 :                 }
    1011             :         }
    1012           1 :         if w.tableFormat >= TableFormatPebblev4 {
    1013           1 :                 w.obsoleteCollector.AddPoint(isObsolete)
    1014           1 :         }
    1015             : 
    1016           1 :         w.maybeAddToFilter(key.UserKey)
    1017           1 :         w.dataBlockBuf.dataBlock.addWithOptionalValuePrefix(
    1018           1 :                 key, isObsolete, valueStoredWithKey, maxSharedKeyLen, addPrefixToValueStoredWithKey, prefix,
    1019           1 :                 setHasSameKeyPrefix)
    1020           1 : 
    1021           1 :         w.meta.updateSeqNum(key.SeqNum())
    1022           1 : 
    1023           1 :         if !w.meta.HasPointKeys {
    1024           1 :                 k := w.dataBlockBuf.dataBlock.getCurKey()
    1025           1 :                 // NB: We need to ensure that SmallestPoint.UserKey is set, so we create
    1026           1 :                 // an InternalKey which is semantically identical to the key, but won't
    1027           1 :                 // have a nil UserKey. We do this, because key.UserKey could be nil, and
    1028           1 :                 // we don't want SmallestPoint.UserKey to be nil.
    1029           1 :                 //
    1030           1 :                 // todo(bananabrick): Determine if it's okay to have a nil SmallestPoint
    1031           1 :                 // .UserKey now that we don't rely on a nil UserKey to determine if the
    1032           1 :                 // key has been set or not.
    1033           1 :                 w.meta.SetSmallestPointKey(k.Clone())
    1034           1 :         }
    1035             : 
    1036           1 :         w.props.NumEntries++
    1037           1 :         switch key.Kind() {
    1038           1 :         case InternalKeyKindDelete, InternalKeyKindSingleDelete:
    1039           1 :                 w.props.NumDeletions++
    1040           1 :                 w.props.RawPointTombstoneKeySize += uint64(len(key.UserKey))
    1041           1 :         case InternalKeyKindDeleteSized:
    1042           1 :                 var size uint64
    1043           1 :                 if len(value) > 0 {
    1044           1 :                         var n int
    1045           1 :                         size, n = binary.Uvarint(value)
    1046           1 :                         if n <= 0 {
    1047           0 :                                 w.err = errors.Newf("%s key's value (%x) does not parse as uvarint",
    1048           0 :                                         errors.Safe(key.Kind().String()), value)
    1049           0 :                                 return w.err
    1050           0 :                         }
    1051             :                 }
    1052           1 :                 w.props.NumDeletions++
    1053           1 :                 w.props.NumSizedDeletions++
    1054           1 :                 w.props.RawPointTombstoneKeySize += uint64(len(key.UserKey))
    1055           1 :                 w.props.RawPointTombstoneValueSize += size
    1056           1 :         case InternalKeyKindMerge:
    1057           1 :                 w.props.NumMergeOperands++
    1058             :         }
    1059           1 :         w.props.RawKeySize += uint64(key.Size())
    1060           1 :         w.props.RawValueSize += uint64(len(value))
    1061           1 :         return nil
    1062             : }
    1063             : 
    1064           0 : func (w *Writer) prettyTombstone(k InternalKey, value []byte) fmt.Formatter {
    1065           0 :         return keyspan.Span{
    1066           0 :                 Start: k.UserKey,
    1067           0 :                 End:   value,
    1068           0 :                 Keys:  []keyspan.Key{{Trailer: k.Trailer}},
    1069           0 :         }.Pretty(w.formatKey)
    1070           0 : }
    1071             : 
    1072           1 : func (w *Writer) addTombstone(key InternalKey, value []byte) error {
    1073           1 :         if !w.disableKeyOrderChecks && !w.rangeDelV1Format && w.rangeDelBlock.nEntries > 0 {
    1074           1 :                 // Check that tombstones are being added in fragmented order. If the two
    1075           1 :                 // tombstones overlap, their start and end keys must be identical.
    1076           1 :                 prevKey := w.rangeDelBlock.getCurKey()
    1077           1 :                 switch c := w.compare(prevKey.UserKey, key.UserKey); {
    1078           0 :                 case c > 0:
    1079           0 :                         w.err = errors.Errorf("pebble: keys must be added in order: %s, %s",
    1080           0 :                                 prevKey.Pretty(w.formatKey), key.Pretty(w.formatKey))
    1081           0 :                         return w.err
    1082           1 :                 case c == 0:
    1083           1 :                         prevValue := w.rangeDelBlock.curValue
    1084           1 :                         if w.compare(prevValue, value) != 0 {
    1085           0 :                                 w.err = errors.Errorf("pebble: overlapping tombstones must be fragmented: %s vs %s",
    1086           0 :                                         w.prettyTombstone(prevKey, prevValue),
    1087           0 :                                         w.prettyTombstone(key, value))
    1088           0 :                                 return w.err
    1089           0 :                         }
    1090           1 :                         if prevKey.SeqNum() <= key.SeqNum() {
    1091           0 :                                 w.err = errors.Errorf("pebble: keys must be added in strictly increasing order: %s, %s",
    1092           0 :                                         prevKey.Pretty(w.formatKey), key.Pretty(w.formatKey))
    1093           0 :                                 return w.err
    1094           0 :                         }
    1095           1 :                 default:
    1096           1 :                         prevValue := w.rangeDelBlock.curValue
    1097           1 :                         if w.compare(prevValue, key.UserKey) > 0 {
    1098           0 :                                 w.err = errors.Errorf("pebble: overlapping tombstones must be fragmented: %s vs %s",
    1099           0 :                                         w.prettyTombstone(prevKey, prevValue),
    1100           0 :                                         w.prettyTombstone(key, value))
    1101           0 :                                 return w.err
    1102           0 :                         }
    1103             :                 }
    1104             :         }
    1105             : 
    1106           1 :         if key.Trailer == InternalKeyRangeDeleteSentinel {
    1107           0 :                 w.err = errors.Errorf("pebble: cannot add range delete sentinel: %s", key.Pretty(w.formatKey))
    1108           0 :                 return w.err
    1109           0 :         }
    1110             : 
    1111           1 :         w.meta.updateSeqNum(key.SeqNum())
    1112           1 : 
    1113           1 :         switch {
    1114           0 :         case w.rangeDelV1Format:
    1115           0 :                 // Range tombstones are not fragmented in the v1 (i.e. RocksDB) range
    1116           0 :                 // deletion block format, so we need to track the largest range tombstone
    1117           0 :                 // end key as every range tombstone is added.
    1118           0 :                 //
    1119           0 :                 // Note that writing the v1 format is only supported for tests.
    1120           0 :                 if w.props.NumRangeDeletions == 0 {
    1121           0 :                         w.meta.SetSmallestRangeDelKey(key.Clone())
    1122           0 :                         w.meta.SetLargestRangeDelKey(base.MakeRangeDeleteSentinelKey(value).Clone())
    1123           0 :                 } else {
    1124           0 :                         if base.InternalCompare(w.compare, w.meta.SmallestRangeDel, key) > 0 {
    1125           0 :                                 w.meta.SetSmallestRangeDelKey(key.Clone())
    1126           0 :                         }
    1127           0 :                         end := base.MakeRangeDeleteSentinelKey(value)
    1128           0 :                         if base.InternalCompare(w.compare, w.meta.LargestRangeDel, end) < 0 {
    1129           0 :                                 w.meta.SetLargestRangeDelKey(end.Clone())
    1130           0 :                         }
    1131             :                 }
    1132             : 
    1133           1 :         default:
    1134           1 :                 // Range tombstones are fragmented in the v2 range deletion block format,
    1135           1 :                 // so the start key of the first range tombstone added will be the smallest
    1136           1 :                 // range tombstone key. The largest range tombstone key will be determined
    1137           1 :                 // in Writer.Close() as the end key of the last range tombstone added.
    1138           1 :                 if w.props.NumRangeDeletions == 0 {
    1139           1 :                         w.meta.SetSmallestRangeDelKey(key.Clone())
    1140           1 :                 }
    1141             :         }
    1142             : 
    1143           1 :         w.props.NumEntries++
    1144           1 :         w.props.NumDeletions++
    1145           1 :         w.props.NumRangeDeletions++
    1146           1 :         w.props.RawKeySize += uint64(key.Size())
    1147           1 :         w.props.RawValueSize += uint64(len(value))
    1148           1 :         w.rangeDelBlock.add(key, value)
    1149           1 :         return nil
    1150             : }
    1151             : 
    1152             : // RangeKeySet sets a range between start (inclusive) and end (exclusive) with
    1153             : // the given suffix to the given value. The resulting range key is given the
    1154             : // sequence number zero, with the expectation that the resulting sstable will be
    1155             : // ingested.
    1156             : //
    1157             : // Keys must be added to the table in increasing order of start key. Spans are
    1158             : // not required to be fragmented. The same suffix may not be set or unset twice
    1159             : // over the same keyspan, because it would result in inconsistent state. Both
    1160             : // the Set and Unset would share the zero sequence number, and a key cannot be
    1161             : // both simultaneously set and unset.
    1162           0 : func (w *Writer) RangeKeySet(start, end, suffix, value []byte) error {
    1163           0 :         return w.addRangeKeySpan(keyspan.Span{
    1164           0 :                 Start: w.tempRangeKeyCopy(start),
    1165           0 :                 End:   w.tempRangeKeyCopy(end),
    1166           0 :                 Keys: []keyspan.Key{
    1167           0 :                         {
    1168           0 :                                 Trailer: base.MakeTrailer(0, base.InternalKeyKindRangeKeySet),
    1169           0 :                                 Suffix:  w.tempRangeKeyCopy(suffix),
    1170           0 :                                 Value:   w.tempRangeKeyCopy(value),
    1171           0 :                         },
    1172           0 :                 },
    1173           0 :         })
    1174           0 : }
    1175             : 
    1176             : // RangeKeyUnset un-sets a range between start (inclusive) and end (exclusive)
    1177             : // with the given suffix. The resulting range key is given the
    1178             : // sequence number zero, with the expectation that the resulting sstable will be
    1179             : // ingested.
