LCOV - code coverage report
Current view: top level - pebble - batch.go (source / functions) Hit Total Coverage
Test: 2024-05-19 08:15Z 6195a2cb - tests only.lcov Lines: 1185 1371 86.4 %
Date: 2024-05-19 08:15:49 Functions: 0 0 -

          Line data    Source code
       1             : // Copyright 2012 The LevelDB-Go and Pebble Authors. All rights reserved. Use
       2             : // of this source code is governed by a BSD-style license that can be found in
       3             : // the LICENSE file.
       4             : 
       5             : package pebble
       6             : 
       7             : import (
       8             :         "context"
       9             :         "encoding/binary"
      10             :         "fmt"
      11             :         "io"
      12             :         "math"
      13             :         "sort"
      14             :         "sync"
      15             :         "sync/atomic"
      16             :         "time"
      17             :         "unsafe"
      18             : 
      19             :         "github.com/cockroachdb/errors"
      20             :         "github.com/cockroachdb/pebble/batchrepr"
      21             :         "github.com/cockroachdb/pebble/internal/base"
      22             :         "github.com/cockroachdb/pebble/internal/batchskl"
      23             :         "github.com/cockroachdb/pebble/internal/humanize"
      24             :         "github.com/cockroachdb/pebble/internal/invariants"
      25             :         "github.com/cockroachdb/pebble/internal/keyspan"
      26             :         "github.com/cockroachdb/pebble/internal/private"
      27             :         "github.com/cockroachdb/pebble/internal/rangedel"
      28             :         "github.com/cockroachdb/pebble/internal/rangekey"
      29             :         "github.com/cockroachdb/pebble/internal/rawalloc"
      30             : )
      31             : 
      32             : const (
      33             :         invalidBatchCount = 1<<32 - 1
      34             :         maxVarintLen32    = 5
      35             : 
      36             :         defaultBatchInitialSize     = 1 << 10 // 1 KB
      37             :         defaultBatchMaxRetainedSize = 1 << 20 // 1 MB
      38             : )
      39             : 
      40             : // ErrNotIndexed means that a read operation on a batch failed because the
      41             : // batch is not indexed and thus doesn't support reads.
      42             : var ErrNotIndexed = errors.New("pebble: batch not indexed")
      43             : 
      44             : // ErrInvalidBatch indicates that a batch is invalid or otherwise corrupted.
      45             : var ErrInvalidBatch = batchrepr.ErrInvalidBatch
      46             : 
      47             : // ErrBatchTooLarge indicates that a batch is invalid or otherwise corrupted.
      48             : var ErrBatchTooLarge = base.MarkCorruptionError(errors.Newf("pebble: batch too large: >= %s", humanize.Bytes.Uint64(maxBatchSize)))
      49             : 
      50             : // DeferredBatchOp represents a batch operation (eg. set, merge, delete) that is
      51             : // being inserted into the batch. Indexing is not performed on the specified key
      52             : // until Finish is called, hence the name deferred. This struct lets the caller
      53             : // copy or encode keys/values directly into the batch representation instead of
      54             : // copying into an intermediary buffer then having pebble.Batch copy off of it.
      55             : type DeferredBatchOp struct {
      56             :         index *batchskl.Skiplist
      57             : 
      58             :         // Key and Value point to parts of the binary batch representation where
      59             :         // keys and values should be encoded/copied into. len(Key) and len(Value)
      60             :         // bytes must be copied into these slices respectively before calling
      61             :         // Finish(). Changing where these slices point to is not allowed.
      62             :         Key, Value []byte
      63             :         offset     uint32
      64             : }
      65             : 
      66             : // Finish completes the addition of this batch operation, and adds it to the
      67             : // index if necessary. Must be called once (and exactly once) keys/values
      68             : // have been filled into Key and Value. Not calling Finish or not
      69             : // copying/encoding keys will result in an incomplete index, and calling Finish
      70             : // twice may result in a panic.
      71           1 : func (d DeferredBatchOp) Finish() error {
      72           1 :         if d.index != nil {
      73           0 :                 if err := d.index.Add(d.offset); err != nil {
      74           0 :                         return err
      75           0 :                 }
      76             :         }
      77           1 :         return nil
      78             : }
      79             : 
      80             : // A Batch is a sequence of Sets, Merges, Deletes, DeleteRanges, RangeKeySets,
      81             : // RangeKeyUnsets, and/or RangeKeyDeletes that are applied atomically. Batch
      82             : // implements the Reader interface, but only an indexed batch supports reading
      83             : // (without error) via Get or NewIter. A non-indexed batch will return
      84             : // ErrNotIndexed when read from. A batch is not safe for concurrent use, and
      85             : // consumers should use a batch per goroutine or provide their own
      86             : // synchronization.
      87             : //
      88             : // # Indexing
      89             : //
      90             : // Batches can be optionally indexed (see DB.NewIndexedBatch). An indexed batch
      91             : // allows iteration via an Iterator (see Batch.NewIter). The iterator provides
      92             : // a merged view of the operations in the batch and the underlying
      93             : // database. This is implemented by treating the batch as an additional layer
      94             : // in the LSM where every entry in the batch is considered newer than any entry
      95             : // in the underlying database (batch entries have the InternalKeySeqNumBatch
      96             : // bit set). By treating the batch as an additional layer in the LSM, iteration
      97             : // supports all batch operations (i.e. Set, Merge, Delete, DeleteRange,
      98             : // RangeKeySet, RangeKeyUnset, RangeKeyDelete) with minimal effort.
      99             : //
     100             : // The same key can be operated on multiple times in a batch, though only the
     101             : // latest operation will be visible. For example, Put("a", "b"), Delete("a")
     102             : // will cause the key "a" to not be visible in the batch. Put("a", "b"),
     103             : // Put("a", "c") will cause a read of "a" to return the value "c".
     104             : //
     105             : // The batch index is implemented via an skiplist (internal/batchskl). While
     106             : // the skiplist implementation is very fast, inserting into an indexed batch is
     107             : // significantly slower than inserting into a non-indexed batch. Only use an
     108             : // indexed batch if you require reading from it.
     109             : //
     110             : // # Atomic commit
     111             : //
     112             : // The operations in a batch are persisted by calling Batch.Commit which is
     113             : // equivalent to calling DB.Apply(batch). A batch is committed atomically by
     114             : // writing the internal batch representation to the WAL, adding all of the
     115             : // batch operations to the memtable associated with the WAL, and then
     116             : // incrementing the visible sequence number so that subsequent reads can see
     117             : // the effects of the batch operations. If WriteOptions.Sync is true, a call to
     118             : // Batch.Commit will guarantee that the batch is persisted to disk before
     119             : // returning. See commitPipeline for more on the implementation details.
     120             : //
     121             : // # Large batches
     122             : //
     123             : // The size of a batch is limited only by available memory (be aware that
     124             : // indexed batches require considerably additional memory for the skiplist
     125             : // structure). A given WAL file has a single memtable associated with it (this
     126             : // restriction could be removed, but doing so is onerous and complex). And a
     127             : // memtable has a fixed size due to the underlying fixed size arena. Note that
     128             : // this differs from RocksDB where a memtable can grow arbitrarily large using
     129             : // a list of arena chunks. In RocksDB this is accomplished by storing pointers
     130             : // in the arena memory, but that isn't possible in Go.
     131             : //
     132             : // During Batch.Commit, a batch which is larger than a threshold (>
     133             : // MemTableSize/2) is wrapped in a flushableBatch and inserted into the queue
     134             : // of memtables. A flushableBatch forces WAL to be rotated, but that happens
     135             : // anyways when the memtable becomes full so this does not cause significant
     136             : // WAL churn. Because the flushableBatch is readable as another layer in the
     137             : // LSM, Batch.Commit returns as soon as the flushableBatch has been added to
     138             : // the queue of memtables.
     139             : //
     140             : // Internally, a flushableBatch provides Iterator support by sorting the batch
     141             : // contents (the batch is sorted once, when it is added to the memtable
     142             : // queue). Sorting the batch contents and insertion of the contents into a
     143             : // memtable have the same big-O time, but the constant factor dominates
     144             : // here. Sorting is significantly faster and uses significantly less memory.
     145             : //
     146             : // # Internal representation
     147             : //
     148             : // The internal batch representation is a contiguous byte buffer with a fixed
     149             : // 12-byte header, followed by a series of records.
     150             : //
     151             : //      +-------------+------------+--- ... ---+
     152             : //      | SeqNum (8B) | Count (4B) |  Entries  |
     153             : //      +-------------+------------+--- ... ---+
     154             : //
     155             : // Each record has a 1-byte kind tag prefix, followed by 1 or 2 length prefixed
     156             : // strings (varstring):
     157             : //
     158             : //      +-----------+-----------------+-------------------+
     159             : //      | Kind (1B) | Key (varstring) | Value (varstring) |
     160             : //      +-----------+-----------------+-------------------+
     161             : //
     162             : // A varstring is a varint32 followed by N bytes of data. The Kind tags are
     163             : // exactly those specified by InternalKeyKind. The following table shows the
     164             : // format for records of each kind:
     165             : //
     166             : //      InternalKeyKindDelete         varstring
     167             : //      InternalKeyKindLogData        varstring
     168             : //      InternalKeyKindIngestSST      varstring
     169             : //      InternalKeyKindSet            varstring varstring
     170             : //      InternalKeyKindMerge          varstring varstring
     171             : //      InternalKeyKindRangeDelete    varstring varstring
     172             : //      InternalKeyKindRangeKeySet    varstring varstring
     173             : //      InternalKeyKindRangeKeyUnset  varstring varstring
     174             : //      InternalKeyKindRangeKeyDelete varstring varstring
     175             : //
     176             : // The intuitive understanding here are that the arguments to Delete, Set,
     177             : // Merge, DeleteRange and RangeKeyDelete are encoded into the batch. The
     178             : // RangeKeySet and RangeKeyUnset operations are slightly more complicated,
     179             : // encoding their end key, suffix and value [in the case of RangeKeySet] within
     180             : // the Value varstring. For more information on the value encoding for
     181             : // RangeKeySet and RangeKeyUnset, see the internal/rangekey package.
     182             : //
     183             : // The internal batch representation is the on disk format for a batch in the
     184             : // WAL, and thus stable. New record kinds may be added, but the existing ones
     185             : // will not be modified.
     186             : type Batch struct {
     187             :         batchInternal
     188             :         applied atomic.Bool
     189             :         // lifecycle is used to negotiate the lifecycle of a Batch. A Batch and its
     190             :         // underlying batchInternal.data byte slice may be reused. There are two
     191             :         // mechanisms for reuse:
     192             :         //
     193             :         // 1. The caller may explicitly call [Batch.Reset] to reset the batch to be
     194             :         //    empty (while retaining the underlying repr's buffer).
     195             :         // 2. The caller may call [Batch.Close], passing ownership off to Pebble,
     196             :         //    which may reuse the batch's memory to service new callers to
     197             :         //    [DB.NewBatch].
     198             :         //
     199             :         // There's a complication to reuse: When WAL failover is configured, the
     200             :         // Pebble commit pipeline may retain a pointer to the batch.data beyond the
     201             :         // return of [Batch.Commit]. The user of the Batch may commit their batch
     202             :         // and call Close or Reset before the commit pipeline is finished reading
     203             :         // the data slice. Recycling immediately would cause a data race.
     204             :         //
     205             :         // To resolve this data race, this [lifecycle] atomic is used to determine
     206             :         // safety and responsibility of reusing a batch. The low bits of the atomic
     207             :         // are used as a reference count (really just the lowest bit—in practice
     208             :         // there's only 1 code path that references). The [Batch] is passed into
     209             :         // [wal.Writer]'s WriteRecord method as a [RefCount] implementation. The
     210             :         // wal.Writer guarantees that if it will read [Batch.data] after the call to
     211             :         // WriteRecord returns, it will increment the reference count. When it's
     212             :         // complete, it'll unreference through invoking [Batch.Unref].
     213             :         //
     214             :         // When the committer of a batch indicates intent to recycle a Batch through
     215             :         // calling [Batch.Reset] or [Batch.Close], the lifecycle atomic is read. If
     216             :         // an outstanding reference remains, it's unsafe to reuse Batch.data yet. In
     217             :         // [Batch.Reset] the caller wants to reuse the [Batch] immediately, so we
     218             :         // discard b.data to recycle the struct but not the underlying byte slice.
     219             :         // In [Batch.Close], we set a special high bit [batchClosedBit] on lifecycle
     220             :         // that indicates that the user will not use [Batch] again and we're free to
     221             :         // recycle it when safe. When the commit pipeline eventually calls
     222             :         // [Batch.Unref], the [batchClosedBit] is noticed and the batch is
     223             :         // recycled.
     224             :         lifecycle atomic.Int32
     225             : }
     226             : 
     227             : // batchClosedBit is a bit stored on Batch.lifecycle to indicate that the user
     228             : // called [Batch.Close] to release a Batch, but an open reference count
     229             : // prevented immediate recycling.
     230             : const batchClosedBit = 1 << 30
     231             : 
     232             : // TODO(jackson): Hide the wal.RefCount implementation from the public Batch interface.
     233             : 
     234             : // Ref implements wal.RefCount. If the WAL writer may need to read b.data after
     235             : // it returns, it invokes Ref to increment the lifecycle's reference count. When
     236             : // it's finished, it invokes Unref.
     237           1 : func (b *Batch) Ref() {
     238           1 :         b.lifecycle.Add(+1)
     239           1 : }
     240             : 
     241             : // Unref implemets wal.RefCount.
     242           1 : func (b *Batch) Unref() {
     243           1 :         if v := b.lifecycle.Add(-1); (v ^ batchClosedBit) == 0 {
     244           1 :                 // The [batchClosedBit] high bit is set, and there are no outstanding
     245           1 :                 // references. The user of the Batch called [Batch.Close], expecting the
     246           1 :                 // batch to be recycled. However, our outstanding reference count
     247           1 :                 // prevented recycling. As the last to dereference, we're now
     248           1 :                 // responsible for releasing the batch.
     249           1 :                 b.lifecycle.Store(0)
     250           1 :                 b.release()
     251           1 :         }
     252             : }
     253             : 
     254             : // batchInternal contains the set of fields within Batch that are non-atomic and
     255             : // capable of being reset using a *b = batchInternal{} struct copy.
     256             : type batchInternal struct {
     257             :         // Data is the wire format of a batch's log entry:
     258             :         //   - 8 bytes for a sequence number of the first batch element,
     259             :         //     or zeroes if the batch has not yet been applied,
     260             :         //   - 4 bytes for the count: the number of elements in the batch,
     261             :         //     or "\xff\xff\xff\xff" if the batch is invalid,
     262             :         //   - count elements, being:
     263             :         //     - one byte for the kind
     264             :         //     - the varint-string user key,
     265             :         //     - the varint-string value (if kind != delete).
     266             :         // The sequence number and count are stored in little-endian order.
     267             :         //
     268             :         // The data field can be (but is not guaranteed to be) nil for new
     269             :         // batches. Large batches will set the data field to nil when committed as
     270             :         // the data has been moved to a flushableBatch and inserted into the queue of
     271             :         // memtables.
     272             :         data           []byte
     273             :         cmp            Compare
     274             :         formatKey      base.FormatKey
     275             :         abbreviatedKey AbbreviatedKey
     276             :         opts           batchOptions
     277             : 
     278             :         // An upper bound on required space to add this batch to a memtable.
     279             :         // Note that although batches are limited to 4 GiB in size, that limit
     280             :         // applies to len(data), not the memtable size. The upper bound on the
     281             :         // size of a memtable node is larger than the overhead of the batch's log
     282             :         // encoding, so memTableSize is larger than len(data) and may overflow a
     283             :         // uint32.
     284             :         memTableSize uint64
     285             : 
     286             :         // The db to which the batch will be committed. Do not change this field
     287             :         // after the batch has been created as it might invalidate internal state.
     288             :         // Batch.memTableSize is only refreshed if Batch.db is set. Setting db to
     289             :         // nil once it has been set implies that the Batch has encountered an error.
     290             :         db *DB
     291             : 
     292             :         // The count of records in the batch. This count will be stored in the batch
     293             :         // data whenever Repr() is called.
