LCOV - code coverage report
Current view: top level - pebble/internal/manifest - version.go (source / functions) Hit Total Coverage
Test: 2024-07-25 08:16Z 2752abb9 - tests only.lcov Lines: 744 868 85.7 %
Date: 2024-07-25 08:17:11 Functions: 0 0 -

          Line data    Source code
       1             : // Copyright 2012 The LevelDB-Go and Pebble Authors. All rights reserved. Use
       2             : // of this source code is governed by a BSD-style license that can be found in
       3             : // the LICENSE file.
       4             : 
       5             : package manifest
       6             : 
       7             : import (
       8             :         "bytes"
       9             :         stdcmp "cmp"
      10             :         "fmt"
      11             :         "slices"
      12             :         "sort"
      13             :         "strings"
      14             :         "sync"
      15             :         "sync/atomic"
      16             : 
      17             :         "github.com/cockroachdb/errors"
      18             :         "github.com/cockroachdb/pebble/internal/base"
      19             :         "github.com/cockroachdb/pebble/internal/invariants"
      20             :         "github.com/cockroachdb/pebble/sstable"
      21             : )
      22             : 
      23             : // Compare exports the base.Compare type.
      24             : type Compare = base.Compare
      25             : 
      26             : // InternalKey exports the base.InternalKey type.
      27             : type InternalKey = base.InternalKey
      28             : 
      29             : // TableInfo contains the common information for table related events.
      30             : type TableInfo struct {
      31             :         // FileNum is the internal DB identifier for the table.
      32             :         FileNum base.FileNum
      33             :         // Size is the size of the file in bytes.
      34             :         Size uint64
      35             :         // Smallest is the smallest internal key in the table.
      36             :         Smallest InternalKey
      37             :         // Largest is the largest internal key in the table.
      38             :         Largest InternalKey
      39             :         // SmallestSeqNum is the smallest sequence number in the table.
      40             :         SmallestSeqNum base.SeqNum
      41             :         // LargestSeqNum is the largest sequence number in the table.
      42             :         LargestSeqNum base.SeqNum
      43             : }
      44             : 
      45             : // TableStats contains statistics on a table used for compaction heuristics,
      46             : // and export via Metrics.
      47             : type TableStats struct {
      48             :         // The total number of entries in the table.
      49             :         NumEntries uint64
      50             :         // The number of point and range deletion entries in the table.
      51             :         NumDeletions uint64
      52             :         // NumRangeKeySets is the total number of range key sets in the table.
      53             :         //
      54             :         // NB: If there's a chance that the sstable contains any range key sets,
      55             :         // then NumRangeKeySets must be > 0.
      56             :         NumRangeKeySets uint64
      57             :         // Estimate of the total disk space that may be dropped by this table's
      58             :         // point deletions by compacting them.
      59             :         PointDeletionsBytesEstimate uint64
      60             :         // Estimate of the total disk space that may be dropped by this table's
      61             :         // range deletions by compacting them. This estimate is at data-block
      62             :         // granularity and is not updated if compactions beneath the table reduce
      63             :         // the amount of reclaimable disk space. It also does not account for
      64             :         // overlapping data in L0 and ignores L0 sublevels, but the error that
      65             :         // introduces is expected to be small.
      66             :         //
      67             :         // Tables in the bottommost level of the LSM may have a nonzero estimate if
      68             :         // snapshots or move compactions prevented the elision of their range
      69             :         // tombstones. A table in the bottommost level that was ingested into L6
      70             :         // will have a zero estimate, because the file's sequence numbers indicate
      71             :         // that the tombstone cannot drop any data contained within the file itself.
      72             :         RangeDeletionsBytesEstimate uint64
      73             :         // Total size of value blocks and value index block.
      74             :         ValueBlocksSize uint64
      75             :         // CompressionType is the compression type of the table.
      76             :         CompressionType sstable.Compression
      77             : }
      78             : 
      79             : // boundType represents the type of key (point or range) present as the smallest
      80             : // and largest keys.
      81             : type boundType uint8
      82             : 
      83             : const (
      84             :         boundTypePointKey boundType = iota + 1
      85             :         boundTypeRangeKey
      86             : )
      87             : 
      88             : // CompactionState is the compaction state of a file.
      89             : //
      90             : // The following shows the valid state transitions:
      91             : //
      92             : //      NotCompacting --> Compacting --> Compacted
      93             : //            ^               |
      94             : //            |               |
      95             : //            +-------<-------+
      96             : //
      97             : // Input files to a compaction transition to Compacting when a compaction is
      98             : // picked. A file that has finished compacting typically transitions into the
      99             : // Compacted state, at which point it is effectively obsolete ("zombied") and
     100             : // will eventually be removed from the LSM. A file that has been move-compacted
     101             : // will transition from Compacting back into the NotCompacting state, signaling
     102             : // that the file may be selected for a subsequent compaction. A failed
     103             : // compaction will result in all input tables transitioning from Compacting to
     104             : // NotCompacting.
     105             : //
     106             : // This state is in-memory only. It is not persisted to the manifest.
     107             : type CompactionState uint8
     108             : 
     109             : // CompactionStates.
     110             : const (
     111             :         CompactionStateNotCompacting CompactionState = iota
     112             :         CompactionStateCompacting
     113             :         CompactionStateCompacted
     114             : )
     115             : 
     116             : // String implements fmt.Stringer.
     117           0 : func (s CompactionState) String() string {
     118           0 :         switch s {
     119           0 :         case CompactionStateNotCompacting:
     120           0 :                 return "NotCompacting"
     121           0 :         case CompactionStateCompacting:
     122           0 :                 return "Compacting"
     123           0 :         case CompactionStateCompacted:
     124           0 :                 return "Compacted"
     125           0 :         default:
     126           0 :                 panic(fmt.Sprintf("pebble: unknown compaction state %d", s))
     127             :         }
     128             : }
     129             : 
     130             : // FileMetadata is maintained for leveled-ssts, i.e., they belong to a level of
     131             : // some version. FileMetadata does not contain the actual level of the sst,
     132             : // since such leveled-ssts can move across levels in different versions, while
     133             : // sharing the same FileMetadata. There are two kinds of leveled-ssts, physical
     134             : // and virtual. Underlying both leveled-ssts is a backing-sst, for which the
     135             : // only state is FileBacking. A backing-sst is level-less. It is possible for a
     136             : // backing-sst to be referred to by a physical sst in one version and by one or
     137             : // more virtual ssts in one or more versions. A backing-sst becomes obsolete
     138             : // and can be deleted once it is no longer required by any physical or virtual
     139             : // sst in any version.
     140             : //
     141             : // We maintain some invariants:
     142             : //
     143             : //  1. Each physical and virtual sst will have a unique FileMetadata.FileNum,
     144             : //     and there will be exactly one FileMetadata associated with the FileNum.
     145             : //
     146             : //  2. Within a version, a backing-sst is either only referred to by one
     147             : //     physical sst or one or more virtual ssts.
     148             : //
     149             : //  3. Once a backing-sst is referred to by a virtual sst in the latest version,
     150             : //     it cannot go back to being referred to by a physical sst in any future
     151             : //     version.
     152             : //
     153             : // Once a physical sst is no longer needed by any version, we will no longer
     154             : // maintain the file metadata associated with it. We will still maintain the
     155             : // FileBacking associated with the physical sst if the backing sst is required
     156             : // by any virtual ssts in any version.
     157             : type FileMetadata struct {
     158             :         // AllowedSeeks is used to determine if a file should be picked for
     159             :         // a read triggered compaction. It is decremented when read sampling
     160             :         // in pebble.Iterator after every after every positioning operation
     161             :         // that returns a user key (eg. Next, Prev, SeekGE, SeekLT, etc).
     162             :         AllowedSeeks atomic.Int64
     163             : 
     164             :         // statsValid indicates if stats have been loaded for the table. The
     165             :         // TableStats structure is populated only if valid is true.
     166             :         statsValid atomic.Bool
     167             : 
     168             :         // FileBacking is the state which backs either a physical or virtual
     169             :         // sstables.
     170             :         FileBacking *FileBacking
     171             : 
     172             :         // InitAllowedSeeks is the inital value of allowed seeks. This is used
     173             :         // to re-set allowed seeks on a file once it hits 0.
     174             :         InitAllowedSeeks int64
     175             :         // FileNum is the file number.
     176             :         //
     177             :         // INVARIANT: when !FileMetadata.Virtual, FileNum == FileBacking.DiskFileNum.
     178             :         FileNum base.FileNum
     179             :         // Size is the size of the file, in bytes. Size is an approximate value for
     180             :         // virtual sstables.
     181             :         //
     182             :         // INVARIANTS:
     183             :         // - When !FileMetadata.Virtual, Size == FileBacking.Size.
     184             :         // - Size should be non-zero. Size 0 virtual sstables must not be created.
     185             :         Size uint64
     186             :         // File creation time in seconds since the epoch (1970-01-01 00:00:00
     187             :         // UTC). For ingested sstables, this corresponds to the time the file was
     188             :         // ingested. For virtual sstables, this corresponds to the wall clock time
     189             :         // when the FileMetadata for the virtual sstable was first created.
     190             :         CreationTime int64
     191             :         // LargestSeqNumAbsolute is an upper bound for the largest sequence number
     192             :         // in the table. This upper bound is guaranteed to be higher than any
     193             :         // sequence number any of the table's keys have held at any point in time
     194             :         // while the database has been open. Specifically, if the table contains
     195             :         // keys that have had their sequence numbers zeroed during a compaction,
     196             :         // LargestSeqNumAbsolute will be at least as high as the pre-zeroing
     197             :         // sequence number. LargestSeqNumAbsolute is NOT durably persisted, so after
     198             :         // a database restart it takes on the value of LargestSeqNum.
     199             :         LargestSeqNumAbsolute base.SeqNum
     200             :         // Lower and upper bounds for the smallest and largest sequence numbers in
     201             :         // the table, across both point and range keys. For physical sstables, these
     202             :         // values are tight bounds. For virtual sstables, there is no guarantee that
     203             :         // there will be keys with SmallestSeqNum or LargestSeqNum within virtual
     204             :         // sstable bounds.
     205             :         SmallestSeqNum base.SeqNum
     206             :         LargestSeqNum  base.SeqNum
     207             :         // SmallestPointKey and LargestPointKey are the inclusive bounds for the
     208             :         // internal point keys stored in the table. This includes RANGEDELs, which
     209             :         // alter point keys.
     210             :         // NB: these field should be set using ExtendPointKeyBounds. They are left
     211             :         // exported for reads as an optimization.
     212             :         SmallestPointKey InternalKey
     213             :         LargestPointKey  InternalKey
     214             :         // SmallestRangeKey and LargestRangeKey are the inclusive bounds for the
     215             :         // internal range keys stored in the table.
     216             :         // NB: these field should be set using ExtendRangeKeyBounds. They are left
     217             :         // exported for reads as an optimization.
     218             :         SmallestRangeKey InternalKey
     219             :         LargestRangeKey  InternalKey
     220             :         // Smallest and Largest are the inclusive bounds for the internal keys stored
     221             :         // in the table, across both point and range keys.
     222             :         // NB: these fields are derived from their point and range key equivalents,
     223             :         // and are updated via the MaybeExtend{Point,Range}KeyBounds methods.
     224             :         Smallest InternalKey
     225             :         Largest  InternalKey
     226             :         // Stats describe table statistics. Protected by DB.mu.
     227             :         //
     228             :         // For virtual sstables, set stats upon virtual sstable creation as
     229             :         // asynchronous computation of stats is not currently supported.