    1180             : //
    1181             : // Keys must be added to the table in increasing order of start key. Spans are
    1182             : // not required to be fragmented. The same suffix may not be set or unset twice
    1183             : // over the same keyspan, because it would result in inconsistent state. Both
    1184             : // the Set and Unset would share the zero sequence number, and a key cannot be
    1185             : // both simultaneously set and unset.
    1186           0 : func (w *Writer) RangeKeyUnset(start, end, suffix []byte) error {
    1187           0 :         return w.addRangeKeySpan(keyspan.Span{
    1188           0 :                 Start: w.tempRangeKeyCopy(start),
    1189           0 :                 End:   w.tempRangeKeyCopy(end),
    1190           0 :                 Keys: []keyspan.Key{
    1191           0 :                         {
    1192           0 :                                 Trailer: base.MakeTrailer(0, base.InternalKeyKindRangeKeyUnset),
    1193           0 :                                 Suffix:  w.tempRangeKeyCopy(suffix),
    1194           0 :                         },
    1195           0 :                 },
    1196           0 :         })
    1197           0 : }
    1198             : 
    1199             : // RangeKeyDelete deletes a range between start (inclusive) and end (exclusive).
    1200             : //
    1201             : // Keys must be added to the table in increasing order of start key. Spans are
    1202             : // not required to be fragmented.
    1203           0 : func (w *Writer) RangeKeyDelete(start, end []byte) error {
    1204           0 :         return w.addRangeKeySpan(keyspan.Span{
    1205           0 :                 Start: w.tempRangeKeyCopy(start),
    1206           0 :                 End:   w.tempRangeKeyCopy(end),
    1207           0 :                 Keys: []keyspan.Key{
    1208           0 :                         {Trailer: base.MakeTrailer(0, base.InternalKeyKindRangeKeyDelete)},
    1209           0 :                 },
    1210           0 :         })
    1211           0 : }
    1212             : 
    1213             : // AddRangeKey adds a range key set, unset, or delete key/value pair to the
    1214             : // table being written.
    1215             : //
    1216             : // Range keys must be supplied in strictly ascending order of start key (i.e.
    1217             : // user key ascending, sequence number descending, and key type descending).
    1218             : // Ranges added must also be supplied in fragmented span order - i.e. other than
    1219             : // spans that are perfectly aligned (same start and end keys), spans may not
    1220             : // overlap. Range keys may be added out of order relative to point keys and
    1221             : // range deletions.
    1222           1 : func (w *Writer) AddRangeKey(key InternalKey, value []byte) error {
    1223           1 :         if w.err != nil {
    1224           0 :                 return w.err
    1225           0 :         }
    1226           1 :         return w.addRangeKey(key, value)
    1227             : }
    1228             : 
    1229           0 : func (w *Writer) addRangeKeySpan(span keyspan.Span) error {
    1230           0 :         if w.compare(span.Start, span.End) >= 0 {
    1231           0 :                 return errors.Errorf(
    1232           0 :                         "pebble: start key must be strictly less than end key",
    1233           0 :                 )
    1234           0 :         }
    1235           0 :         if w.fragmenter.Start() != nil && w.compare(w.fragmenter.Start(), span.Start) > 0 {
    1236           0 :                 return errors.Errorf("pebble: spans must be added in order: %s > %s",
    1237           0 :                         w.formatKey(w.fragmenter.Start()), w.formatKey(span.Start))
    1238           0 :         }
    1239             :         // Add this span to the fragmenter.
    1240           0 :         w.fragmenter.Add(span)
    1241           0 :         return w.err
    1242             : }
    1243             : 
    1244           0 : func (w *Writer) encodeRangeKeySpan(span keyspan.Span) {
    1245           0 :         // This method is the emit function of the Fragmenter.
    1246           0 :         //
    1247           0 :         // NB: The span should only contain range keys and be internally consistent
    1248           0 :         // (eg, no duplicate suffixes, no additional keys after a RANGEKEYDEL).
    1249           0 :         //
    1250           0 :         // We use w.rangeKeysBySuffix and w.rangeKeySpan to avoid allocations.
    1251           0 : 
    1252           0 :         // Sort the keys by suffix. Iteration doesn't *currently* depend on it, but
    1253           0 :         // we may want to in the future.
    1254           0 :         w.rangeKeysBySuffix.Cmp = w.compare
    1255           0 :         w.rangeKeysBySuffix.Keys = span.Keys
    1256           0 :         sort.Sort(&w.rangeKeysBySuffix)
    1257           0 : 
    1258           0 :         w.rangeKeySpan = span
    1259           0 :         w.rangeKeySpan.Keys = w.rangeKeysBySuffix.Keys
    1260           0 :         w.err = firstError(w.err, w.rangeKeyEncoder.Encode(&w.rangeKeySpan))
    1261           0 : }
    1262             : 
    1263           1 : func (w *Writer) addRangeKey(key InternalKey, value []byte) error {
    1264           1 :         if !w.disableKeyOrderChecks && w.rangeKeyBlock.nEntries > 0 {
    1265           1 :                 prevStartKey := w.rangeKeyBlock.getCurKey()
    1266           1 :                 prevEndKey, _, ok := rangekey.DecodeEndKey(prevStartKey.Kind(), w.rangeKeyBlock.curValue)
    1267           1 :                 if !ok {
    1268           0 :                         // We panic here as we should have previously decoded and validated this
    1269           0 :                         // key and value when it was first added to the range key block.
    1270           0 :                         panic(errors.Errorf("pebble: invalid end key for span: %s",
    1271           0 :                                 prevStartKey.Pretty(w.formatKey)))
    1272             :                 }
    1273             : 
    1274           1 :                 curStartKey := key
    1275           1 :                 curEndKey, _, ok := rangekey.DecodeEndKey(curStartKey.Kind(), value)
    1276           1 :                 if !ok {
    1277           0 :                         w.err = errors.Errorf("pebble: invalid end key for span: %s",
    1278           0 :                                 curStartKey.Pretty(w.formatKey))
    1279           0 :                         return w.err
    1280           0 :                 }
    1281             : 
    1282             :                 // Start keys must be strictly increasing.
    1283           1 :                 if base.InternalCompare(w.compare, prevStartKey, curStartKey) >= 0 {
    1284           0 :                         w.err = errors.Errorf(
    1285           0 :                                 "pebble: range keys starts must be added in increasing order: %s, %s",
    1286           0 :                                 prevStartKey.Pretty(w.formatKey), key.Pretty(w.formatKey))
    1287           0 :                         return w.err
    1288           0 :                 }
    1289             : 
    1290             :                 // Start keys are increasing. If the start user keys are equal, the
    1291             :                 // end keys must be equal (i.e. aligned spans).
    1292           1 :                 if w.compare(prevStartKey.UserKey, curStartKey.UserKey) == 0 {
    1293           1 :                         if w.compare(prevEndKey, curEndKey) != 0 {
    1294           0 :                                 w.err = errors.Errorf("pebble: overlapping range keys must be fragmented: %s, %s",
    1295           0 :                                         prevStartKey.Pretty(w.formatKey),
    1296           0 :                                         curStartKey.Pretty(w.formatKey))
    1297           0 :                                 return w.err
    1298           0 :                         }
    1299           1 :                 } else if w.compare(prevEndKey, curStartKey.UserKey) > 0 {
    1300           0 :                         // If the start user keys are NOT equal, the spans must be disjoint (i.e.
    1301           0 :                         // no overlap).
    1302           0 :                         // NOTE: the inequality excludes zero, as we allow the end key of the
    1303           0 :                         // lower span be the same as the start key of the upper span, because
    1304           0 :                         // the range end key is considered an exclusive bound.
    1305           0 :                         w.err = errors.Errorf("pebble: overlapping range keys must be fragmented: %s, %s",
    1306           0 :                                 prevStartKey.Pretty(w.formatKey),
    1307           0 :                                 curStartKey.Pretty(w.formatKey))
    1308           0 :                         return w.err
    1309           0 :                 }
    1310             :         }
    1311             : 
    1312             :         // TODO(travers): Add an invariant-gated check to ensure that suffix-values
    1313             :         // are sorted within coalesced spans.
    1314             : 
    1315             :         // Range-keys and point-keys are intended to live in "parallel" keyspaces.
    1316             :         // However, we track a single seqnum in the table metadata that spans both of
    1317             :         // these keyspaces.
    1318             :         // TODO(travers): Consider tracking range key seqnums separately.
    1319           1 :         w.meta.updateSeqNum(key.SeqNum())
    1320           1 : 
    1321           1 :         // Range tombstones are fragmented, so the start key of the first range key
    1322           1 :         // added will be the smallest. The largest range key is determined in
    1323           1 :         // Writer.Close() as the end key of the last range key added to the block.
    1324           1 :         if w.props.NumRangeKeys() == 0 {
    1325           1 :                 w.meta.SetSmallestRangeKey(key.Clone())
    1326           1 :         }
    1327             : 
    1328             :         // Update block properties.
    1329           1 :         w.props.RawRangeKeyKeySize += uint64(key.Size())
    1330           1 :         w.props.RawRangeKeyValueSize += uint64(len(value))
    1331           1 :         switch key.Kind() {
    1332           1 :         case base.InternalKeyKindRangeKeyDelete:
    1333           1 :                 w.props.NumRangeKeyDels++
    1334           1 :         case base.InternalKeyKindRangeKeySet:
    1335           1 :                 w.props.NumRangeKeySets++
    1336           1 :         case base.InternalKeyKindRangeKeyUnset:
    1337           1 :                 w.props.NumRangeKeyUnsets++
    1338           0 :         default:
    1339           0 :                 panic(errors.Errorf("pebble: invalid range key type: %s", key.Kind()))
    1340             :         }
    1341             : 
    1342           1 :         for i := range w.blockPropCollectors {
    1343           1 :                 if err := w.blockPropCollectors[i].Add(key, value); err != nil {
    1344           0 :                         return err
    1345           0 :                 }
    1346             :         }
    1347             : 
    1348             :         // Add the key to the block.
