LCOV - code coverage report
Current view: top level - pebble - ingest.go (source / functions) Hit Total Coverage
Test: 2024-07-28 08:16Z ed42fb43 - tests only.lcov Lines: 1527 1765 86.5 %
Date: 2024-07-28 08:16:44 Functions: 0 0 -

          Line data    Source code
       1             : // Copyright 2018 The LevelDB-Go and Pebble Authors. All rights reserved. Use
       2             : // of this source code is governed by a BSD-style license that can be found in
       3             : // the LICENSE file.
       4             : 
       5             : package pebble
       6             : 
       7             : import (
       8             :         "context"
       9             :         "fmt"
      10             :         "slices"
      11             :         "sort"
      12             :         "time"
      13             : 
      14             :         "github.com/cockroachdb/errors"
      15             :         "github.com/cockroachdb/pebble/internal/base"
      16             :         "github.com/cockroachdb/pebble/internal/invariants"
      17             :         "github.com/cockroachdb/pebble/internal/manifest"
      18             :         "github.com/cockroachdb/pebble/internal/overlap"
      19             :         "github.com/cockroachdb/pebble/internal/sstableinternal"
      20             :         "github.com/cockroachdb/pebble/objstorage"
      21             :         "github.com/cockroachdb/pebble/objstorage/remote"
      22             :         "github.com/cockroachdb/pebble/sstable"
      23             : )
      24             : 
      25           1 : func sstableKeyCompare(userCmp Compare, a, b InternalKey) int {
      26           1 :         c := userCmp(a.UserKey, b.UserKey)
      27           1 :         if c != 0 {
      28           1 :                 return c
      29           1 :         }
      30           1 :         if a.IsExclusiveSentinel() {
      31           1 :                 if !b.IsExclusiveSentinel() {
      32           1 :                         return -1
      33           1 :                 }
      34           1 :         } else if b.IsExclusiveSentinel() {
      35           1 :                 return +1
      36           1 :         }
      37           1 :         return 0
      38             : }
      39             : 
      40             : // KeyRange encodes a key range in user key space. A KeyRange's Start is
      41             : // inclusive while its End is exclusive.
      42             : //
      43             : // KeyRange is equivalent to base.UserKeyBounds with exclusive end.
      44             : type KeyRange struct {
      45             :         Start, End []byte
      46             : }
      47             : 
      48             : // Valid returns true if the KeyRange is defined.
      49           1 : func (k *KeyRange) Valid() bool {
      50           1 :         return k.Start != nil && k.End != nil
      51           1 : }
      52             : 
      53             : // Contains returns whether the specified key exists in the KeyRange.
      54           1 : func (k *KeyRange) Contains(cmp base.Compare, key InternalKey) bool {
      55           1 :         v := cmp(key.UserKey, k.End)
      56           1 :         return (v < 0 || (v == 0 && key.IsExclusiveSentinel())) && cmp(k.Start, key.UserKey) <= 0
      57           1 : }
      58             : 
      59             : // UserKeyBounds returns the KeyRange as UserKeyBounds. Also implements the internal `bounded` interface.
      60           1 : func (k KeyRange) UserKeyBounds() base.UserKeyBounds {
      61           1 :         return base.UserKeyBoundsEndExclusive(k.Start, k.End)
      62           1 : }
      63             : 
      64             : // OverlapsInternalKeyRange checks if the specified internal key range has an
      65             : // overlap with the KeyRange. Note that we aren't checking for full containment
      66             : // of smallest-largest within k, rather just that there's some intersection
      67             : // between the two ranges.
      68           1 : func (k *KeyRange) OverlapsInternalKeyRange(cmp base.Compare, smallest, largest InternalKey) bool {
      69           1 :         ukb := k.UserKeyBounds()
      70           1 :         b := base.UserKeyBoundsFromInternal(smallest, largest)
      71           1 :         return ukb.Overlaps(cmp, &b)
      72           1 : }
      73             : 
      74             : // Overlaps checks if the specified file has an overlap with the KeyRange.
      75             : // Note that we aren't checking for full containment of m within k, rather just
      76             : // that there's some intersection between m and k's bounds.
      77           1 : func (k *KeyRange) Overlaps(cmp base.Compare, m *fileMetadata) bool {
      78           1 :         b := k.UserKeyBounds()
      79           1 :         return m.Overlaps(cmp, &b)
      80           1 : }
      81             : 
      82             : // OverlapsKeyRange checks if this span overlaps with the provided KeyRange.
      83             : // Note that we aren't checking for full containment of either span in the other,
      84             : // just that there's a key x that is in both key ranges.
      85           1 : func (k *KeyRange) OverlapsKeyRange(cmp Compare, span KeyRange) bool {
      86           1 :         return cmp(k.Start, span.End) < 0 && cmp(k.End, span.Start) > 0
      87           1 : }
      88             : 
      89           1 : func ingestValidateKey(opts *Options, key *InternalKey) error {
      90           1 :         if key.Kind() == InternalKeyKindInvalid {
      91           1 :                 return base.CorruptionErrorf("pebble: external sstable has corrupted key: %s",
      92           1 :                         key.Pretty(opts.Comparer.FormatKey))
      93           1 :         }
      94           1 :         if key.SeqNum() != 0 {
      95           1 :                 return base.CorruptionErrorf("pebble: external sstable has non-zero seqnum: %s",
      96           1 :                         key.Pretty(opts.Comparer.FormatKey))
      97           1 :         }
      98           1 :         return nil
      99             : }
     100             : 
     101             : // ingestSynthesizeShared constructs a fileMetadata for one shared sstable owned
     102             : // or shared by another node.
     103             : func ingestSynthesizeShared(
     104             :         opts *Options, sm SharedSSTMeta, fileNum base.FileNum,
     105           1 : ) (*fileMetadata, error) {
     106           1 :         if sm.Size == 0 {
     107           0 :                 // Disallow 0 file sizes
     108           0 :                 return nil, errors.New("pebble: cannot ingest shared file with size 0")
     109           0 :         }
     110             :         // Don't load table stats. Doing a round trip to shared storage, one SST
     111             :         // at a time is not worth it as it slows down ingestion.