     230             :         //
     231             :         // TODO(bananabrick): To support manifest replay for virtual sstables, we
     232             :         // probably need to compute virtual sstable stats asynchronously. Otherwise,
     233             :         // we'd have to write virtual sstable stats to the version edit.
     234             :         Stats TableStats
     235             : 
     236             :         // For L0 files only. Protected by DB.mu. Used to generate L0 sublevels and
     237             :         // pick L0 compactions. Only accurate for the most recent Version.
     238             :         SubLevel         int
     239             :         L0Index          int
     240             :         minIntervalIndex int
     241             :         maxIntervalIndex int
     242             : 
     243             :         // NB: the alignment of this struct is 8 bytes. We pack all the bools to
     244             :         // ensure an optimal packing.
     245             : 
     246             :         // IsIntraL0Compacting is set to True if this file is part of an intra-L0
     247             :         // compaction. When it's true, IsCompacting must also return true. If
     248             :         // Compacting is true and IsIntraL0Compacting is false for an L0 file, the
     249             :         // file must be part of a compaction to Lbase.
     250             :         IsIntraL0Compacting bool
     251             :         CompactionState     CompactionState
     252             :         // True if compaction of this file has been explicitly requested.
     253             :         // Previously, RocksDB and earlier versions of Pebble allowed this
     254             :         // flag to be set by a user table property collector. Some earlier
     255             :         // versions of Pebble respected this flag, while other more recent
     256             :         // versions ignored this flag.
     257             :         //
     258             :         // More recently this flag has been repurposed to facilitate the
     259             :         // compaction of 'atomic compaction units'. Files marked for
     260             :         // compaction are compacted in a rewrite compaction at the lowest
     261             :         // possible compaction priority.
     262             :         //
     263             :         // NB: A count of files marked for compaction is maintained on
     264             :         // Version, and compaction picking reads cached annotations
     265             :         // determined by this field.
     266             :         //
     267             :         // Protected by DB.mu.
     268             :         MarkedForCompaction bool
     269             :         // HasPointKeys tracks whether the table contains point keys (including
     270             :         // RANGEDELs). If a table contains only range deletions, HasPointsKeys is
     271             :         // still true.
     272             :         HasPointKeys bool
     273             :         // HasRangeKeys tracks whether the table contains any range keys.
     274             :         HasRangeKeys bool
     275             :         // smallestSet and largestSet track whether the overall bounds have been set.
     276             :         boundsSet bool
     277             :         // boundTypeSmallest and boundTypeLargest provide an indication as to which
     278             :         // key type (point or range) corresponds to the smallest and largest overall
     279             :         // table bounds.
     280             :         boundTypeSmallest, boundTypeLargest boundType
     281             :         // Virtual is true if the FileMetadata belongs to a virtual sstable.
     282             :         Virtual bool
     283             : 
     284             :         // SyntheticPrefix is used to prepend a prefix to all keys; used for some virtual
     285             :         // tables.
     286             :         SyntheticPrefix sstable.SyntheticPrefix
     287             : 
     288             :         // SyntheticSuffix overrides all suffixes in a table; used for some virtual tables.
     289             :         SyntheticSuffix sstable.SyntheticSuffix
     290             : }
     291             : 
     292             : // InternalKeyBounds returns the set of overall table bounds.
     293           0 : func (m *FileMetadata) InternalKeyBounds() (InternalKey, InternalKey) {
     294           0 :         return m.Smallest, m.Largest
     295           0 : }
     296             : 
     297             : // UserKeyBounds returns the user key bounds that correspond to m.Smallest and
     298             : // Largest. Because we do not allow split user keys, the user key bounds of
     299             : // files within a level do not overlap.
     300           1 : func (m *FileMetadata) UserKeyBounds() base.UserKeyBounds {
     301           1 :         return base.UserKeyBoundsFromInternal(m.Smallest, m.Largest)
     302           1 : }
     303             : 
     304             : // UserKeyBoundsByType returns the user key bounds for the given key types.
     305             : // Note that the returned bounds are invalid when requesting KeyTypePoint but
     306             : // HasPointKeys is false, or when requesting KeyTypeRange and HasRangeKeys is
     307             : // false.
     308           1 : func (m *FileMetadata) UserKeyBoundsByType(keyType KeyType) base.UserKeyBounds {
     309           1 :         switch keyType {
     310           1 :         case KeyTypePoint:
     311           1 :                 return base.UserKeyBoundsFromInternal(m.SmallestPointKey, m.LargestPointKey)
     312           1 :         case KeyTypeRange:
     313           1 :                 return base.UserKeyBoundsFromInternal(m.SmallestRangeKey, m.LargestRangeKey)
     314           0 :         default:
     315           0 :                 return base.UserKeyBoundsFromInternal(m.Smallest, m.Largest)
     316             :         }
     317             : }
     318             : 
     319             : // SyntheticSeqNum returns a SyntheticSeqNum which is set when SmallestSeqNum
     320             : // equals LargestSeqNum.
     321           1 : func (m *FileMetadata) SyntheticSeqNum() sstable.SyntheticSeqNum {
     322           1 :         if m.SmallestSeqNum == m.LargestSeqNum {
     323           1 :                 return sstable.SyntheticSeqNum(m.SmallestSeqNum)
     324           1 :         }
     325           1 :         return sstable.NoSyntheticSeqNum
     326             : }
     327             : 
     328             : // IterTransforms returns an sstable.IterTransforms populated according to the
     329             : // file.
     330           1 : func (m *FileMetadata) IterTransforms() sstable.IterTransforms {
     331           1 :         return sstable.IterTransforms{
     332           1 :                 SyntheticSeqNum: m.SyntheticSeqNum(),
     333           1 :                 SyntheticSuffix: m.SyntheticSuffix,
     334           1 :                 SyntheticPrefix: m.SyntheticPrefix,
     335           1 :         }
     336           1 : }
     337             : 
     338             : // FragmentIterTransforms returns an sstable.FragmentIterTransforms populated
     339             : // according to the file.
     340           1 : func (m *FileMetadata) FragmentIterTransforms() sstable.FragmentIterTransforms {
     341           1 :         return sstable.FragmentIterTransforms{
     342           1 :                 SyntheticSeqNum: m.SyntheticSeqNum(),
     343           1 :                 // TODO(radu): support this
     344           1 :                 //SyntheticSuffix: m.SyntheticSuffix,
     345           1 :                 SyntheticPrefix: m.SyntheticPrefix,
     346           1 :         }
     347           1 : }
     348             : 
     349             : // PhysicalFileMeta is used by functions which want a guarantee that their input
     350             : // belongs to a physical sst and not a virtual sst.
     351             : //
     352             : // NB: This type should only be constructed by calling
     353             : // FileMetadata.PhysicalMeta.
     354             : type PhysicalFileMeta struct {
     355             :         *FileMetadata
     356             : }
     357             : 
     358             : // VirtualFileMeta is used by functions which want a guarantee that their input
     359             : // belongs to a virtual sst and not a physical sst.
     360             : //
     361             : // A VirtualFileMeta inherits all the same fields as a FileMetadata. These
     362             : // fields have additional invariants imposed on them, and/or slightly varying
     363             : // meanings:
     364             : //   - Smallest and Largest (and their counterparts
     365             : //     {Smallest, Largest}{Point,Range}Key) remain tight bounds that represent a
     366             : //     key at that exact bound. We make the effort to determine the next smallest
     367             : //     or largest key in an sstable after virtualizing it, to maintain this
     368             : //     tightness. If the largest is a sentinel key (IsExclusiveSentinel()), it
     369             : //     could mean that a rangedel or range key ends at that user key, or has been
     370             : //     truncated to that user key.
     371             : //   - One invariant is that if a rangedel or range key is truncated on its
     372             : //     upper bound, the virtual sstable *must* have a rangedel or range key
     373             : //     sentinel key as its upper bound. This is because truncation yields
     374             : //     an exclusive upper bound for the rangedel/rangekey, and if there are
     375             : //     any points at that exclusive upper bound within the same virtual
     376             : //     sstable, those could get uncovered by this truncation. We enforce this
     377             : //     invariant in calls to keyspan.Truncate.
     378             : //   - Size is an estimate of the size of the virtualized portion of this sstable.
     379             : //     The underlying file's size is stored in FileBacking.Size, though it could
     380             : //     also be estimated or could correspond to just the referenced portion of
     381             : //     a file (eg. if the file originated on another node).
     382             : //   - Size must be > 0.
     383             : //   - SmallestSeqNum and LargestSeqNum are loose bounds for virtual sstables.
     384             : //     This means that all keys in the virtual sstable must have seqnums within
     385             : //     [SmallestSeqNum, LargestSeqNum], however there's no guarantee that there's
     386             : //     a key with a seqnum at either of the bounds. Calculating tight seqnum
     387             : //     bounds would be too expensive and deliver little value.
     388             : //
     389             : // NB: This type should only be constructed by calling FileMetadata.VirtualMeta.
     390             : type VirtualFileMeta struct {
     391             :         *FileMetadata
     392             : }
     393             : 
     394             : // VirtualReaderParams fills in the parameters necessary to create a virtual
     395             : // sstable reader.
     396           1 : func (m VirtualFileMeta) VirtualReaderParams(isShared bool) sstable.VirtualReaderParams {
     397           1 :         return sstable.VirtualReaderParams{
     398           1 :                 Lower:            m.Smallest,
     399           1 :                 Upper:            m.Largest,
     400           1 :                 FileNum:          m.FileNum,
     401           1 :                 IsSharedIngested: isShared && m.SyntheticSeqNum() != 0,
     402           1 :                 Size:             m.Size,
     403           1 :                 BackingSize:      m.FileBacking.Size,
     404           1 :         }
     405           1 : }
     406             : 
     407             : // PhysicalMeta should be the only source of creating the PhysicalFileMeta
     408             : // wrapper type.
     409           1 : func (m *FileMetadata) PhysicalMeta() PhysicalFileMeta {
     410           1 :         if m.Virtual {
     411           0 :                 panic("pebble: file metadata does not belong to a physical sstable")
     412             :         }
     413           1 :         return PhysicalFileMeta{
     414           1 :                 m,
     415           1 :         }
     416             : }
     417             : 
     418             : // VirtualMeta should be the only source of creating the VirtualFileMeta wrapper
     419             : // type.
     420           1 : func (m *FileMetadata) VirtualMeta() VirtualFileMeta {
     421           1 :         if !m.Virtual {
     422           0 :                 panic("pebble: file metadata does not belong to a virtual sstable")
     423             :         }
     424           1 :         return VirtualFileMeta{
     425           1 :                 m,
     426           1 :         }
     427             : }
     428             : 
     429             : // FileBacking either backs a single physical sstable, or one or more virtual
     430             : // sstables.
     431             : //
     432             : // See the comment above the FileMetadata type for sstable terminology.
     433             : type FileBacking struct {
     434             :         DiskFileNum base.DiskFileNum
     435             :         Size        uint64
     436             : 
     437             :         // Reference count for the backing file, used to determine when a backing file
     438             :         // is obsolete and can be removed.
     439             :         //
     440             :         // The reference count is at least the number of distinct tables that use this
     441             :         // backing across all versions that have a non-zero reference count. The tables
     442             :         // in each version are maintained in a copy-on-write B-tree and each B-tree node
     443             :         // keeps a reference on the respective backings.
     444             :         //
     445             :         // In addition, a reference count is taken for every backing in the latest
     446             :         // version's VirtualBackings (necessary to support Protect/Unprotect).