    1349           1 :         w.rangeKeyBlock.add(key, value)
    1350           1 :         return nil
    1351             : }
    1352             : 
    1353             : // tempRangeKeyBuf returns a slice of length n from the Writer's rkBuf byte
    1354             : // slice. Any byte written to the returned slice is retained for the lifetime of
    1355             : // the Writer.
    1356           0 : func (w *Writer) tempRangeKeyBuf(n int) []byte {
    1357           0 :         if cap(w.rkBuf)-len(w.rkBuf) < n {
    1358           0 :                 size := len(w.rkBuf) + 2*n
    1359           0 :                 if size < 2*cap(w.rkBuf) {
    1360           0 :                         size = 2 * cap(w.rkBuf)
    1361           0 :                 }
    1362           0 :                 buf := make([]byte, len(w.rkBuf), size)
    1363           0 :                 copy(buf, w.rkBuf)
    1364           0 :                 w.rkBuf = buf
    1365             :         }
    1366           0 :         b := w.rkBuf[len(w.rkBuf) : len(w.rkBuf)+n]
    1367           0 :         w.rkBuf = w.rkBuf[:len(w.rkBuf)+n]
    1368           0 :         return b
    1369             : }
    1370             : 
    1371             : // tempRangeKeyCopy returns a copy of the provided slice, stored in the Writer's
    1372             : // range key buffer.
    1373           0 : func (w *Writer) tempRangeKeyCopy(k []byte) []byte {
    1374           0 :         if len(k) == 0 {
    1375           0 :                 return nil
    1376           0 :         }
    1377           0 :         buf := w.tempRangeKeyBuf(len(k))
    1378           0 :         copy(buf, k)
    1379           0 :         return buf
    1380             : }
    1381             : 
    1382           1 : func (w *Writer) maybeAddToFilter(key []byte) {
    1383           1 :         if w.filter != nil {
    1384           1 :                 prefix := key[:w.split(key)]
    1385           1 :                 w.filter.addKey(prefix)
    1386           1 :         }
    1387             : }
    1388             : 
    1389           1 : func (w *Writer) flush(key InternalKey) error {
    1390           1 :         // We're finishing a data block.
    1391           1 :         err := w.finishDataBlockProps(w.dataBlockBuf)
    1392           1 :         if err != nil {
    1393           0 :                 return err
    1394           0 :         }
    1395           1 :         w.dataBlockBuf.finish()
    1396           1 :         w.dataBlockBuf.compressAndChecksum(w.compression)
    1397           1 :         // Since dataBlockEstimates.addInflightDataBlock was never called, the
    1398           1 :         // inflightSize is set to 0.
    1399           1 :         w.coordination.sizeEstimate.dataBlockCompressed(len(w.dataBlockBuf.compressed), 0)
    1400           1 : 
    1401           1 :         // Determine if the index block should be flushed. Since we're accessing the
    1402           1 :         // dataBlockBuf.dataBlock.curKey here, we have to make sure that once we start
    1403           1 :         // to pool the dataBlockBufs, the curKey isn't used by the Writer once the
    1404           1 :         // dataBlockBuf is added back to a sync.Pool. In this particular case, the
    1405           1 :         // byte slice which supports "sep" will eventually be copied when "sep" is
    1406           1 :         // added to the index block.
    1407           1 :         prevKey := w.dataBlockBuf.dataBlock.getCurKey()
    1408           1 :         sep := w.indexEntrySep(prevKey, key, w.dataBlockBuf)
    1409           1 :         // We determine that we should flush an index block from the Writer client
    1410           1 :         // goroutine, but we actually finish the index block from the writeQueue.
    1411           1 :         // When we determine that an index block should be flushed, we need to call
    1412           1 :         // BlockPropertyCollector.FinishIndexBlock. But block property collector
    1413           1 :         // calls must happen sequentially from the Writer client. Therefore, we need
    1414           1 :         // to determine that we are going to flush the index block from the Writer
    1415           1 :         // client.
    1416           1 :         shouldFlushIndexBlock := supportsTwoLevelIndex(w.tableFormat) && w.indexBlock.shouldFlush(
    1417           1 :                 sep, encodedBHPEstimatedSize, w.indexBlockOptions, w.allocatorSizeClasses,
    1418           1 :         )
    1419           1 : 
    1420           1 :         var indexProps []byte
    1421           1 :         var flushableIndexBlock *indexBlockBuf
    1422           1 :         if shouldFlushIndexBlock {
    1423           1 :                 flushableIndexBlock = w.indexBlock
    1424           1 :                 w.indexBlock = newIndexBlockBuf(w.coordination.parallelismEnabled)
    1425           1 :                 // Call BlockPropertyCollector.FinishIndexBlock, since we've decided to
    1426           1 :                 // flush the index block.
    1427           1 :                 indexProps, err = w.finishIndexBlockProps()
    1428           1 :                 if err != nil {
    1429           0 :                         return err
    1430           0 :                 }
    1431             :         }
    1432             : 
    1433             :         // We've called BlockPropertyCollector.FinishDataBlock, and, if necessary,
    1434             :         // BlockPropertyCollector.FinishIndexBlock. Since we've decided to finish
    1435             :         // the data block, we can call
    1436             :         // BlockPropertyCollector.AddPrevDataBlockToIndexBlock.
    1437           1 :         w.addPrevDataBlockToIndexBlockProps()
    1438           1 : 
    1439           1 :         // Schedule a write.
    1440           1 :         writeTask := writeTaskPool.Get().(*writeTask)
    1441           1 :         // We're setting compressionDone to indicate that compression of this block
    1442           1 :         // has already been completed.
    1443           1 :         writeTask.compressionDone <- true
    1444           1 :         writeTask.buf = w.dataBlockBuf
    1445           1 :         writeTask.indexEntrySep = sep
    1446           1 :         writeTask.currIndexBlock = w.indexBlock
    1447           1 :         writeTask.indexInflightSize = sep.Size() + encodedBHPEstimatedSize
    1448           1 :         writeTask.finishedIndexProps = indexProps
    1449           1 :         writeTask.flushableIndexBlock = flushableIndexBlock
    1450           1 : 
    1451           1 :         // The writeTask corresponds to an unwritten index entry.
    1452           1 :         w.indexBlock.addInflight(writeTask.indexInflightSize)
    1453           1 : 
    1454           1 :         w.dataBlockBuf = nil
    1455           1 :         if w.coordination.parallelismEnabled {
    1456           1 :                 w.coordination.writeQueue.add(writeTask)
    1457           1 :         } else {
    1458           1 :                 err = w.coordination.writeQueue.addSync(writeTask)
    1459           1 :         }
    1460           1 :         w.dataBlockBuf = newDataBlockBuf(w.restartInterval, w.checksumType)
    1461           1 : 
    1462           1 :         return err
    1463             : }
    1464             : 
    1465           1 : func (w *Writer) maybeFlush(key InternalKey, valueLen int) error {
    1466           1 :         if !w.dataBlockBuf.shouldFlush(key, valueLen, w.dataBlockOptions, w.allocatorSizeClasses) {
    1467           1 :                 return nil
    1468           1 :         }
    1469             : 
    1470           1 :         err := w.flush(key)
    1471           1 : 
    1472           1 :         if err != nil {
    1473           0 :                 w.err = err
    1474           0 :                 return err
    1475           0 :         }
    1476             : 
    1477           1 :         return nil
    1478             : }
    1479             : 
    1480             : // dataBlockBuf.dataBlockProps set by this method must be encoded before any future use of the
    1481             : // dataBlockBuf.blockPropsEncoder, since the properties slice will get reused by the
    1482             : // blockPropsEncoder.
    1483           1 : func (w *Writer) finishDataBlockProps(buf *dataBlockBuf) error {
    1484           1 :         if len(w.blockPropCollectors) == 0 {
    1485           1 :                 return nil
    1486           1 :         }
    1487           1 :         var err error
    1488           1 :         buf.blockPropsEncoder.resetProps()
    1489           1 :         for i := range w.blockPropCollectors {
    1490           1 :                 scratch := buf.blockPropsEncoder.getScratchForProp()
    1491           1 :                 if scratch, err = w.blockPropCollectors[i].FinishDataBlock(scratch); err != nil {
    1492           0 :                         return err
    1493           0 :                 }
    1494           1 :                 buf.blockPropsEncoder.addProp(shortID(i), scratch)
    1495             :         }
    1496             : 
    1497           1 :         buf.dataBlockProps = buf.blockPropsEncoder.unsafeProps()
    1498           1 :         return nil
    1499             : }
    1500             : 
    1501             : // The BlockHandleWithProperties returned by this method must be encoded before any future use of
    1502             : // the Writer.blockPropsEncoder, since the properties slice will get reused by the blockPropsEncoder.
    1503             : // maybeAddBlockPropertiesToBlockHandle should only be called if block is being written synchronously
    1504             : // with the Writer client.
    1505             : func (w *Writer) maybeAddBlockPropertiesToBlockHandle(
    1506             :         bh BlockHandle,
    1507           1 : ) (BlockHandleWithProperties, error) {
    1508           1 :         err := w.finishDataBlockProps(w.dataBlockBuf)
    1509           1 :         if err != nil {
    1510           0 :                 return BlockHandleWithProperties{}, err
    1511           0 :         }
    1512           1 :         return BlockHandleWithProperties{BlockHandle: bh, Props: w.dataBlockBuf.dataBlockProps}, nil
    1513             : }
    1514             : 
    1515           1 : func (w *Writer) indexEntrySep(prevKey, key InternalKey, dataBlockBuf *dataBlockBuf) InternalKey {
    1516           1 :         // Make a rough guess that we want key-sized scratch to compute the separator.
    1517           1 :         if cap(dataBlockBuf.sepScratch) < key.Size() {
    1518           1 :                 dataBlockBuf.sepScratch = make([]byte, 0, key.Size()*2)
    1519           1 :         }
    1520             : 
    1521           1 :         var sep InternalKey
    1522           1 :         if key.UserKey == nil && key.Trailer == 0 {
    1523           1 :                 sep = prevKey.Successor(w.compare, w.successor, dataBlockBuf.sepScratch[:0])
    1524           1 :         } else {
    1525           1 :                 sep = prevKey.Separator(w.compare, w.separator, dataBlockBuf.sepScratch[:0], key)
    1526           1 :         }
    1527           1 :         return sep
    1528             : }
    1529             : 
    1530             : // addIndexEntry adds an index entry for the specified key and block handle.