     294             :         count uint64
     295             : 
     296             :         // The count of range deletions in the batch. Updated every time a range
     297             :         // deletion is added.
     298             :         countRangeDels uint64
     299             : 
     300             :         // The count of range key sets, unsets and deletes in the batch. Updated
     301             :         // every time a RANGEKEYSET, RANGEKEYUNSET or RANGEKEYDEL key is added.
     302             :         countRangeKeys uint64
     303             : 
     304             :         // A deferredOp struct, stored in the Batch so that a pointer can be returned
     305             :         // from the *Deferred() methods rather than a value.
     306             :         deferredOp DeferredBatchOp
     307             : 
     308             :         // An optional skiplist keyed by offset into data of the entry.
     309             :         index         *batchskl.Skiplist
     310             :         rangeDelIndex *batchskl.Skiplist
     311             :         rangeKeyIndex *batchskl.Skiplist
     312             : 
     313             :         // Fragmented range deletion tombstones. Cached the first time a range
     314             :         // deletion iterator is requested. The cache is invalidated whenever a new
     315             :         // range deletion is added to the batch. This cache can only be used when
     316             :         // opening an iterator to read at a batch sequence number >=
     317             :         // tombstonesSeqNum. This is the case for all new iterators created over a
     318             :         // batch but it's not the case for all cloned iterators.
     319             :         tombstones       []keyspan.Span
     320             :         tombstonesSeqNum uint64
     321             : 
     322             :         // Fragmented range key spans. Cached the first time a range key iterator is
     323             :         // requested. The cache is invalidated whenever a new range key
     324             :         // (RangeKey{Set,Unset,Del}) is added to the batch. This cache can only be
     325             :         // used when opening an iterator to read at a batch sequence number >=
     326             :         // tombstonesSeqNum. This is the case for all new iterators created over a
     327             :         // batch but it's not the case for all cloned iterators.
     328             :         rangeKeys       []keyspan.Span
     329             :         rangeKeysSeqNum uint64
     330             : 
     331             :         // The flushableBatch wrapper if the batch is too large to fit in the
     332             :         // memtable.
     333             :         flushable *flushableBatch
     334             : 
     335             :         // minimumFormatMajorVersion indicates the format major version required in
     336             :         // order to commit this batch. If an operation requires a particular format
     337             :         // major version, it ratchets the batch's minimumFormatMajorVersion. When
     338             :         // the batch is committed, this is validated against the database's current
     339             :         // format major version.
     340             :         minimumFormatMajorVersion FormatMajorVersion
     341             : 
     342             :         // Synchronous Apply uses the commit WaitGroup for both publishing the
     343             :         // seqnum and waiting for the WAL fsync (if needed). Asynchronous
     344             :         // ApplyNoSyncWait, which implies WriteOptions.Sync is true, uses the commit
     345             :         // WaitGroup for publishing the seqnum and the fsyncWait WaitGroup for
     346             :         // waiting for the WAL fsync.
     347             :         //
     348             :         // TODO(sumeer): if we find that ApplyNoSyncWait in conjunction with
     349             :         // SyncWait is causing higher memory usage because of the time duration
     350             :         // between when the sync is already done, and a goroutine calls SyncWait
     351             :         // (followed by Batch.Close), we could separate out {fsyncWait, commitErr}
     352             :         // into a separate struct that is allocated separately (using another
     353             :         // sync.Pool), and only that struct needs to outlive Batch.Close (which
     354             :         // could then be called immediately after ApplyNoSyncWait). commitStats
     355             :         // will also need to be in this separate struct.
     356             :         commit    sync.WaitGroup
     357             :         fsyncWait sync.WaitGroup
     358             : 
     359             :         commitStats BatchCommitStats
     360             : 
     361             :         commitErr error
     362             : 
     363             :         // Position bools together to reduce the sizeof the struct.
     364             : 
     365             :         // ingestedSSTBatch indicates that the batch contains one or more key kinds
     366             :         // of InternalKeyKindIngestSST. If the batch contains key kinds of IngestSST
     367             :         // then it will only contain key kinds of IngestSST.
     368             :         ingestedSSTBatch bool
     369             : 
     370             :         // committing is set to true when a batch begins to commit. It's used to
     371             :         // ensure the batch is not mutated concurrently. It is not an atomic
     372             :         // deliberately, so as to avoid the overhead on batch mutations. This is
     373             :         // okay, because under correct usage this field will never be accessed
     374             :         // concurrently. It's only under incorrect usage the memory accesses of this
     375             :         // variable may violate memory safety. Since we don't use atomics here,
     376             :         // false negatives are possible.
     377             :         committing bool
     378             : }
     379             : 
     380             : // BatchCommitStats exposes stats related to committing a batch.
     381             : //
     382             : // NB: there is no Pebble internal tracing (using LoggerAndTracer) of slow
     383             : // batch commits. The caller can use these stats to do their own tracing as
     384             : // needed.
     385             : type BatchCommitStats struct {
     386             :         // TotalDuration is the time spent in DB.{Apply,ApplyNoSyncWait} or
     387             :         // Batch.Commit, plus the time waiting in Batch.SyncWait. If there is a gap
     388             :         // between calling ApplyNoSyncWait and calling SyncWait, that gap could
     389             :         // include some duration in which real work was being done for the commit
     390             :         // and will not be included here. This missing time is considered acceptable
     391             :         // since the goal of these stats is to understand user-facing latency.
     392             :         //
     393             :         // TotalDuration includes time spent in various queues both inside Pebble
     394             :         // and outside Pebble (I/O queues, goroutine scheduler queue, mutex wait
     395             :         // etc.). For some of these queues (which we consider important) the wait
     396             :         // times are included below -- these expose low-level implementation detail
     397             :         // and are meant for expert diagnosis and subject to change. There may be
     398             :         // unaccounted time after subtracting those values from TotalDuration.
     399             :         TotalDuration time.Duration
     400             :         // SemaphoreWaitDuration is the wait time for semaphores in
     401             :         // commitPipeline.Commit.
     402             :         SemaphoreWaitDuration time.Duration
     403             :         // WALQueueWaitDuration is the wait time for allocating memory blocks in the
     404             :         // LogWriter (due to the LogWriter not writing fast enough). At the moment
     405             :         // this is duration is always zero because a single WAL will allow
     406             :         // allocating memory blocks up to the entire memtable size. In the future,
     407             :         // we may pipeline WALs and bound the WAL queued blocks separately, so this
     408             :         // field is preserved for that possibility.
     409             :         WALQueueWaitDuration time.Duration
     410             :         // MemTableWriteStallDuration is the wait caused by a write stall due to too
     411             :         // many memtables (due to not flushing fast enough).
     412             :         MemTableWriteStallDuration time.Duration
     413             :         // L0ReadAmpWriteStallDuration is the wait caused by a write stall due to
     414             :         // high read amplification in L0 (due to not compacting fast enough out of
     415             :         // L0).
     416             :         L0ReadAmpWriteStallDuration time.Duration
     417             :         // WALRotationDuration is the wait time for WAL rotation, which includes
     418             :         // syncing and closing the old WAL and creating (or reusing) a new one.
     419             :         WALRotationDuration time.Duration
     420             :         // CommitWaitDuration is the wait for publishing the seqnum plus the
     421             :         // duration for the WAL sync (if requested). The former should be tiny and
     422             :         // one can assume that this is all due to the WAL sync.
     423             :         CommitWaitDuration time.Duration
     424             : }
     425             : 
     426             : var _ Reader = (*Batch)(nil)
     427             : var _ Writer = (*Batch)(nil)
     428             : 
     429             : var batchPool = sync.Pool{
     430           1 :         New: func() interface{} {
     431           1 :                 return &Batch{}
     432           1 :         },
     433             : }
     434             : 
     435             : type indexedBatch struct {
     436             :         batch Batch
     437             :         index batchskl.Skiplist
     438             : }
     439             : 
     440             : var indexedBatchPool = sync.Pool{
     441           1 :         New: func() interface{} {
     442           1 :                 return &indexedBatch{}
     443           1 :         },
     444             : }
     445             : 
     446           1 : func newBatch(db *DB, opts ...BatchOption) *Batch {
     447           1 :         b := batchPool.Get().(*Batch)
     448           1 :         b.db = db
     449           1 :         b.opts.ensureDefaults()
     450           1 :         for _, opt := range opts {
     451           1 :                 opt(&b.opts)
     452           1 :         }
     453           1 :         return b
     454             : }
     455             : 
     456           1 : func newBatchWithSize(db *DB, size int, opts ...BatchOption) *Batch {
     457           1 :         b := newBatch(db, opts...)
     458           1 :         if cap(b.data) < size {
     459           1 :                 b.data = rawalloc.New(0, size)
     460           1 :         }
     461           1 :         return b
     462             : }
     463             : 
     464           1 : func newIndexedBatch(db *DB, comparer *Comparer) *Batch {
     465           1 :         i := indexedBatchPool.Get().(*indexedBatch)
     466           1 :         i.batch.cmp = comparer.Compare
     467           1 :         i.batch.formatKey = comparer.FormatKey
     468           1 :         i.batch.abbreviatedKey = comparer.AbbreviatedKey
     469           1 :         i.batch.db = db
     470           1 :         i.batch.index = &i.index
     471           1 :         i.batch.index.Init(&i.batch.data, i.batch.cmp, i.batch.abbreviatedKey)
     472           1 :         i.batch.opts.ensureDefaults()
     473           1 :         return &i.batch
     474           1 : }
     475             : 
     476           0 : func newIndexedBatchWithSize(db *DB, comparer *Comparer, size int) *Batch {
     477           0 :         b := newIndexedBatch(db, comparer)
     478           0 :         if cap(b.data) < size {
     479           0 :                 b.data = rawalloc.New(0, size)
     480           0 :         }
     481           0 :         return b
     482             : }
     483             : 
     484             : // nextSeqNum returns the batch "sequence number" that will be given to the next
     485             : // key written to the batch. During iteration keys within an indexed batch are
     486             : // given a sequence number consisting of their offset within the batch combined
     487             : // with the base.InternalKeySeqNumBatch bit. These sequence numbers are only
     488             : // used during iteration, and the keys are assigned ordinary sequence numbers
     489             : // when the batch is committed.
     490           1 : func (b *Batch) nextSeqNum() uint64 {
     491           1 :         return uint64(len(b.data)) | base.InternalKeySeqNumBatch
     492           1 : }
     493             : 
     494           1 : func (b *Batch) release() {
     495           1 :         if b.db == nil {
     496           1 :                 // The batch was not created using newBatch or newIndexedBatch, or an error
     497           1 :                 // was encountered. We don't try to reuse batches that encountered an error
     498           1 :                 // because they might be stuck somewhere in the system and attempting to
     499           1 :                 // reuse such batches is a recipe for onerous debugging sessions. Instead,
     500           1 :                 // let the GC do its job.
     501           1 :                 return
     502           1 :         }
     503           1 :         b.db = nil
     504           1 : 
     505           1 :         // NB: This is ugly (it would be cleaner if we could just assign a Batch{}),
     506           1 :         // but necessary so that we can use atomic.StoreUint32 for the Batch.applied
     507           1 :         // field. Without using an atomic to clear that field the Go race detector
     508           1 :         // complains.
     509           1 :         b.reset()
     510           1 :         b.cmp = nil
     511           1 :         b.formatKey = nil
     512           1 :         b.abbreviatedKey = nil
     513           1 : 
     514           1 :         if b.index == nil {
     515           1 :                 batchPool.Put(b)
     516           1 :         } else {
     517           1 :                 b.index, b.rangeDelIndex, b.rangeKeyIndex = nil, nil, nil
     518           1 :                 indexedBatchPool.Put((*indexedBatch)(unsafe.Pointer(b)))
     519           1 :         }
     520             : }
     521             : 
     522           1 : func (b *Batch) refreshMemTableSize() error {
     523           1 :         b.memTableSize = 0
     524           1 :         if len(b.data) < batchrepr.HeaderLen {
     525           1 :                 return nil
     526           1 :         }
     527             : 
     528           1 :         b.countRangeDels = 0
     529           1 :         b.countRangeKeys = 0
     530           1 :         b.minimumFormatMajorVersion = 0
     531           1 :         for r := b.Reader(); ; {
     532           1 :                 kind, key, value, ok, err := r.Next()
     533           1 :                 if !ok {
     534           1 :                         if err != nil {
     535           0 :                                 return err
     536           0 :                         }
     537           1 :                         break
     538             :                 }
     539           1 :                 switch kind {
     540           1 :                 case InternalKeyKindRangeDelete:
     541           1 :                         b.countRangeDels++
     542           1 :                 case InternalKeyKindRangeKeySet, InternalKeyKindRangeKeyUnset, InternalKeyKindRangeKeyDelete:
     543           1 :                         b.countRangeKeys++
     544           1 :                 case InternalKeyKindSet, InternalKeyKindDelete, InternalKeyKindMerge, InternalKeyKindSingleDelete, InternalKeyKindSetWithDelete:
     545             :                         // fallthrough
     546           0 :                 case InternalKeyKindDeleteSized:
     547           0 :                         if b.minimumFormatMajorVersion < FormatDeleteSizedAndObsolete {
     548           0 :                                 b.minimumFormatMajorVersion = FormatDeleteSizedAndObsolete
     549           0 :                         }
     550           1 :                 case InternalKeyKindLogData:
     551           1 :                         // LogData does not contribute to memtable size.
     552           1 :                         continue
     553           1 :                 case InternalKeyKindIngestSST:
     554           1 :                         if b.minimumFormatMajorVersion < FormatFlushableIngest {
     555           1 :                                 b.minimumFormatMajorVersion = FormatFlushableIngest
     556           1 :                         }
     557             :                         // This key kind doesn't contribute to the memtable size.
     558           1 :                         continue
     559           0 :                 default:
     560           0 :                         // Note In some circumstances this might be temporary memory
     561           0 :                         // corruption that can be recovered by discarding the batch and
     562           0 :                         // trying again. In other cases, the batch repr might've been
     563           0 :                         // already persisted elsewhere, and we'll loop continuously trying
     564           0 :                         // to commit the same corrupted batch. The caller is responsible for
     565           0 :                         // distinguishing.
     566           0 :                         return errors.Wrapf(ErrInvalidBatch, "unrecognized kind %v", kind)
     567             :                 }
     568           1 :                 b.memTableSize += memTableEntrySize(len(key), len(value))
     569             :         }
     570           1 :         return nil
     571             : }
     572             : 
     573             : // Apply the operations contained in the batch to the receiver batch.
     574             : //
     575             : // It is safe to modify the contents of the arguments after Apply returns.
     576             : //
     577             : // Apply returns ErrInvalidBatch if the provided batch is invalid in any way.
     578           1 : func (b *Batch) Apply(batch *Batch, _ *WriteOptions) error {
     579           1 :         if b.ingestedSSTBatch {
     580           0 :                 panic("pebble: invalid batch application")
     581             :         }
     582           1 :         if len(batch.data) == 0 {
     583           0 :                 return nil
     584           0 :         }
     585           1 :         if len(batch.data) < batchrepr.HeaderLen {
     586           0 :                 return ErrInvalidBatch
     587           0 :         }
     588             : 
     589           1 :         offset := len(b.data)
     590           1 :         if offset == 0 {
     591           1 :                 b.init(offset)
     592           1 :                 offset = batchrepr.HeaderLen
     593           1 :         }
     594           1 :         b.data = append(b.data, batch.data[batchrepr.HeaderLen:]...)
     595           1 : 
     596           1 :         b.setCount(b.Count() + batch.Count())
     597           1 : 
     598           1 :         if b.db != nil || b.index != nil {
     599           1 :                 // Only iterate over the new entries if we need to track memTableSize or in
     600           1 :                 // order to update the index.