     447             :         refs atomic.Int32
     448             : }
     449             : 
     450             : // MustHaveRefs asserts that the backing has a positive refcount.
     451           1 : func (b *FileBacking) MustHaveRefs() {
     452           1 :         if refs := b.refs.Load(); refs <= 0 {
     453           0 :                 panic(errors.AssertionFailedf("backing %s must have positive refcount (refs=%d)",
     454           0 :                         b.DiskFileNum, refs))
     455             :         }
     456             : }
     457             : 
     458             : // Ref increments the backing's ref count.
     459           1 : func (b *FileBacking) Ref() {
     460           1 :         b.refs.Add(1)
     461           1 : }
     462             : 
     463             : // Unref decrements the backing's ref count (and returns the new count).
     464           1 : func (b *FileBacking) Unref() int32 {
     465           1 :         v := b.refs.Add(-1)
     466           1 :         if invariants.Enabled && v < 0 {
     467           0 :                 panic("pebble: invalid FileMetadata refcounting")
     468             :         }
     469           1 :         return v
     470             : }
     471             : 
     472             : // InitPhysicalBacking allocates and sets the FileBacking which is required by a
     473             : // physical sstable FileMetadata.
     474             : //
     475             : // Ensure that the state required by FileBacking, such as the FileNum, is
     476             : // already set on the FileMetadata before InitPhysicalBacking is called.
     477             : // Calling InitPhysicalBacking only after the relevant state has been set in the
     478             : // FileMetadata is not necessary in tests which don't rely on FileBacking.
     479           1 : func (m *FileMetadata) InitPhysicalBacking() {
     480           1 :         if m.Virtual {
     481           0 :                 panic("pebble: virtual sstables should use a pre-existing FileBacking")
     482             :         }
     483           1 :         if m.FileBacking == nil {
     484           1 :                 m.FileBacking = &FileBacking{
     485           1 :                         DiskFileNum: base.PhysicalTableDiskFileNum(m.FileNum),
     486           1 :                         Size:        m.Size,
     487           1 :                 }
     488           1 :         }
     489             : }
     490             : 
     491             : // InitProviderBacking creates a new FileBacking for a file backed by
     492             : // an objstorage.Provider.
     493           1 : func (m *FileMetadata) InitProviderBacking(fileNum base.DiskFileNum, size uint64) {
     494           1 :         if !m.Virtual {
     495           0 :                 panic("pebble: provider-backed sstables must be virtual")
     496             :         }
     497           1 :         if m.FileBacking == nil {
     498           1 :                 m.FileBacking = &FileBacking{DiskFileNum: fileNum}
     499           1 :         }
     500           1 :         m.FileBacking.Size = size
     501             : }
     502             : 
     503             : // ValidateVirtual should be called once the FileMetadata for a virtual sstable
     504             : // is created to verify that the fields of the virtual sstable are sound.
     505           1 : func (m *FileMetadata) ValidateVirtual(createdFrom *FileMetadata) {
     506           1 :         switch {
     507           0 :         case !m.Virtual:
     508           0 :                 panic("pebble: invalid virtual sstable")
     509           0 :         case createdFrom.SmallestSeqNum != m.SmallestSeqNum:
     510           0 :                 panic("pebble: invalid smallest sequence number for virtual sstable")
     511           0 :         case createdFrom.LargestSeqNum != m.LargestSeqNum:
     512           0 :                 panic("pebble: invalid largest sequence number for virtual sstable")
     513           0 :         case createdFrom.LargestSeqNumAbsolute != m.LargestSeqNumAbsolute:
     514           0 :                 panic("pebble: invalid largest absolute sequence number for virtual sstable")
     515           0 :         case createdFrom.FileBacking != nil && createdFrom.FileBacking != m.FileBacking:
     516           0 :                 panic("pebble: invalid physical sstable state for virtual sstable")
     517           0 :         case m.Size == 0:
     518           0 :                 panic("pebble: virtual sstable size must be set upon creation")
     519             :         }
     520             : }
     521             : 
     522             : // SetCompactionState transitions this file's compaction state to the given
     523             : // state. Protected by DB.mu.
     524           1 : func (m *FileMetadata) SetCompactionState(to CompactionState) {
     525           1 :         if invariants.Enabled {
     526           1 :                 transitionErr := func() error {
     527           0 :                         return errors.Newf("pebble: invalid compaction state transition: %s -> %s", m.CompactionState, to)
     528           0 :                 }
     529           1 :                 switch m.CompactionState {
     530           1 :                 case CompactionStateNotCompacting:
     531           1 :                         if to != CompactionStateCompacting {
     532           0 :                                 panic(transitionErr())
     533             :                         }
     534           1 :                 case CompactionStateCompacting:
     535           1 :                         if to != CompactionStateCompacted && to != CompactionStateNotCompacting {
     536           0 :                                 panic(transitionErr())
     537             :                         }
     538           0 :                 case CompactionStateCompacted:
     539           0 :                         panic(transitionErr())
     540           0 :                 default:
     541           0 :                         panic(fmt.Sprintf("pebble: unknown compaction state: %d", m.CompactionState))
     542             :                 }
     543             :         }
     544           1 :         m.CompactionState = to
     545             : }
     546             : 
     547             : // IsCompacting returns true if this file's compaction state is
     548             : // CompactionStateCompacting. Protected by DB.mu.
     549           1 : func (m *FileMetadata) IsCompacting() bool {
     550           1 :         return m.CompactionState == CompactionStateCompacting
     551           1 : }
     552             : 
     553             : // StatsValid returns true if the table stats have been populated. If StatValid
     554             : // returns true, the Stats field may be read (with or without holding the
     555             : // database mutex).
     556           1 : func (m *FileMetadata) StatsValid() bool {
     557           1 :         return m.statsValid.Load()
     558           1 : }
     559             : 
     560             : // StatsMarkValid marks the TableStats as valid. The caller must hold DB.mu
     561             : // while populating TableStats and calling StatsMarkValud. Once stats are
     562             : // populated, they must not be mutated.
     563           1 : func (m *FileMetadata) StatsMarkValid() {
     564           1 :         m.statsValid.Store(true)
     565           1 : }
     566             : 
     567             : // ExtendPointKeyBounds attempts to extend the lower and upper point key bounds
     568             : // and overall table bounds with the given smallest and largest keys. The
     569             : // smallest and largest bounds may not be extended if the table already has a
     570             : // bound that is smaller or larger, respectively. The receiver is returned.
     571             : // NB: calling this method should be preferred to manually setting the bounds by
     572             : // manipulating the fields directly, to maintain certain invariants.
     573             : func (m *FileMetadata) ExtendPointKeyBounds(
     574             :         cmp Compare, smallest, largest InternalKey,
     575           1 : ) *FileMetadata {
     576           1 :         // Update the point key bounds.
     577           1 :         if !m.HasPointKeys {
     578           1 :                 m.SmallestPointKey, m.LargestPointKey = smallest, largest
     579           1 :                 m.HasPointKeys = true
     580           1 :         } else {
     581           1 :                 if base.InternalCompare(cmp, smallest, m.SmallestPointKey) < 0 {
     582           1 :                         m.SmallestPointKey = smallest
     583           1 :                 }
     584           1 :                 if base.InternalCompare(cmp, largest, m.LargestPointKey) > 0 {
     585           1 :                         m.LargestPointKey = largest
     586           1 :                 }
     587             :         }
     588             :         // Update the overall bounds.
     589           1 :         m.extendOverallBounds(cmp, m.SmallestPointKey, m.LargestPointKey, boundTypePointKey)
     590           1 :         return m
     591             : }
     592             : 
     593             : // ExtendRangeKeyBounds attempts to extend the lower and upper range key bounds
     594             : // and overall table bounds with the given smallest and largest keys. The
     595             : // smallest and largest bounds may not be extended if the table already has a
     596             : // bound that is smaller or larger, respectively. The receiver is returned.
     597             : // NB: calling this method should be preferred to manually setting the bounds by
     598             : // manipulating the fields directly, to maintain certain invariants.
     599             : func (m *FileMetadata) ExtendRangeKeyBounds(
     600             :         cmp Compare, smallest, largest InternalKey,
     601           1 : ) *FileMetadata {
     602           1 :         // Update the range key bounds.
     603           1 :         if !m.HasRangeKeys {
     604           1 :                 m.SmallestRangeKey, m.LargestRangeKey = smallest, largest
     605           1 :                 m.HasRangeKeys = true
     606           1 :         } else {
     607           1 :                 if base.InternalCompare(cmp, smallest, m.SmallestRangeKey) < 0 {
     608           1 :                         m.SmallestRangeKey = smallest
     609           1 :                 }
     610           1 :                 if base.InternalCompare(cmp, largest, m.LargestRangeKey) > 0 {
     611           1 :                         m.LargestRangeKey = largest
     612           1 :                 }
     613             :         }
     614             :         // Update the overall bounds.
     615           1 :         m.extendOverallBounds(cmp, m.SmallestRangeKey, m.LargestRangeKey, boundTypeRangeKey)
     616           1 :         return m
     617             : }
     618             : 
     619             : // extendOverallBounds attempts to extend the overall table lower and upper
     620             : // bounds. The given bounds may not be used if a lower or upper bound already
     621             : // exists that is smaller or larger than the given keys, respectively. The given
     622             : // boundType will be used if the bounds are updated.
     623             : func (m *FileMetadata) extendOverallBounds(
     624             :         cmp Compare, smallest, largest InternalKey, bTyp boundType,
     625           1 : ) {
     626           1 :         if !m.boundsSet {
     627           1 :                 m.Smallest, m.Largest = smallest, largest
     628           1 :                 m.boundsSet = true
     629           1 :                 m.boundTypeSmallest, m.boundTypeLargest = bTyp, bTyp
     630           1 :         } else {
     631           1 :                 if base.InternalCompare(cmp, smallest, m.Smallest) < 0 {
     632           1 :                         m.Smallest = smallest
     633           1 :                         m.boundTypeSmallest = bTyp
     634           1 :                 }
     635           1 :                 if base.InternalCompare(cmp, largest, m.Largest) > 0 {
     636           1 :                         m.Largest = largest
     637           1 :                         m.boundTypeLargest = bTyp
     638           1 :                 }
     639             :         }
     640             : }
     641             : 
     642             : // Overlaps returns true if the file key range overlaps with the given user key bounds.
     643           1 : func (m *FileMetadata) Overlaps(cmp Compare, bounds *base.UserKeyBounds) bool {
     644           1 :         b := m.UserKeyBounds()
     645           1 :         return b.Overlaps(cmp, bounds)
     646           1 : }
     647             : 
     648             : // ContainedWithinSpan returns true if the file key range completely overlaps with the
     649             : // given range ("end" is assumed to exclusive).
     650           1 : func (m *FileMetadata) ContainedWithinSpan(cmp Compare, start, end []byte) bool {
     651           1 :         lowerCmp, upperCmp := cmp(m.Smallest.UserKey, start), cmp(m.Largest.UserKey, end)
     652           1 :         return lowerCmp >= 0 && (upperCmp < 0 || (upperCmp == 0 && m.Largest.IsExclusiveSentinel()))
     653           1 : }
     654             : 
     655             : // ContainsKeyType returns whether or not the file contains keys of the provided
     656             : // type.