     112           1 :         meta := &fileMetadata{
     113           1 :                 FileNum:      fileNum,
     114           1 :                 CreationTime: time.Now().Unix(),
     115           1 :                 Virtual:      true,
     116           1 :                 Size:         sm.Size,
     117           1 :         }
     118           1 :         // For simplicity, we use the same number for both the FileNum and the
     119           1 :         // DiskFileNum (even though this is a virtual sstable). Pass the underlying
     120           1 :         // FileBacking's size to the same size as the virtualized view of the sstable.
     121           1 :         // This ensures that we don't over-prioritize this sstable for compaction just
     122           1 :         // yet, as we do not have a clear sense of what parts of this sstable are
     123           1 :         // referenced by other nodes.
     124           1 :         meta.InitProviderBacking(base.DiskFileNum(fileNum), sm.Size)
     125           1 : 
     126           1 :         if sm.LargestPointKey.Valid() && sm.LargestPointKey.UserKey != nil {
     127           1 :                 // Initialize meta.{HasPointKeys,Smallest,Largest}, etc.
     128           1 :                 //
     129           1 :                 // NB: We create new internal keys and pass them into ExtendPointKeyBounds
     130           1 :                 // so that we can sub a zero sequence number into the bounds. We can set
     131           1 :                 // the sequence number to anything here; it'll be reset in ingestUpdateSeqNum
     132           1 :                 // anyway. However, we do need to use the same sequence number across all
     133           1 :                 // bound keys at this step so that we end up with bounds that are consistent
     134           1 :                 // across point/range keys.
     135           1 :                 //
     136           1 :                 // Because of the sequence number rewriting, we cannot use the Kind of
     137           1 :                 // sm.SmallestPointKey. For example, the original SST might start with
     138           1 :                 // a.SET.2 and a.RANGEDEL.1 (with a.SET.2 being the smallest key); after
     139           1 :                 // rewriting the sequence numbers, these keys become a.SET.100 and
     140           1 :                 // a.RANGEDEL.100, with a.RANGEDEL.100 being the smallest key. To create a
     141           1 :                 // correct bound, we just use the maximum key kind (which sorts first).
     142           1 :                 // Similarly, we use the smallest key kind for the largest key.
     143           1 :                 smallestPointKey := base.MakeInternalKey(sm.SmallestPointKey.UserKey, 0, base.InternalKeyKindMax)
     144           1 :                 largestPointKey := base.MakeInternalKey(sm.LargestPointKey.UserKey, 0, 0)
     145           1 :                 if sm.LargestPointKey.IsExclusiveSentinel() {
     146           1 :                         largestPointKey = base.MakeRangeDeleteSentinelKey(sm.LargestPointKey.UserKey)
     147           1 :                 }
     148           1 :                 if opts.Comparer.Equal(smallestPointKey.UserKey, largestPointKey.UserKey) &&
     149           1 :                         smallestPointKey.Trailer < largestPointKey.Trailer {
     150           0 :                         // We get kinds from the sender, however we substitute our own sequence
     151           0 :                         // numbers. This can result in cases where an sstable [b#5,SET-b#4,DELSIZED]
     152           0 :                         // becomes [b#0,SET-b#0,DELSIZED] when we synthesize it here, but the
     153           0 :                         // kinds need to be reversed now because DelSized > Set.
     154           0 :                         smallestPointKey, largestPointKey = largestPointKey, smallestPointKey
     155           0 :                 }
     156           1 :                 meta.ExtendPointKeyBounds(opts.Comparer.Compare, smallestPointKey, largestPointKey)
     157             :         }
     158           1 :         if sm.LargestRangeKey.Valid() && sm.LargestRangeKey.UserKey != nil {
     159           1 :                 // Initialize meta.{HasRangeKeys,Smallest,Largest}, etc.
     160           1 :                 //
     161           1 :                 // See comment above on why we use a zero sequence number and these key
     162           1 :                 // kinds here.
     163           1 :                 smallestRangeKey := base.MakeInternalKey(sm.SmallestRangeKey.UserKey, 0, base.InternalKeyKindRangeKeyMax)
     164           1 :                 largestRangeKey := base.MakeExclusiveSentinelKey(base.InternalKeyKindRangeKeyMin, sm.LargestRangeKey.UserKey)
     165           1 :                 meta.ExtendRangeKeyBounds(opts.Comparer.Compare, smallestRangeKey, largestRangeKey)
     166           1 :         }
     167           1 :         if err := meta.Validate(opts.Comparer.Compare, opts.Comparer.FormatKey); err != nil {
     168           0 :                 return nil, err
     169           0 :         }
     170           1 :         return meta, nil
     171             : }
     172             : 
     173             : // ingestLoad1External loads the fileMetadata for one external sstable.
     174             : // Sequence number and target level calculation happens during prepare/apply.
     175             : func ingestLoad1External(
     176             :         opts *Options, e ExternalFile, fileNum base.FileNum,
     177           1 : ) (*fileMetadata, error) {
     178           1 :         if e.Size == 0 {
     179           0 :                 return nil, errors.New("pebble: cannot ingest external file with size 0")
     180           0 :         }
     181           1 :         if !e.HasRangeKey && !e.HasPointKey {
     182           0 :                 return nil, errors.New("pebble: cannot ingest external file with no point or range keys")
     183           0 :         }
     184             : 
     185           1 :         if opts.Comparer.Compare(e.StartKey, e.EndKey) > 0 {
     186           1 :                 return nil, errors.Newf("pebble: external file bounds [%q, %q) are invalid", e.StartKey, e.EndKey)
     187           1 :         }
     188           1 :         if opts.Comparer.Compare(e.StartKey, e.EndKey) == 0 && !e.EndKeyIsInclusive {
     189           0 :                 return nil, errors.Newf("pebble: external file bounds [%q, %q) are invalid", e.StartKey, e.EndKey)
     190           0 :         }
     191           1 :         if n := opts.Comparer.Split(e.StartKey); n != len(e.StartKey) {
     192           1 :                 return nil, errors.Newf("pebble: external file bounds start key %q has suffix", e.StartKey)
     193           1 :         }
     194           1 :         if n := opts.Comparer.Split(e.EndKey); n != len(e.EndKey) {
     195           1 :                 return nil, errors.Newf("pebble: external file bounds end key %q has suffix", e.EndKey)
     196           1 :         }
     197             : 
     198             :         // Don't load table stats. Doing a round trip to shared storage, one SST
     199             :         // at a time is not worth it as it slows down ingestion.