    1531             : // addIndexEntry can be called from both the Writer client goroutine, and the
    1532             : // writeQueue goroutine. If the flushIndexBuf != nil, then the indexProps, as
    1533             : // they're used when the index block is finished.
    1534             : //
    1535             : // Invariant:
    1536             : //  1. addIndexEntry must not store references to the sep InternalKey, the tmp
    1537             : //     byte slice, bhp.Props. That is, these must be either deep copied or
    1538             : //     encoded.
    1539             : //  2. addIndexEntry must not hold references to the flushIndexBuf, and the writeTo
    1540             : //     indexBlockBufs.
    1541             : func (w *Writer) addIndexEntry(
    1542             :         sep InternalKey,
    1543             :         bhp BlockHandleWithProperties,
    1544             :         tmp []byte,
    1545             :         flushIndexBuf *indexBlockBuf,
    1546             :         writeTo *indexBlockBuf,
    1547             :         inflightSize int,
    1548             :         indexProps []byte,
    1549           1 : ) error {
    1550           1 :         if bhp.Length == 0 {
    1551           0 :                 // A valid blockHandle must be non-zero.
    1552           0 :                 // In particular, it must have a non-zero length.
    1553           0 :                 return nil
    1554           0 :         }
    1555             : 
    1556           1 :         encoded := encodeBlockHandleWithProperties(tmp, bhp)
    1557           1 : 
    1558           1 :         if flushIndexBuf != nil {
    1559           1 :                 if cap(w.indexPartitions) == 0 {
    1560           1 :                         w.indexPartitions = make([]indexBlockAndBlockProperties, 0, 32)
    1561           1 :                 }
    1562             :                 // Enable two level indexes if there is more than one index block.
    1563           1 :                 w.twoLevelIndex = true
    1564           1 :                 if err := w.finishIndexBlock(flushIndexBuf, indexProps); err != nil {
    1565           0 :                         return err
    1566           0 :                 }
    1567             :         }
    1568             : 
    1569           1 :         writeTo.add(sep, encoded, inflightSize)
    1570           1 :         return nil
    1571             : }
    1572             : 
    1573           1 : func (w *Writer) addPrevDataBlockToIndexBlockProps() {
    1574           1 :         for i := range w.blockPropCollectors {
    1575           1 :                 w.blockPropCollectors[i].AddPrevDataBlockToIndexBlock()
    1576           1 :         }
    1577             : }
    1578             : 
    1579             : // addIndexEntrySync adds an index entry for the specified key and block handle.
    1580             : // Writer.addIndexEntry is only called synchronously once Writer.Close is called.
    1581             : // addIndexEntrySync should only be called if we're sure that index entries
    1582             : // aren't being written asynchronously.
    1583             : //
    1584             : // Invariant:
    1585             : //  1. addIndexEntrySync must not store references to the prevKey, key InternalKey's,
    1586             : //     the tmp byte slice. That is, these must be either deep copied or encoded.
    1587             : //
    1588             : // TODO: Improve coverage of this method. e.g. tests passed without the line
    1589             : // `w.twoLevelIndex = true` previously.
    1590             : func (w *Writer) addIndexEntrySync(
    1591             :         prevKey, key InternalKey, bhp BlockHandleWithProperties, tmp []byte,
    1592           1 : ) error {
    1593           1 :         return w.addIndexEntrySep(w.indexEntrySep(prevKey, key, w.dataBlockBuf), bhp, tmp)
    1594           1 : }
    1595             : 
    1596             : func (w *Writer) addIndexEntrySep(
    1597             :         sep InternalKey, bhp BlockHandleWithProperties, tmp []byte,
    1598           1 : ) error {
    1599           1 :         shouldFlush := supportsTwoLevelIndex(
    1600           1 :                 w.tableFormat) && w.indexBlock.shouldFlush(
    1601           1 :                 sep, encodedBHPEstimatedSize, w.indexBlockOptions, w.allocatorSizeClasses,
    1602           1 :         )
    1603           1 :         var flushableIndexBlock *indexBlockBuf
    1604           1 :         var props []byte
    1605           1 :         var err error
    1606           1 :         if shouldFlush {
    1607           1 :                 flushableIndexBlock = w.indexBlock
    1608           1 :                 w.indexBlock = newIndexBlockBuf(w.coordination.parallelismEnabled)
    1609           1 :                 w.twoLevelIndex = true
    1610           1 :                 // Call BlockPropertyCollector.FinishIndexBlock, since we've decided to
    1611           1 :                 // flush the index block.
    1612           1 :                 props, err = w.finishIndexBlockProps()
    1613           1 :                 if err != nil {
    1614           0 :                         return err
    1615           0 :                 }
    1616             :         }
    1617             : 
    1618           1 :         err = w.addIndexEntry(sep, bhp, tmp, flushableIndexBlock, w.indexBlock, 0, props)
    1619           1 :         if flushableIndexBlock != nil {
    1620           1 :                 flushableIndexBlock.clear()
    1621           1 :                 indexBlockBufPool.Put(flushableIndexBlock)
    1622           1 :         }
    1623           1 :         w.addPrevDataBlockToIndexBlockProps()
    1624           1 :         return err
    1625             : }
    1626             : 
    1627             : func shouldFlushWithHints(
    1628             :         keyLen, valueLen int,
    1629             :         restartInterval, estimatedBlockSize, numEntries int,
    1630             :         flushOptions flushDecisionOptions,
    1631             :         sizeClassHints []int,
    1632           1 : ) bool {
    1633           1 :         if numEntries == 0 {
    1634           1 :                 return false
    1635           1 :         }
    1636             : 
    1637             :         // If we are not informed about the memory allocator's size classes we fall
    1638             :         // back to a simple set of flush heuristics that are unaware of internal
    1639             :         // fragmentation in block cache allocations.
    1640           1 :         if len(sizeClassHints) == 0 {
    1641           1 :                 return shouldFlushWithoutHints(
    1642           1 :                         keyLen, valueLen, restartInterval, estimatedBlockSize, numEntries, flushOptions)
    1643           1 :         }
    1644             : 
    1645             :         // For size-class aware flushing we need to account for the metadata that is
    1646             :         // allocated when this block is loaded into the block cache. For instance, if
    1647             :         // a block has size 1020B it may fit within a 1024B class. However, when
    1648             :         // loaded into the block cache we also allocate space for the cache entry
    1649             :         // metadata. The new allocation of size ~1052B may now only fit within a
    1650             :         // 2048B class, which increases internal fragmentation.
    1651           0 :         blockSizeWithMetadata := estimatedBlockSize + cache.ValueMetadataSize
    1652           0 : 
    1653           0 :         // For the fast path we can avoid computing the exact varint encoded
    1654           0 :         // key-value pair size. Instead, we combine the key-value pair size with an
    1655           0 :         // upper-bound estimate of the associated metadata (4B restart point, 4B
    1656           0 :         // shared prefix length, 5B varint unshared key size, 5B varint value size).
    1657           0 :         newEstimatedSize := blockSizeWithMetadata + keyLen + valueLen + 18
    1658           0 :         // Our new block size estimate disregards key prefix compression. This puts
    1659           0 :         // us at risk of overestimating the size and flushing small blocks. We
    1660           0 :         // mitigate this by imposing a minimum size restriction.
    1661           0 :         if blockSizeWithMetadata <= flushOptions.sizeClassAwareThreshold || newEstimatedSize <= flushOptions.blockSize {
    1662           0 :                 return false
    1663           0 :         }
    1664             : 
    1665           0 :         sizeClass, ok := blockSizeClass(blockSizeWithMetadata, sizeClassHints)
    1666           0 :         // If the block size could not be mapped to a size class we fall back to
    1667           0 :         // using a simpler set of flush heuristics.
    1668           0 :         if !ok {
    1669           0 :                 return shouldFlushWithoutHints(
    1670           0 :                         keyLen, valueLen, restartInterval, estimatedBlockSize, numEntries, flushOptions)
    1671           0 :         }
    1672             : 
    1673             :         // Tighter upper-bound estimate of the metadata stored with the next
    1674             :         // key-value pair.
    1675           0 :         newSize := blockSizeWithMetadata + keyLen + valueLen
    1676           0 :         if numEntries%restartInterval == 0 {
    1677           0 :                 newSize += 4
    1678           0 :         }
    1679           0 :         newSize += 4                            // varint for shared prefix length
    1680           0 :         newSize += uvarintLen(uint32(keyLen))   // varint for unshared key bytes
    1681           0 :         newSize += uvarintLen(uint32(valueLen)) // varint for value size
    1682           0 : 
    1683           0 :         if blockSizeWithMetadata < flushOptions.blockSize {
    1684           0 :                 newSizeClass, ok := blockSizeClass(newSize, sizeClassHints)
    1685           0 :                 if ok && newSizeClass-newSize >= sizeClass-blockSizeWithMetadata {
    1686           0 :                         // Although the block hasn't reached the target size, waiting to insert the
    1687           0 :                         // next entry would exceed the target and increase memory fragmentation.
    1688           0 :                         return true
    1689           0 :                 }
    1690           0 :                 return false
    1691             :         }
    1692             : 
    1693             :         // Flush if inserting the next entry bumps the block size to the memory
    1694             :         // allocator's next size class.
    1695           0 :         return newSize > sizeClass
    1696             : }
    1697             : 
    1698             : func shouldFlushWithoutHints(
    1699             :         keyLen, valueLen int,
    1700             :         restartInterval, estimatedBlockSize, numEntries int,
    1701             :         flushOptions flushDecisionOptions,
    1702           1 : ) bool {
    1703           1 :         if estimatedBlockSize >= flushOptions.blockSize {
    1704           1 :                 return true
    1705           1 :         }
    1706             : 
    1707             :         // The block is currently smaller than the target size.
    1708           1 :         if estimatedBlockSize <= flushOptions.blockSizeThreshold {
    1709           1 :                 // The block is smaller than the threshold size at which we'll consider
    1710           1 :                 // flushing it.