     657           1 : func (m *FileMetadata) ContainsKeyType(kt KeyType) bool {
     658           1 :         switch kt {
     659           1 :         case KeyTypePointAndRange:
     660           1 :                 return true
     661           1 :         case KeyTypePoint:
     662           1 :                 return m.HasPointKeys
     663           1 :         case KeyTypeRange:
     664           1 :                 return m.HasRangeKeys
     665           0 :         default:
     666           0 :                 panic("unrecognized key type")
     667             :         }
     668             : }
     669             : 
     670             : // SmallestBound returns the file's smallest bound of the key type. It returns a
     671             : // false second return value if the file does not contain any keys of the key
     672             : // type.
     673           1 : func (m *FileMetadata) SmallestBound(kt KeyType) (*InternalKey, bool) {
     674           1 :         switch kt {
     675           0 :         case KeyTypePointAndRange:
     676           0 :                 return &m.Smallest, true
     677           1 :         case KeyTypePoint:
     678           1 :                 return &m.SmallestPointKey, m.HasPointKeys
     679           1 :         case KeyTypeRange:
     680           1 :                 return &m.SmallestRangeKey, m.HasRangeKeys
     681           0 :         default:
     682           0 :                 panic("unrecognized key type")
     683             :         }
     684             : }
     685             : 
     686             : // LargestBound returns the file's largest bound of the key type. It returns a
     687             : // false second return value if the file does not contain any keys of the key
     688             : // type.
     689           1 : func (m *FileMetadata) LargestBound(kt KeyType) (*InternalKey, bool) {
     690           1 :         switch kt {
     691           0 :         case KeyTypePointAndRange:
     692           0 :                 return &m.Largest, true
     693           1 :         case KeyTypePoint:
     694           1 :                 return &m.LargestPointKey, m.HasPointKeys
     695           1 :         case KeyTypeRange:
     696           1 :                 return &m.LargestRangeKey, m.HasRangeKeys
     697           0 :         default:
     698           0 :                 panic("unrecognized key type")
     699             :         }
     700             : }
     701             : 
     702             : const (
     703             :         maskContainsPointKeys = 1 << 0
     704             :         maskSmallest          = 1 << 1
     705             :         maskLargest           = 1 << 2
     706             : )
     707             : 
     708             : // boundsMarker returns a marker byte whose bits encode the following
     709             : // information (in order from least significant bit):
     710             : // - if the table contains point keys
     711             : // - if the table's smallest key is a point key
     712             : // - if the table's largest key is a point key
     713           1 : func (m *FileMetadata) boundsMarker() (sentinel uint8, err error) {
     714           1 :         if m.HasPointKeys {
     715           1 :                 sentinel |= maskContainsPointKeys
     716           1 :         }
     717           1 :         switch m.boundTypeSmallest {
     718           1 :         case boundTypePointKey:
     719           1 :                 sentinel |= maskSmallest
     720           1 :         case boundTypeRangeKey:
     721             :                 // No op - leave bit unset.
     722           0 :         default:
     723           0 :                 return 0, base.CorruptionErrorf("file %s has neither point nor range key as smallest key", m.FileNum)
     724             :         }
     725           1 :         switch m.boundTypeLargest {
     726           1 :         case boundTypePointKey:
     727           1 :                 sentinel |= maskLargest
     728           1 :         case boundTypeRangeKey:
     729             :                 // No op - leave bit unset.
     730           0 :         default:
     731           0 :                 return 0, base.CorruptionErrorf("file %s has neither point nor range key as largest key", m.FileNum)
     732             :         }
     733           1 :         return
     734             : }
     735             : 
     736             : // String implements fmt.Stringer, printing the file number and the overall
     737             : // table bounds.
     738           1 : func (m *FileMetadata) String() string {
     739           1 :         return fmt.Sprintf("%s:[%s-%s]", m.FileNum, m.Smallest, m.Largest)
     740           1 : }
     741             : 
     742             : // DebugString returns a verbose representation of FileMetadata, typically for
     743             : // use in tests and debugging, returning the file number and the point, range
     744             : // and overall bounds for the table.
     745           1 : func (m *FileMetadata) DebugString(format base.FormatKey, verbose bool) string {
     746           1 :         var b bytes.Buffer
     747           1 :         if m.Virtual {
     748           1 :                 fmt.Fprintf(&b, "%s(%s):[%s-%s]",
     749           1 :                         m.FileNum, m.FileBacking.DiskFileNum, m.Smallest.Pretty(format), m.Largest.Pretty(format))
     750           1 :         } else {
     751           1 :                 fmt.Fprintf(&b, "%s:[%s-%s]",
     752           1 :                         m.FileNum, m.Smallest.Pretty(format), m.Largest.Pretty(format))
     753           1 :         }
     754           1 :         if !verbose {
     755           1 :                 return b.String()
     756           1 :         }
     757           1 :         fmt.Fprintf(&b, " seqnums:[%d-%d]", m.SmallestSeqNum, m.LargestSeqNum)
     758           1 :         if m.HasPointKeys {
     759           1 :                 fmt.Fprintf(&b, " points:[%s-%s]",
     760           1 :                         m.SmallestPointKey.Pretty(format), m.LargestPointKey.Pretty(format))
     761           1 :         }
     762           1 :         if m.HasRangeKeys {
     763           1 :                 fmt.Fprintf(&b, " ranges:[%s-%s]",
     764           1 :                         m.SmallestRangeKey.Pretty(format), m.LargestRangeKey.Pretty(format))
     765           1 :         }
     766           1 :         if m.Size != 0 {
     767           1 :                 fmt.Fprintf(&b, " size:%d", m.Size)
     768           1 :         }
     769           1 :         return b.String()
     770             : }
     771             : 
     772             : // ParseFileMetadataDebug parses a FileMetadata from its DebugString
     773             : // representation.
     774           1 : func ParseFileMetadataDebug(s string) (_ *FileMetadata, err error) {
     775           1 :         defer func() {
     776           1 :                 err = errors.CombineErrors(err, maybeRecover())
     777           1 :         }()
     778             : 
     779             :         // Input format:
     780             :         //      000000:[a#0,SET-z#0,SET] seqnums:[5-5] points:[...] ranges:[...] size:5
     781           1 :         m := &FileMetadata{}
     782           1 :         p := makeDebugParser(s)
     783           1 :         m.FileNum = p.FileNum()
     784           1 :         var backingNum base.DiskFileNum
     785           1 :         if p.Peek() == "(" {
     786           1 :                 p.Expect("(")
     787           1 :                 backingNum = p.DiskFileNum()
     788           1 :                 p.Expect(")")
     789           1 :         }
     790           1 :         p.Expect(":", "[")
     791           1 :         m.Smallest = p.InternalKey()
     792           1 :         p.Expect("-")
     793           1 :         m.Largest = p.InternalKey()
     794           1 :         p.Expect("]")
     795           1 : 
     796           1 :         for !p.Done() {
     797           1 :                 field := p.Next()
     798           1 :                 p.Expect(":")
     799           1 :                 switch field {
     800           1 :                 case "seqnums":
     801           1 :                         p.Expect("[")
     802           1 :                         m.SmallestSeqNum = p.SeqNum()
     803           1 :                         p.Expect("-")
     804           1 :                         m.LargestSeqNum = p.SeqNum()
     805           1 :                         p.Expect("]")
     806           1 :                         m.LargestSeqNumAbsolute = m.LargestSeqNum
     807             : 
     808           1 :                 case "points":
     809           1 :                         p.Expect("[")
     810           1 :                         m.SmallestPointKey = p.InternalKey()
     811           1 :                         p.Expect("-")
     812           1 :                         m.LargestPointKey = p.InternalKey()
     813           1 :                         m.HasPointKeys = true
     814           1 :                         p.Expect("]")
     815             : 
     816           1 :                 case "ranges":
     817           1 :                         p.Expect("[")
     818           1 :                         m.SmallestRangeKey = p.InternalKey()
     819           1 :                         p.Expect("-")
     820           1 :                         m.LargestRangeKey = p.InternalKey()
     821           1 :                         m.HasRangeKeys = true
     822           1 :                         p.Expect("]")
     823             : 
     824           1 :                 case "size":
     825           1 :                         m.Size = p.Uint64()
     826             : 
     827           0 :                 default:
     828           0 :                         p.Errf("unknown field %q", field)
     829             :                 }
     830             :         }
     831             : 
     832             :         // By default, when the parser sees just the overall bounds, we set the point
     833             :         // keys. This preserves backwards compatability with existing test cases that
     834             :         // specify only the overall bounds.
     835           1 :         if !m.HasPointKeys && !m.HasRangeKeys {
     836           1 :                 m.SmallestPointKey, m.LargestPointKey = m.Smallest, m.Largest
     837           1 :                 m.HasPointKeys = true
     838           1 :         }
     839           1 :         if backingNum == 0 {
     840           1 :                 m.InitPhysicalBacking()
     841           1 :         } else {
     842           1 :                 m.Virtual = true
     843           1 :                 m.InitProviderBacking(backingNum, 0 /* size */)
     844           1 :         }
     845           1 :         return m, nil
     846             : }
     847             : 
     848             : // Validate validates the metadata for consistency with itself, returning an
     849             : // error if inconsistent.
     850           1 : func (m *FileMetadata) Validate(cmp Compare, formatKey base.FormatKey) error {
     851           1 :         // Combined range and point key validation.
     852           1 : 
     853           1 :         if !m.HasPointKeys && !m.HasRangeKeys {
     854           0 :                 return base.CorruptionErrorf("file %s has neither point nor range keys",
     855           0 :                         errors.Safe(m.FileNum))
     856           0 :         }
     857           1 :         if base.InternalCompare(cmp, m.Smallest, m.Largest) > 0 {
     858           1 :                 return base.CorruptionErrorf("file %s has inconsistent bounds: %s vs %s",
     859           1 :                         errors.Safe(m.FileNum), m.Smallest.Pretty(formatKey),
     860           1 :                         m.Largest.Pretty(formatKey))
     861           1 :         }
     862           1 :         if m.SmallestSeqNum > m.LargestSeqNum {
     863           0 :                 return base.CorruptionErrorf("file %s has inconsistent seqnum bounds: %d vs %d",
     864           0 :                         errors.Safe(m.FileNum), m.SmallestSeqNum, m.LargestSeqNum)
     865           0 :         }
     866           1 :         if m.LargestSeqNumAbsolute < m.LargestSeqNum {
     867           0 :                 return base.CorruptionErrorf("file %s has inconsistent absolute largest seqnum bounds: %d vs %d",
     868           0 :                         errors.Safe(m.FileNum), m.LargestSeqNumAbsolute, m.LargestSeqNum)
     869           0 :         }
     870             : 
     871             :         // Point key validation.
     872             : 
     873           1 :         if m.HasPointKeys {
     874           1 :                 if base.InternalCompare(cmp, m.SmallestPointKey, m.LargestPointKey) > 0 {
     875           0 :                         return base.CorruptionErrorf("file %s has inconsistent point key bounds: %s vs %s",
     876           0 :                                 errors.Safe(m.FileNum), m.SmallestPointKey.Pretty(formatKey),
     877           0 :                                 m.LargestPointKey.Pretty(formatKey))
     878           0 :                 }
     879           1 :                 if base.InternalCompare(cmp, m.SmallestPointKey, m.Smallest) < 0 ||
     880           1 :                         base.InternalCompare(cmp, m.LargestPointKey, m.Largest) > 0 {
     881           0 :                         return base.CorruptionErrorf(
     882           0 :                                 "file %s has inconsistent point key bounds relative to overall bounds: "+
     883           0 :                                         "overall = [%s-%s], point keys = [%s-%s]",
     884           0 :                                 errors.Safe(m.FileNum),
     885           0 :                                 m.Smallest.Pretty(formatKey), m.Largest.Pretty(formatKey),
     886           0 :                                 m.SmallestPointKey.Pretty(formatKey), m.LargestPointKey.Pretty(formatKey),
     887           0 :                         )
     888           0 :                 }
     889           1 :                 if !isValidPointBoundKeyKind[m.SmallestPointKey.Kind()] {
     890           0 :                         return base.CorruptionErrorf("file %s has invalid smallest point key kind", m)
     891           0 :                 }
     892           1 :                 if !isValidPointBoundKeyKind[m.LargestPointKey.Kind()] {
     893           0 :                         return base.CorruptionErrorf("file %s has invalid largest point key kind", m)
     894           0 :                 }
     895             :         }
     896             : 
     897             :         // Range key validation.