     200           1 :         meta := &fileMetadata{
     201           1 :                 FileNum:      fileNum,
     202           1 :                 CreationTime: time.Now().Unix(),
     203           1 :                 Virtual:      true,
     204           1 :                 Size:         e.Size,
     205           1 :         }
     206           1 : 
     207           1 :         // In the name of keeping this ingestion as fast as possible, we avoid
     208           1 :         // *all* existence checks and synthesize a file metadata with smallest/largest
     209           1 :         // keys that overlap whatever the passed-in span was.
     210           1 :         smallestCopy := slices.Clone(e.StartKey)
     211           1 :         largestCopy := slices.Clone(e.EndKey)
     212           1 :         if e.HasPointKey {
     213           1 :                 // Sequence numbers are updated later by
     214           1 :                 // ingestUpdateSeqNum, applying a squence number that
     215           1 :                 // is applied to all keys in the sstable.
     216           1 :                 if e.EndKeyIsInclusive {
     217           1 :                         meta.ExtendPointKeyBounds(
     218           1 :                                 opts.Comparer.Compare,
     219           1 :                                 base.MakeInternalKey(smallestCopy, 0, InternalKeyKindMax),
     220           1 :                                 base.MakeInternalKey(largestCopy, 0, 0))
     221           1 :                 } else {
     222           1 :                         meta.ExtendPointKeyBounds(
     223           1 :                                 opts.Comparer.Compare,
     224           1 :                                 base.MakeInternalKey(smallestCopy, 0, InternalKeyKindMax),
     225           1 :                                 base.MakeRangeDeleteSentinelKey(largestCopy))
     226           1 :                 }
     227             :         }
     228           1 :         if e.HasRangeKey {
     229           1 :                 meta.ExtendRangeKeyBounds(
     230           1 :                         opts.Comparer.Compare,
     231           1 :                         base.MakeInternalKey(smallestCopy, 0, InternalKeyKindRangeKeyMax),
     232           1 :                         base.MakeExclusiveSentinelKey(InternalKeyKindRangeKeyMin, largestCopy),
     233           1 :                 )
     234           1 :         }
     235             : 
     236           1 :         meta.SyntheticPrefix = e.SyntheticPrefix
     237           1 :         meta.SyntheticSuffix = e.SyntheticSuffix
     238           1 : 
     239           1 :         return meta, nil
     240             : }
     241             : 
     242             : // ingestLoad1 creates the FileMetadata for one file. This file will be owned
     243             : // by this store.
     244             : func ingestLoad1(
     245             :         ctx context.Context,
     246             :         opts *Options,
     247             :         fmv FormatMajorVersion,
     248             :         readable objstorage.Readable,
     249             :         cacheID uint64,
     250             :         fileNum base.FileNum,
     251           1 : ) (*fileMetadata, error) {
     252           1 :         o := opts.MakeReaderOptions()
     253           1 :         o.SetInternalCacheOpts(sstableinternal.CacheOptions{
     254           1 :                 Cache:   opts.Cache,
     255           1 :                 CacheID: cacheID,
     256           1 :                 FileNum: base.PhysicalTableDiskFileNum(fileNum),
     257           1 :         })
     258           1 :         r, err := sstable.NewReader(ctx, readable, o)
     259           1 :         if err != nil {
     260           1 :                 return nil, err
     261           1 :         }
     262           1 :         defer r.Close()
     263           1 : 
     264           1 :         // Avoid ingesting tables with format versions this DB doesn't support.
     265           1 :         tf, err := r.TableFormat()
     266           1 :         if err != nil {
     267           0 :                 return nil, err
     268           0 :         }
     269           1 :         if tf < fmv.MinTableFormat() || tf > fmv.MaxTableFormat() {
     270           1 :                 return nil, errors.Newf(
     271           1 :                         "pebble: table format %s is not within range supported at DB format major version %d, (%s,%s)",
     272           1 :                         tf, fmv, fmv.MinTableFormat(), fmv.MaxTableFormat(),
     273           1 :                 )
     274           1 :         }
     275             : 
     276           1 :         meta := &fileMetadata{}
     277           1 :         meta.FileNum = fileNum
     278           1 :         meta.Size = uint64(readable.Size())
     279           1 :         meta.CreationTime = time.Now().Unix()
     280           1 :         meta.InitPhysicalBacking()
     281           1 : 
     282           1 :         // Avoid loading into the table cache for collecting stats if we
     283           1 :         // don't need to. If there are no range deletions, we have all the
     284           1 :         // information to compute the stats here.
     285           1 :         //
     286           1 :         // This is helpful in tests for avoiding awkwardness around deletion of
     287           1 :         // ingested files from MemFS. MemFS implements the Windows semantics of
     288           1 :         // disallowing removal of an open file. Under MemFS, if we don't populate
     289           1 :         // meta.Stats here, the file will be loaded into the table cache for
     290           1 :         // calculating stats before we can remove the original link.