    1711           1 :                 return false
    1712           1 :         }
    1713             : 
    1714           1 :         newSize := estimatedBlockSize + keyLen + valueLen
    1715           1 :         if numEntries%restartInterval == 0 {
    1716           1 :                 newSize += 4
    1717           1 :         }
    1718           1 :         newSize += 4                            // varint for shared prefix length
    1719           1 :         newSize += uvarintLen(uint32(keyLen))   // varint for unshared key bytes
    1720           1 :         newSize += uvarintLen(uint32(valueLen)) // varint for value size
    1721           1 :         // Flush if the block plus the new entry is larger than the target size.
    1722           1 :         return newSize > flushOptions.blockSize
    1723             : }
    1724             : 
    1725             : // blockSizeClass returns the smallest memory allocator size class that could
    1726             : // hold a block of a given size and returns a boolean indicating whether an
    1727             : // appropriate size class was found. It is useful for computing the potential
    1728             : // space wasted by an allocation.
    1729           0 : func blockSizeClass(blockSize int, sizeClassHints []int) (int, bool) {
    1730           0 :         sizeClassIdx, _ := slices.BinarySearch(sizeClassHints, blockSize)
    1731           0 :         if sizeClassIdx == len(sizeClassHints) {
    1732           0 :                 return -1, false
    1733           0 :         }
    1734           0 :         return sizeClassHints[sizeClassIdx], true
    1735             : }
    1736             : 
    1737           1 : func cloneKeyWithBuf(k InternalKey, a bytealloc.A) (bytealloc.A, InternalKey) {
    1738           1 :         if len(k.UserKey) == 0 {
    1739           0 :                 return a, k
    1740           0 :         }
    1741           1 :         a, keyCopy := a.Copy(k.UserKey)
    1742           1 :         return a, InternalKey{UserKey: keyCopy, Trailer: k.Trailer}
    1743             : }
    1744             : 
    1745             : // Invariants: The byte slice returned by finishIndexBlockProps is heap-allocated
    1746             : //
    1747             : //      and has its own lifetime, independent of the Writer and the blockPropsEncoder,
    1748             : //
    1749             : // and it is safe to:
    1750             : //  1. Reuse w.blockPropsEncoder without first encoding the byte slice returned.
    1751             : //  2. Store the byte slice in the Writer since it is a copy and not supported by
    1752             : //     an underlying buffer.
    1753           1 : func (w *Writer) finishIndexBlockProps() ([]byte, error) {
    1754           1 :         w.blockPropsEncoder.resetProps()
    1755           1 :         for i := range w.blockPropCollectors {
    1756           1 :                 scratch := w.blockPropsEncoder.getScratchForProp()
    1757           1 :                 var err error
    1758           1 :                 if scratch, err = w.blockPropCollectors[i].FinishIndexBlock(scratch); err != nil {
    1759           0 :                         return nil, err
    1760           0 :                 }
    1761           1 :                 w.blockPropsEncoder.addProp(shortID(i), scratch)
    1762             :         }
    1763           1 :         return w.blockPropsEncoder.props(), nil
    1764             : }
    1765             : 
    1766             : // finishIndexBlock finishes the current index block and adds it to the top
    1767             : // level index block. This is only used when two level indexes are enabled.
    1768             : //
    1769             : // Invariants:
    1770             : //  1. The props slice passed into finishedIndexBlock must not be a
    1771             : //     owned by any other struct, since it will be stored in the Writer.indexPartitions
    1772             : //     slice.
    1773             : //  2. None of the buffers owned by indexBuf will be shallow copied and stored elsewhere.
    1774             : //     That is, it must be safe to reuse indexBuf after finishIndexBlock has been called.
    1775           1 : func (w *Writer) finishIndexBlock(indexBuf *indexBlockBuf, props []byte) error {
    1776           1 :         part := indexBlockAndBlockProperties{
    1777           1 :                 nEntries: indexBuf.block.nEntries, properties: props,
    1778           1 :         }
    1779           1 :         w.indexSepAlloc, part.sep = cloneKeyWithBuf(
    1780           1 :                 indexBuf.block.getCurKey(), w.indexSepAlloc,
    1781           1 :         )
    1782           1 :         bk := indexBuf.finish()
    1783           1 :         if len(w.indexBlockAlloc) < len(bk) {
    1784           1 :                 // Allocate enough bytes for approximately 16 index blocks.
    1785           1 :                 w.indexBlockAlloc = make([]byte, len(bk)*16)
    1786           1 :         }
    1787           1 :         n := copy(w.indexBlockAlloc, bk)
    1788           1 :         part.block = w.indexBlockAlloc[:n:n]
    1789           1 :         w.indexBlockAlloc = w.indexBlockAlloc[n:]
    1790           1 :         w.indexPartitions = append(w.indexPartitions, part)
    1791           1 :         return nil
    1792             : }
    1793             : 
    1794           1 : func (w *Writer) writeTwoLevelIndex() (BlockHandle, error) {
    1795           1 :         props, err := w.finishIndexBlockProps()
    1796           1 :         if err != nil {
    1797           0 :                 return BlockHandle{}, err
    1798           0 :         }
    1799             :         // Add the final unfinished index.
    1800           1 :         if err = w.finishIndexBlock(w.indexBlock, props); err != nil {
    1801           0 :                 return BlockHandle{}, err
    1802           0 :         }
    1803             : 
    1804           1 :         for i := range w.indexPartitions {
    1805           1 :                 b := &w.indexPartitions[i]
    1806           1 :                 w.props.NumDataBlocks += uint64(b.nEntries)
    1807           1 : 
    1808           1 :                 data := b.block
    1809           1 :                 w.props.IndexSize += uint64(len(data))
    1810           1 :                 bh, err := w.writeBlock(data, w.compression, &w.blockBuf)
    1811           1 :                 if err != nil {
    1812           0 :                         return BlockHandle{}, err
    1813           0 :                 }
    1814           1 :                 bhp := BlockHandleWithProperties{
    1815           1 :                         BlockHandle: bh,
    1816           1 :                         Props:       b.properties,
    1817           1 :                 }
    1818           1 :                 encoded := encodeBlockHandleWithProperties(w.blockBuf.tmp[:], bhp)
    1819           1 :                 w.topLevelIndexBlock.add(b.sep, encoded)
    1820             :         }
    1821             : 
    1822             :         // NB: RocksDB includes the block trailer length in the index size
    1823             :         // property, though it doesn't include the trailer in the top level
    1824             :         // index size property.
    1825           1 :         w.props.IndexPartitions = uint64(len(w.indexPartitions))
    1826           1 :         w.props.TopLevelIndexSize = uint64(w.topLevelIndexBlock.estimatedSize())
    1827           1 :         w.props.IndexSize += w.props.TopLevelIndexSize + blockTrailerLen
    1828           1 : 
    1829           1 :         return w.writeBlock(w.topLevelIndexBlock.finish(), w.compression, &w.blockBuf)
    1830             : }
    1831             : 
    1832           1 : func compressAndChecksum(b []byte, compression Compression, blockBuf *blockBuf) []byte {
    1833           1 :         // Compress the buffer, discarding the result if the improvement isn't at
    1834           1 :         // least 12.5%.
    1835           1 :         blockType, compressed := compressBlock(compression, b, blockBuf.compressedBuf)
    1836           1 :         if blockType != noCompressionBlockType && cap(compressed) > cap(blockBuf.compressedBuf) {
    1837           1 :                 blockBuf.compressedBuf = compressed[:cap(compressed)]
    1838           1 :         }
    1839           1 :         if len(compressed) < len(b)-len(b)/8 {
    1840           1 :                 b = compressed
    1841           1 :         } else {
    1842           1 :                 blockType = noCompressionBlockType
    1843           1 :         }
    1844             : 
    1845           1 :         blockBuf.tmp[0] = byte(blockType)
    1846           1 : 
    1847           1 :         // Calculate the checksum.
    1848           1 :         checksum := blockBuf.checksummer.checksum(b, blockBuf.tmp[:1])
    1849           1 :         binary.LittleEndian.PutUint32(blockBuf.tmp[1:5], checksum)
    1850           1 :         return b
    1851             : }
    1852             : 
    1853           1 : func (w *Writer) writeCompressedBlock(block []byte, blockTrailerBuf []byte) (BlockHandle, error) {
    1854           1 :         bh := BlockHandle{Offset: w.meta.Size, Length: uint64(len(block))}
    1855           1 : 
    1856           1 :         if w.cacheID != 0 && w.fileNum != 0 {
    1857           1 :                 // Remove the block being written from the cache. This provides defense in
    1858           1 :                 // depth against bugs which cause cache collisions.
    1859           1 :                 //
    1860           1 :                 // TODO(peter): Alternatively, we could add the uncompressed value to the
    1861           1 :                 // cache.
    1862           1 :                 w.cache.Delete(w.cacheID, w.fileNum, bh.Offset)
    1863           1 :         }
    1864             : 
    1865             :         // Write the bytes to the file.
    1866           1 :         if err := w.writable.Write(block); err != nil {
    1867           0 :                 return BlockHandle{}, err
    1868           0 :         }
    1869           1 :         w.meta.Size += uint64(len(block))
    1870           1 :         if err := w.writable.Write(blockTrailerBuf[:blockTrailerLen]); err != nil {
    1871           0 :                 return BlockHandle{}, err
    1872           0 :         }
    1873           1 :         w.meta.Size += blockTrailerLen
    1874           1 : 
    1875           1 :         return bh, nil
    1876             : }
    1877             : 
    1878             : // Write implements io.Writer. This is analogous to writeCompressedBlock for
    1879             : // blocks that already incorporate the trailer, and don't need the callee to
    1880             : // return a BlockHandle.
    1881           1 : func (w *Writer) Write(blockWithTrailer []byte) (n int, err error) {
    1882           1 :         offset := w.meta.Size
    1883           1 :         if w.cacheID != 0 && w.fileNum != 0 {
    1884           1 :                 // Remove the block being written from the cache. This provides defense in
    1885           1 :                 // depth against bugs which cause cache collisions.