     898             : 
     899           1 :         if m.HasRangeKeys {
     900           1 :                 if base.InternalCompare(cmp, m.SmallestRangeKey, m.LargestRangeKey) > 0 {
     901           0 :                         return base.CorruptionErrorf("file %s has inconsistent range key bounds: %s vs %s",
     902           0 :                                 errors.Safe(m.FileNum), m.SmallestRangeKey.Pretty(formatKey),
     903           0 :                                 m.LargestRangeKey.Pretty(formatKey))
     904           0 :                 }
     905           1 :                 if base.InternalCompare(cmp, m.SmallestRangeKey, m.Smallest) < 0 ||
     906           1 :                         base.InternalCompare(cmp, m.LargestRangeKey, m.Largest) > 0 {
     907           0 :                         return base.CorruptionErrorf(
     908           0 :                                 "file %s has inconsistent range key bounds relative to overall bounds: "+
     909           0 :                                         "overall = [%s-%s], range keys = [%s-%s]",
     910           0 :                                 errors.Safe(m.FileNum),
     911           0 :                                 m.Smallest.Pretty(formatKey), m.Largest.Pretty(formatKey),
     912           0 :                                 m.SmallestRangeKey.Pretty(formatKey), m.LargestRangeKey.Pretty(formatKey),
     913           0 :                         )
     914           0 :                 }
     915           1 :                 if !isValidRangeKeyBoundKeyKind[m.SmallestRangeKey.Kind()] {
     916           0 :                         return base.CorruptionErrorf("file %s has invalid smallest range key kind", m)
     917           0 :                 }
     918           1 :                 if !isValidRangeKeyBoundKeyKind[m.LargestRangeKey.Kind()] {
     919           0 :                         return base.CorruptionErrorf("file %s has invalid largest range key kind", m)
     920           0 :                 }
     921             :         }
     922             : 
     923             :         // Ensure that FileMetadata.Init was called.
     924           1 :         if m.FileBacking == nil {
     925           0 :                 return base.CorruptionErrorf("file metadata FileBacking not set")
     926           0 :         }
     927             : 
     928           1 :         if m.SyntheticPrefix.IsSet() {
     929           1 :                 if !m.Virtual {
     930           0 :                         return base.CorruptionErrorf("non-virtual file with synthetic prefix")
     931           0 :                 }
     932           1 :                 if !bytes.HasPrefix(m.Smallest.UserKey, m.SyntheticPrefix) {
     933           0 :                         return base.CorruptionErrorf("virtual file with synthetic prefix has smallest key with a different prefix: %s", m.Smallest.Pretty(formatKey))
     934           0 :                 }
     935           1 :                 if !bytes.HasPrefix(m.Largest.UserKey, m.SyntheticPrefix) {
     936           0 :                         return base.CorruptionErrorf("virtual file with synthetic prefix has largest key with a different prefix: %s", m.Largest.Pretty(formatKey))
     937           0 :                 }
     938             :         }
     939             : 
     940           1 :         if m.SyntheticSuffix != nil {
     941           1 :                 if !m.Virtual {
     942           0 :                         return base.CorruptionErrorf("non-virtual file with synthetic suffix")
     943           0 :                 }
     944             :         }
     945             : 
     946           1 :         return nil
     947             : }
     948             : 
     949             : var (
     950             :         isValidPointBoundKeyKind = [base.InternalKeyKindMax + 1]bool{
     951             :                 base.InternalKeyKindDelete:        true,
     952             :                 base.InternalKeyKindSet:           true,
     953             :                 base.InternalKeyKindMerge:         true,
     954             :                 base.InternalKeyKindSingleDelete:  true,
     955             :                 base.InternalKeyKindRangeDelete:   true,
     956             :                 base.InternalKeyKindSetWithDelete: true,
     957             :                 base.InternalKeyKindDeleteSized:   true,
     958             :         }
     959             :         isValidRangeKeyBoundKeyKind = [base.InternalKeyKindMax + 1]bool{
     960             :                 base.InternalKeyKindRangeKeySet:    true,
     961             :                 base.InternalKeyKindRangeKeyUnset:  true,
     962             :                 base.InternalKeyKindRangeKeyDelete: true,
     963             :         }
     964             : )
     965             : 
     966             : // TableInfo returns a subset of the FileMetadata state formatted as a
     967             : // TableInfo.
     968           1 : func (m *FileMetadata) TableInfo() TableInfo {
     969           1 :         return TableInfo{
     970           1 :                 FileNum:        m.FileNum,
     971           1 :                 Size:           m.Size,
     972           1 :                 Smallest:       m.Smallest,
     973           1 :                 Largest:        m.Largest,
     974           1 :                 SmallestSeqNum: m.SmallestSeqNum,
     975           1 :                 LargestSeqNum:  m.LargestSeqNum,
     976           1 :         }
     977           1 : }
     978             : 
     979           1 : func (m *FileMetadata) cmpSeqNum(b *FileMetadata) int {
     980           1 :         // NB: This is the same ordering that RocksDB uses for L0 files.
     981           1 : 
     982           1 :         // Sort first by largest sequence number.
     983           1 :         if v := stdcmp.Compare(m.LargestSeqNum, b.LargestSeqNum); v != 0 {
     984           1 :                 return v
     985           1 :         }
     986             :         // Then by smallest sequence number.
     987           1 :         if v := stdcmp.Compare(m.SmallestSeqNum, b.SmallestSeqNum); v != 0 {
     988           1 :                 return v
     989           1 :         }
     990             :         // Break ties by file number.
     991           1 :         return stdcmp.Compare(m.FileNum, b.FileNum)
     992             : }
     993             : 
     994           1 : func (m *FileMetadata) lessSeqNum(b *FileMetadata) bool {
     995           1 :         return m.cmpSeqNum(b) < 0
     996           1 : }
     997             : 
     998           1 : func (m *FileMetadata) cmpSmallestKey(b *FileMetadata, cmp Compare) int {
     999           1 :         return base.InternalCompare(cmp, m.Smallest, b.Smallest)
    1000           1 : }
    1001             : 
    1002             : // KeyRange returns the minimum smallest and maximum largest internalKey for
    1003             : // all the FileMetadata in iters.
    1004           1 : func KeyRange(ucmp Compare, iters ...LevelIterator) (smallest, largest InternalKey) {
    1005           1 :         first := true
    1006           1 :         for _, iter := range iters {
    1007           1 :                 for meta := iter.First(); meta != nil; meta = iter.Next() {
    1008           1 :                         if first {
    1009           1 :                                 first = false
    1010           1 :                                 smallest, largest = meta.Smallest, meta.Largest
    1011           1 :                                 continue
    1012             :                         }
    1013           1 :                         if base.InternalCompare(ucmp, smallest, meta.Smallest) >= 0 {
    1014           1 :                                 smallest = meta.Smallest
    1015           1 :                         }
    1016           1 :                         if base.InternalCompare(ucmp, largest, meta.Largest) <= 0 {
    1017           1 :                                 largest = meta.Largest
    1018           1 :                         }
    1019             :                 }
    1020             :         }
    1021           1 :         return smallest, largest
    1022             : }
    1023             : 
    1024             : type bySeqNum []*FileMetadata
    1025             : 
    1026           1 : func (b bySeqNum) Len() int { return len(b) }
    1027           1 : func (b bySeqNum) Less(i, j int) bool {
    1028           1 :         return b[i].lessSeqNum(b[j])
    1029           1 : }
    1030           1 : func (b bySeqNum) Swap(i, j int) { b[i], b[j] = b[j], b[i] }
    1031             : 
    1032             : // SortBySeqNum sorts the specified files by increasing sequence number.
    1033           1 : func SortBySeqNum(files []*FileMetadata) {
    1034           1 :         sort.Sort(bySeqNum(files))
    1035           1 : }
    1036             : 
    1037             : type bySmallest struct {
    1038             :         files []*FileMetadata
    1039             :         cmp   Compare
    1040             : }
    1041             : 
    1042           1 : func (b bySmallest) Len() int { return len(b.files) }
    1043           1 : func (b bySmallest) Less(i, j int) bool {
    1044           1 :         return b.files[i].cmpSmallestKey(b.files[j], b.cmp) < 0
    1045           1 : }
    1046           0 : func (b bySmallest) Swap(i, j int) { b.files[i], b.files[j] = b.files[j], b.files[i] }
    1047             : 
    1048             : // SortBySmallest sorts the specified files by smallest key using the supplied
    1049             : // comparison function to order user keys.
    1050           1 : func SortBySmallest(files []*FileMetadata, cmp Compare) {
    1051           1 :         sort.Sort(bySmallest{files, cmp})
    1052           1 : }
    1053             : 
    1054             : // NumLevels is the number of levels a Version contains.
    1055             : const NumLevels = 7
    1056             : 
    1057             : // NewVersion constructs a new Version with the provided files. It requires
    1058             : // the provided files are already well-ordered. It's intended for testing.
    1059             : func NewVersion(
    1060             :         comparer *base.Comparer, flushSplitBytes int64, files [NumLevels][]*FileMetadata,
    1061           1 : ) *Version {
    1062           1 :         v := &Version{
    1063           1 :                 cmp: comparer,
    1064           1 :         }
    1065           1 :         for l := range files {
    1066           1 :                 // NB: We specifically insert `files` into the B-Tree in the order
    1067           1 :                 // they appear within `files`. Some tests depend on this behavior in
    1068           1 :                 // order to test consistency checking, etc. Once we've constructed the
    1069           1 :                 // initial B-Tree, we swap out the btreeCmp for the correct one.
    1070           1 :                 // TODO(jackson): Adjust or remove the tests and remove this.
    1071           1 :                 v.Levels[l].tree, _ = makeBTree(btreeCmpSpecificOrder(files[l]), files[l])
    1072           1 :                 v.Levels[l].level = l
    1073           1 :                 if l == 0 {
    1074           1 :                         v.Levels[l].tree.cmp = btreeCmpSeqNum
    1075           1 :                 } else {
    1076           1 :                         v.Levels[l].tree.cmp = btreeCmpSmallestKey(comparer.Compare)
    1077           1 :                 }
    1078           1 :                 for _, f := range files[l] {
    1079           1 :                         v.Levels[l].totalSize += f.Size
    1080           1 :                 }
    1081             :         }
    1082           1 :         if err := v.InitL0Sublevels(flushSplitBytes); err != nil {
    1083           0 :                 panic(err)
    1084             :         }
    1085           1 :         return v
    1086             : }
    1087             : 
    1088             : // TestingNewVersion returns a blank Version, used for tests.
    1089           1 : func TestingNewVersion(comparer *base.Comparer) *Version {
    1090           1 :         return &Version{
    1091           1 :                 cmp: comparer,
    1092           1 :         }
    1093           1 : }
    1094             : 
    1095             : // Version is a collection of file metadata for on-disk tables at various
    1096             : // levels. In-memory DBs are written to level-0 tables, and compactions
    1097             : // migrate data from level N to level N+1. The tables map internal keys (which
    1098             : // are a user key, a delete or set bit, and a sequence number) to user values.