     291           1 :         maybeSetStatsFromProperties(meta.PhysicalMeta(), &r.Properties)
     292           1 : 
     293           1 :         {
     294           1 :                 iter, err := r.NewIter(sstable.NoTransforms, nil /* lower */, nil /* upper */)
     295           1 :                 if err != nil {
     296           1 :                         return nil, err
     297           1 :                 }
     298           1 :                 defer iter.Close()
     299           1 :                 var smallest InternalKey
     300           1 :                 if kv := iter.First(); kv != nil {
     301           1 :                         if err := ingestValidateKey(opts, &kv.K); err != nil {
     302           1 :                                 return nil, err
     303           1 :                         }
     304           1 :                         smallest = kv.K.Clone()
     305             :                 }
     306           1 :                 if err := iter.Error(); err != nil {
     307           1 :                         return nil, err
     308           1 :                 }
     309           1 :                 if kv := iter.Last(); kv != nil {
     310           1 :                         if err := ingestValidateKey(opts, &kv.K); err != nil {
     311           0 :                                 return nil, err
     312           0 :                         }
     313           1 :                         meta.ExtendPointKeyBounds(opts.Comparer.Compare, smallest, kv.K.Clone())
     314             :                 }
     315           1 :                 if err := iter.Error(); err != nil {
     316           1 :                         return nil, err
     317           1 :                 }
     318             :         }
     319             : 
     320           1 :         iter, err := r.NewRawRangeDelIter(ctx, sstable.NoFragmentTransforms)
     321           1 :         if err != nil {
     322           0 :                 return nil, err
     323           0 :         }
     324           1 :         if iter != nil {
     325           1 :                 defer iter.Close()
     326           1 :                 var smallest InternalKey
     327           1 :                 if s, err := iter.First(); err != nil {
     328           0 :                         return nil, err
     329           1 :                 } else if s != nil {
     330           1 :                         key := s.SmallestKey()
     331           1 :                         if err := ingestValidateKey(opts, &key); err != nil {
     332           0 :                                 return nil, err
     333           0 :                         }
     334           1 :                         smallest = key.Clone()
     335             :                 }
     336           1 :                 if s, err := iter.Last(); err != nil {
     337           0 :                         return nil, err
     338           1 :                 } else if s != nil {
     339           1 :                         k := s.SmallestKey()
     340           1 :                         if err := ingestValidateKey(opts, &k); err != nil {
     341           0 :                                 return nil, err
     342           0 :                         }
     343           1 :                         largest := s.LargestKey().Clone()
     344           1 :                         meta.ExtendPointKeyBounds(opts.Comparer.Compare, smallest, largest)
     345             :                 }
     346             :         }
     347             : 
     348             :         // Update the range-key bounds for the table.
     349           1 :         {
     350           1 :                 iter, err := r.NewRawRangeKeyIter(ctx, sstable.NoFragmentTransforms)
     351           1 :                 if err != nil {
     352           0 :                         return nil, err
     353           0 :                 }
     354           1 :                 if iter != nil {
     355           1 :                         defer iter.Close()
     356           1 :                         var smallest InternalKey
     357           1 :                         if s, err := iter.First(); err != nil {
     358           0 :                                 return nil, err
     359           1 :                         } else if s != nil {
     360           1 :                                 key := s.SmallestKey()
     361           1 :                                 if err := ingestValidateKey(opts, &key); err != nil {
     362           0 :                                         return nil, err
     363           0 :                                 }
     364           1 :                                 smallest = key.Clone()
     365             :                         }
     366           1 :                         if s, err := iter.Last(); err != nil {
     367           0 :                                 return nil, err
     368           1 :                         } else if s != nil {
     369           1 :                                 k := s.SmallestKey()
     370           1 :                                 if err := ingestValidateKey(opts, &k); err != nil {
     371           0 :                                         return nil, err
     372           0 :                                 }
     373             :                                 // As range keys are fragmented, the end key of the last range key in
     374             :                                 // the table provides the upper bound for the table.
     375           1 :                                 largest := s.LargestKey().Clone()
     376           1 :                                 meta.ExtendRangeKeyBounds(opts.Comparer.Compare, smallest, largest)
     377             :                         }
     378             :                 }
     379             :         }
     380             : 
     381           1 :         if !meta.HasPointKeys && !meta.HasRangeKeys {
     382           1 :                 return nil, nil
     383           1 :         }
     384             : 
     385             :         // Sanity check that the various bounds on the file were set consistently.
     386           1 :         if err := meta.Validate(opts.Comparer.Compare, opts.Comparer.FormatKey); err != nil {
     387           0 :                 return nil, err
     388           0 :         }
     389             : 
     390           1 :         return meta, nil
     391             : }
     392             : 
     393             : type ingestLoadResult struct {
     394             :         local    []ingestLocalMeta
     395             :         shared   []ingestSharedMeta
     396             :         external []ingestExternalMeta
     397             : 
     398             :         externalFilesHaveLevel bool
     399             : }
     400             : 
     401             : type ingestLocalMeta struct {
     402             :         *fileMetadata
     403             :         path string
     404             : }
     405             : 
     406             : type ingestSharedMeta struct {
     407             :         *fileMetadata
     408             :         shared SharedSSTMeta
     409             : }
     410             : 
     411             : type ingestExternalMeta struct {
     412             :         *fileMetadata
     413             :         external ExternalFile
     414             :         // usedExistingBacking is true if the external file is reusing a backing
     415             :         // that existed before this ingestion. In this case, we called
     416             :         // VirtualBackings.Protect() on that backing; we will need to call
     417             :         // Unprotect() after the ingestion.