    1886           1 :                 //
    1887           1 :                 // TODO(peter): Alternatively, we could add the uncompressed value to the
    1888           1 :                 // cache.
    1889           1 :                 w.cache.Delete(w.cacheID, w.fileNum, offset)
    1890           1 :         }
    1891           1 :         w.meta.Size += uint64(len(blockWithTrailer))
    1892           1 :         if err := w.writable.Write(blockWithTrailer); err != nil {
    1893           0 :                 return 0, err
    1894           0 :         }
    1895           1 :         return len(blockWithTrailer), nil
    1896             : }
    1897             : 
    1898             : func (w *Writer) writeBlock(
    1899             :         b []byte, compression Compression, blockBuf *blockBuf,
    1900           1 : ) (BlockHandle, error) {
    1901           1 :         b = compressAndChecksum(b, compression, blockBuf)
    1902           1 :         return w.writeCompressedBlock(b, blockBuf.tmp[:])
    1903           1 : }
    1904             : 
    1905             : // assertFormatCompatibility ensures that the features present on the table are
    1906             : // compatible with the table format version.
    1907           1 : func (w *Writer) assertFormatCompatibility() error {
    1908           1 :         // PebbleDBv1: block properties.
    1909           1 :         if len(w.blockPropCollectors) > 0 && w.tableFormat < TableFormatPebblev1 {
    1910           0 :                 return errors.Newf(
    1911           0 :                         "table format version %s is less than the minimum required version %s for block properties",
    1912           0 :                         w.tableFormat, TableFormatPebblev1,
    1913           0 :                 )
    1914           0 :         }
    1915             : 
    1916             :         // PebbleDBv2: range keys.
    1917           1 :         if w.props.NumRangeKeys() > 0 && w.tableFormat < TableFormatPebblev2 {
    1918           0 :                 return errors.Newf(
    1919           0 :                         "table format version %s is less than the minimum required version %s for range keys",
    1920           0 :                         w.tableFormat, TableFormatPebblev2,
    1921           0 :                 )
    1922           0 :         }
    1923             : 
    1924             :         // PebbleDBv3: value blocks.
    1925           1 :         if (w.props.NumValueBlocks > 0 || w.props.NumValuesInValueBlocks > 0 ||
    1926           1 :                 w.props.ValueBlocksSize > 0) && w.tableFormat < TableFormatPebblev3 {
    1927           0 :                 return errors.Newf(
    1928           0 :                         "table format version %s is less than the minimum required version %s for value blocks",
    1929           0 :                         w.tableFormat, TableFormatPebblev3)
    1930           0 :         }
    1931             : 
    1932             :         // PebbleDBv4: DELSIZED tombstones.
    1933           1 :         if w.props.NumSizedDeletions > 0 && w.tableFormat < TableFormatPebblev4 {
    1934           0 :                 return errors.Newf(
    1935           0 :                         "table format version %s is less than the minimum required version %s for sized deletion tombstones",
    1936           0 :                         w.tableFormat, TableFormatPebblev4)
    1937           0 :         }
    1938           1 :         return nil
    1939             : }
    1940             : 
    1941             : // UnsafeLastPointUserKey returns the last point key written to the writer to
    1942             : // which this option was passed during creation. The returned key points
    1943             : // directly into a buffer belonging to the Writer. The value's lifetime ends the
    1944             : // next time a point key is added to the Writer.
    1945             : //
    1946             : // Must not be called after Writer is closed.
    1947           1 : func (w *Writer) UnsafeLastPointUserKey() []byte {
    1948           1 :         if w != nil && w.dataBlockBuf.dataBlock.nEntries >= 1 {
    1949           1 :                 // w.dataBlockBuf.dataBlock.curKey is guaranteed to point to the last point key
    1950           1 :                 // which was added to the Writer.
    1951           1 :                 return w.dataBlockBuf.dataBlock.getCurUserKey()
    1952           1 :         }
    1953           1 :         return nil
    1954             : }
    1955             : 
    1956             : // EncodeSpan encodes the keys in the given span. The span can contain either
    1957             : // only RANGEDEL keys or only range keys.
    1958           1 : func (w *Writer) EncodeSpan(span *keyspan.Span) error {
    1959           1 :         if span.Empty() {
    1960           1 :                 return nil
    1961           1 :         }
    1962           1 :         if span.Keys[0].Kind() == base.InternalKeyKindRangeDelete {
    1963           1 :                 return rangedel.Encode(span, w.Add)
    1964           1 :         }
    1965           1 :         return rangekey.Encode(span, w.AddRangeKey)
    1966             : }
    1967             : 
    1968             : // Close finishes writing the table and closes the underlying file that the
    1969             : // table was written to.
    1970           1 : func (w *Writer) Close() (err error) {
    1971           1 :         defer func() {
    1972           1 :                 if w.valueBlockWriter != nil {
    1973           1 :                         releaseValueBlockWriter(w.valueBlockWriter)
    1974           1 :                         // Defensive code in case Close gets called again. We don't want to put
    1975           1 :                         // the same object to a sync.Pool.
    1976           1 :                         w.valueBlockWriter = nil
    1977           1 :                 }
    1978           1 :                 if w.writable != nil {
    1979           0 :                         w.writable.Abort()
    1980           0 :                         w.writable = nil
    1981           0 :                 }
    1982             :                 // Record any error in the writer (so we can exit early if Close is called
    1983             :                 // again).
    1984           1 :                 if err != nil {
    1985           0 :                         w.err = err
    1986           0 :                 }
    1987             :         }()
    1988             : 
    1989             :         // finish must be called before we check for an error, because finish will
    1990             :         // block until every single task added to the writeQueue has been processed,
    1991             :         // and an error could be encountered while any of those tasks are processed.
    1992           1 :         if err := w.coordination.writeQueue.finish(); err != nil {
    1993           0 :                 return err
    1994           0 :         }
    1995             : 
    1996           1 :         if w.err != nil {
    1997           0 :                 return w.err
    1998           0 :         }
    1999             : 
    2000             :         // The w.meta.LargestPointKey is only used once the Writer is closed, so it is safe to set it
    2001             :         // when the Writer is closed.
    2002             :         //
    2003             :         // The following invariants ensure that setting the largest key at this point of a Writer close
    2004             :         // is correct:
    2005             :         // 1. Keys must only be added to the Writer in an increasing order.
    2006             :         // 2. The current w.dataBlockBuf is guaranteed to have the latest key added to the Writer. This
    2007             :         //    must be true, because a w.dataBlockBuf is only switched out when a dataBlock is flushed,
    2008             :         //    however, if a dataBlock is flushed, then we add a key to the new w.dataBlockBuf in the
    2009             :         //    addPoint function after the flush occurs.
    2010           1 :         if w.dataBlockBuf.dataBlock.nEntries >= 1 {
    2011           1 :                 w.meta.SetLargestPointKey(w.dataBlockBuf.dataBlock.getCurKey().Clone())
    2012           1 :         }
    2013             : 
    2014             :         // Finish the last data block, or force an empty data block if there
    2015             :         // aren't any data blocks at all.
    2016           1 :         if w.dataBlockBuf.dataBlock.nEntries > 0 || w.indexBlock.block.nEntries == 0 {
    2017           1 :                 bh, err := w.writeBlock(w.dataBlockBuf.dataBlock.finish(), w.compression, &w.dataBlockBuf.blockBuf)
    2018           1 :                 if err != nil {
    2019           0 :                         return err
    2020           0 :                 }
    2021           1 :                 bhp, err := w.maybeAddBlockPropertiesToBlockHandle(bh)
    2022           1 :                 if err != nil {
    2023           0 :                         return err
    2024           0 :                 }
    2025           1 :                 prevKey := w.dataBlockBuf.dataBlock.getCurKey()
    2026           1 :                 if err := w.addIndexEntrySync(prevKey, InternalKey{}, bhp, w.dataBlockBuf.tmp[:]); err != nil {
    2027           0 :                         return err
    2028           0 :                 }
    2029             :         }
    2030           1 :         w.props.DataSize = w.meta.Size
    2031           1 : 
    2032           1 :         // Write the filter block.
    2033           1 :         var metaindex rawBlockWriter
    2034           1 :         metaindex.restartInterval = 1
    2035           1 :         if w.filter != nil {
    2036           1 :                 b, err := w.filter.finish()
    2037           1 :                 if err != nil {
    2038           0 :                         return err
    2039           0 :                 }
    2040           1 :                 bh, err := w.writeBlock(b, NoCompression, &w.blockBuf)
    2041           1 :                 if err != nil {
    2042           0 :                         return err
    2043           0 :                 }
    2044           1 :                 n := encodeBlockHandle(w.blockBuf.tmp[:], bh)
    2045           1 :                 metaindex.add(InternalKey{UserKey: []byte(w.filter.metaName())}, w.blockBuf.tmp[:n])
    2046           1 :                 w.props.FilterPolicyName = w.filter.policyName()
    2047           1 :                 w.props.FilterSize = bh.Length
    2048             :         }
    2049             : 
    2050           1 :         var indexBH BlockHandle
    2051           1 :         if w.twoLevelIndex {
    2052           1 :                 w.props.IndexType = twoLevelIndex
    2053           1 :                 // Write the two level index block.
    2054           1 :                 indexBH, err = w.writeTwoLevelIndex()
    2055           1 :                 if err != nil {
    2056           0 :                         return err
    2057           0 :                 }
    2058           1 :         } else {
    2059           1 :                 w.props.IndexType = binarySearchIndex
    2060           1 :                 // NB: RocksDB includes the block trailer length in the index size
    2061           1 :                 // property, though it doesn't include the trailer in the filter size
    2062           1 :                 // property.
    2063           1 :                 w.props.IndexSize = uint64(w.indexBlock.estimatedSize()) + blockTrailerLen
    2064           1 :                 w.props.NumDataBlocks = uint64(w.indexBlock.block.nEntries)
    2065           1 : 
    2066           1 :                 // Write the single level index block.
    2067           1 :                 indexBH, err = w.writeBlock(w.indexBlock.finish(), w.compression, &w.blockBuf)
    2068           1 :                 if err != nil {
    2069           0 :                         return err
    2070           0 :                 }
    2071             :         }
    2072             : 
    2073             :         // Write the range-del block. The block handle must added to the meta index block
    2074             :         // after the properties block has been written. This is because the entries in the
    2075             :         // metaindex block must be sorted by key.