    1099             : //
    1100             : // The tables at level 0 are sorted by largest sequence number. Due to file
    1101             : // ingestion, there may be overlap in the ranges of sequence numbers contain in
    1102             : // level 0 sstables. In particular, it is valid for one level 0 sstable to have
    1103             : // the seqnum range [1,100] while an adjacent sstable has the seqnum range
    1104             : // [50,50]. This occurs when the [50,50] table was ingested and given a global
    1105             : // seqnum. The ingestion code will have ensured that the [50,50] sstable will
    1106             : // not have any keys that overlap with the [1,100] in the seqnum range
    1107             : // [1,49]. The range of internal keys [fileMetadata.smallest,
    1108             : // fileMetadata.largest] in each level 0 table may overlap.
    1109             : //
    1110             : // The tables at any non-0 level are sorted by their internal key range and any
    1111             : // two tables at the same non-0 level do not overlap.
    1112             : //
    1113             : // The internal key ranges of two tables at different levels X and Y may
    1114             : // overlap, for any X != Y.
    1115             : //
    1116             : // Finally, for every internal key in a table at level X, there is no internal
    1117             : // key in a higher level table that has both the same user key and a higher
    1118             : // sequence number.
    1119             : type Version struct {
    1120             :         refs atomic.Int32
    1121             : 
    1122             :         // The level 0 sstables are organized in a series of sublevels. Similar to
    1123             :         // the seqnum invariant in normal levels, there is no internal key in a
    1124             :         // higher level table that has both the same user key and a higher sequence
    1125             :         // number. Within a sublevel, tables are sorted by their internal key range
    1126             :         // and any two tables at the same sublevel do not overlap. Unlike the normal
    1127             :         // levels, sublevel n contains older tables (lower sequence numbers) than
    1128             :         // sublevel n+1.
    1129             :         //
    1130             :         // The L0Sublevels struct is mostly used for compaction picking. As most
    1131             :         // internal data structures in it are only necessary for compaction picking
    1132             :         // and not for iterator creation, the reference to L0Sublevels is nil'd
    1133             :         // after this version becomes the non-newest version, to reduce memory
    1134             :         // usage.
    1135             :         //
    1136             :         // L0Sublevels.Levels contains L0 files ordered by sublevels. All the files
    1137             :         // in Levels[0] are in L0Sublevels.Levels. L0SublevelFiles is also set to
    1138             :         // a reference to that slice, as that slice is necessary for iterator
    1139             :         // creation and needs to outlast L0Sublevels.
    1140             :         L0Sublevels     *L0Sublevels
    1141             :         L0SublevelFiles []LevelSlice
    1142             : 
    1143             :         Levels [NumLevels]LevelMetadata
    1144             : 
    1145             :         // RangeKeyLevels holds a subset of the same files as Levels that contain range
    1146             :         // keys (i.e. fileMeta.HasRangeKeys == true). The memory amplification of this
    1147             :         // duplication should be minimal, as range keys are expected to be rare.
    1148             :         RangeKeyLevels [NumLevels]LevelMetadata
    1149             : 
    1150             :         // The callback to invoke when the last reference to a version is
    1151             :         // removed. Will be called with list.mu held.
    1152             :         Deleted func(obsolete []*FileBacking)
    1153             : 
    1154             :         // Stats holds aggregated stats about the version maintained from
    1155             :         // version to version.
    1156             :         Stats struct {
    1157             :                 // MarkedForCompaction records the count of files marked for
    1158             :                 // compaction within the version.
    1159             :                 MarkedForCompaction int
    1160             :         }
    1161             : 
    1162             :         cmp *base.Comparer
    1163             : 
    1164             :         // The list the version is linked into.
    1165             :         list *VersionList
    1166             : 
    1167             :         // The next/prev link for the versionList doubly-linked list of versions.
    1168             :         prev, next *Version
    1169             : }
    1170             : 
    1171             : // String implements fmt.Stringer, printing the FileMetadata for each level in
    1172             : // the Version.
    1173           1 : func (v *Version) String() string {
    1174           1 :         return v.string(false)
    1175           1 : }
    1176             : 
    1177             : // DebugString returns an alternative format to String() which includes sequence
    1178             : // number and kind information for the sstable boundaries.
    1179           1 : func (v *Version) DebugString() string {
    1180           1 :         return v.string(true)
    1181           1 : }
    1182             : 
    1183           1 : func describeSublevels(format base.FormatKey, verbose bool, sublevels []LevelSlice) string {
    1184           1 :         var buf bytes.Buffer
    1185           1 :         for sublevel := len(sublevels) - 1; sublevel >= 0; sublevel-- {
    1186           1 :                 fmt.Fprintf(&buf, "L0.%d:\n", sublevel)
    1187           1 :                 sublevels[sublevel].Each(func(f *FileMetadata) {
    1188           1 :                         fmt.Fprintf(&buf, "  %s\n", f.DebugString(format, verbose))
    1189           1 :                 })
    1190             :         }
    1191           1 :         return buf.String()
    1192             : }
    1193             : 
    1194           1 : func (v *Version) string(verbose bool) string {
    1195           1 :         var buf bytes.Buffer
    1196           1 :         if len(v.L0SublevelFiles) > 0 {
    1197           1 :                 fmt.Fprintf(&buf, "%s", describeSublevels(v.cmp.FormatKey, verbose, v.L0SublevelFiles))
    1198           1 :         }
    1199           1 :         for level := 1; level < NumLevels; level++ {
    1200           1 :                 if v.Levels[level].Empty() {
    1201           1 :                         continue
    1202             :                 }
    1203           1 :                 fmt.Fprintf(&buf, "L%d:\n", level)
    1204           1 :                 iter := v.Levels[level].Iter()
    1205           1 :                 for f := iter.First(); f != nil; f = iter.Next() {
    1206           1 :                         fmt.Fprintf(&buf, "  %s\n", f.DebugString(v.cmp.FormatKey, verbose))
    1207           1 :                 }
    1208             :         }
    1209           1 :         return buf.String()
    1210             : }
    1211             : 
    1212             : // ParseVersionDebug parses a Version from its DebugString output.
    1213           1 : func ParseVersionDebug(comparer *base.Comparer, flushSplitBytes int64, s string) (*Version, error) {
    1214           1 :         var files [NumLevels][]*FileMetadata
    1215           1 :         level := -1
    1216           1 :         for _, l := range strings.Split(s, "\n") {
    1217           1 :                 if l == "" {
    1218           1 :                         continue
    1219             :                 }
    1220           1 :                 p := makeDebugParser(l)
    1221           1 :                 if l, ok := p.TryLevel(); ok {
    1222           1 :                         level = l
    1223           1 :                         continue
    1224             :                 }
    1225             : 
    1226           1 :                 if level == -1 {
    1227           0 :                         return nil, errors.Errorf("version string must start with a level")
    1228           0 :                 }
    1229           1 :                 m, err := ParseFileMetadataDebug(l)
    1230           1 :                 if err != nil {
    1231           0 :                         return nil, err
    1232           0 :                 }
    1233           1 :                 files[level] = append(files[level], m)
    1234             :         }
    1235             :         // L0 files are printed from higher sublevel to lower, which means in a
    1236             :         // partial order that represents newest to oldest. Reverse the order of L0
    1237             :         // files to ensure we construct the same sublevels.
    1238           1 :         slices.Reverse(files[0])
    1239           1 :         v := NewVersion(comparer, flushSplitBytes, files)
    1240           1 :         if err := v.CheckOrdering(); err != nil {
    1241           1 :                 return nil, err
    1242           1 :         }
    1243           1 :         return v, nil
    1244             : }
    1245             : 
    1246             : // Refs returns the number of references to the version.
    1247           1 : func (v *Version) Refs() int32 {
    1248           1 :         return v.refs.Load()
    1249           1 : }
    1250             : 
    1251             : // Ref increments the version refcount.
    1252           1 : func (v *Version) Ref() {
    1253           1 :         v.refs.Add(1)
    1254           1 : }
    1255             : 
    1256             : // Unref decrements the version refcount. If the last reference to the version
    1257             : // was removed, the version is removed from the list of versions and the
    1258             : // Deleted callback is invoked. Requires that the VersionList mutex is NOT
    1259             : // locked.
    1260           1 : func (v *Version) Unref() {
    1261           1 :         if v.refs.Add(-1) == 0 {
    1262           1 :                 l := v.list
    1263           1 :                 l.mu.Lock()
    1264           1 :                 l.Remove(v)
    1265           1 :                 v.Deleted(v.unrefFiles())
    1266           1 :                 l.mu.Unlock()
    1267           1 :         }
    1268             : }
    1269             : 
    1270             : // UnrefLocked decrements the version refcount. If the last reference to the
    1271             : // version was removed, the version is removed from the list of versions and
    1272             : // the Deleted callback is invoked. Requires that the VersionList mutex is
    1273             : // already locked.
    1274           1 : func (v *Version) UnrefLocked() {
    1275           1 :         if v.refs.Add(-1) == 0 {
    1276           1 :                 v.list.Remove(v)
    1277           1 :                 v.Deleted(v.unrefFiles())
    1278           1 :         }
    1279             : }
    1280             : 
    1281           1 : func (v *Version) unrefFiles() []*FileBacking {
    1282           1 :         var obsolete []*FileBacking
    1283           1 :         for _, lm := range v.Levels {
    1284           1 :                 obsolete = append(obsolete, lm.release()...)
    1285           1 :         }
    1286           1 :         for _, lm := range v.RangeKeyLevels {
    1287           1 :                 obsolete = append(obsolete, lm.release()...)
    1288           1 :         }
    1289           1 :         return obsolete
    1290             : }
    1291             : 
    1292             : // Next returns the next version in the list of versions.
    1293           0 : func (v *Version) Next() *Version {
    1294           0 :         return v.next
    1295           0 : }
    1296             : 
    1297             : // InitL0Sublevels initializes the L0Sublevels
    1298           1 : func (v *Version) InitL0Sublevels(flushSplitBytes int64) error {
    1299           1 :         var err error
    1300           1 :         v.L0Sublevels, err = NewL0Sublevels(&v.Levels[0], v.cmp.Compare, v.cmp.FormatKey, flushSplitBytes)
    1301           1 :         if err == nil && v.L0Sublevels != nil {
    1302           1 :                 v.L0SublevelFiles = v.L0Sublevels.Levels
    1303           1 :         }
    1304           1 :         return err
    1305             : }
    1306             : 
    1307             : // CalculateInuseKeyRanges examines file metadata in levels [level, maxLevel]
    1308             : // within bounds [smallest,largest], returning an ordered slice of key ranges
    1309             : // that include all keys that exist within levels [level, maxLevel] and within
    1310             : // [smallest,largest].
    1311             : func (v *Version) CalculateInuseKeyRanges(
    1312             :         level, maxLevel int, smallest, largest []byte,
    1313           1 : ) []base.UserKeyBounds {
    1314           1 :         // Use two slices, alternating which one is input and which one is output
    1315           1 :         // as we descend the LSM.
    1316           1 :         var input, output []base.UserKeyBounds
    1317           1 : 
    1318           1 :         // L0 requires special treatment, since sstables within L0 may overlap.
    1319           1 :         // We use the L0 Sublevels structure to efficiently calculate the merged
    1320           1 :         // in-use key ranges.