     418             :         usedExistingBacking bool
     419             : }
     420             : 
     421           1 : func (r *ingestLoadResult) fileCount() int {
     422           1 :         return len(r.local) + len(r.shared) + len(r.external)
     423           1 : }
     424             : 
     425             : func ingestLoad(
     426             :         opts *Options,
     427             :         fmv FormatMajorVersion,
     428             :         paths []string,
     429             :         shared []SharedSSTMeta,
     430             :         external []ExternalFile,
     431             :         cacheID uint64,
     432             :         pending []base.FileNum,
     433           1 : ) (ingestLoadResult, error) {
     434           1 :         ctx := context.TODO()
     435           1 : 
     436           1 :         localFileNums := pending[:len(paths)]
     437           1 :         sharedFileNums := pending[len(paths) : len(paths)+len(shared)]
     438           1 :         externalFileNums := pending[len(paths)+len(shared) : len(paths)+len(shared)+len(external)]
     439           1 : 
     440           1 :         var result ingestLoadResult
     441           1 :         result.local = make([]ingestLocalMeta, 0, len(paths))
     442           1 :         for i := range paths {
     443           1 :                 f, err := opts.FS.Open(paths[i])
     444           1 :                 if err != nil {
     445           1 :                         return ingestLoadResult{}, err
     446           1 :                 }
     447             : 
     448           1 :                 readable, err := sstable.NewSimpleReadable(f)
     449           1 :                 if err != nil {
     450           1 :                         return ingestLoadResult{}, err
     451           1 :                 }
     452           1 :                 m, err := ingestLoad1(ctx, opts, fmv, readable, cacheID, localFileNums[i])
     453           1 :                 if err != nil {
     454           1 :                         return ingestLoadResult{}, err
     455           1 :                 }
     456           1 :                 if m != nil {
     457           1 :                         result.local = append(result.local, ingestLocalMeta{
     458           1 :                                 fileMetadata: m,
     459           1 :                                 path:         paths[i],
     460           1 :                         })
     461           1 :                 }
     462             :         }
     463             : 
     464             :         // Sort the shared files according to level.
     465           1 :         sort.Sort(sharedByLevel(shared))
     466           1 : 
     467           1 :         result.shared = make([]ingestSharedMeta, 0, len(shared))
     468           1 :         for i := range shared {
     469           1 :                 m, err := ingestSynthesizeShared(opts, shared[i], sharedFileNums[i])
     470           1 :                 if err != nil {
     471           0 :                         return ingestLoadResult{}, err
     472           0 :                 }
     473           1 :                 if shared[i].Level < sharedLevelsStart {
     474           0 :                         return ingestLoadResult{}, errors.New("cannot ingest shared file in level below sharedLevelsStart")
     475           0 :                 }
     476           1 :                 result.shared = append(result.shared, ingestSharedMeta{
     477           1 :                         fileMetadata: m,
     478           1 :                         shared:       shared[i],
     479           1 :                 })
     480             :         }
     481           1 :         result.external = make([]ingestExternalMeta, 0, len(external))
     482           1 :         for i := range external {
     483           1 :                 m, err := ingestLoad1External(opts, external[i], externalFileNums[i])
     484           1 :                 if err != nil {
     485           1 :                         return ingestLoadResult{}, err
     486           1 :                 }
     487           1 :                 result.external = append(result.external, ingestExternalMeta{
     488           1 :                         fileMetadata: m,
     489           1 :                         external:     external[i],
     490           1 :                 })
     491           1 :                 if external[i].Level > 0 {
     492           1 :                         if i != 0 && !result.externalFilesHaveLevel {
     493           0 :                                 return ingestLoadResult{}, base.AssertionFailedf("pebble: external sstables must all have level set or unset")
     494           0 :                         }
     495           1 :                         result.externalFilesHaveLevel = true
     496           1 :                 } else if result.externalFilesHaveLevel {
     497           0 :                         return ingestLoadResult{}, base.AssertionFailedf("pebble: external sstables must all have level set or unset")
     498           0 :                 }
     499             :         }
     500           1 :         return result, nil
     501             : }
     502             : 
     503           1 : func ingestSortAndVerify(cmp Compare, lr ingestLoadResult, exciseSpan KeyRange) error {
     504           1 :         // Verify that all the shared files (i.e. files in sharedMeta)
     505           1 :         // fit within the exciseSpan.
     506           1 :         for _, f := range lr.shared {
     507           1 :                 if !exciseSpan.Contains(cmp, f.Smallest) || !exciseSpan.Contains(cmp, f.Largest) {
     508           0 :                         return errors.Newf("pebble: shared file outside of excise span, span [%s-%s), file = %s", exciseSpan.Start, exciseSpan.End, f.String())
     509           0 :                 }
     510             :         }
     511             : 
     512           1 :         if lr.externalFilesHaveLevel {
     513           1 :                 for _, f := range lr.external {
     514           1 :                         if !exciseSpan.Contains(cmp, f.Smallest) || !exciseSpan.Contains(cmp, f.Largest) {
     515           0 :                                 return base.AssertionFailedf("pebble: external file outside of excise span, span [%s-%s), file = %s", exciseSpan.Start, exciseSpan.End, f.String())
     516           0 :                         }
     517             :                 }
     518             :         }
     519             : 
     520           1 :         if len(lr.external) > 0 {
     521           1 :                 if len(lr.shared) > 0 {
     522           0 :                         // If external files are present alongside shared files,
     523           0 :                         // return an error.
     524           0 :                         return base.AssertionFailedf("pebble: external files cannot be ingested atomically alongside shared files")
     525           0 :                 }
     526             : 
     527             :                 // Sort according to the smallest key.
     528           1 :                 slices.SortFunc(lr.external, func(a, b ingestExternalMeta) int {
     529           1 :                         return cmp(a.Smallest.UserKey, b.Smallest.UserKey)
     530           1 :                 })
     531           1 :                 for i := 1; i < len(lr.external); i++ {
     532           1 :                         if sstableKeyCompare(cmp, lr.external[i-1].Largest, lr.external[i].Smallest) >= 0 {
     533           1 :                                 return errors.Newf("pebble: external sstables have overlapping ranges")
     534           1 :                         }
     535             :                 }
     536           1 :                 return nil
     537             :         }
     538           1 :         if len(lr.local) <= 1 {
     539           1 :                 return nil
     540           1 :         }
     541             : 
     542             :         // Sort according to the smallest key.