     601           1 :                 for iter := batchrepr.Reader(b.data[offset:]); len(iter) > 0; {
     602           1 :                         offset := uintptr(unsafe.Pointer(&iter[0])) - uintptr(unsafe.Pointer(&b.data[0]))
     603           1 :                         kind, key, value, ok, err := iter.Next()
     604           1 :                         if !ok {
     605           0 :                                 if err != nil {
     606           0 :                                         return err
     607           0 :                                 }
     608           0 :                                 break
     609             :                         }
     610           1 :                         switch kind {
     611           1 :                         case InternalKeyKindRangeDelete:
     612           1 :                                 b.countRangeDels++
     613           1 :                         case InternalKeyKindRangeKeySet, InternalKeyKindRangeKeyUnset, InternalKeyKindRangeKeyDelete:
     614           1 :                                 b.countRangeKeys++
     615           0 :                         case InternalKeyKindIngestSST:
     616           0 :                                 panic("pebble: invalid key kind for batch")
     617           1 :                         case InternalKeyKindLogData:
     618           1 :                                 // LogData does not contribute to memtable size.
     619           1 :                                 continue
     620             :                         case InternalKeyKindSet, InternalKeyKindDelete, InternalKeyKindMerge,
     621           1 :                                 InternalKeyKindSingleDelete, InternalKeyKindSetWithDelete, InternalKeyKindDeleteSized:
     622             :                                 // fallthrough
     623           0 :                         default:
     624           0 :                                 // Note In some circumstances this might be temporary memory
     625           0 :                                 // corruption that can be recovered by discarding the batch and
     626           0 :                                 // trying again. In other cases, the batch repr might've been
     627           0 :                                 // already persisted elsewhere, and we'll loop continuously
     628           0 :                                 // trying to commit the same corrupted batch. The caller is
     629           0 :                                 // responsible for distinguishing.
     630           0 :                                 return errors.Wrapf(ErrInvalidBatch, "unrecognized kind %v", kind)
     631             :                         }
     632           1 :                         if b.index != nil {
     633           1 :                                 var err error
     634           1 :                                 switch kind {
     635           1 :                                 case InternalKeyKindRangeDelete:
     636           1 :                                         b.tombstones = nil
     637           1 :                                         b.tombstonesSeqNum = 0
     638           1 :                                         if b.rangeDelIndex == nil {
     639           1 :                                                 b.rangeDelIndex = batchskl.NewSkiplist(&b.data, b.cmp, b.abbreviatedKey)
     640           1 :                                         }
     641           1 :                                         err = b.rangeDelIndex.Add(uint32(offset))
     642           1 :                                 case InternalKeyKindRangeKeySet, InternalKeyKindRangeKeyUnset, InternalKeyKindRangeKeyDelete:
     643           1 :                                         b.rangeKeys = nil
     644           1 :                                         b.rangeKeysSeqNum = 0
     645           1 :                                         if b.rangeKeyIndex == nil {
     646           1 :                                                 b.rangeKeyIndex = batchskl.NewSkiplist(&b.data, b.cmp, b.abbreviatedKey)
     647           1 :                                         }
     648           1 :                                         err = b.rangeKeyIndex.Add(uint32(offset))
     649           1 :                                 default:
     650           1 :                                         err = b.index.Add(uint32(offset))
     651             :                                 }
     652           1 :                                 if err != nil {
     653           0 :                                         return err
     654           0 :                                 }
     655             :                         }
     656           1 :                         b.memTableSize += memTableEntrySize(len(key), len(value))
     657             :                 }
     658             :         }
     659           1 :         return nil
     660             : }
     661             : 
     662             : // Get gets the value for the given key. It returns ErrNotFound if the Batch
     663             : // does not contain the key.
     664             : //
     665             : // The caller should not modify the contents of the returned slice, but it is
     666             : // safe to modify the contents of the argument after Get returns. The returned
     667             : // slice will remain valid until the returned Closer is closed. On success, the
     668             : // caller MUST call closer.Close() or a memory leak will occur.
     669           1 : func (b *Batch) Get(key []byte) ([]byte, io.Closer, error) {
     670           1 :         if b.index == nil {
     671           0 :                 return nil, nil, ErrNotIndexed
     672           0 :         }
     673           1 :         return b.db.getInternal(key, b, nil /* snapshot */)
     674             : }
     675             : 
     676           1 : func (b *Batch) prepareDeferredKeyValueRecord(keyLen, valueLen int, kind InternalKeyKind) {
     677           1 :         if b.committing {
     678           0 :                 panic("pebble: batch already committing")
     679             :         }
     680           1 :         if len(b.data) == 0 {
     681           1 :                 b.init(keyLen + valueLen + 2*binary.MaxVarintLen64 + batchrepr.HeaderLen)
     682           1 :         }
     683           1 :         b.count++
     684           1 :         b.memTableSize += memTableEntrySize(keyLen, valueLen)
     685           1 : 
     686           1 :         pos := len(b.data)
     687           1 :         b.deferredOp.offset = uint32(pos)
     688           1 :         b.grow(1 + 2*maxVarintLen32 + keyLen + valueLen)
     689           1 :         b.data[pos] = byte(kind)
     690           1 :         pos++
     691           1 : 
     692           1 :         {
     693           1 :                 // TODO(peter): Manually inlined version binary.PutUvarint(). This is 20%
     694           1 :                 // faster on BenchmarkBatchSet on go1.13. Remove if go1.14 or future
     695           1 :                 // versions show this to not be a performance win.
     696           1 :                 x := uint32(keyLen)
     697           1 :                 for x >= 0x80 {
     698           1 :                         b.data[pos] = byte(x) | 0x80
     699           1 :                         x >>= 7
     700           1 :                         pos++
     701           1 :                 }
     702           1 :                 b.data[pos] = byte(x)
     703           1 :                 pos++
     704             :         }
     705             : 
     706           1 :         b.deferredOp.Key = b.data[pos : pos+keyLen]
     707           1 :         pos += keyLen
     708           1 : 
     709           1 :         {
     710           1 :                 // TODO(peter): Manually inlined version binary.PutUvarint(). This is 20%
     711           1 :                 // faster on BenchmarkBatchSet on go1.13. Remove if go1.14 or future
     712           1 :                 // versions show this to not be a performance win.
     713           1 :                 x := uint32(valueLen)
     714           1 :                 for x >= 0x80 {
     715           1 :                         b.data[pos] = byte(x) | 0x80
     716           1 :                         x >>= 7
     717           1 :                         pos++
     718           1 :                 }
     719           1 :                 b.data[pos] = byte(x)
     720           1 :                 pos++
     721             :         }
     722             : 
     723           1 :         b.deferredOp.Value = b.data[pos : pos+valueLen]
     724           1 :         // Shrink data since varints may be shorter than the upper bound.
     725           1 :         b.data = b.data[:pos+valueLen]
     726             : }
     727             : 
     728           1 : func (b *Batch) prepareDeferredKeyRecord(keyLen int, kind InternalKeyKind) {
     729           1 :         if b.committing {
     730           0 :                 panic("pebble: batch already committing")
     731             :         }
     732           1 :         if len(b.data) == 0 {
     733           1 :                 b.init(keyLen + binary.MaxVarintLen64 + batchrepr.HeaderLen)
     734           1 :         }
     735           1 :         b.count++
     736           1 :         b.memTableSize += memTableEntrySize(keyLen, 0)
     737           1 : 
     738           1 :         pos := len(b.data)
     739           1 :         b.deferredOp.offset = uint32(pos)
     740           1 :         b.grow(1 + maxVarintLen32 + keyLen)
     741           1 :         b.data[pos] = byte(kind)
     742           1 :         pos++
     743           1 : 
     744           1 :         {
     745           1 :                 // TODO(peter): Manually inlined version binary.PutUvarint(). Remove if
     746           1 :                 // go1.13 or future versions show this to not be a performance win. See
     747           1 :                 // BenchmarkBatchSet.
     748           1 :                 x := uint32(keyLen)
     749           1 :                 for x >= 0x80 {
     750           0 :                         b.data[pos] = byte(x) | 0x80
     751           0 :                         x >>= 7
     752           0 :                         pos++
     753           0 :                 }
     754           1 :                 b.data[pos] = byte(x)
     755           1 :                 pos++
     756             :         }
     757             : 
     758           1 :         b.deferredOp.Key = b.data[pos : pos+keyLen]
     759           1 :         b.deferredOp.Value = nil
     760           1 : 
     761           1 :         // Shrink data since varint may be shorter than the upper bound.
     762           1 :         b.data = b.data[:pos+keyLen]
     763             : }
     764             : 
     765             : // AddInternalKey allows the caller to add an internal key of point key or range
     766             : // key kinds (but not RangeDelete) to a batch. Passing in an internal key of
     767             : // kind RangeDelete will result in a panic. Note that the seqnum in the internal
     768             : // key is effectively ignored, even though the Kind is preserved. This is
     769             : // because the batch format does not allow for a per-key seqnum to be specified,
     770             : // only a batch-wide one.
     771             : //
     772             : // Note that non-indexed keys (IngestKeyKind{LogData,IngestSST}) are not
     773             : // supported with this method as they require specialized logic.
     774           1 : func (b *Batch) AddInternalKey(key *base.InternalKey, value []byte, _ *WriteOptions) error {
     775           1 :         keyLen := len(key.UserKey)
     776           1 :         hasValue := false
     777           1 :         switch kind := key.Kind(); kind {
     778           0 :         case InternalKeyKindRangeDelete:
     779           0 :                 panic("unexpected range delete in AddInternalKey")
     780           1 :         case InternalKeyKindSingleDelete, InternalKeyKindDelete:
     781           1 :                 b.prepareDeferredKeyRecord(keyLen, kind)
     782           1 :                 b.deferredOp.index = b.index
     783           1 :         case InternalKeyKindRangeKeySet, InternalKeyKindRangeKeyUnset, InternalKeyKindRangeKeyDelete:
     784           1 :                 b.prepareDeferredKeyValueRecord(keyLen, len(value), kind)
     785           1 :                 hasValue = true
     786           1 :                 b.incrementRangeKeysCount()
     787           1 :         default:
     788           1 :                 b.prepareDeferredKeyValueRecord(keyLen, len(value), kind)
     789           1 :                 hasValue = true
     790           1 :                 b.deferredOp.index = b.index
     791             :         }
     792           1 :         copy(b.deferredOp.Key, key.UserKey)
     793           1 :         if hasValue {
     794           1 :                 copy(b.deferredOp.Value, value)
     795           1 :         }
     796             : 
     797             :         // TODO(peter): Manually inline DeferredBatchOp.Finish(). Mid-stack inlining
     798             :         // in go1.13 will remove the need for this.
     799           1 :         if b.index != nil {
     800           0 :                 if err := b.index.Add(b.deferredOp.offset); err != nil {
     801           0 :                         return err
     802           0 :                 }
     803             :         }
     804           1 :         return nil
     805             : }
     806             : 
     807             : // Set adds an action to the batch that sets the key to map to the value.
     808             : //
     809             : // It is safe to modify the contents of the arguments after Set returns.
     810           1 : func (b *Batch) Set(key, value []byte, _ *WriteOptions) error {
     811           1 :         deferredOp := b.SetDeferred(len(key), len(value))
     812           1 :         copy(deferredOp.Key, key)
     813           1 :         copy(deferredOp.Value, value)
     814           1 :         // TODO(peter): Manually inline DeferredBatchOp.Finish(). Mid-stack inlining
     815           1 :         // in go1.13 will remove the need for this.
     816           1 :         if b.index != nil {
     817           1 :                 if err := b.index.Add(deferredOp.offset); err != nil {
     818           0 :                         return err
     819           0 :                 }
     820             :         }
     821           1 :         return nil
     822             : }
     823             : 
     824             : // SetDeferred is similar to Set in that it adds a set operation to the batch,
     825             : // except it only takes in key/value lengths instead of complete slices,
     826             : // letting the caller encode into those objects and then call Finish() on the
     827             : // returned object.
     828           1 : func (b *Batch) SetDeferred(keyLen, valueLen int) *DeferredBatchOp {
     829           1 :         b.prepareDeferredKeyValueRecord(keyLen, valueLen, InternalKeyKindSet)
     830           1 :         b.deferredOp.index = b.index
     831           1 :         return &b.deferredOp
     832           1 : }
     833             : 
     834             : // Merge adds an action to the batch that merges the value at key with the new
     835             : // value. The details of the merge are dependent upon the configured merge
     836             : // operator.
     837             : //
     838             : // It is safe to modify the contents of the arguments after Merge returns.
     839           1 : func (b *Batch) Merge(key, value []byte, _ *WriteOptions) error {
     840           1 :         deferredOp := b.MergeDeferred(len(key), len(value))
     841           1 :         copy(deferredOp.Key, key)
     842           1 :         copy(deferredOp.Value, value)
     843           1 :         // TODO(peter): Manually inline DeferredBatchOp.Finish(). Mid-stack inlining
     844           1 :         // in go1.13 will remove the need for this.
     845           1 :         if b.index != nil {
     846           1 :                 if err := b.index.Add(deferredOp.offset); err != nil {
     847           0 :                         return err
     848           0 :                 }
     849             :         }
     850           1 :         return nil
     851             : }
     852             : 
     853             : // MergeDeferred is similar to Merge in that it adds a merge operation to the
     854             : // batch, except it only takes in key/value lengths instead of complete slices,
     855             : // letting the caller encode into those objects and then call Finish() on the
     856             : // returned object.
     857           1 : func (b *Batch) MergeDeferred(keyLen, valueLen int) *DeferredBatchOp {
     858           1 :         b.prepareDeferredKeyValueRecord(keyLen, valueLen, InternalKeyKindMerge)
     859           1 :         b.deferredOp.index = b.index
     860           1 :         return &b.deferredOp
     861           1 : }
     862             : 
     863             : // Delete adds an action to the batch that deletes the entry for key.
     864             : //
     865             : // It is safe to modify the contents of the arguments after Delete returns.
     866           1 : func (b *Batch) Delete(key []byte, _ *WriteOptions) error {
     867           1 :         deferredOp := b.DeleteDeferred(len(key))
     868           1 :         copy(deferredOp.Key, key)
     869           1 :         // TODO(peter): Manually inline DeferredBatchOp.Finish(). Mid-stack inlining
     870           1 :         // in go1.13 will remove the need for this.
     871           1 :         if b.index != nil {
     872           1 :                 if err := b.index.Add(deferredOp.offset); err != nil {
     873           0 :                         return err
     874           0 :                 }
     875             :         }
     876           1 :         return nil
     877             : }
     878             : 
     879             : // DeleteDeferred is similar to Delete in that it adds a delete operation to
     880             : // the batch, except it only takes in key/value lengths instead of complete
     881             : // slices, letting the caller encode into those objects and then call Finish()
     882             : // on the returned object.
     883           1 : func (b *Batch) DeleteDeferred(keyLen int) *DeferredBatchOp {
     884           1 :         b.prepareDeferredKeyRecord(keyLen, InternalKeyKindDelete)
     885           1 :         b.deferredOp.index = b.index
     886           1 :         return &b.deferredOp
     887           1 : }
     888             : 
     889             : // DeleteSized behaves identically to Delete, but takes an additional
     890             : // argument indicating the size of the value being deleted. DeleteSized
     891             : // should be preferred when the caller has the expectation that there exists
     892             : // a single internal KV pair for the key (eg, the key has not been
     893             : // overwritten recently), and the caller knows the size of its value.
     894             : //
     895             : // DeleteSized will record the value size within the tombstone and use it to
     896             : // inform compaction-picking heuristics which strive to reduce space
     897             : // amplification in the LSM. This "calling your shot" mechanic allows the
     898             : // storage engine to more accurately estimate and reduce space amplification.
     899             : //
     900             : // It is safe to modify the contents of the arguments after DeleteSized
     901             : // returns.
     902           1 : func (b *Batch) DeleteSized(key []byte, deletedValueSize uint32, _ *WriteOptions) error {
     903           1 :         deferredOp := b.DeleteSizedDeferred(len(key), deletedValueSize)
     904           1 :         copy(b.deferredOp.Key, key)
     905           1 :         // TODO(peter): Manually inline DeferredBatchOp.Finish(). Check if in a
     906           1 :         // later Go release this is unnecessary.