    1321           1 :         if level == 0 {
    1322           1 :                 output = v.L0Sublevels.InUseKeyRanges(smallest, largest)
    1323           1 :                 level++
    1324           1 :         }
    1325             : 
    1326             :         // NB: We always treat `largest` as inclusive for simplicity, because
    1327             :         // there's little consequence to calculating slightly broader in-use key
    1328             :         // ranges.
    1329           1 :         bounds := base.UserKeyBoundsInclusive(smallest, largest)
    1330           1 :         for ; level <= maxLevel; level++ {
    1331           1 :                 overlaps := v.Overlaps(level, bounds)
    1332           1 :                 iter := overlaps.Iter()
    1333           1 : 
    1334           1 :                 // We may already have in-use key ranges from higher levels. Iterate
    1335           1 :                 // through both our accumulated in-use key ranges and this level's
    1336           1 :                 // files, merging the two.
    1337           1 :                 //
    1338           1 :                 // Tables higher within the LSM have broader key spaces. We use this
    1339           1 :                 // when possible to seek past a level's files that are contained by
    1340           1 :                 // our current accumulated in-use key ranges. This helps avoid
    1341           1 :                 // per-sstable work during flushes or compactions in high levels which
    1342           1 :                 // overlap the majority of the LSM's sstables.
    1343           1 :                 input, output = output, input
    1344           1 :                 output = output[:0]
    1345           1 : 
    1346           1 :                 cmp := v.cmp.Compare
    1347           1 :                 inputIdx := 0
    1348           1 :                 var currFile *FileMetadata
    1349           1 :                 // If we have an accumulated key range and its start is ≤ smallest,
    1350           1 :                 // we can seek to the accumulated range's end. Otherwise, we need to
    1351           1 :                 // start at the first overlapping file within the level.
    1352           1 :                 if len(input) > 0 && cmp(input[0].Start, smallest) <= 0 {
    1353           1 :                         currFile = seekGT(&iter, cmp, input[0].End)
    1354           1 :                 } else {
    1355           1 :                         currFile = iter.First()
    1356           1 :                 }
    1357             : 
    1358           1 :                 for currFile != nil && inputIdx < len(input) {
    1359           1 :                         // Invariant: Neither currFile nor input[inputIdx] overlaps any earlier
    1360           1 :                         // ranges.
    1361           1 :                         switch {
    1362           1 :                         case cmp(currFile.Largest.UserKey, input[inputIdx].Start) < 0:
    1363           1 :                                 // File is completely before input range.
    1364           1 :                                 output = append(output, currFile.UserKeyBounds())
    1365           1 :                                 currFile = iter.Next()
    1366             : 
    1367           1 :                         case cmp(input[inputIdx].End.Key, currFile.Smallest.UserKey) < 0:
    1368           1 :                                 // Input range is completely before the next file.
    1369           1 :                                 output = append(output, input[inputIdx])
    1370           1 :                                 inputIdx++
    1371             : 
    1372           1 :                         default:
    1373           1 :                                 // Input range and file range overlap or touch. We will maximally extend
    1374           1 :                                 // the range with more overlapping inputs and files.
    1375           1 :                                 currAccum := currFile.UserKeyBounds()
    1376           1 :                                 if cmp(input[inputIdx].Start, currAccum.Start) < 0 {
    1377           1 :                                         currAccum.Start = input[inputIdx].Start
    1378           1 :                                 }
    1379           1 :                                 currFile = iter.Next()
    1380           1 : 
    1381           1 :                                 // Extend curAccum with any overlapping (or touching) input intervals or
    1382           1 :                                 // files. Note that we will always consume at least input[inputIdx].
    1383           1 :                                 for {
    1384           1 :                                         if inputIdx < len(input) && cmp(input[inputIdx].Start, currAccum.End.Key) <= 0 {
    1385           1 :                                                 if currAccum.End.CompareUpperBounds(cmp, input[inputIdx].End) < 0 {
    1386           1 :                                                         currAccum.End = input[inputIdx].End
    1387           1 :                                                         // Skip over files that are entirely inside this newly extended
    1388           1 :                                                         // accumulated range; we expect ranges to be wider in levels that
    1389           1 :                                                         // are higher up so this might skip over a non-trivial number of
    1390           1 :                                                         // files.
    1391           1 :                                                         currFile = seekGT(&iter, cmp, currAccum.End)
    1392           1 :                                                 }
    1393           1 :                                                 inputIdx++
    1394           1 :                                         } else if currFile != nil && cmp(currFile.Smallest.UserKey, currAccum.End.Key) <= 0 {
    1395           1 :                                                 if b := currFile.UserKeyBounds(); currAccum.End.CompareUpperBounds(cmp, b.End) < 0 {
    1396           1 :                                                         currAccum.End = b.End
    1397           1 :                                                 }
    1398           1 :                                                 currFile = iter.Next()
    1399           1 :                                         } else {
    1400           1 :                                                 // No overlaps remaining.
    1401           1 :                                                 break
    1402             :                                         }
    1403             :                                 }
    1404           1 :                                 output = append(output, currAccum)
    1405             :                         }
    1406             :                 }
    1407             :                 // If we have either files or input ranges left over, add them to the
    1408             :                 // output.
    1409           1 :                 output = append(output, input[inputIdx:]...)
    1410           1 :                 for ; currFile != nil; currFile = iter.Next() {
    1411           1 :                         output = append(output, currFile.UserKeyBounds())
    1412           1 :                 }
    1413             :         }
    1414           1 :         return output
    1415             : }
    1416             : 
    1417             : // seekGT seeks to the first file that ends with a boundary that is after the
    1418             : // given boundary. Specifically:
    1419             : //   - if boundary.End is inclusive, the returned file ending boundary is strictly
    1420             : //     greater than boundary.End.Key
    1421             : //   - if boundary.End is exclusive, the returned file ending boundary is either
    1422             : //     greater than boundary.End.Key, or it's inclusive at boundary.End.Key.
    1423           1 : func seekGT(iter *LevelIterator, cmp base.Compare, boundary base.UserKeyBoundary) *FileMetadata {
    1424           1 :         f := iter.SeekGE(cmp, boundary.Key)
    1425           1 :         if f == nil {
    1426           1 :                 return nil
    1427           1 :         }
    1428             :         // If boundary is inclusive or the file boundary is exclusive we do not
    1429             :         // tolerate an equal largest key.
    1430             :         // Note: we know f.Largest.UserKey >= boundary.End.Key so this condition is
    1431             :         // equivalent to boundary.End.IsUpperBoundForInternalKey(cmp, f.Largest).
    1432           1 :         if (boundary.Kind == base.Inclusive || f.Largest.IsExclusiveSentinel()) && cmp(boundary.Key, f.Largest.UserKey) == 0 {
    1433           1 :                 return iter.Next()
    1434           1 :         }
    1435           1 :         return f
    1436             : }
    1437             : 
    1438             : // Contains returns a boolean indicating whether the provided file exists in
    1439             : // the version at the given level. If level is non-zero then Contains binary
    1440             : // searches among the files. If level is zero, Contains scans the entire
    1441             : // level.
    1442           1 : func (v *Version) Contains(level int, m *FileMetadata) bool {
    1443           1 :         iter := v.Levels[level].Iter()
    1444           1 :         if level > 0 {
    1445           1 :                 overlaps := v.Overlaps(level, m.UserKeyBounds())
    1446           1 :                 iter = overlaps.Iter()
    1447           1 :         }
    1448           1 :         for f := iter.First(); f != nil; f = iter.Next() {
    1449           1 :                 if f == m {
    1450           1 :                         return true
    1451           1 :                 }
    1452             :         }
    1453           1 :         return false
    1454             : }
    1455             : 
    1456             : // Overlaps returns all elements of v.files[level] whose user key range
    1457             : // intersects the given bounds. If level is non-zero then the user key bounds of
    1458             : // v.files[level] are assumed to not overlap (although they may touch). If level
    1459             : // is zero then that assumption cannot be made, and the given bounds are
    1460             : // expanded to the union of those matching bounds so far and the computation is
    1461             : // repeated until the bounds stabilize.
    1462             : // The returned files are a subsequence of the input files, i.e., the ordering
    1463             : // is not changed.
    1464           1 : func (v *Version) Overlaps(level int, bounds base.UserKeyBounds) LevelSlice {
    1465           1 :         if level == 0 {
    1466           1 :                 // Indices that have been selected as overlapping.
    1467           1 :                 l0 := v.Levels[level]
    1468           1 :                 l0Iter := l0.Iter()
    1469           1 :                 selectedIndices := make([]bool, l0.Len())
    1470           1 :                 numSelected := 0
    1471           1 :                 var slice LevelSlice
    1472           1 :                 for {
    1473           1 :                         restart := false
    1474           1 :                         for i, meta := 0, l0Iter.First(); meta != nil; i, meta = i+1, l0Iter.Next() {
    1475           1 :                                 selected := selectedIndices[i]
    1476           1 :                                 if selected {
    1477           1 :                                         continue
    1478             :                                 }
    1479           1 :                                 if !meta.Overlaps(v.cmp.Compare, &bounds) {
    1480           1 :                                         // meta is completely outside the specified range; skip it.
    1481           1 :                                         continue
    1482             :                                 }
    1483             :                                 // Overlaps.
    1484           1 :                                 selectedIndices[i] = true
    1485           1 :                                 numSelected++
    1486           1 : 
    1487           1 :                                 // Since this is L0, check if the newly added fileMetadata has expanded
    1488           1 :                                 // the range. We expand the range immediately for files we have
    1489           1 :                                 // remaining to check in this loop. All already checked and unselected
    1490           1 :                                 // files will need to be rechecked via the restart below.
    1491           1 :                                 if v.cmp.Compare(meta.Smallest.UserKey, bounds.Start) < 0 {
    1492           1 :                                         bounds.Start = meta.Smallest.UserKey
    1493           1 :                                         restart = true
    1494           1 :                                 }
    1495           1 :                                 if !bounds.End.IsUpperBoundForInternalKey(v.cmp.Compare, meta.Largest) {
    1496           1 :                                         bounds.End = base.UserKeyExclusiveIf(meta.Largest.UserKey, meta.Largest.IsExclusiveSentinel())
    1497           1 :                                         restart = true
    1498           1 :                                 }
    1499             :                         }
    1500             : 
    1501           1 :                         if !restart {
    1502           1 :                                 // Construct a B-Tree containing only the matching items.
    1503           1 :                                 var tr btree
    1504           1 :                                 tr.cmp = v.Levels[level].tree.cmp
    1505           1 :                                 for i, meta := 0, l0Iter.First(); meta != nil; i, meta = i+1, l0Iter.Next() {
    1506           1 :                                         if selectedIndices[i] {
    1507           1 :                                                 err := tr.Insert(meta)
    1508           1 :                                                 if err != nil {
    1509           0 :                                                         panic(err)
    1510             :                                                 }
    1511             :                                         }
    1512             :                                 }
    1513           1 :                                 slice = newLevelSlice(tr.Iter())
    1514           1 :                                 // TODO(jackson): Avoid the oddity of constructing and
    1515           1 :                                 // immediately releasing a B-Tree. Make LevelSlice an
    1516           1 :                                 // interface?
    1517           1 :                                 tr.Release()
    1518           1 :                                 break
    1519             :                         }
    1520             :                         // Continue looping to retry the files that were not selected.
    1521             :                 }
    1522           1 :                 return slice
    1523             :         }
    1524             : 
    1525           1 :         return v.Levels[level].Slice().Overlaps(v.cmp.Compare, bounds)
    1526             : }
    1527             : 
    1528             : // IterAllLevelsAndSublevels calls fn with an iterator for each L0 sublevel
    1529             : // (from top to bottom), then once for each level below L0.