     543           1 :         slices.SortFunc(lr.local, func(a, b ingestLocalMeta) int {
     544           1 :                 return cmp(a.Smallest.UserKey, b.Smallest.UserKey)
     545           1 :         })
     546             : 
     547           1 :         for i := 1; i < len(lr.local); i++ {
     548           1 :                 if sstableKeyCompare(cmp, lr.local[i-1].Largest, lr.local[i].Smallest) >= 0 {
     549           1 :                         return errors.Newf("pebble: local ingestion sstables have overlapping ranges")
     550           1 :                 }
     551             :         }
     552           1 :         if len(lr.shared) == 0 {
     553           1 :                 return nil
     554           1 :         }
     555           0 :         filesInLevel := make([]*fileMetadata, 0, len(lr.shared))
     556           0 :         for l := sharedLevelsStart; l < numLevels; l++ {
     557           0 :                 filesInLevel = filesInLevel[:0]
     558           0 :                 for i := range lr.shared {
     559           0 :                         if lr.shared[i].shared.Level == uint8(l) {
     560           0 :                                 filesInLevel = append(filesInLevel, lr.shared[i].fileMetadata)
     561           0 :                         }
     562             :                 }
     563           0 :                 for i := range lr.external {
     564           0 :                         if lr.external[i].external.Level == uint8(l) {
     565           0 :                                 filesInLevel = append(filesInLevel, lr.external[i].fileMetadata)
     566           0 :                         }
     567             :                 }
     568           0 :                 slices.SortFunc(filesInLevel, func(a, b *fileMetadata) int {
     569           0 :                         return cmp(a.Smallest.UserKey, b.Smallest.UserKey)
     570           0 :                 })
     571           0 :                 for i := 1; i < len(filesInLevel); i++ {
     572           0 :                         if sstableKeyCompare(cmp, filesInLevel[i-1].Largest, filesInLevel[i].Smallest) >= 0 {
     573           0 :                                 return base.AssertionFailedf("pebble: external shared sstables have overlapping ranges")
     574           0 :                         }
     575             :                 }
     576             :         }
     577           0 :         return nil
     578             : }
     579             : 
     580           1 : func ingestCleanup(objProvider objstorage.Provider, meta []ingestLocalMeta) error {
     581           1 :         var firstErr error
     582           1 :         for i := range meta {
     583           1 :                 if err := objProvider.Remove(fileTypeTable, meta[i].FileBacking.DiskFileNum); err != nil {
     584           1 :                         firstErr = firstError(firstErr, err)
     585           1 :                 }
     586             :         }
     587           1 :         return firstErr
     588             : }
     589             : 
     590             : // ingestLinkLocal creates new objects which are backed by either hardlinks to or
     591             : // copies of the ingested files.
     592             : func ingestLinkLocal(
     593             :         jobID JobID, opts *Options, objProvider objstorage.Provider, localMetas []ingestLocalMeta,
     594           1 : ) error {
     595           1 :         for i := range localMetas {
     596           1 :                 objMeta, err := objProvider.LinkOrCopyFromLocal(
     597           1 :                         context.TODO(), opts.FS, localMetas[i].path, fileTypeTable, localMetas[i].FileBacking.DiskFileNum,
     598           1 :                         objstorage.CreateOptions{PreferSharedStorage: true},
     599           1 :                 )
     600           1 :                 if err != nil {
     601           1 :                         if err2 := ingestCleanup(objProvider, localMetas[:i]); err2 != nil {
     602           0 :                                 opts.Logger.Errorf("ingest cleanup failed: %v", err2)
     603           0 :                         }
     604           1 :                         return err
     605             :                 }
     606           1 :                 if opts.EventListener.TableCreated != nil {
     607           1 :                         opts.EventListener.TableCreated(TableCreateInfo{
     608           1 :                                 JobID:   int(jobID),
     609           1 :                                 Reason:  "ingesting",
     610           1 :                                 Path:    objProvider.Path(objMeta),
     611           1 :                                 FileNum: base.PhysicalTableDiskFileNum(localMetas[i].FileNum),
     612           1 :                         })
     613           1 :                 }
     614             :         }
     615           1 :         return nil
     616             : }
     617             : 
     618             : // ingestAttachRemote attaches remote objects to the storage provider.
     619             : //
     620             : // For external objects, we reuse existing FileBackings from the current version
     621             : // when possible.
     622             : //
     623             : // ingestUnprotectExternalBackings() must be called after this function (even in
     624             : // error cases).
     625           1 : func (d *DB) ingestAttachRemote(jobID JobID, lr ingestLoadResult) error {
     626           1 :         remoteObjs := make([]objstorage.RemoteObjectToAttach, 0, len(lr.shared)+len(lr.external))
     627           1 :         for i := range lr.shared {
     628           1 :                 backing, err := lr.shared[i].shared.Backing.Get()
     629           1 :                 if err != nil {
     630           0 :                         return err
     631           0 :                 }
     632           1 :                 remoteObjs = append(remoteObjs, objstorage.RemoteObjectToAttach{
     633           1 :                         FileNum:  lr.shared[i].FileBacking.DiskFileNum,
     634           1 :                         FileType: fileTypeTable,
     635           1 :                         Backing:  backing,
     636           1 :                 })
     637             :         }
     638             : 
     639           1 :         d.findExistingBackingsForExternalObjects(lr.external)
     640           1 : 
     641           1 :         newFileBackings := make(map[remote.ObjectKey]*fileBacking, len(lr.external))
     642           1 :         for i := range lr.external {
     643           1 :                 meta := lr.external[i].fileMetadata
     644           1 :                 if meta.FileBacking != nil {
     645           1 :                         // The backing was filled in by findExistingBackingsForExternalObjects().
     646           1 :                         continue
     647             :                 }
     648           1 :                 key := remote.MakeObjectKey(lr.external[i].external.Locator, lr.external[i].external.ObjName)
     649           1 :                 if backing, ok := newFileBackings[key]; ok {
     650           1 :                         // We already created the same backing in this loop.