     907           1 :         if b.index != nil {
     908           1 :                 if err := b.index.Add(deferredOp.offset); err != nil {
     909           0 :                         return err
     910           0 :                 }
     911             :         }
     912           1 :         return nil
     913             : }
     914             : 
     915             : // DeleteSizedDeferred is similar to DeleteSized in that it adds a sized delete
     916             : // operation to the batch, except it only takes in key length instead of a
     917             : // complete key slice, letting the caller encode into the DeferredBatchOp.Key
     918             : // slice and then call Finish() on the returned object.
     919           1 : func (b *Batch) DeleteSizedDeferred(keyLen int, deletedValueSize uint32) *DeferredBatchOp {
     920           1 :         if b.minimumFormatMajorVersion < FormatDeleteSizedAndObsolete {
     921           1 :                 b.minimumFormatMajorVersion = FormatDeleteSizedAndObsolete
     922           1 :         }
     923             : 
     924             :         // Encode the sum of the key length and the value in the value.
     925           1 :         v := uint64(deletedValueSize) + uint64(keyLen)
     926           1 : 
     927           1 :         // Encode `v` as a varint.
     928           1 :         var buf [binary.MaxVarintLen64]byte
     929           1 :         n := 0
     930           1 :         {
     931           1 :                 x := v
     932           1 :                 for x >= 0x80 {
     933           1 :                         buf[n] = byte(x) | 0x80
     934           1 :                         x >>= 7
     935           1 :                         n++
     936           1 :                 }
     937           1 :                 buf[n] = byte(x)
     938           1 :                 n++
     939             :         }
     940             : 
     941             :         // NB: In batch entries and sstable entries, values are stored as
     942             :         // varstrings. Here, the value is itself a simple varint. This results in an
     943             :         // unnecessary double layer of encoding:
     944             :         //     varint(n) varint(deletedValueSize)
     945             :         // The first varint will always be 1-byte, since a varint-encoded uint64
     946             :         // will never exceed 128 bytes. This unnecessary extra byte and wrapping is
     947             :         // preserved to avoid special casing across the database, and in particular
     948             :         // in sstable block decoding which is performance sensitive.
     949           1 :         b.prepareDeferredKeyValueRecord(keyLen, n, InternalKeyKindDeleteSized)
     950           1 :         b.deferredOp.index = b.index
     951           1 :         copy(b.deferredOp.Value, buf[:n])
     952           1 :         return &b.deferredOp
     953             : }
     954             : 
     955             : // SingleDelete adds an action to the batch that single deletes the entry for key.
     956             : // See Writer.SingleDelete for more details on the semantics of SingleDelete.
     957             : //
     958             : // It is safe to modify the contents of the arguments after SingleDelete returns.
     959           1 : func (b *Batch) SingleDelete(key []byte, _ *WriteOptions) error {
     960           1 :         deferredOp := b.SingleDeleteDeferred(len(key))
     961           1 :         copy(deferredOp.Key, key)
     962           1 :         // TODO(peter): Manually inline DeferredBatchOp.Finish(). Mid-stack inlining
     963           1 :         // in go1.13 will remove the need for this.
     964           1 :         if b.index != nil {
     965           1 :                 if err := b.index.Add(deferredOp.offset); err != nil {
     966           0 :                         return err
     967           0 :                 }
     968             :         }
     969           1 :         return nil
     970             : }
     971             : 
     972             : // SingleDeleteDeferred is similar to SingleDelete in that it adds a single delete
     973             : // operation to the batch, except it only takes in key/value lengths instead of
     974             : // complete slices, letting the caller encode into those objects and then call
     975             : // Finish() on the returned object.
     976           1 : func (b *Batch) SingleDeleteDeferred(keyLen int) *DeferredBatchOp {
     977           1 :         b.prepareDeferredKeyRecord(keyLen, InternalKeyKindSingleDelete)
     978           1 :         b.deferredOp.index = b.index
     979           1 :         return &b.deferredOp
     980           1 : }
     981             : 
     982             : // DeleteRange deletes all of the point keys (and values) in the range
     983             : // [start,end) (inclusive on start, exclusive on end). DeleteRange does NOT
     984             : // delete overlapping range keys (eg, keys set via RangeKeySet).
     985             : //
     986             : // It is safe to modify the contents of the arguments after DeleteRange
     987             : // returns.
     988           1 : func (b *Batch) DeleteRange(start, end []byte, _ *WriteOptions) error {
     989           1 :         deferredOp := b.DeleteRangeDeferred(len(start), len(end))
     990           1 :         copy(deferredOp.Key, start)
     991           1 :         copy(deferredOp.Value, end)
     992           1 :         // TODO(peter): Manually inline DeferredBatchOp.Finish(). Mid-stack inlining
     993           1 :         // in go1.13 will remove the need for this.
     994           1 :         if deferredOp.index != nil {
     995           1 :                 if err := deferredOp.index.Add(deferredOp.offset); err != nil {
     996           0 :                         return err
     997           0 :                 }
     998             :         }
     999           1 :         return nil
    1000             : }
    1001             : 
    1002             : // DeleteRangeDeferred is similar to DeleteRange in that it adds a delete range
    1003             : // operation to the batch, except it only takes in key lengths instead of
    1004             : // complete slices, letting the caller encode into those objects and then call
    1005             : // Finish() on the returned object. Note that DeferredBatchOp.Key should be
    1006             : // populated with the start key, and DeferredBatchOp.Value should be populated
    1007             : // with the end key.
    1008           1 : func (b *Batch) DeleteRangeDeferred(startLen, endLen int) *DeferredBatchOp {
    1009           1 :         b.prepareDeferredKeyValueRecord(startLen, endLen, InternalKeyKindRangeDelete)
    1010           1 :         b.countRangeDels++
    1011           1 :         if b.index != nil {
    1012           1 :                 b.tombstones = nil
    1013           1 :                 b.tombstonesSeqNum = 0
    1014           1 :                 // Range deletions are rare, so we lazily allocate the index for them.
    1015           1 :                 if b.rangeDelIndex == nil {
    1016           1 :                         b.rangeDelIndex = batchskl.NewSkiplist(&b.data, b.cmp, b.abbreviatedKey)
    1017           1 :                 }
    1018           1 :                 b.deferredOp.index = b.rangeDelIndex
    1019             :         }
    1020           1 :         return &b.deferredOp
    1021             : }
    1022             : 
    1023             : // RangeKeySet sets a range key mapping the key range [start, end) at the MVCC
    1024             : // timestamp suffix to value. The suffix is optional. If any portion of the key
    1025             : // range [start, end) is already set by a range key with the same suffix value,
    1026             : // RangeKeySet overrides it.
    1027             : //
    1028             : // It is safe to modify the contents of the arguments after RangeKeySet returns.
    1029           1 : func (b *Batch) RangeKeySet(start, end, suffix, value []byte, _ *WriteOptions) error {
    1030           1 :         if invariants.Enabled && b.db != nil {
    1031           1 :                 // RangeKeySet is only supported on prefix keys.
    1032           1 :                 if b.db.opts.Comparer.Split(start) != len(start) {
    1033           0 :                         panic("RangeKeySet called with suffixed start key")
    1034             :                 }
    1035           1 :                 if b.db.opts.Comparer.Split(end) != len(end) {
    1036           0 :                         panic("RangeKeySet called with suffixed end key")
    1037             :                 }
    1038             :         }
    1039           1 :         suffixValues := [1]rangekey.SuffixValue{{Suffix: suffix, Value: value}}
    1040           1 :         internalValueLen := rangekey.EncodedSetValueLen(end, suffixValues[:])
    1041           1 : 
    1042           1 :         deferredOp := b.rangeKeySetDeferred(len(start), internalValueLen)
    1043           1 :         copy(deferredOp.Key, start)
    1044           1 :         n := rangekey.EncodeSetValue(deferredOp.Value, end, suffixValues[:])
    1045           1 :         if n != internalValueLen {
    1046           0 :                 panic("unexpected internal value length mismatch")
    1047             :         }
    1048             : 
    1049             :         // Manually inline DeferredBatchOp.Finish().
    1050           1 :         if deferredOp.index != nil {
    1051           1 :                 if err := deferredOp.index.Add(deferredOp.offset); err != nil {
    1052           0 :                         return err
    1053           0 :                 }
    1054             :         }
    1055           1 :         return nil
    1056             : }
    1057             : 
    1058           1 : func (b *Batch) rangeKeySetDeferred(startLen, internalValueLen int) *DeferredBatchOp {
    1059           1 :         b.prepareDeferredKeyValueRecord(startLen, internalValueLen, InternalKeyKindRangeKeySet)
    1060           1 :         b.incrementRangeKeysCount()
    1061           1 :         return &b.deferredOp
    1062           1 : }
    1063             : 
    1064           1 : func (b *Batch) incrementRangeKeysCount() {
    1065           1 :         b.countRangeKeys++
    1066           1 :         if b.index != nil {
    1067           1 :                 b.rangeKeys = nil
    1068           1 :                 b.rangeKeysSeqNum = 0
    1069           1 :                 // Range keys are rare, so we lazily allocate the index for them.
    1070           1 :                 if b.rangeKeyIndex == nil {
    1071           1 :                         b.rangeKeyIndex = batchskl.NewSkiplist(&b.data, b.cmp, b.abbreviatedKey)
    1072           1 :                 }
    1073           1 :                 b.deferredOp.index = b.rangeKeyIndex
    1074             :         }
    1075             : }
    1076             : 
    1077             : // RangeKeyUnset removes a range key mapping the key range [start, end) at the
    1078             : // MVCC timestamp suffix. The suffix may be omitted to remove an unsuffixed
    1079             : // range key. RangeKeyUnset only removes portions of range keys that fall within
    1080             : // the [start, end) key span, and only range keys with suffixes that exactly
    1081             : // match the unset suffix.
    1082             : //
    1083             : // It is safe to modify the contents of the arguments after RangeKeyUnset
    1084             : // returns.
    1085           1 : func (b *Batch) RangeKeyUnset(start, end, suffix []byte, _ *WriteOptions) error {
    1086           1 :         if invariants.Enabled && b.db != nil {
    1087           1 :                 // RangeKeyUnset is only supported on prefix keys.
    1088           1 :                 if b.db.opts.Comparer.Split(start) != len(start) {
    1089           0 :                         panic("RangeKeyUnset called with suffixed start key")
    1090             :                 }
    1091           1 :                 if b.db.opts.Comparer.Split(end) != len(end) {
    1092           0 :                         panic("RangeKeyUnset called with suffixed end key")
    1093             :                 }
    1094             :         }
    1095           1 :         suffixes := [1][]byte{suffix}
    1096           1 :         internalValueLen := rangekey.EncodedUnsetValueLen(end, suffixes[:])
    1097           1 : 
    1098           1 :         deferredOp := b.rangeKeyUnsetDeferred(len(start), internalValueLen)
    1099           1 :         copy(deferredOp.Key, start)
    1100           1 :         n := rangekey.EncodeUnsetValue(deferredOp.Value, end, suffixes[:])
    1101           1 :         if n != internalValueLen {
    1102           0 :                 panic("unexpected internal value length mismatch")
    1103             :         }
    1104             : 
    1105             :         // Manually inline DeferredBatchOp.Finish()
    1106           1 :         if deferredOp.index != nil {
    1107           1 :                 if err := deferredOp.index.Add(deferredOp.offset); err != nil {
    1108           0 :                         return err
    1109           0 :                 }
    1110             :         }
    1111           1 :         return nil
    1112             : }
    1113             : 
    1114           1 : func (b *Batch) rangeKeyUnsetDeferred(startLen, internalValueLen int) *DeferredBatchOp {
    1115           1 :         b.prepareDeferredKeyValueRecord(startLen, internalValueLen, InternalKeyKindRangeKeyUnset)
    1116           1 :         b.incrementRangeKeysCount()
    1117           1 :         return &b.deferredOp
    1118           1 : }
    1119             : 
    1120             : // RangeKeyDelete deletes all of the range keys in the range [start,end)
    1121             : // (inclusive on start, exclusive on end). It does not delete point keys (for
    1122             : // that use DeleteRange). RangeKeyDelete removes all range keys within the
    1123             : // bounds, including those with or without suffixes.
    1124             : //
    1125             : // It is safe to modify the contents of the arguments after RangeKeyDelete
    1126             : // returns.
    1127           1 : func (b *Batch) RangeKeyDelete(start, end []byte, _ *WriteOptions) error {
    1128           1 :         if invariants.Enabled && b.db != nil {
    1129           1 :                 // RangeKeyDelete is only supported on prefix keys.
    1130           1 :                 if b.db.opts.Comparer.Split(start) != len(start) {
    1131           0 :                         panic("RangeKeyDelete called with suffixed start key")
    1132             :                 }
    1133           1 :                 if b.db.opts.Comparer.Split(end) != len(end) {
    1134           0 :                         panic("RangeKeyDelete called with suffixed end key")
    1135             :                 }
    1136             :         }
    1137           1 :         deferredOp := b.RangeKeyDeleteDeferred(len(start), len(end))
    1138           1 :         copy(deferredOp.Key, start)
    1139           1 :         copy(deferredOp.Value, end)
    1140           1 :         // Manually inline DeferredBatchOp.Finish().
    1141           1 :         if deferredOp.index != nil {
    1142           1 :                 if err := deferredOp.index.Add(deferredOp.offset); err != nil {
    1143           0 :                         return err
    1144           0 :                 }
    1145             :         }
    1146           1 :         return nil
    1147             : }
    1148             : 
    1149             : // RangeKeyDeleteDeferred is similar to RangeKeyDelete in that it adds an
    1150             : // operation to delete range keys to the batch, except it only takes in key
    1151             : // lengths instead of complete slices, letting the caller encode into those
    1152             : // objects and then call Finish() on the returned object. Note that
    1153             : // DeferredBatchOp.Key should be populated with the start key, and
    1154             : // DeferredBatchOp.Value should be populated with the end key.
    1155           1 : func (b *Batch) RangeKeyDeleteDeferred(startLen, endLen int) *DeferredBatchOp {
    1156           1 :         b.prepareDeferredKeyValueRecord(startLen, endLen, InternalKeyKindRangeKeyDelete)
    1157           1 :         b.incrementRangeKeysCount()
    1158           1 :         return &b.deferredOp
    1159           1 : }
    1160             : 
    1161             : // LogData adds the specified to the batch. The data will be written to the
    1162             : // WAL, but not added to memtables or sstables. Log data is never indexed,
    1163             : // which makes it useful for testing WAL performance.
    1164             : //
    1165             : // It is safe to modify the contents of the argument after LogData returns.
    1166           1 : func (b *Batch) LogData(data []byte, _ *WriteOptions) error {
    1167           1 :         origCount, origMemTableSize := b.count, b.memTableSize
    1168           1 :         b.prepareDeferredKeyRecord(len(data), InternalKeyKindLogData)
    1169           1 :         copy(b.deferredOp.Key, data)
    1170           1 :         // Since LogData only writes to the WAL and does not affect the memtable, we
    1171           1 :         // restore b.count and b.memTableSize to their origin values. Note that
    1172           1 :         // Batch.count only refers to records that are added to the memtable.
    1173           1 :         b.count, b.memTableSize = origCount, origMemTableSize
    1174           1 :         return nil
    1175           1 : }
    1176             : 
    1177             : // IngestSST adds the FileNum for an sstable to the batch. The data will only be
    1178             : // written to the WAL (not added to memtables or sstables).
    1179           1 : func (b *Batch) ingestSST(fileNum base.FileNum) {
    1180           1 :         if b.Empty() {
    1181           1 :                 b.ingestedSSTBatch = true
    1182           1 :         } else if !b.ingestedSSTBatch {
    1183           0 :                 // Batch contains other key kinds.
    1184           0 :                 panic("pebble: invalid call to ingestSST")
    1185             :         }
    1186             : 
    1187           1 :         origMemTableSize := b.memTableSize
    1188           1 :         var buf [binary.MaxVarintLen64]byte
    1189           1 :         length := binary.PutUvarint(buf[:], uint64(fileNum))
    1190           1 :         b.prepareDeferredKeyRecord(length, InternalKeyKindIngestSST)
    1191           1 :         copy(b.deferredOp.Key, buf[:length])
    1192           1 :         // Since IngestSST writes only to the WAL and does not affect the memtable,
    1193           1 :         // we restore b.memTableSize to its original value. Note that Batch.count
    1194           1 :         // is not reset because for the InternalKeyKindIngestSST the count is the
    1195           1 :         // number of sstable paths which have been added to the batch.