    1530           1 : func (v *Version) IterAllLevelsAndSublevels(fn func(it LevelIterator, level int, sublevel int)) {
    1531           1 :         for sublevel := len(v.L0SublevelFiles) - 1; sublevel >= 0; sublevel-- {
    1532           1 :                 fn(v.L0SublevelFiles[sublevel].Iter(), 0, sublevel)
    1533           1 :         }
    1534           1 :         for level := 1; level < NumLevels; level++ {
    1535           1 :                 fn(v.Levels[level].Iter(), level, invalidSublevel)
    1536           1 :         }
    1537             : }
    1538             : 
    1539             : // CheckOrdering checks that the files are consistent with respect to
    1540             : // increasing file numbers (for level 0 files) and increasing and non-
    1541             : // overlapping internal key ranges (for level non-0 files).
    1542           1 : func (v *Version) CheckOrdering() error {
    1543           1 :         for sublevel := len(v.L0SublevelFiles) - 1; sublevel >= 0; sublevel-- {
    1544           1 :                 sublevelIter := v.L0SublevelFiles[sublevel].Iter()
    1545           1 :                 if err := CheckOrdering(v.cmp.Compare, v.cmp.FormatKey, L0Sublevel(sublevel), sublevelIter); err != nil {
    1546           0 :                         return base.CorruptionErrorf("%s\n%s", err, v.DebugString())
    1547           0 :                 }
    1548             :         }
    1549             : 
    1550           1 :         for level, lm := range v.Levels {
    1551           1 :                 if err := CheckOrdering(v.cmp.Compare, v.cmp.FormatKey, Level(level), lm.Iter()); err != nil {
    1552           1 :                         return base.CorruptionErrorf("%s\n%s", err, v.DebugString())
    1553           1 :                 }
    1554             :         }
    1555           1 :         return nil
    1556             : }
    1557             : 
    1558             : // VersionList holds a list of versions. The versions are ordered from oldest
    1559             : // to newest.
    1560             : type VersionList struct {
    1561             :         mu   *sync.Mutex
    1562             :         root Version
    1563             : }
    1564             : 
    1565             : // Init initializes the version list.
    1566           1 : func (l *VersionList) Init(mu *sync.Mutex) {
    1567           1 :         l.mu = mu
    1568           1 :         l.root.next = &l.root
    1569           1 :         l.root.prev = &l.root
    1570           1 : }
    1571             : 
    1572             : // Empty returns true if the list is empty, and false otherwise.
    1573           1 : func (l *VersionList) Empty() bool {
    1574           1 :         return l.root.next == &l.root
    1575           1 : }
    1576             : 
    1577             : // Front returns the oldest version in the list. Note that this version is only
    1578             : // valid if Empty() returns true.
    1579           1 : func (l *VersionList) Front() *Version {
    1580           1 :         return l.root.next
    1581           1 : }
    1582             : 
    1583             : // Back returns the newest version in the list. Note that this version is only
    1584             : // valid if Empty() returns true.
    1585           1 : func (l *VersionList) Back() *Version {
    1586           1 :         return l.root.prev
    1587           1 : }
    1588             : 
    1589             : // PushBack adds a new version to the back of the list. This new version
    1590             : // becomes the "newest" version in the list.
    1591           1 : func (l *VersionList) PushBack(v *Version) {
    1592           1 :         if v.list != nil || v.prev != nil || v.next != nil {
    1593           0 :                 panic("pebble: version list is inconsistent")
    1594             :         }
    1595           1 :         v.prev = l.root.prev
    1596           1 :         v.prev.next = v
    1597           1 :         v.next = &l.root
    1598           1 :         v.next.prev = v
    1599           1 :         v.list = l
    1600           1 :         // Let L0Sublevels on the second newest version get GC'd, as it is no longer
    1601           1 :         // necessary. See the comment in Version.
    1602           1 :         v.prev.L0Sublevels = nil
    1603             : }
    1604             : 
    1605             : // Remove removes the specified version from the list.
    1606           1 : func (l *VersionList) Remove(v *Version) {
    1607           1 :         if v == &l.root {
    1608           0 :                 panic("pebble: cannot remove version list root node")
    1609             :         }
    1610           1 :         if v.list != l {
    1611           0 :                 panic("pebble: version list is inconsistent")
    1612             :         }
    1613           1 :         v.prev.next = v.next
    1614           1 :         v.next.prev = v.prev
    1615           1 :         v.next = nil // avoid memory leaks
    1616           1 :         v.prev = nil // avoid memory leaks
    1617           1 :         v.list = nil // avoid memory leaks
    1618             : }
    1619             : 
    1620             : // CheckOrdering checks that the files are consistent with respect to
    1621             : // seqnums (for level 0 files -- see detailed comment below) and increasing and non-
    1622             : // overlapping internal key ranges (for non-level 0 files).
    1623           1 : func CheckOrdering(cmp Compare, format base.FormatKey, level Level, files LevelIterator) error {
    1624           1 :         // The invariants to check for L0 sublevels are the same as the ones to
    1625           1 :         // check for all other levels. However, if L0 is not organized into
    1626           1 :         // sublevels, or if all L0 files are being passed in, we do the legacy L0
    1627           1 :         // checks, defined in the detailed comment below.
    1628           1 :         if level == Level(0) {
    1629           1 :                 // We have 2 kinds of files:
    1630           1 :                 // - Files with exactly one sequence number: these could be either ingested files
    1631           1 :                 //   or flushed files. We cannot tell the difference between them based on FileMetadata,
    1632           1 :                 //   so our consistency checking here uses the weaker checks assuming it is a narrow
    1633           1 :                 //   flushed file. We cannot error on ingested files having sequence numbers coincident
    1634           1 :                 //   with flushed files as the seemingly ingested file could just be a flushed file
    1635           1 :                 //   with just one key in it which is a truncated range tombstone sharing sequence numbers
    1636           1 :                 //   with other files in the same flush.
    1637           1 :                 // - Files with multiple sequence numbers: these are necessarily flushed files.
    1638           1 :                 //
    1639           1 :                 // Three cases of overlapping sequence numbers:
    1640           1 :                 // Case 1:
    1641           1 :                 // An ingested file contained in the sequence numbers of the flushed file -- it must be
    1642           1 :                 // fully contained (not coincident with either end of the flushed file) since the memtable
    1643           1 :                 // must have been at [a, b-1] (where b > a) when the ingested file was assigned sequence
    1644           1 :                 // num b, and the memtable got a subsequent update that was given sequence num b+1, before
    1645           1 :                 // being flushed.
    1646           1 :                 //
    1647           1 :                 // So a sequence [1000, 1000] [1002, 1002] [1000, 2000] is invalid since the first and
    1648           1 :                 // third file are inconsistent with each other. So comparing adjacent files is insufficient
    1649           1 :                 // for consistency checking.
    1650           1 :                 //
    1651           1 :                 // Visually we have something like
    1652           1 :                 // x------y x-----------yx-------------y (flushed files where x, y are the endpoints)
    1653           1 :                 //     y       y  y        y             (y's represent ingested files)
    1654           1 :                 // And these are ordered in increasing order of y. Note that y's must be unique.
    1655           1 :                 //
    1656           1 :                 // Case 2:
    1657           1 :                 // A flushed file that did not overlap in keys with any file in any level, but does overlap
    1658           1 :                 // in the file key intervals. This file is placed in L0 since it overlaps in the file
    1659           1 :                 // key intervals but since it has no overlapping data, it is assigned a sequence number
    1660           1 :                 // of 0 in RocksDB. We handle this case for compatibility with RocksDB.
    1661           1 :                 //
    1662           1 :                 // Case 3:
    1663           1 :                 // A sequence of flushed files that overlap in sequence numbers with one another,
    1664           1 :                 // but do not overlap in keys inside the sstables. These files correspond to
    1665           1 :                 // partitioned flushes or the results of intra-L0 compactions of partitioned
    1666           1 :                 // flushes.
    1667           1 :                 //
    1668           1 :                 // Since these types of SSTables violate most other sequence number
    1669           1 :                 // overlap invariants, and handling this case is important for compatibility
    1670           1 :                 // with future versions of pebble, this method relaxes most L0 invariant
    1671           1 :                 // checks.
    1672           1 : 
    1673           1 :                 var prev *FileMetadata
    1674           1 :                 for f := files.First(); f != nil; f, prev = files.Next(), f {
    1675           1 :                         if prev == nil {
    1676           1 :                                 continue
    1677             :                         }
    1678             :                         // Validate that the sorting is sane.
    1679           1 :                         if prev.LargestSeqNum == 0 && f.LargestSeqNum == prev.LargestSeqNum {
    1680           1 :                                 // Multiple files satisfying case 2 mentioned above.
    1681           1 :                         } else if !prev.lessSeqNum(f) {
    1682           1 :                                 return base.CorruptionErrorf("L0 files %s and %s are not properly ordered: <#%d-#%d> vs <#%d-#%d>",
    1683           1 :                                         errors.Safe(prev.FileNum), errors.Safe(f.FileNum),
    1684           1 :                                         errors.Safe(prev.SmallestSeqNum), errors.Safe(prev.LargestSeqNum),
    1685           1 :                                         errors.Safe(f.SmallestSeqNum), errors.Safe(f.LargestSeqNum))
    1686           1 :                         }
    1687             :                 }
    1688           1 :         } else {
    1689           1 :                 var prev *FileMetadata
    1690           1 :                 for f := files.First(); f != nil; f, prev = files.Next(), f {
    1691           1 :                         if err := f.Validate(cmp, format); err != nil {
    1692           1 :                                 return errors.Wrapf(err, "%s ", level)
    1693           1 :                         }
    1694           1 :                         if prev != nil {
    1695           1 :                                 if prev.cmpSmallestKey(f, cmp) >= 0 {
    1696           1 :                                         return base.CorruptionErrorf("%s files %s and %s are not properly ordered: [%s-%s] vs [%s-%s]",
    1697           1 :                                                 errors.Safe(level), errors.Safe(prev.FileNum), errors.Safe(f.FileNum),
    1698           1 :                                                 prev.Smallest.Pretty(format), prev.Largest.Pretty(format),
    1699           1 :                                                 f.Smallest.Pretty(format), f.Largest.Pretty(format))
    1700           1 :                                 }
    1701             : 
    1702             :                                 // In all supported format major version, split user keys are
    1703             :                                 // prohibited, so both files cannot contain keys with the same user
    1704             :                                 // keys. If the bounds have the same user key, the previous file's
    1705             :                                 // boundary must have a InternalKeyTrailer indicating that it's exclusive.
    1706           1 :                                 if v := cmp(prev.Largest.UserKey, f.Smallest.UserKey); v > 0 || (v == 0 && !prev.Largest.IsExclusiveSentinel()) {
    1707           1 :                                         return base.CorruptionErrorf("%s files %s and %s have overlapping ranges: [%s-%s] vs [%s-%s]",
    1708           1 :                                                 errors.Safe(level), errors.Safe(prev.FileNum), errors.Safe(f.FileNum),
    1709           1 :                                                 prev.Smallest.Pretty(format), prev.Largest.Pretty(format),
    1710           1 :                                                 f.Smallest.Pretty(format), f.Largest.Pretty(format))
    1711           1 :                                 }
    1712             :                         }
    1713             :                 }
    1714             :         }
    1715           1 :         return nil
    1716             : }

Generated by: LCOV version 1.14