     651           1 :                         meta.FileBacking = backing
     652           1 :                         continue
     653             :                 }
     654           1 :                 providerBacking, err := d.objProvider.CreateExternalObjectBacking(key.Locator, key.ObjectName)
     655           1 :                 if err != nil {
     656           0 :                         return err
     657           0 :                 }
     658             :                 // We have to attach the remote object (and assign it a DiskFileNum). For
     659             :                 // simplicity, we use the same number for both the FileNum and the
     660             :                 // DiskFileNum (even though this is a virtual sstable).
     661           1 :                 meta.InitProviderBacking(base.DiskFileNum(meta.FileNum), lr.external[i].external.Size)
     662           1 : 
     663           1 :                 // Set the underlying FileBacking's size to the same size as the virtualized
     664           1 :                 // view of the sstable. This ensures that we don't over-prioritize this
     665           1 :                 // sstable for compaction just yet, as we do not have a clear sense of
     666           1 :                 // what parts of this sstable are referenced by other nodes.
     667           1 :                 meta.FileBacking.Size = lr.external[i].external.Size
     668           1 :                 newFileBackings[key] = meta.FileBacking
     669           1 : 
     670           1 :                 remoteObjs = append(remoteObjs, objstorage.RemoteObjectToAttach{
     671           1 :                         FileNum:  meta.FileBacking.DiskFileNum,
     672           1 :                         FileType: fileTypeTable,
     673           1 :                         Backing:  providerBacking,
     674           1 :                 })
     675             :         }
     676             : 
     677           1 :         for i := range lr.external {
     678           1 :                 if err := lr.external[i].Validate(d.opts.Comparer.Compare, d.opts.Comparer.FormatKey); err != nil {
     679           0 :                         return err
     680           0 :                 }
     681             :         }
     682             : 
     683           1 :         remoteObjMetas, err := d.objProvider.AttachRemoteObjects(remoteObjs)
     684           1 :         if err != nil {
     685           0 :                 return err
     686           0 :         }
     687             : 
     688           1 :         for i := range lr.shared {
     689           1 :                 // One corner case around file sizes we need to be mindful of, is that
     690           1 :                 // if one of the shareObjs was initially created by us (and has boomeranged
     691           1 :                 // back from another node), we'll need to update the FileBacking's size
     692           1 :                 // to be the true underlying size. Otherwise, we could hit errors when we
     693           1 :                 // open the db again after a crash/restart (see checkConsistency in open.go),
     694           1 :                 // plus it more accurately allows us to prioritize compactions of files
     695           1 :                 // that were originally created by us.
     696           1 :                 if remoteObjMetas[i].IsShared() && !d.objProvider.IsSharedForeign(remoteObjMetas[i]) {
     697           1 :                         size, err := d.objProvider.Size(remoteObjMetas[i])
     698           1 :                         if err != nil {
     699           0 :                                 return err
     700           0 :                         }
     701           1 :                         lr.shared[i].FileBacking.Size = uint64(size)
     702             :                 }
     703             :         }
     704             : 
     705           1 :         if d.opts.EventListener.TableCreated != nil {
     706           1 :                 for i := range remoteObjMetas {
     707           1 :                         d.opts.EventListener.TableCreated(TableCreateInfo{
     708           1 :                                 JobID:   int(jobID),
     709           1 :                                 Reason:  "ingesting",
     710           1 :                                 Path:    d.objProvider.Path(remoteObjMetas[i]),
     711           1 :                                 FileNum: remoteObjMetas[i].DiskFileNum,
     712           1 :                         })
     713           1 :                 }
     714             :         }
     715             : 
     716           1 :         return nil
     717             : }
     718             : 
     719             : // findExistingBackingsForExternalObjects populates the FileBacking for external
     720             : // files which are already in use by the current version.
     721             : //
     722             : // We take a Ref and LatestRef on populated backings.
     723           1 : func (d *DB) findExistingBackingsForExternalObjects(metas []ingestExternalMeta) {
     724           1 :         d.mu.Lock()
     725           1 :         defer d.mu.Unlock()
     726           1 : 
     727           1 :         for i := range metas {
     728           1 :                 diskFileNums := d.objProvider.GetExternalObjects(metas[i].external.Locator, metas[i].external.ObjName)
     729           1 :                 // We cross-check against fileBackings in the current version because it is
     730           1 :                 // possible that the external object is referenced by an sstable which only
     731           1 :                 // exists in a previous version. In that case, that object could be removed
     732           1 :                 // at any time so we cannot reuse it.
     733           1 :                 for _, n := range diskFileNums {
     734           1 :                         if backing, ok := d.mu.versions.virtualBackings.Get(n); ok {
     735           1 :                                 // Protect this backing from being removed from the latest version. We
     736           1 :                                 // will unprotect in ingestUnprotectExternalBackings.
     737           1 :                                 d.mu.versions.virtualBackings.Protect(n)
     738           1 :                                 metas[i].usedExistingBacking = true
     739           1 :                                 metas[i].FileBacking = backing
     740           1 :                                 break
     741             :                         }
     742             :                 }
     743             :         }
     744             : }
     745             : 
     746             : // ingestUnprotectExternalBackings unprotects the file backings that were reused
     747             : // for external objects when the ingestion fails.
     748           1 : func (d *DB) ingestUnprotectExternalBackings(lr ingestLoadResult) {
     749           1 :         d.mu.Lock()
     750           1 :         defer d.mu.Unlock()
     751           1 : 
     752           1 :         for _, meta := range lr.external {
     753           1 :                 if meta.usedExistingBacking {
     754           1 :                         // If the backing is not use anywhere else and the ingest failed (or the
     755           1 :                         // ingested tables were already compacted away), this call will cause in
     756           1 :                         // the next version update to remove the backing.
     757           1 :                         d.mu.versions.virtualBackings.Unprotect(meta.FileBacking.DiskFileNum)
     758           1 :                 }
     759             :         }
     760             : }
     761             : 
     762             : func setSeqNumInMetadata(
     763             :         m *fileMetadata, seqNum base.SeqNum, cmp Compare, format base.FormatKey,
     764           1 : ) error {
     765           1 :         setSeqFn := func(k base.InternalKey) base.InternalKey {
     766           1 :                 return base.MakeInternalKey(k.UserKey, seqNum, k.Kind())
     767           1 :         }
     768             :         // NB: we set the fields directly here, rather than via their Extend*
     769             :         // methods, as we are updating sequence numbers.