    1196           1 :         b.memTableSize = origMemTableSize
    1197           1 :         b.minimumFormatMajorVersion = FormatFlushableIngest
    1198             : }
    1199             : 
    1200             : // Empty returns true if the batch is empty, and false otherwise.
    1201           1 : func (b *Batch) Empty() bool {
    1202           1 :         return batchrepr.IsEmpty(b.data)
    1203           1 : }
    1204             : 
    1205             : // Len returns the current size of the batch in bytes.
    1206           1 : func (b *Batch) Len() int {
    1207           1 :         return max(batchrepr.HeaderLen, len(b.data))
    1208           1 : }
    1209             : 
    1210             : // Repr returns the underlying batch representation. It is not safe to modify
    1211             : // the contents. Reset() will not change the contents of the returned value,
    1212             : // though any other mutation operation may do so.
    1213           1 : func (b *Batch) Repr() []byte {
    1214           1 :         if len(b.data) == 0 {
    1215           1 :                 b.init(batchrepr.HeaderLen)
    1216           1 :         }
    1217           1 :         batchrepr.SetCount(b.data, b.Count())
    1218           1 :         return b.data
    1219             : }
    1220             : 
    1221             : // SetRepr sets the underlying batch representation. The batch takes ownership
    1222             : // of the supplied slice. It is not safe to modify it afterwards until the
    1223             : // Batch is no longer in use.
    1224             : //
    1225             : // SetRepr may return ErrInvalidBatch if the supplied slice fails to decode in
    1226             : // any way. It will not return an error in any other circumstance.
    1227           1 : func (b *Batch) SetRepr(data []byte) error {
    1228           1 :         h, ok := batchrepr.ReadHeader(data)
    1229           1 :         if !ok {
    1230           0 :                 return ErrInvalidBatch
    1231           0 :         }
    1232           1 :         b.data = data
    1233           1 :         b.count = uint64(h.Count)
    1234           1 :         var err error
    1235           1 :         if b.db != nil {
    1236           1 :                 // Only track memTableSize for batches that will be committed to the DB.
    1237           1 :                 err = b.refreshMemTableSize()
    1238           1 :         }
    1239           1 :         return err
    1240             : }
    1241             : 
    1242             : // NewIter returns an iterator that is unpositioned (Iterator.Valid() will
    1243             : // return false). The iterator can be positioned via a call to SeekGE,
    1244             : // SeekPrefixGE, SeekLT, First or Last. Only indexed batches support iterators.
    1245             : //
    1246             : // The returned Iterator observes all of the Batch's existing mutations, but no
    1247             : // later mutations. Its view can be refreshed via RefreshBatchSnapshot or
    1248             : // SetOptions().
    1249           1 : func (b *Batch) NewIter(o *IterOptions) (*Iterator, error) {
    1250           1 :         return b.NewIterWithContext(context.Background(), o)
    1251           1 : }
    1252             : 
    1253             : // NewIterWithContext is like NewIter, and additionally accepts a context for
    1254             : // tracing.
    1255           1 : func (b *Batch) NewIterWithContext(ctx context.Context, o *IterOptions) (*Iterator, error) {
    1256           1 :         if b.index == nil {
    1257           0 :                 return nil, ErrNotIndexed
    1258           0 :         }
    1259           1 :         return b.db.newIter(ctx, b, newIterOpts{}, o), nil
    1260             : }
    1261             : 
    1262             : // NewBatchOnlyIter constructs an iterator that only reads the contents of the
    1263             : // batch, and does not overlay the batch mutations on top of the DB state.
    1264             : //
    1265             : // The returned Iterator observes all of the Batch's existing mutations, but
    1266             : // no later mutations. Its view can be refreshed via RefreshBatchSnapshot or
    1267             : // SetOptions().
    1268           1 : func (b *Batch) NewBatchOnlyIter(ctx context.Context, o *IterOptions) (*Iterator, error) {
    1269           1 :         if b.index == nil {
    1270           0 :                 return nil, ErrNotIndexed
    1271           0 :         }
    1272           1 :         return b.db.newIter(ctx, b, newIterOpts{batch: batchIterOpts{batchOnly: true}}, o), nil
    1273             : }
    1274             : 
    1275             : // newInternalIter creates a new internalIterator that iterates over the
    1276             : // contents of the batch.
    1277           1 : func (b *Batch) newInternalIter(o *IterOptions) *batchIter {
    1278           1 :         iter := &batchIter{}
    1279           1 :         b.initInternalIter(o, iter)
    1280           1 :         return iter
    1281           1 : }
    1282             : 
    1283           1 : func (b *Batch) initInternalIter(o *IterOptions, iter *batchIter) {
    1284           1 :         *iter = batchIter{
    1285           1 :                 cmp:   b.cmp,
    1286           1 :                 batch: b,
    1287           1 :                 iter:  b.index.NewIter(o.GetLowerBound(), o.GetUpperBound()),
    1288           1 :                 // NB: We explicitly do not propagate the batch snapshot to the point
    1289           1 :                 // key iterator. Filtering point keys within the batch iterator can
    1290           1 :                 // cause pathological behavior where a batch iterator advances
    1291           1 :                 // significantly farther than necessary filtering many batch keys that
    1292           1 :                 // are not visible at the batch sequence number. Instead, the merging
    1293           1 :                 // iterator enforces bounds.
    1294           1 :                 //
    1295           1 :                 // For example, consider an engine that contains the committed keys
    1296           1 :                 // 'bar' and 'bax', with no keys between them. Consider a batch
    1297           1 :                 // containing keys 1,000 keys within the range [a,z]. All of the
    1298           1 :                 // batch keys were added to the batch after the iterator was
    1299           1 :                 // constructed, so they are not visible to the iterator. A call to
    1300           1 :                 // SeekGE('bax') would seek the LSM iterators and discover the key
    1301           1 :                 // 'bax'. It would also seek the batch iterator, landing on the key
    1302           1 :                 // 'baz' but discover it that it's not visible. The batch iterator would
    1303           1 :                 // next through the rest of the batch's keys, only to discover there are
    1304           1 :                 // no visible keys greater than or equal to 'bax'.
    1305           1 :                 //
    1306           1 :                 // Filtering these batch points within the merging iterator ensures that
    1307           1 :                 // the batch iterator never needs to iterate beyond 'baz', because it
    1308           1 :                 // already found a smaller, visible key 'bax'.
    1309           1 :                 snapshot: base.InternalKeySeqNumMax,
    1310           1 :         }
    1311           1 : }
    1312             : 
    1313           1 : func (b *Batch) newRangeDelIter(o *IterOptions, batchSnapshot uint64) *keyspan.Iter {
    1314           1 :         // Construct an iterator even if rangeDelIndex is nil, because it is allowed
    1315           1 :         // to refresh later, so we need the container to exist.
    1316           1 :         iter := new(keyspan.Iter)
    1317           1 :         b.initRangeDelIter(o, iter, batchSnapshot)
    1318           1 :         return iter
    1319           1 : }
    1320             : 
    1321           1 : func (b *Batch) initRangeDelIter(_ *IterOptions, iter *keyspan.Iter, batchSnapshot uint64) {
    1322           1 :         if b.rangeDelIndex == nil {
    1323           1 :                 iter.Init(b.cmp, nil)
    1324           1 :                 return
    1325           1 :         }
    1326             : 
    1327             :         // Fragment the range tombstones the first time a range deletion iterator is
    1328             :         // requested. The cached tombstones are invalidated if another range
    1329             :         // deletion tombstone is added to the batch. This cache is only guaranteed
    1330             :         // to be correct if we're opening an iterator to read at a batch sequence
    1331             :         // number at least as high as tombstonesSeqNum. The cache is guaranteed to
    1332             :         // include all tombstones up to tombstonesSeqNum, and if any additional
    1333             :         // tombstones were added after that sequence number the cache would've been
    1334             :         // cleared.
    1335           1 :         nextSeqNum := b.nextSeqNum()
    1336           1 :         if b.tombstones != nil && b.tombstonesSeqNum <= batchSnapshot {
    1337           1 :                 iter.Init(b.cmp, b.tombstones)
    1338           1 :                 return
    1339           1 :         }
    1340             : 
    1341           1 :         tombstones := make([]keyspan.Span, 0, b.countRangeDels)
    1342           1 :         frag := &keyspan.Fragmenter{
    1343           1 :                 Cmp:    b.cmp,
    1344           1 :                 Format: b.formatKey,
    1345           1 :                 Emit: func(s keyspan.Span) {
    1346           1 :                         tombstones = append(tombstones, s)
    1347           1 :                 },
    1348             :         }
    1349           1 :         it := &batchIter{
    1350           1 :                 cmp:      b.cmp,
    1351           1 :                 batch:    b,
    1352           1 :                 iter:     b.rangeDelIndex.NewIter(nil, nil),
    1353           1 :                 snapshot: batchSnapshot,
    1354           1 :         }
    1355           1 :         fragmentRangeDels(frag, it, int(b.countRangeDels))
    1356           1 :         iter.Init(b.cmp, tombstones)
    1357           1 : 
    1358           1 :         // If we just read all the tombstones in the batch (eg, batchSnapshot was
    1359           1 :         // set to b.nextSeqNum()), then cache the tombstones so that a subsequent
    1360           1 :         // call to initRangeDelIter may use them without refragmenting.
    1361           1 :         if nextSeqNum == batchSnapshot {
    1362           1 :                 b.tombstones = tombstones
    1363           1 :                 b.tombstonesSeqNum = nextSeqNum
    1364           1 :         }
    1365             : }
    1366             : 
    1367           1 : func fragmentRangeDels(frag *keyspan.Fragmenter, it internalIterator, count int) {
    1368           1 :         // The memory management here is a bit subtle. The keys and values returned
    1369           1 :         // by the iterator are slices in Batch.data. Thus the fragmented tombstones
    1370           1 :         // are slices within Batch.data. If additional entries are added to the
    1371           1 :         // Batch, Batch.data may be reallocated. The references in the fragmented
    1372           1 :         // tombstones will remain valid, pointing into the old Batch.data. GC for
    1373           1 :         // the win.
    1374           1 : 
    1375           1 :         // Use a single []keyspan.Key buffer to avoid allocating many
    1376           1 :         // individual []keyspan.Key slices with a single element each.
    1377           1 :         keyBuf := make([]keyspan.Key, 0, count)
    1378           1 :         for kv := it.First(); kv != nil; kv = it.Next() {
    1379           1 :                 s := rangedel.Decode(kv.K, kv.InPlaceValue(), keyBuf)
    1380           1 :                 keyBuf = s.Keys[len(s.Keys):]
    1381           1 : 
    1382           1 :                 // Set a fixed capacity to avoid accidental overwriting.
    1383           1 :                 s.Keys = s.Keys[:len(s.Keys):len(s.Keys)]
    1384           1 :                 frag.Add(s)
    1385           1 :         }
    1386           1 :         frag.Finish()
    1387             : }
    1388             : 
    1389           1 : func (b *Batch) newRangeKeyIter(o *IterOptions, batchSnapshot uint64) *keyspan.Iter {
    1390           1 :         // Construct an iterator even if rangeKeyIndex is nil, because it is allowed
    1391           1 :         // to refresh later, so we need the container to exist.
    1392           1 :         iter := new(keyspan.Iter)
    1393           1 :         b.initRangeKeyIter(o, iter, batchSnapshot)
    1394           1 :         return iter
    1395           1 : }
    1396             : 
    1397           1 : func (b *Batch) initRangeKeyIter(_ *IterOptions, iter *keyspan.Iter, batchSnapshot uint64) {
    1398           1 :         if b.rangeKeyIndex == nil {
    1399           1 :                 iter.Init(b.cmp, nil)
    1400           1 :                 return
    1401           1 :         }
    1402             : 
    1403             :         // Fragment the range keys the first time a range key iterator is requested.
    1404             :         // The cached spans are invalidated if another range key is added to the
    1405             :         // batch. This cache is only guaranteed to be correct if we're opening an
    1406             :         // iterator to read at a batch sequence number at least as high as
    1407             :         // rangeKeysSeqNum. The cache is guaranteed to include all range keys up to
    1408             :         // rangeKeysSeqNum, and if any additional range keys were added after that
    1409             :         // sequence number the cache would've been cleared.
    1410           1 :         nextSeqNum := b.nextSeqNum()
    1411           1 :         if b.rangeKeys != nil && b.rangeKeysSeqNum <= batchSnapshot {
    1412           1 :                 iter.Init(b.cmp, b.rangeKeys)
    1413           1 :                 return
    1414           1 :         }
    1415             : 
    1416           1 :         rangeKeys := make([]keyspan.Span, 0, b.countRangeKeys)
    1417           1 :         frag := &keyspan.Fragmenter{
    1418           1 :                 Cmp:    b.cmp,
    1419           1 :                 Format: b.formatKey,
    1420           1 :                 Emit: func(s keyspan.Span) {
    1421           1 :                         rangeKeys = append(rangeKeys, s)
    1422           1 :                 },
    1423             :         }
    1424           1 :         it := &batchIter{
    1425           1 :                 cmp:      b.cmp,
    1426           1 :                 batch:    b,
    1427           1 :                 iter:     b.rangeKeyIndex.NewIter(nil, nil),
    1428           1 :                 snapshot: batchSnapshot,
    1429           1 :         }
    1430           1 :         fragmentRangeKeys(frag, it, int(b.countRangeKeys))
    1431           1 :         iter.Init(b.cmp, rangeKeys)
    1432           1 : 
    1433           1 :         // If we just read all the range keys in the batch (eg, batchSnapshot was
    1434           1 :         // set to b.nextSeqNum()), then cache the range keys so that a subsequent
    1435           1 :         // call to initRangeKeyIter may use them without refragmenting.
    1436           1 :         if nextSeqNum == batchSnapshot {
    1437           1 :                 b.rangeKeys = rangeKeys
    1438           1 :                 b.rangeKeysSeqNum = nextSeqNum
    1439           1 :         }
    1440             : }
    1441             : 
    1442           1 : func fragmentRangeKeys(frag *keyspan.Fragmenter, it internalIterator, count int) error {
    1443           1 :         // The memory management here is a bit subtle. The keys and values
    1444           1 :         // returned by the iterator are slices in Batch.data. Thus the
    1445           1 :         // fragmented key spans are slices within Batch.data. If additional
    1446           1 :         // entries are added to the Batch, Batch.data may be reallocated. The
    1447           1 :         // references in the fragmented keys will remain valid, pointing into
    1448           1 :         // the old Batch.data. GC for the win.
    1449           1 : 
    1450           1 :         // Use a single []keyspan.Key buffer to avoid allocating many
    1451           1 :         // individual []keyspan.Key slices with a single element each.
    1452           1 :         keyBuf := make([]keyspan.Key, 0, count)
    1453           1 :         for kv := it.First(); kv != nil; kv = it.Next() {
    1454           1 :                 s, err := rangekey.Decode(kv.K, kv.InPlaceValue(), keyBuf)
    1455           1 :                 if err != nil {
    1456           0 :                         return err
    1457           0 :                 }
    1458           1 :                 keyBuf = s.Keys[len(s.Keys):]
    1459           1 : 
    1460           1 :                 // Set a fixed capacity to avoid accidental overwriting.
    1461           1 :                 s.Keys = s.Keys[:len(s.Keys):len(s.Keys)]
    1462           1 :                 frag.Add(s)
    1463             :         }
    1464           1 :         frag.Finish()
    1465           1 :         return nil
    1466             : }
    1467             : 
    1468             : // Commit applies the batch to its parent writer.
    1469           1 : func (b *Batch) Commit(o *WriteOptions) error {
    1470           1 :         return b.db.Apply(b, o)
    1471           1 : }
    1472             : 
    1473             : // Close closes the batch without committing it.