    2076           1 :         var rangeDelBH BlockHandle
    2077           1 :         if w.props.NumRangeDeletions > 0 {
    2078           1 :                 if !w.rangeDelV1Format {
    2079           1 :                         // Because the range tombstones are fragmented in the v2 format, the end
    2080           1 :                         // key of the last added range tombstone will be the largest range
    2081           1 :                         // tombstone key. Note that we need to make this into a range deletion
    2082           1 :                         // sentinel because sstable boundaries are inclusive while the end key of
    2083           1 :                         // a range deletion tombstone is exclusive. A Clone() is necessary as
    2084           1 :                         // rangeDelBlock.curValue is the same slice that will get passed
    2085           1 :                         // into w.writer, and some implementations of vfs.File mutate the
    2086           1 :                         // slice passed into Write(). Also, w.meta will often outlive the
    2087           1 :                         // blockWriter, and so cloning curValue allows the rangeDelBlock's
    2088           1 :                         // internal buffer to get gc'd.
    2089           1 :                         k := base.MakeRangeDeleteSentinelKey(w.rangeDelBlock.curValue).Clone()
    2090           1 :                         w.meta.SetLargestRangeDelKey(k)
    2091           1 :                 }
    2092           1 :                 rangeDelBH, err = w.writeBlock(w.rangeDelBlock.finish(), NoCompression, &w.blockBuf)
    2093           1 :                 if err != nil {
    2094           0 :                         return err
    2095           0 :                 }
    2096             :         }
    2097             : 
    2098             :         // Write the range-key block, flushing any remaining spans from the
    2099             :         // fragmenter first.
    2100           1 :         w.fragmenter.Finish()
    2101           1 : 
    2102           1 :         var rangeKeyBH BlockHandle
    2103           1 :         if w.props.NumRangeKeys() > 0 {
    2104           1 :                 key := w.rangeKeyBlock.getCurKey()
    2105           1 :                 kind := key.Kind()
    2106           1 :                 endKey, _, ok := rangekey.DecodeEndKey(kind, w.rangeKeyBlock.curValue)
    2107           1 :                 if !ok {
    2108           0 :                         return errors.Newf("invalid end key: %s", w.rangeKeyBlock.curValue)
    2109           0 :                 }
    2110           1 :                 k := base.MakeExclusiveSentinelKey(kind, endKey).Clone()
    2111           1 :                 w.meta.SetLargestRangeKey(k)
    2112           1 :                 // TODO(travers): The lack of compression on the range key block matches the
    2113           1 :                 // lack of compression on the range-del block. Revisit whether we want to
    2114           1 :                 // enable compression on this block.
    2115           1 :                 rangeKeyBH, err = w.writeBlock(w.rangeKeyBlock.finish(), NoCompression, &w.blockBuf)
    2116           1 :                 if err != nil {
    2117           0 :                         return err
    2118           0 :                 }
    2119             :         }
    2120             : 
    2121           1 :         if w.valueBlockWriter != nil {
    2122           1 :                 vbiHandle, vbStats, err := w.valueBlockWriter.finish(w, w.meta.Size)
    2123           1 :                 if err != nil {
    2124           0 :                         return err
    2125           0 :                 }
    2126           1 :                 w.props.NumValueBlocks = vbStats.numValueBlocks
    2127           1 :                 w.props.NumValuesInValueBlocks = vbStats.numValuesInValueBlocks
    2128           1 :                 w.props.ValueBlocksSize = vbStats.valueBlocksAndIndexSize
    2129           1 :                 if vbStats.numValueBlocks > 0 {
    2130           1 :                         n := encodeValueBlocksIndexHandle(w.blockBuf.tmp[:], vbiHandle)
    2131           1 :                         metaindex.add(InternalKey{UserKey: []byte(metaValueIndexName)}, w.blockBuf.tmp[:n])
    2132           1 :                 }
    2133             :         }
    2134             : 
    2135             :         // Add the range key block handle to the metaindex block. Note that we add the
    2136             :         // block handle to the metaindex block before the other meta blocks as the
    2137             :         // metaindex block entries must be sorted, and the range key block name sorts
    2138             :         // before the other block names.
    2139           1 :         if w.props.NumRangeKeys() > 0 {
    2140           1 :                 n := encodeBlockHandle(w.blockBuf.tmp[:], rangeKeyBH)
    2141           1 :                 metaindex.add(InternalKey{UserKey: []byte(metaRangeKeyName)}, w.blockBuf.tmp[:n])
    2142           1 :         }
    2143             : 
    2144           1 :         {
    2145           1 :                 // Finish and record the prop collectors if props are not yet recorded.
    2146           1 :                 // Pre-computed props might have been copied by specialized sst creators
    2147           1 :                 // like suffix replacer.
    2148           1 :                 if len(w.props.UserProperties) == 0 {
    2149           1 :                         userProps := make(map[string]string)
    2150           1 :                         for i := range w.blockPropCollectors {
    2151           1 :                                 scratch := w.blockPropsEncoder.getScratchForProp()
    2152           1 :                                 // Place the shortID in the first byte.
    2153           1 :                                 scratch = append(scratch, byte(i))
    2154           1 :                                 buf, err := w.blockPropCollectors[i].FinishTable(scratch)
    2155           1 :                                 if err != nil {
    2156           0 :                                         return err
    2157           0 :                                 }
    2158           1 :                                 var prop string
    2159           1 :                                 if len(buf) > 0 {
    2160           1 :                                         prop = string(buf)
    2161           1 :                                 }
    2162             :                                 // NB: The property is populated in the map even if it is the
    2163             :                                 // empty string, since the presence in the map is what indicates
    2164             :                                 // that the block property collector was used when writing.
    2165           1 :                                 userProps[w.blockPropCollectors[i].Name()] = prop
    2166             :                         }
    2167           1 :                         if len(userProps) > 0 {
    2168           1 :                                 w.props.UserProperties = userProps
    2169           1 :                         }
    2170             :                 }
    2171             : 
    2172             :                 // Write the properties block.
    2173           1 :                 var raw rawBlockWriter
    2174           1 :                 // The restart interval is set to infinity because the properties block
    2175           1 :                 // is always read sequentially and cached in a heap located object. This
    2176           1 :                 // reduces table size without a significant impact on performance.
    2177           1 :                 raw.restartInterval = propertiesBlockRestartInterval
    2178           1 :                 w.props.CompressionOptions = rocksDBCompressionOptions
    2179           1 :                 w.props.save(w.tableFormat, &raw)
    2180           1 :                 bh, err := w.writeBlock(raw.finish(), NoCompression, &w.blockBuf)
    2181           1 :                 if err != nil {
    2182           0 :                         return err
    2183           0 :                 }
    2184           1 :                 n := encodeBlockHandle(w.blockBuf.tmp[:], bh)
    2185           1 :                 metaindex.add(InternalKey{UserKey: []byte(metaPropertiesName)}, w.blockBuf.tmp[:n])
    2186             :         }
    2187             : 
    2188             :         // Add the range deletion block handle to the metaindex block.
    2189           1 :         if w.props.NumRangeDeletions > 0 {
    2190           1 :                 n := encodeBlockHandle(w.blockBuf.tmp[:], rangeDelBH)
    2191           1 :                 // The v2 range-del block encoding is backwards compatible with the v1
    2192           1 :                 // encoding. We add meta-index entries for both the old name and the new
    2193           1 :                 // name so that old code can continue to find the range-del block and new
    2194           1 :                 // code knows that the range tombstones in the block are fragmented and
    2195           1 :                 // sorted.
    2196           1 :                 metaindex.add(InternalKey{UserKey: []byte(metaRangeDelName)}, w.blockBuf.tmp[:n])
    2197           1 :                 if !w.rangeDelV1Format {
    2198           1 :                         metaindex.add(InternalKey{UserKey: []byte(metaRangeDelV2Name)}, w.blockBuf.tmp[:n])
    2199           1 :                 }
    2200             :         }
    2201             : 
    2202             :         // Write the metaindex block. It might be an empty block, if the filter
    2203             :         // policy is nil. NoCompression is specified because a) RocksDB never
    2204             :         // compresses the meta-index block and b) RocksDB has some code paths which
    2205             :         // expect the meta-index block to not be compressed.
    2206           1 :         metaindexBH, err := w.writeBlock(metaindex.blockWriter.finish(), NoCompression, &w.blockBuf)
    2207           1 :         if err != nil {
    2208           0 :                 return err
    2209           0 :         }
    2210             : 
    2211             :         // Write the table footer.
    2212           1 :         footer := footer{
    2213           1 :                 format:      w.tableFormat,
    2214           1 :                 checksum:    w.blockBuf.checksummer.checksumType,
    2215           1 :                 metaindexBH: metaindexBH,
    2216           1 :                 indexBH:     indexBH,
    2217           1 :         }
    2218           1 :         encoded := footer.encode(w.blockBuf.tmp[:])
    2219           1 :         if err := w.writable.Write(footer.encode(w.blockBuf.tmp[:])); err != nil {
    2220           0 :                 return err
    2221           0 :         }
    2222           1 :         w.meta.Size += uint64(len(encoded))
    2223           1 :         w.meta.Properties = w.props
    2224           1 : 
    2225           1 :         // Check that the features present in the table are compatible with the format
    2226           1 :         // configured for the table.
    2227           1 :         if err = w.assertFormatCompatibility(); err != nil {
    2228           0 :                 return err
    2229           0 :         }
    2230             : 
    2231           1 :         if err := w.writable.Finish(); err != nil {
    2232           0 :                 w.writable = nil
    2233           0 :                 return err
    2234           0 :         }
    2235           1 :         w.writable = nil
    2236           1 : 
    2237           1 :         w.dataBlockBuf.clear()
    2238           1 :         dataBlockBufPool.Put(w.dataBlockBuf)
    2239           1 :         w.dataBlockBuf = nil
    2240           1 :         w.indexBlock.clear()
    2241           1 :         indexBlockBufPool.Put(w.indexBlock)
    2242           1 :         w.indexBlock = nil
    2243           1 : 
    2244           1 :         // Make any future calls to Set or Close return an error.