    1474           1 : func (b *Batch) Close() error {
    1475           1 :         // The storage engine commit pipeline may retain a pointer to b.data beyond
    1476           1 :         // when Commit() returns. This is possible when configured for WAL failover;
    1477           1 :         // we don't know if we might need to read the batch data again until the
    1478           1 :         // batch has been durably synced [even if the committer doesn't care to wait
    1479           1 :         // for the sync and Sync()=false].
    1480           1 :         //
    1481           1 :         // We still want to recycle these batches. The b.lifecycle atomic negotiates
    1482           1 :         // the batch's lifecycle. If the commit pipeline still might read b.data,
    1483           1 :         // b.lifecycle will be nonzeroed [the low bits hold a ref count].
    1484           1 :         for {
    1485           1 :                 v := b.lifecycle.Load()
    1486           1 :                 switch {
    1487           1 :                 case v == 0:
    1488           1 :                         // A zero value indicates that the commit pipeline has no
    1489           1 :                         // outstanding references to the batch. The commit pipeline is
    1490           1 :                         // required to acquire a ref synchronously, so there is no risk that
    1491           1 :                         // the commit pipeline will grab a ref after the call to release. We
    1492           1 :                         // can simply release the batch.
    1493           1 :                         b.release()
    1494           1 :                         return nil
    1495           1 :                 case (v & batchClosedBit) != 0:
    1496           1 :                         // The batch has a batchClosedBit: This batch has already been closed.
    1497           1 :                         return ErrClosed
    1498           1 :                 default:
    1499           1 :                         // There's an outstanding reference. Set the batch released bit so
    1500           1 :                         // that the commit pipeline knows it should release the batch when
    1501           1 :                         // it unrefs.
    1502           1 :                         if b.lifecycle.CompareAndSwap(v, v|batchClosedBit) {
    1503           1 :                                 return nil
    1504           1 :                         }
    1505             :                         // CAS Failed—this indicates the outstanding reference just
    1506             :                         // decremented (or the caller illegally closed the batch twice).
    1507             :                         // Loop to reload.
    1508             :                 }
    1509             :         }
    1510             : }
    1511             : 
    1512             : // Indexed returns true if the batch is indexed (i.e. supports read
    1513             : // operations).
    1514           1 : func (b *Batch) Indexed() bool {
    1515           1 :         return b.index != nil
    1516           1 : }
    1517             : 
    1518             : // init ensures that the batch data slice is initialized to meet the
    1519             : // minimum required size and allocates space for the batch header.
    1520           1 : func (b *Batch) init(size int) {
    1521           1 :         b.opts.ensureDefaults()
    1522           1 :         n := b.opts.initialSizeBytes
    1523           1 :         for n < size {
    1524           1 :                 n *= 2
    1525           1 :         }
    1526           1 :         if cap(b.data) < n {
    1527           1 :                 b.data = rawalloc.New(batchrepr.HeaderLen, n)
    1528           1 :         }
    1529           1 :         b.data = b.data[:batchrepr.HeaderLen]
    1530           1 :         clear(b.data) // Zero the sequence number in the header
    1531             : }
    1532             : 
    1533             : // Reset resets the batch for reuse. The underlying byte slice (that is
    1534             : // returned by Repr()) may not be modified. It is only necessary to call this
    1535             : // method if a batch is explicitly being reused. Close automatically takes are
    1536             : // of releasing resources when appropriate for batches that are internally
    1537             : // being reused.
    1538           1 : func (b *Batch) Reset() {
    1539           1 :         // In some configurations (WAL failover) the commit pipeline may retain
    1540           1 :         // b.data beyond a call to commit the batch. When this happens, b.lifecycle
    1541           1 :         // is nonzero (see the comment above b.lifecycle). In this case it's unsafe
    1542           1 :         // to mutate b.data, so we discard it. Note that Reset must not be called on
    1543           1 :         // a closed batch, so v > 0 implies a non-zero ref count and not
    1544           1 :         // batchClosedBit being set.
    1545           1 :         if v := b.lifecycle.Load(); v > 0 {
    1546           1 :                 b.data = nil
    1547           1 :         }
    1548           1 :         b.reset()
    1549             : }
    1550             : 
    1551           1 : func (b *Batch) reset() {
    1552           1 :         // Zero out the struct, retaining only the fields necessary for manual
    1553           1 :         // reuse.
    1554           1 :         b.batchInternal = batchInternal{
    1555           1 :                 data:           b.data,
    1556           1 :                 cmp:            b.cmp,
    1557           1 :                 formatKey:      b.formatKey,
    1558           1 :                 abbreviatedKey: b.abbreviatedKey,
    1559           1 :                 opts:           b.opts,
    1560           1 :                 index:          b.index,
    1561           1 :                 db:             b.db,
    1562           1 :         }
    1563           1 :         b.applied.Store(false)
    1564           1 :         if b.data != nil {
    1565           1 :                 if cap(b.data) > b.opts.maxRetainedSizeBytes {
    1566           1 :                         // If the capacity of the buffer is larger than our maximum
    1567           1 :                         // retention size, don't re-use it. Let it be GC-ed instead.
    1568           1 :                         // This prevents the memory from an unusually large batch from
    1569           1 :                         // being held on to indefinitely.
    1570           1 :                         b.data = nil
    1571           1 :                 } else {
    1572           1 :                         // Otherwise, reset the buffer for re-use.
    1573           1 :                         b.data = b.data[:batchrepr.HeaderLen]
    1574           1 :                         clear(b.data)
    1575           1 :                 }
    1576             :         }
    1577           1 :         if b.index != nil {
    1578           1 :                 b.index.Init(&b.data, b.cmp, b.abbreviatedKey)
    1579           1 :         }
    1580             : }
    1581             : 
    1582           1 : func (b *Batch) grow(n int) {
    1583           1 :         newSize := len(b.data) + n
    1584           1 :         if uint64(newSize) >= maxBatchSize {
    1585           1 :                 panic(ErrBatchTooLarge)
    1586             :         }
    1587           1 :         if newSize > cap(b.data) {
    1588           1 :                 newCap := 2 * cap(b.data)
    1589           1 :                 for newCap < newSize {
    1590           1 :                         newCap *= 2
    1591           1 :                 }
    1592           1 :                 newData := rawalloc.New(len(b.data), newCap)
    1593           1 :                 copy(newData, b.data)
    1594           1 :                 b.data = newData
    1595             :         }
    1596           1 :         b.data = b.data[:newSize]
    1597             : }
    1598             : 
    1599           1 : func (b *Batch) setSeqNum(seqNum uint64) {
    1600           1 :         batchrepr.SetSeqNum(b.data, seqNum)
    1601           1 : }
    1602             : 
    1603             : // SeqNum returns the batch sequence number which is applied to the first
    1604             : // record in the batch. The sequence number is incremented for each subsequent
    1605             : // record. It returns zero if the batch is empty.
    1606           1 : func (b *Batch) SeqNum() uint64 {
    1607           1 :         if len(b.data) == 0 {
    1608           1 :                 b.init(batchrepr.HeaderLen)
    1609           1 :         }
    1610           1 :         return batchrepr.ReadSeqNum(b.data)
    1611             : }
    1612             : 
    1613           1 : func (b *Batch) setCount(v uint32) {
    1614           1 :         b.count = uint64(v)
    1615           1 : }
    1616             : 
    1617             : // Count returns the count of memtable-modifying operations in this batch. All
    1618             : // operations with the except of LogData increment this count. For IngestSSTs,
    1619             : // count is only used to indicate the number of SSTs ingested in the record, the
    1620             : // batch isn't applied to the memtable.
    1621           1 : func (b *Batch) Count() uint32 {
    1622           1 :         if b.count > math.MaxUint32 {
    1623           1 :                 panic(batchrepr.ErrInvalidBatch)
    1624             :         }
    1625           1 :         return uint32(b.count)
    1626             : }
    1627             : 
    1628             : // Reader returns a batchrepr.Reader for the current batch contents. If the
    1629             : // batch is mutated, the new entries will not be visible to the reader.
    1630           1 : func (b *Batch) Reader() batchrepr.Reader {
    1631           1 :         if len(b.data) == 0 {
    1632           1 :                 b.init(batchrepr.HeaderLen)
    1633           1 :         }
    1634           1 :         return batchrepr.Read(b.data)
    1635             : }
    1636             : 
    1637             : // SyncWait is to be used in conjunction with DB.ApplyNoSyncWait.
    1638           1 : func (b *Batch) SyncWait() error {
    1639           1 :         now := time.Now()
    1640           1 :         b.fsyncWait.Wait()
    1641           1 :         if b.commitErr != nil {
    1642           0 :                 b.db = nil // prevent batch reuse on error
    1643           0 :         }
    1644           1 :         waitDuration := time.Since(now)
    1645           1 :         b.commitStats.CommitWaitDuration += waitDuration
    1646           1 :         b.commitStats.TotalDuration += waitDuration
    1647           1 :         return b.commitErr
    1648             : }
    1649             : 
    1650             : // CommitStats returns stats related to committing the batch. Should be called
    1651             : // after Batch.Commit, DB.Apply. If DB.ApplyNoSyncWait is used, should be
    1652             : // called after Batch.SyncWait.
    1653           1 : func (b *Batch) CommitStats() BatchCommitStats {
    1654           1 :         return b.commitStats
    1655           1 : }
    1656             : 
    1657             : // Note: batchIter mirrors the implementation of flushableBatchIter. Keep the
    1658             : // two in sync.
    1659             : type batchIter struct {
    1660             :         cmp   Compare
    1661             :         batch *Batch
    1662             :         iter  batchskl.Iterator
    1663             :         kv    base.InternalKV
    1664             :         err   error
    1665             :         // snapshot holds a batch "sequence number" at which the batch is being
    1666             :         // read. This sequence number has the InternalKeySeqNumBatch bit set, so it
    1667             :         // encodes an offset within the batch. Only batch entries earlier than the
    1668             :         // offset are visible during iteration.
    1669             :         snapshot uint64
    1670             : }
    1671             : 
    1672             : // batchIter implements the base.InternalIterator interface.
    1673             : var _ base.InternalIterator = (*batchIter)(nil)
    1674             : 
    1675           0 : func (i *batchIter) String() string {
    1676           0 :         return "batch"
    1677           0 : }
    1678             : 
    1679           1 : func (i *batchIter) SeekGE(key []byte, flags base.SeekGEFlags) *base.InternalKV {
    1680           1 :         // Ignore TrySeekUsingNext if the view of the batch changed.
    1681           1 :         if flags.TrySeekUsingNext() && flags.BatchJustRefreshed() {
    1682           1 :                 flags = flags.DisableTrySeekUsingNext()
    1683           1 :         }
    1684             : 
    1685           1 :         i.err = nil // clear cached iteration error
    1686           1 :         ikey := i.iter.SeekGE(key, flags)
    1687           1 :         for ikey != nil && ikey.SeqNum() >= i.snapshot {
    1688           0 :                 ikey = i.iter.Next()
    1689           0 :         }
    1690           1 :         if ikey == nil {
    1691           1 :                 i.kv = base.InternalKV{}
    1692           1 :                 return nil
    1693           1 :         }
    1694           1 :         i.kv.K = *ikey
    1695           1 :         i.kv.V = base.MakeInPlaceValue(i.value())
    1696           1 :         return &i.kv
    1697             : }
    1698             : 
    1699           1 : func (i *batchIter) SeekPrefixGE(prefix, key []byte, flags base.SeekGEFlags) *base.InternalKV {
    1700           1 :         i.err = nil // clear cached iteration error
    1701           1 :         return i.SeekGE(key, flags)
    1702           1 : }
    1703             : 
    1704           1 : func (i *batchIter) SeekLT(key []byte, flags base.SeekLTFlags) *base.InternalKV {
    1705           1 :         i.err = nil // clear cached iteration error
    1706           1 :         ikey := i.iter.SeekLT(key)
    1707           1 :         for ikey != nil && ikey.SeqNum() >= i.snapshot {
    1708           0 :                 ikey = i.iter.Prev()
    1709           0 :         }
    1710           1 :         if ikey == nil {
    1711           1 :                 i.kv = base.InternalKV{}
    1712           1 :                 return nil
    1713           1 :         }
    1714           1 :         i.kv.K = *ikey
    1715           1 :         i.kv.V = base.MakeInPlaceValue(i.value())
    1716           1 :         return &i.kv
    1717             : }
    1718             : 
    1719           1 : func (i *batchIter) First() *base.InternalKV {
    1720           1 :         i.err = nil // clear cached iteration error
    1721           1 :         ikey := i.iter.First()
    1722           1 :         for ikey != nil && ikey.SeqNum() >= i.snapshot {
    1723           1 :                 ikey = i.iter.Next()
    1724           1 :         }
    1725           1 :         if ikey == nil {
    1726           1 :                 i.kv = base.InternalKV{}
    1727           1 :                 return nil
    1728           1 :         }
    1729           1 :         i.kv.K = *ikey
    1730           1 :         i.kv.V = base.MakeInPlaceValue(i.value())
    1731           1 :         return &i.kv
    1732             : }
    1733             : 
    1734           1 : func (i *batchIter) Last() *base.InternalKV {
    1735           1 :         i.err = nil // clear cached iteration error
    1736           1 :         ikey := i.iter.Last()
    1737           1 :         for ikey != nil && ikey.SeqNum() >= i.snapshot {
    1738           0 :                 ikey = i.iter.Prev()
    1739           0 :         }
    1740           1 :         if ikey == nil {
    1741           0 :                 i.kv = base.InternalKV{}
    1742           0 :                 return nil
    1743           0 :         }
    1744           1 :         i.kv.K = *ikey
    1745           1 :         i.kv.V = base.MakeInPlaceValue(i.value())
    1746           1 :         return &i.kv
    1747             : }
    1748             : 
    1749           1 : func (i *batchIter) Next() *base.InternalKV {
    1750           1 :         ikey := i.iter.Next()
    1751           1 :         for ikey != nil && ikey.SeqNum() >= i.snapshot {
    1752           1 :                 ikey = i.iter.Next()
    1753           1 :         }
    1754           1 :         if ikey == nil {
    1755           1 :                 i.kv = base.InternalKV{}
    1756           1 :                 return nil
    1757           1 :         }
    1758           1 :         i.kv.K = *ikey
    1759           1 :         i.kv.V = base.MakeInPlaceValue(i.value())
    1760           1 :         return &i.kv
    1761             : }
    1762             : 
    1763           0 : func (i *batchIter) NextPrefix(succKey []byte) *base.InternalKV {
    1764           0 :         // Because NextPrefix was invoked `succKey` must be ≥ the key at i's current
    1765           0 :         // position. Seek the arena iterator using TrySeekUsingNext.
    1766           0 :         ikey := i.iter.SeekGE(succKey, base.SeekGEFlagsNone.EnableTrySeekUsingNext())
    1767           0 :         for ikey != nil && ikey.SeqNum() >= i.snapshot {
    1768           0 :                 ikey = i.iter.Next()
    1769           0 :         }
    1770           0 :         if ikey == nil {
    1771           0 :                 i.kv = base.InternalKV{}
    1772           0 :                 return nil
    1773           0 :         }
    1774           0 :         i.kv.K = *ikey
    1775           0 :         i.kv.V = base.MakeInPlaceValue(i.value())
    1776           0 :         return &i.kv
    1777             : }
    1778             : 
    1779           1 : func (i *batchIter) Prev() *base.InternalKV {
    1780           1 :         ikey := i.iter.Prev()
    1781           1 :         for ikey != nil && ikey.SeqNum() >= i.snapshot {
    1782           0 :                 ikey = i.iter.Prev()
    1783           0 :         }
    1784           1 :         if ikey == nil {
    1785           1 :                 i.kv = base.InternalKV{}
    1786           1 :                 return nil
    1787           1 :         }
    1788           1 :         i.kv.K = *ikey
    1789           1 :         i.kv.V = base.MakeInPlaceValue(i.value())
    1790           1 :         return &i.kv
    1791             : }
    1792             : 
    1793           1 : func (i *batchIter) value() []byte {
    1794           1 :         offset, _, keyEnd := i.iter.KeyInfo()
    1795           1 :         data := i.batch.data
    1796           1 :         if len(data[offset:]) == 0 {
    1797           0 :                 i.err = base.CorruptionErrorf("corrupted batch")
    1798           0 :                 return nil
    1799           0 :         }
    1800             : 
    1801           1 :         switch InternalKeyKind(data[offset]) {
    1802             :         case InternalKeyKindSet, InternalKeyKindMerge, InternalKeyKindRangeDelete,
    1803             :                 InternalKeyKindRangeKeySet, InternalKeyKindRangeKeyUnset, InternalKeyKindRangeKeyDelete,
    1804           1 :                 InternalKeyKindDeleteSized:
    1805           1 :                 _, value, ok := batchrepr.DecodeStr(data[keyEnd:])
    1806           1 :                 if !ok {
    1807           0 :                         return nil
    1808           0 :                 }
    1809           1 :                 return value
    1810           1 :         default:
    1811           1 :                 return nil
    1812             :         }
    1813             : }
    1814             : 
    1815           1 : func (i *batchIter) Error() error {
    1816           1 :         return i.err
    1817           1 : }
    1818             : 
    1819           1 : func (i *batchIter) Close() error {
    1820           1 :         _ = i.iter.Close()
    1821           1 :         return i.err
    1822           1 : }
    1823             : 
    1824           1 : func (i *batchIter) SetBounds(lower, upper []byte) {
    1825           1 :         i.iter.SetBounds(lower, upper)
    1826           1 : }
    1827             : 
    1828           0 : func (i *batchIter) SetContext(_ context.Context) {}
    1829             : 
    1830             : type flushableBatchEntry struct {
    1831             :         // offset is the byte offset of the record within the batch repr.
    1832             :         offset uint32
    1833             :         // index is the 0-based ordinal number of the record within the batch. Used
    1834             :         // to compute the seqnum for the record.
    1835             :         index uint32
    1836             :         // key{Start,End} are the start and end byte offsets of the key within the
    1837             :         // batch repr. Cached to avoid decoding the key length on every
    1838             :         // comparison. The value is stored starting at keyEnd.
    1839             :         keyStart uint32
    1840             :         keyEnd   uint32
    1841             : }
    1842             : 
    1843             : // flushableBatch wraps an existing batch and provides the interfaces needed
    1844             : // for making the batch flushable (i.e. able to mimic a memtable).
    1845             : type flushableBatch struct {
    1846             :         cmp       Compare
    1847             :         formatKey base.FormatKey
    1848             :         data      []byte
    1849             : 
    1850             :         // The base sequence number for the entries in the batch. This is the same
    1851             :         // value as Batch.seqNum() and is cached here for performance.
    1852             :         seqNum uint64
    1853             : 
    1854             :         // A slice of offsets and indices for the entries in the batch. Used to
    1855             :         // implement flushableBatchIter. Unlike the indexing on a normal batch, a
    1856             :         // flushable batch is indexed such that batch entry i will be given the
    1857             :         // sequence number flushableBatch.seqNum+i.
    1858             :         //
    1859             :         // Sorted in increasing order of key and decreasing order of offset (since
    1860             :         // higher offsets correspond to higher sequence numbers).
    1861             :         //
    1862             :         // Does not include range deletion entries or range key entries.
    1863             :         offsets []flushableBatchEntry
    1864             : 
    1865             :         // Fragmented range deletion tombstones.
    1866             :         tombstones []keyspan.Span
    1867             : 
    1868             :         // Fragmented range keys.
    1869             :         rangeKeys []keyspan.Span
    1870             : }
    1871             : 
    1872             : var _ flushable = (*flushableBatch)(nil)
    1873             : 
    1874             : // newFlushableBatch creates a new batch that implements the flushable
    1875             : // interface. This allows the batch to act like a memtable and be placed in the
    1876             : // queue of flushable memtables. Note that the flushable batch takes ownership
    1877             : // of the batch data.
    1878           1 : func newFlushableBatch(batch *Batch, comparer *Comparer) (*flushableBatch, error) {
    1879           1 :         b := &flushableBatch{
    1880           1 :                 data:      batch.data,
    1881           1 :                 cmp:       comparer.Compare,
    1882           1 :                 formatKey: comparer.FormatKey,
    1883           1 :                 offsets:   make([]flushableBatchEntry, 0, batch.Count()),
    1884           1 :         }
    1885           1 :         if b.data != nil {
    1886           1 :                 // Note that this sequence number is not correct when this batch has not
    1887           1 :                 // been applied since the sequence number has not been assigned yet. The
    1888           1 :                 // correct sequence number will be set later. But it is correct when the
    1889           1 :                 // batch is being replayed from the WAL.
    1890           1 :                 b.seqNum = batch.SeqNum()
    1891           1 :         }
    1892           1 :         var rangeDelOffsets []flushableBatchEntry
    1893           1 :         var rangeKeyOffsets []flushableBatchEntry
    1894           1 :         if len(b.data) > batchrepr.HeaderLen {
    1895           1 :                 // Non-empty batch.
    1896           1 :                 var index uint32
    1897           1 :                 for iter := batchrepr.Read(b.data); len(iter) > 0; {
    1898           1 :                         offset := uintptr(unsafe.Pointer(&iter[0])) - uintptr(unsafe.Pointer(&b.data[0]))
    1899           1 :                         kind, key, _, ok, err := iter.Next()
    1900           1 :                         if !ok {
    1901           0 :                                 if err != nil {
    1902           0 :                                         return nil, err
    1903           0 :                                 }
    1904           0 :                                 break
    1905             :                         }
    1906           1 :                         entry := flushableBatchEntry{
    1907           1 :                                 offset: uint32(offset),
    1908           1 :                                 index:  uint32(index),
    1909           1 :                         }
    1910           1 :                         if keySize := uint32(len(key)); keySize == 0 {
    1911           1 :                                 // Must add 2 to the offset. One byte encodes `kind` and the next
    1912           1 :                                 // byte encodes `0`, which is the length of the key.
    1913           1 :                                 entry.keyStart = uint32(offset) + 2
    1914           1 :                                 entry.keyEnd = entry.keyStart
    1915           1 :                         } else {
    1916           1 :                                 entry.keyStart = uint32(uintptr(unsafe.Pointer(&key[0])) -
    1917           1 :                                         uintptr(unsafe.Pointer(&b.data[0])))
    1918           1 :                                 entry.keyEnd = entry.keyStart + keySize
    1919           1 :                         }
    1920           1 :                         switch kind {
    1921           1 :                         case InternalKeyKindRangeDelete:
    1922           1 :                                 rangeDelOffsets = append(rangeDelOffsets, entry)
    1923           1 :                         case InternalKeyKindRangeKeySet, InternalKeyKindRangeKeyUnset, InternalKeyKindRangeKeyDelete:
    1924           1 :                                 rangeKeyOffsets = append(rangeKeyOffsets, entry)
    1925           1 :                         case InternalKeyKindLogData:
    1926           1 :                                 // Skip it; we never want to iterate over LogDatas.
    1927           1 :                                 continue
    1928             :                         case InternalKeyKindSet, InternalKeyKindDelete, InternalKeyKindMerge,
    1929           1 :                                 InternalKeyKindSingleDelete, InternalKeyKindSetWithDelete, InternalKeyKindDeleteSized:
    1930           1 :                                 b.offsets = append(b.offsets, entry)
    1931           0 :                         default:
    1932           0 :                                 // Note In some circumstances this might be temporary memory
    1933           0 :                                 // corruption that can be recovered by discarding the batch and
    1934           0 :                                 // trying again. In other cases, the batch repr might've been
    1935           0 :                                 // already persisted elsewhere, and we'll loop continuously trying
    1936           0 :                                 // to commit the same corrupted batch. The caller is responsible for
    1937           0 :                                 // distinguishing.
    1938           0 :                                 return nil, errors.Wrapf(ErrInvalidBatch, "unrecognized kind %v", kind)
    1939             :                         }
    1940             :                         // NB: index (used for entry.offset above) must not reach the
    1941             :                         // batch.count, because the offset is used in conjunction with the
    1942             :                         // batch's sequence number to assign sequence numbers to keys within
    1943             :                         // the batch. If we assign KV's indexes as high as batch.count,
    1944             :                         // we'll begin assigning keys sequence numbers that weren't
    1945             :                         // allocated.
    1946           1 :                         if index >= uint32(batch.count) {
    1947           0 :                                 return nil, base.AssertionFailedf("pebble: batch entry index %d ≥ batch.count %d", index, batch.count)
    1948           0 :                         }
    1949           1 :                         index++
    1950             :                 }
    1951             :         }
    1952             : 
    1953             :         // Sort all of offsets, rangeDelOffsets and rangeKeyOffsets, using *batch's
    1954             :         // sort.Interface implementation.
    1955           1 :         pointOffsets := b.offsets
    1956           1 :         sort.Sort(b)
    1957           1 :         b.offsets = rangeDelOffsets
    1958           1 :         sort.Sort(b)
    1959           1 :         b.offsets = rangeKeyOffsets
    1960           1 :         sort.Sort(b)
    1961           1 :         b.offsets = pointOffsets
    1962           1 : 
    1963           1 :         if len(rangeDelOffsets) > 0 {
    1964           1 :                 frag := &keyspan.Fragmenter{
    1965           1 :                         Cmp:    b.cmp,
    1966           1 :                         Format: b.formatKey,
    1967           1 :                         Emit: func(s keyspan.Span) {
    1968           1 :                                 b.tombstones = append(b.tombstones, s)
    1969           1 :                         },
    1970             :                 }
    1971           1 :                 it := &flushableBatchIter{
    1972           1 :                         batch:   b,
    1973           1 :                         data:    b.data,
    1974           1 :                         offsets: rangeDelOffsets,
    1975           1 :                         cmp:     b.cmp,
    1976           1 :                         index:   -1,
    1977           1 :                 }
    1978           1 :                 fragmentRangeDels(frag, it, len(rangeDelOffsets))
    1979             :         }
    1980           1 :         if len(rangeKeyOffsets) > 0 {
    1981           1 :                 frag := &keyspan.Fragmenter{
    1982           1 :                         Cmp:    b.cmp,
    1983           1 :                         Format: b.formatKey,
    1984           1 :                         Emit: func(s keyspan.Span) {
    1985           1 :                                 b.rangeKeys = append(b.rangeKeys, s)
    1986           1 :                         },
    1987             :                 }
    1988           1 :                 it := &flushableBatchIter{
    1989           1 :                         batch:   b,
    1990           1 :                         data:    b.data,
    1991           1 :                         offsets: rangeKeyOffsets,
    1992           1 :                         cmp:     b.cmp,
    1993           1 :                         index:   -1,
    1994           1 :                 }
    1995           1 :                 fragmentRangeKeys(frag, it, len(rangeKeyOffsets))
    1996             :         }
    1997           1 :         return b, nil
    1998             : }
    1999             : 
    2000           1 : func (b *flushableBatch) setSeqNum(seqNum uint64) {
    2001           1 :         if b.seqNum != 0 {
    2002           0 :                 panic(fmt.Sprintf("pebble: flushableBatch.seqNum already set: %d", b.seqNum))
    2003             :         }
    2004           1 :         b.seqNum = seqNum
    2005           1 :         for i := range b.tombstones {
    2006           1 :                 for j := range b.tombstones[i].Keys {
    2007           1 :                         b.tombstones[i].Keys[j].Trailer = base.MakeTrailer(
    2008           1 :                                 b.tombstones[i].Keys[j].SeqNum()+seqNum,
    2009           1 :                                 b.tombstones[i].Keys[j].Kind(),
    2010           1 :                         )
    2011           1 :                 }
    2012             :         }
    2013           1 :         for i := range b.rangeKeys {
    2014           1 :                 for j := range b.rangeKeys[i].Keys {
    2015           1 :                         b.rangeKeys[i].Keys[j].Trailer = base.MakeTrailer(
    2016           1 :                                 b.rangeKeys[i].Keys[j].SeqNum()+seqNum,
    2017           1 :                                 b.rangeKeys[i].Keys[j].Kind(),
    2018           1 :                         )
    2019           1 :                 }
    2020             :         }
    2021             : }
    2022             : 
    2023           1 : func (b *flushableBatch) Len() int {
    2024           1 :         return len(b.offsets)
    2025           1 : }
    2026             : 
    2027           1 : func (b *flushableBatch) Less(i, j int) bool {
    2028           1 :         ei := &b.offsets[i]
    2029           1 :         ej := &b.offsets[j]
    2030           1 :         ki := b.data[ei.keyStart:ei.keyEnd]
    2031           1 :         kj := b.data[ej.keyStart:ej.keyEnd]
    2032           1 :         switch c := b.cmp(ki, kj); {
    2033           1 :         case c < 0:
    2034           1 :                 return true
    2035           1 :         case c > 0:
    2036           1 :                 return false
    2037           1 :         default:
    2038           1 :                 return ei.offset > ej.offset
    2039             :         }
    2040             : }
    2041             : 
    2042           1 : func (b *flushableBatch) Swap(i, j int) {
    2043           1 :         b.offsets[i], b.offsets[j] = b.offsets[j], b.offsets[i]
    2044           1 : }
    2045             : 
    2046             : // newIter is part of the flushable interface.
    2047           1 : func (b *flushableBatch) newIter(o *IterOptions) internalIterator {
    2048           1 :         return &flushableBatchIter{
    2049           1 :                 batch:   b,
    2050           1 :                 data:    b.data,
    2051           1 :                 offsets: b.offsets,
    2052           1 :                 cmp:     b.cmp,
    2053           1 :                 index:   -1,
    2054           1 :                 lower:   o.GetLowerBound(),
    2055           1 :                 upper:   o.GetUpperBound(),
    2056           1 :         }
    2057           1 : }
    2058             : 
    2059             : // newFlushIter is part of the flushable interface.
    2060           1 : func (b *flushableBatch) newFlushIter(o *IterOptions) internalIterator {
    2061           1 :         return &flushFlushableBatchIter{
    2062           1 :                 flushableBatchIter: flushableBatchIter{
    2063           1 :                         batch:   b,
    2064           1 :                         data:    b.data,
    2065           1 :                         offsets: b.offsets,
    2066           1 :                         cmp:     b.cmp,
    2067           1 :                         index:   -1,
    2068           1 :                 },
    2069           1 :         }
    2070           1 : }
    2071             : 
    2072             : // newRangeDelIter is part of the flushable interface.
    2073           1 : func (b *flushableBatch) newRangeDelIter(o *IterOptions) keyspan.FragmentIterator {
    2074           1 :         if len(b.tombstones) == 0 {
    2075           1 :                 return nil
    2076           1 :         }
    2077           1 :         return keyspan.NewIter(b.cmp, b.tombstones)
    2078             : }
    2079             : 
    2080             : // newRangeKeyIter is part of the flushable interface.
    2081           1 : func (b *flushableBatch) newRangeKeyIter(o *IterOptions) keyspan.FragmentIterator {
    2082           1 :         if len(b.rangeKeys) == 0 {
    2083           1 :                 return nil
    2084           1 :         }
    2085           1 :         return keyspan.NewIter(b.cmp, b.rangeKeys)
    2086             : }
    2087             : 
    2088             : // containsRangeKeys is part of the flushable interface.
    2089           0 : func (b *flushableBatch) containsRangeKeys() bool { return len(b.rangeKeys) > 0 }
    2090             : 
    2091             : // inuseBytes is part of the flushable interface.
    2092           1 : func (b *flushableBatch) inuseBytes() uint64 {
    2093           1 :         return uint64(len(b.data) - batchrepr.HeaderLen)
    2094           1 : }
    2095             : 
    2096             : // totalBytes is part of the flushable interface.
    2097           1 : func (b *flushableBatch) totalBytes() uint64 {
    2098           1 :         return uint64(cap(b.data))
    2099           1 : }
    2100             : 
    2101             : // readyForFlush is part of the flushable interface.
    2102           1 : func (b *flushableBatch) readyForFlush() bool {
    2103           1 :         // A flushable batch is always ready for flush; it must be flushed together
    2104           1 :         // with the previous memtable.
    2105           1 :         return true
    2106           1 : }
    2107             : 
    2108             : // computePossibleOverlaps is part of the flushable interface.