    2245           1 :         w.err = errWriterClosed
    2246           1 :         return nil
    2247             : }
    2248             : 
    2249             : // EstimatedSize returns the estimated size of the sstable being written if a
    2250             : // call to Finish() was made without adding additional keys.
    2251           1 : func (w *Writer) EstimatedSize() uint64 {
    2252           1 :         if w == nil {
    2253           0 :                 return 0
    2254           0 :         }
    2255           1 :         return w.coordination.sizeEstimate.size() +
    2256           1 :                 uint64(w.dataBlockBuf.dataBlock.estimatedSize()) +
    2257           1 :                 w.indexBlock.estimatedSize()
    2258             : }
    2259             : 
    2260             : // Metadata returns the metadata for the finished sstable. Only valid to call
    2261             : // after the sstable has been finished.
    2262           1 : func (w *Writer) Metadata() (*WriterMetadata, error) {
    2263           1 :         if w.writable != nil {
    2264           0 :                 return nil, errors.New("pebble: writer is not closed")
    2265           0 :         }
    2266           1 :         return &w.meta, nil
    2267             : }
    2268             : 
    2269             : // WriterOption provide an interface to do work on Writer while it is being
    2270             : // opened.
    2271             : type WriterOption interface {
    2272             :         // writerApply is called on the writer during opening in order to set
    2273             :         // internal parameters.
    2274             :         writerApply(*Writer)
    2275             : }
    2276             : 
    2277             : // NewWriter returns a new table writer for the file. Closing the writer will
    2278             : // close the file.
    2279           1 : func NewWriter(writable objstorage.Writable, o WriterOptions, extraOpts ...WriterOption) *Writer {
    2280           1 :         o = o.ensureDefaults()
    2281           1 :         w := &Writer{
    2282           1 :                 writable: writable,
    2283           1 :                 meta: WriterMetadata{
    2284           1 :                         SmallestSeqNum: math.MaxUint64,
    2285           1 :                 },
    2286           1 :                 dataBlockOptions: flushDecisionOptions{
    2287           1 :                         blockSize:               o.BlockSize,
    2288           1 :                         blockSizeThreshold:      (o.BlockSize*o.BlockSizeThreshold + 99) / 100,
    2289           1 :                         sizeClassAwareThreshold: (o.BlockSize*o.SizeClassAwareThreshold + 99) / 100,
    2290           1 :                 },
    2291           1 :                 indexBlockOptions: flushDecisionOptions{
    2292           1 :                         blockSize:               o.IndexBlockSize,
    2293           1 :                         blockSizeThreshold:      (o.IndexBlockSize*o.BlockSizeThreshold + 99) / 100,
    2294           1 :                         sizeClassAwareThreshold: (o.IndexBlockSize*o.SizeClassAwareThreshold + 99) / 100,
    2295           1 :                 },
    2296           1 :                 compare:              o.Comparer.Compare,
    2297           1 :                 split:                o.Comparer.Split,
    2298           1 :                 formatKey:            o.Comparer.FormatKey,
    2299           1 :                 compression:          o.Compression,
    2300           1 :                 separator:            o.Comparer.Separator,
    2301           1 :                 successor:            o.Comparer.Successor,
    2302           1 :                 tableFormat:          o.TableFormat,
    2303           1 :                 isStrictObsolete:     o.IsStrictObsolete,
    2304           1 :                 writingToLowestLevel: o.WritingToLowestLevel,
    2305           1 :                 cache:                o.Cache,
    2306           1 :                 restartInterval:      o.BlockRestartInterval,
    2307           1 :                 checksumType:         o.Checksum,
    2308           1 :                 indexBlock:           newIndexBlockBuf(o.Parallelism),
    2309           1 :                 rangeDelBlock: blockWriter{
    2310           1 :                         restartInterval: 1,
    2311           1 :                 },
    2312           1 :                 rangeKeyBlock: blockWriter{
    2313           1 :                         restartInterval: 1,
    2314           1 :                 },
    2315           1 :                 topLevelIndexBlock: blockWriter{
    2316           1 :                         restartInterval: 1,
    2317           1 :                 },
    2318           1 :                 fragmenter: keyspan.Fragmenter{
    2319           1 :                         Cmp:    o.Comparer.Compare,
    2320           1 :                         Format: o.Comparer.FormatKey,
    2321           1 :                 },
    2322           1 :                 allocatorSizeClasses: o.AllocatorSizeClasses,
    2323           1 :         }
    2324           1 :         if w.tableFormat >= TableFormatPebblev3 {
    2325           1 :                 w.shortAttributeExtractor = o.ShortAttributeExtractor
    2326           1 :                 w.requiredInPlaceValueBound = o.RequiredInPlaceValueBound
    2327           1 :                 if !o.DisableValueBlocks {
    2328           1 :                         w.valueBlockWriter = newValueBlockWriter(
    2329           1 :                                 w.dataBlockOptions.blockSize, w.dataBlockOptions.blockSizeThreshold, w.compression, w.checksumType, func(compressedSize int) {
    2330           1 :                                         w.coordination.sizeEstimate.dataBlockCompressed(compressedSize, 0)
    2331           1 :                                 })
    2332             :                 }
    2333             :         }
    2334             : 
    2335           1 :         w.dataBlockBuf = newDataBlockBuf(w.restartInterval, w.checksumType)
    2336           1 : 
    2337           1 :         w.blockBuf = blockBuf{
    2338           1 :                 checksummer: checksummer{checksumType: o.Checksum},
    2339           1 :         }
    2340           1 : 
    2341           1 :         w.coordination.init(o.Parallelism, w)
    2342           1 : 
    2343           1 :         if writable == nil {
    2344           0 :                 w.err = errors.New("pebble: nil writable")
    2345           0 :                 return w
    2346           0 :         }
    2347             : 
    2348             :         // Note that WriterOptions are applied in two places; the ones with a
    2349             :         // preApply() method are applied here. The rest are applied down below after
    2350             :         // default properties are set.
    2351           1 :         type preApply interface{ preApply() }
    2352           1 :         for _, opt := range extraOpts {
    2353           1 :                 if _, ok := opt.(preApply); ok {
    2354           1 :                         opt.writerApply(w)
    2355           1 :                 }
    2356             :         }
    2357             : 
    2358           1 :         if o.FilterPolicy != nil {
    2359           1 :                 switch o.FilterType {
    2360           1 :                 case TableFilter:
    2361           1 :                         w.filter = newTableFilterWriter(o.FilterPolicy)
    2362           0 :                 default:
    2363           0 :                         panic(fmt.Sprintf("unknown filter type: %v", o.FilterType))
    2364             :                 }
    2365             :         }
    2366             : 
    2367           1 :         w.props.ComparerName = o.Comparer.Name
    2368           1 :         w.props.CompressionName = o.Compression.String()
    2369           1 :         w.props.MergerName = o.MergerName
    2370           1 :         w.props.PropertyCollectorNames = "[]"
    2371           1 : 
    2372           1 :         numBlockPropertyCollectors := len(o.BlockPropertyCollectors)
    2373           1 :         if w.tableFormat >= TableFormatPebblev4 {
    2374           1 :                 numBlockPropertyCollectors++
    2375           1 :         }
    2376             : 
    2377           1 :         if numBlockPropertyCollectors > 0 {
    2378           1 :                 if numBlockPropertyCollectors > maxPropertyCollectors {
    2379           0 :                         w.err = errors.New("pebble: too many block property collectors")
    2380           0 :                         return w
    2381           0 :                 }
    2382           1 :                 w.blockPropCollectors = make([]BlockPropertyCollector, 0, numBlockPropertyCollectors)
    2383           1 :                 for _, constructFn := range o.BlockPropertyCollectors {
    2384           1 :                         w.blockPropCollectors = append(w.blockPropCollectors, constructFn())
    2385           1 :                 }
    2386           1 :                 if w.tableFormat >= TableFormatPebblev4 {
    2387           1 :                         w.blockPropCollectors = append(w.blockPropCollectors, &w.obsoleteCollector)
    2388           1 :                 }
    2389             : 
    2390           1 :                 var buf bytes.Buffer
    2391           1 :                 buf.WriteString("[")
    2392           1 :                 for i := range w.blockPropCollectors {
    2393           1 :                         if i > 0 {
    2394           1 :                                 buf.WriteString(",")
    2395           1 :                         }
    2396           1 :                         buf.WriteString(w.blockPropCollectors[i].Name())
    2397             :                 }
    2398           1 :                 buf.WriteString("]")
    2399           1 :                 w.props.PropertyCollectorNames = buf.String()
    2400             :         }
    2401             : 
    2402             :         // Apply the remaining WriterOptions that do not have a preApply() method.
    2403           1 :         for _, opt := range extraOpts {
    2404           1 :                 if _, ok := opt.(preApply); ok {
    2405           1 :                         continue
    2406             :                 }
    2407           0 :                 opt.writerApply(w)
    2408             :         }
    2409             : 
    2410             :         // Initialize the range key fragmenter and encoder.
    2411           1 :         w.fragmenter.Emit = w.encodeRangeKeySpan
    2412           1 :         w.rangeKeyEncoder.Emit = w.addRangeKey
    2413           1 :         return w
    2414             : }
    2415             : 
    2416             : // internalGetProperties is a private, internal-use-only function that takes a
    2417             : // Writer and returns a pointer to its Properties, allowing direct mutation.
    2418             : // It's used by internal Pebble flushes and compactions to set internal
    2419             : // properties. It gets installed in private.
    2420           1 : func internalGetProperties(w *Writer) *Properties {
    2421           1 :         return &w.props
    2422           1 : }
    2423             : 
    2424           1 : func init() {
    2425           1 :         private.SSTableWriterDisableKeyOrderChecks = func(i interface{}) {
    2426           0 :                 w := i.(*Writer)
    2427           0 :                 w.disableKeyOrderChecks = true
    2428           0 :         }
    2429           1 :         private.SSTableInternalProperties = internalGetProperties
    2430             : }

Generated by: LCOV version 1.14