    2109             : func (b *flushableBatch) computePossibleOverlaps(
    2110             :         fn func(bounded) shouldContinue, bounded ...bounded,
    2111           1 : ) {
    2112           1 :         computePossibleOverlapsGenericImpl[*flushableBatch](b, b.cmp, fn, bounded)
    2113           1 : }
    2114             : 
    2115             : // Note: flushableBatchIter mirrors the implementation of batchIter. Keep the
    2116             : // two in sync.
    2117             : type flushableBatchIter struct {
    2118             :         // Members to be initialized by creator.
    2119             :         batch *flushableBatch
    2120             :         // The bytes backing the batch. Always the same as batch.data?
    2121             :         data []byte
    2122             :         // The sorted entries. This is not always equal to batch.offsets.
    2123             :         offsets []flushableBatchEntry
    2124             :         cmp     Compare
    2125             :         // Must be initialized to -1. It is the index into offsets that represents
    2126             :         // the current iterator position.
    2127             :         index int
    2128             : 
    2129             :         // For internal use by the implementation.
    2130             :         kv  base.InternalKV
    2131             :         err error
    2132             : 
    2133             :         // Optionally initialize to bounds of iteration, if any.
    2134             :         lower []byte
    2135             :         upper []byte
    2136             : }
    2137             : 
    2138             : // flushableBatchIter implements the base.InternalIterator interface.
    2139             : var _ base.InternalIterator = (*flushableBatchIter)(nil)
    2140             : 
    2141           0 : func (i *flushableBatchIter) String() string {
    2142           0 :         return "flushable-batch"
    2143           0 : }
    2144             : 
    2145             : // SeekGE implements internalIterator.SeekGE, as documented in the pebble
    2146             : // package. Ignore flags.TrySeekUsingNext() since we don't expect this
    2147             : // optimization to provide much benefit here at the moment.
    2148           1 : func (i *flushableBatchIter) SeekGE(key []byte, flags base.SeekGEFlags) *base.InternalKV {
    2149           1 :         i.err = nil // clear cached iteration error
    2150           1 :         ikey := base.MakeSearchKey(key)
    2151           1 :         i.index = sort.Search(len(i.offsets), func(j int) bool {
    2152           1 :                 return base.InternalCompare(i.cmp, ikey, i.getKey(j)) <= 0
    2153           1 :         })
    2154           1 :         if i.index >= len(i.offsets) {
    2155           1 :                 return nil
    2156           1 :         }
    2157           1 :         kv := i.getKV(i.index)
    2158           1 :         if i.upper != nil && i.cmp(kv.K.UserKey, i.upper) >= 0 {
    2159           1 :                 i.index = len(i.offsets)
    2160           1 :                 return nil
    2161           1 :         }
    2162           1 :         return kv
    2163             : }
    2164             : 
    2165             : // SeekPrefixGE implements internalIterator.SeekPrefixGE, as documented in the
    2166             : // pebble package.
    2167             : func (i *flushableBatchIter) SeekPrefixGE(
    2168             :         prefix, key []byte, flags base.SeekGEFlags,
    2169           1 : ) *base.InternalKV {
    2170           1 :         return i.SeekGE(key, flags)
    2171           1 : }
    2172             : 
    2173             : // SeekLT implements internalIterator.SeekLT, as documented in the pebble
    2174             : // package.
    2175           1 : func (i *flushableBatchIter) SeekLT(key []byte, flags base.SeekLTFlags) *base.InternalKV {
    2176           1 :         i.err = nil // clear cached iteration error
    2177           1 :         ikey := base.MakeSearchKey(key)
    2178           1 :         i.index = sort.Search(len(i.offsets), func(j int) bool {
    2179           1 :                 return base.InternalCompare(i.cmp, ikey, i.getKey(j)) <= 0
    2180           1 :         })
    2181           1 :         i.index--
    2182           1 :         if i.index < 0 {
    2183           1 :                 return nil
    2184           1 :         }
    2185           1 :         kv := i.getKV(i.index)
    2186           1 :         if i.lower != nil && i.cmp(kv.K.UserKey, i.lower) < 0 {
    2187           1 :                 i.index = -1
    2188           1 :                 return nil
    2189           1 :         }
    2190           1 :         return kv
    2191             : }
    2192             : 
    2193             : // First implements internalIterator.First, as documented in the pebble
    2194             : // package.
    2195           1 : func (i *flushableBatchIter) First() *base.InternalKV {
    2196           1 :         i.err = nil // clear cached iteration error
    2197           1 :         if len(i.offsets) == 0 {
    2198           1 :                 return nil
    2199           1 :         }
    2200           1 :         i.index = 0
    2201           1 :         kv := i.getKV(i.index)
    2202           1 :         if i.upper != nil && i.cmp(kv.K.UserKey, i.upper) >= 0 {
    2203           1 :                 i.index = len(i.offsets)
    2204           1 :                 return nil
    2205           1 :         }
    2206           1 :         return kv
    2207             : }
    2208             : 
    2209             : // Last implements internalIterator.Last, as documented in the pebble
    2210             : // package.
    2211           1 : func (i *flushableBatchIter) Last() *base.InternalKV {
    2212           1 :         i.err = nil // clear cached iteration error
    2213           1 :         if len(i.offsets) == 0 {
    2214           0 :                 return nil
    2215           0 :         }
    2216           1 :         i.index = len(i.offsets) - 1
    2217           1 :         kv := i.getKV(i.index)
    2218           1 :         if i.lower != nil && i.cmp(kv.K.UserKey, i.lower) < 0 {
    2219           1 :                 i.index = -1
    2220           1 :                 return nil
    2221           1 :         }
    2222           1 :         return kv
    2223             : }
    2224             : 
    2225             : // Note: flushFlushableBatchIter.Next mirrors the implementation of
    2226             : // flushableBatchIter.Next due to performance. Keep the two in sync.
    2227           1 : func (i *flushableBatchIter) Next() *base.InternalKV {
    2228           1 :         if i.index == len(i.offsets) {
    2229           0 :                 return nil
    2230           0 :         }
    2231           1 :         i.index++
    2232           1 :         if i.index == len(i.offsets) {
    2233           1 :                 return nil
    2234           1 :         }
    2235           1 :         kv := i.getKV(i.index)
    2236           1 :         if i.upper != nil && i.cmp(kv.K.UserKey, i.upper) >= 0 {
    2237           1 :                 i.index = len(i.offsets)
    2238           1 :                 return nil
    2239           1 :         }
    2240           1 :         return kv
    2241             : }
    2242             : 
    2243           1 : func (i *flushableBatchIter) Prev() *base.InternalKV {
    2244           1 :         if i.index < 0 {
    2245           0 :                 return nil
    2246           0 :         }
    2247           1 :         i.index--
    2248           1 :         if i.index < 0 {
    2249           1 :                 return nil
    2250           1 :         }
    2251           1 :         kv := i.getKV(i.index)
    2252           1 :         if i.lower != nil && i.cmp(kv.K.UserKey, i.lower) < 0 {
    2253           1 :                 i.index = -1
    2254           1 :                 return nil
    2255           1 :         }
    2256           1 :         return kv
    2257             : }
    2258             : 
    2259             : // Note: flushFlushableBatchIter.NextPrefix mirrors the implementation of
    2260             : // flushableBatchIter.NextPrefix due to performance. Keep the two in sync.
    2261           0 : func (i *flushableBatchIter) NextPrefix(succKey []byte) *base.InternalKV {
    2262           0 :         return i.SeekGE(succKey, base.SeekGEFlagsNone.EnableTrySeekUsingNext())
    2263           0 : }
    2264             : 
    2265           1 : func (i *flushableBatchIter) getKey(index int) InternalKey {
    2266           1 :         e := &i.offsets[index]
    2267           1 :         kind := InternalKeyKind(i.data[e.offset])
    2268           1 :         key := i.data[e.keyStart:e.keyEnd]
    2269           1 :         return base.MakeInternalKey(key, i.batch.seqNum+uint64(e.index), kind)
    2270           1 : }
    2271             : 
    2272           1 : func (i *flushableBatchIter) getKV(index int) *base.InternalKV {
    2273           1 :         i.kv = base.InternalKV{
    2274           1 :                 K: i.getKey(index),
    2275           1 :                 V: i.extractValue(),
    2276           1 :         }
    2277           1 :         return &i.kv
    2278           1 : }
    2279             : 
    2280           1 : func (i *flushableBatchIter) extractValue() base.LazyValue {
    2281           1 :         p := i.data[i.offsets[i.index].offset:]
    2282           1 :         if len(p) == 0 {
    2283           0 :                 i.err = base.CorruptionErrorf("corrupted batch")
    2284           0 :                 return base.LazyValue{}
    2285           0 :         }
    2286           1 :         kind := InternalKeyKind(p[0])
    2287           1 :         if kind > InternalKeyKindMax {
    2288           0 :                 i.err = base.CorruptionErrorf("corrupted batch")
    2289           0 :                 return base.LazyValue{}
    2290           0 :         }
    2291           1 :         var value []byte
    2292           1 :         var ok bool
    2293           1 :         switch kind {
    2294             :         case InternalKeyKindSet, InternalKeyKindMerge, InternalKeyKindRangeDelete,
    2295             :                 InternalKeyKindRangeKeySet, InternalKeyKindRangeKeyUnset, InternalKeyKindRangeKeyDelete,
    2296           1 :                 InternalKeyKindDeleteSized:
    2297           1 :                 keyEnd := i.offsets[i.index].keyEnd
    2298           1 :                 _, value, ok = batchrepr.DecodeStr(i.data[keyEnd:])
    2299           1 :                 if !ok {
    2300           0 :                         i.err = base.CorruptionErrorf("corrupted batch")
    2301           0 :                         return base.LazyValue{}
    2302           0 :                 }
    2303             :         }
    2304           1 :         return base.MakeInPlaceValue(value)
    2305             : }
    2306             : 
    2307           0 : func (i *flushableBatchIter) Valid() bool {
    2308           0 :         return i.index >= 0 && i.index < len(i.offsets)
    2309           0 : }
    2310             : 
    2311           1 : func (i *flushableBatchIter) Error() error {
    2312           1 :         return i.err
    2313           1 : }
    2314             : 
    2315           1 : func (i *flushableBatchIter) Close() error {
    2316           1 :         return i.err
    2317           1 : }
    2318             : 
    2319           1 : func (i *flushableBatchIter) SetBounds(lower, upper []byte) {
    2320           1 :         i.lower = lower
    2321           1 :         i.upper = upper
    2322           1 : }
    2323             : 
    2324           0 : func (i *flushableBatchIter) SetContext(_ context.Context) {}
    2325             : 
    2326             : // flushFlushableBatchIter is similar to flushableBatchIter but it keeps track
    2327             : // of number of bytes iterated.
    2328             : type flushFlushableBatchIter struct {
    2329             :         flushableBatchIter
    2330             : }
    2331             : 
    2332             : // flushFlushableBatchIter implements the base.InternalIterator interface.
    2333             : var _ base.InternalIterator = (*flushFlushableBatchIter)(nil)
    2334             : 
    2335           0 : func (i *flushFlushableBatchIter) String() string {
    2336           0 :         return "flushable-batch"
    2337           0 : }
    2338             : 
    2339           0 : func (i *flushFlushableBatchIter) SeekGE(key []byte, flags base.SeekGEFlags) *base.InternalKV {
    2340           0 :         panic("pebble: SeekGE unimplemented")
    2341             : }
    2342             : 
    2343             : func (i *flushFlushableBatchIter) SeekPrefixGE(
    2344             :         prefix, key []byte, flags base.SeekGEFlags,
    2345           0 : ) *base.InternalKV {
    2346           0 :         panic("pebble: SeekPrefixGE unimplemented")
    2347             : }
    2348             : 
    2349           0 : func (i *flushFlushableBatchIter) SeekLT(key []byte, flags base.SeekLTFlags) *base.InternalKV {
    2350           0 :         panic("pebble: SeekLT unimplemented")
    2351             : }
    2352             : 
    2353           1 : func (i *flushFlushableBatchIter) First() *base.InternalKV {
    2354           1 :         i.err = nil // clear cached iteration error
    2355           1 :         return i.flushableBatchIter.First()
    2356           1 : }
    2357             : 
    2358           0 : func (i *flushFlushableBatchIter) NextPrefix(succKey []byte) *base.InternalKV {
    2359           0 :         panic("pebble: Prev unimplemented")
    2360             : }
    2361             : 
    2362             : // Note: flushFlushableBatchIter.Next mirrors the implementation of
    2363             : // flushableBatchIter.Next due to performance. Keep the two in sync.
    2364           1 : func (i *flushFlushableBatchIter) Next() *base.InternalKV {
    2365           1 :         if i.index == len(i.offsets) {
    2366           0 :                 return nil
    2367           0 :         }
    2368           1 :         i.index++
    2369           1 :         if i.index == len(i.offsets) {
    2370           1 :                 return nil
    2371           1 :         }
    2372           1 :         return i.getKV(i.index)
    2373             : }
    2374             : 
    2375           0 : func (i flushFlushableBatchIter) Prev() *base.InternalKV {
    2376           0 :         panic("pebble: Prev unimplemented")
    2377             : }
    2378             : 
    2379             : // batchOptions holds the parameters to configure batch.
    2380             : type batchOptions struct {
    2381             :         initialSizeBytes     int
    2382             :         maxRetainedSizeBytes int
    2383             : }
    2384             : 
    2385             : // ensureDefaults creates batch options with default values.
    2386           1 : func (o *batchOptions) ensureDefaults() {
    2387           1 :         if o.initialSizeBytes <= 0 {
    2388           1 :                 o.initialSizeBytes = defaultBatchInitialSize
    2389           1 :         }
    2390           1 :         if o.maxRetainedSizeBytes <= 0 {
    2391           1 :                 o.maxRetainedSizeBytes = defaultBatchMaxRetainedSize
    2392           1 :         }
    2393             : }
    2394             : 
    2395             : // BatchOption allows customizing the batch.
    2396             : type BatchOption func(*batchOptions)
    2397             : 
    2398             : // WithInitialSizeBytes sets a custom initial size for the batch. Defaults
    2399             : // to 1KB.
    2400           1 : func WithInitialSizeBytes(s int) BatchOption {
    2401           1 :         return func(opts *batchOptions) {
    2402           1 :                 opts.initialSizeBytes = s
    2403           1 :         }
    2404             : }
    2405             : 
    2406             : // WithMaxRetainedSizeBytes sets a custom max size for the batch to be
    2407             : // re-used. Any batch which exceeds the max retained size would be GC-ed.
    2408             : // Defaults to 1MB.
    2409           1 : func WithMaxRetainedSizeBytes(s int) BatchOption {
    2410           1 :         return func(opts *batchOptions) {
    2411           1 :                 opts.maxRetainedSizeBytes = s
    2412           1 :         }
    2413             : }
    2414             : 
    2415             : // batchSort returns iterators for the sorted contents of the batch. It is
    2416             : // intended for testing use only. The batch.Sort dance is done to prevent
    2417             : // exposing this method in the public pebble interface.
    2418             : func batchSort(
    2419             :         i interface{},
    2420             : ) (
    2421             :         points internalIterator,
    2422             :         rangeDels keyspan.FragmentIterator,
    2423             :         rangeKeys keyspan.FragmentIterator,
    2424           1 : ) {
    2425           1 :         b := i.(*Batch)
    2426           1 :         if b.Indexed() {
    2427           1 :                 pointIter := b.newInternalIter(nil)
    2428           1 :                 rangeDelIter := b.newRangeDelIter(nil, math.MaxUint64)
    2429           1 :                 rangeKeyIter := b.newRangeKeyIter(nil, math.MaxUint64)
    2430           1 :                 return pointIter, rangeDelIter, rangeKeyIter
    2431           1 :         }
    2432           1 :         f, err := newFlushableBatch(b, b.db.opts.Comparer)
    2433           1 :         if err != nil {
    2434           0 :                 panic(err)
    2435             :         }
    2436           1 :         return f.newIter(nil), f.newRangeDelIter(nil), f.newRangeKeyIter(nil)
    2437             : }
    2438             : 
    2439           1 : func init() {
    2440           1 :         private.BatchSort = batchSort
    2441           1 : }

Generated by: LCOV version 1.14