     770           1 :         if m.HasPointKeys {
     771           1 :                 m.SmallestPointKey = setSeqFn(m.SmallestPointKey)
     772           1 :         }
     773           1 :         if m.HasRangeKeys {
     774           1 :                 m.SmallestRangeKey = setSeqFn(m.SmallestRangeKey)
     775           1 :         }
     776           1 :         m.Smallest = setSeqFn(m.Smallest)
     777           1 :         // Only update the seqnum for the largest key if that key is not an
     778           1 :         // "exclusive sentinel" (i.e. a range deletion sentinel or a range key
     779           1 :         // boundary), as doing so effectively drops the exclusive sentinel (by
     780           1 :         // lowering the seqnum from the max value), and extends the bounds of the
     781           1 :         // table.
     782           1 :         // NB: as the largest range key is always an exclusive sentinel, it is never
     783           1 :         // updated.
     784           1 :         if m.HasPointKeys && !m.LargestPointKey.IsExclusiveSentinel() {
     785           1 :                 m.LargestPointKey = setSeqFn(m.LargestPointKey)
     786           1 :         }
     787           1 :         if !m.Largest.IsExclusiveSentinel() {
     788           1 :                 m.Largest = setSeqFn(m.Largest)
     789           1 :         }
     790             :         // Setting smallestSeqNum == largestSeqNum triggers the setting of
     791             :         // Properties.GlobalSeqNum when an sstable is loaded.
     792           1 :         m.SmallestSeqNum = seqNum
     793           1 :         m.LargestSeqNum = seqNum
     794           1 :         m.LargestSeqNumAbsolute = seqNum
     795           1 :         // Ensure the new bounds are consistent.
     796           1 :         if err := m.Validate(cmp, format); err != nil {
     797           0 :                 return err
     798           0 :         }
     799           1 :         return nil
     800             : }
     801             : 
     802             : func ingestUpdateSeqNum(
     803             :         cmp Compare, format base.FormatKey, seqNum base.SeqNum, loadResult ingestLoadResult,
     804           1 : ) error {
     805           1 :         // Shared sstables are required to be sorted by level ascending. We then
     806           1 :         // iterate the shared sstables in reverse, assigning the lower sequence
     807           1 :         // numbers to the shared sstables that will be ingested into the lower
     808           1 :         // (larger numbered) levels first. This ensures sequence number shadowing is
     809           1 :         // correct.
     810           1 :         for i := len(loadResult.shared) - 1; i >= 0; i-- {
     811           1 :                 if i-1 >= 0 && loadResult.shared[i-1].shared.Level > loadResult.shared[i].shared.Level {
     812           0 :                         panic(errors.AssertionFailedf("shared files %s, %s out of order", loadResult.shared[i-1], loadResult.shared[i]))
     813             :                 }
     814           1 :                 if err := setSeqNumInMetadata(loadResult.shared[i].fileMetadata, seqNum, cmp, format); err != nil {
     815           0 :                         return err
     816           0 :                 }
     817           1 :                 seqNum++
     818             :         }
     819           1 :         for i := range loadResult.external {
     820           1 :                 if err := setSeqNumInMetadata(loadResult.external[i].fileMetadata, seqNum, cmp, format); err != nil {
     821           0 :                         return err
     822           0 :                 }
     823           1 :                 seqNum++
     824             :         }
     825           1 :         for i := range loadResult.local {
     826           1 :                 if err := setSeqNumInMetadata(loadResult.local[i].fileMetadata, seqNum, cmp, format); err != nil {
     827           0 :                         return err
     828           0 :                 }
     829           1 :                 seqNum++
     830             :         }
     831           1 :         return nil
     832             : }
     833             : 
     834             : // ingestTargetLevel returns the target level for a file being ingested.
     835             : // If suggestSplit is true, it accounts for ingest-time splitting as part of
     836             : // its target level calculation, and if a split candidate is found, that file
     837             : // is returned as the splitFile.
     838             : func ingestTargetLevel(
     839             :         ctx context.Context,
     840             :         cmp base.Compare,
     841             :         lsmOverlap overlap.WithLSM,
     842             :         baseLevel int,
     843             :         compactions map[*compaction]struct{},
     844             :         meta *fileMetadata,
     845             :         suggestSplit bool,
     846           1 : ) (targetLevel int, splitFile *fileMetadata, err error) {
     847           1 :         // Find the lowest level which does not have any files which overlap meta. We
     848           1 :         // search from L0 to L6 looking for whether there are any files in the level
     849           1 :         // which overlap meta. We want the "lowest" level (where lower means
     850           1 :         // increasing level number) in order to reduce write amplification.
     851           1 :         //
     852           1 :         // There are 2 kinds of overlap we need to check for: file boundary overlap
     853           1 :         // and data overlap. Data overlap implies file boundary overlap. Note that it
     854           1 :         // is always possible to ingest into L0.
     855           1 :         //
     856           1 :         // To place meta at level i where i > 0:
     857           1 :         // - there must not be any data overlap with levels <= i, since that will
     858           1 :         //   violate the sequence number invariant.
     859           1 :         // - no file boundary overlap with level i, since that will violate the
     860           1 :         //   invariant that files do not overlap in levels i > 0.
     861           1 :         //   - if there is only a file overlap at a given level, and no data overlap,
     862           1 :         //     we can still slot a file at that level. We return the fileMetadata with
     863           1 :         //     which we have file boundary overlap (must be only one file, as sstable
     864           1 :         //     bounds are usually tight on user keys) and the caller is expected to split
     865           1 :         //     that sstable into two virtual sstables, allowing this file to go into that
     866           1 :         //     level. Note that if we have file boundary overlap with two files, which
     867           1 :         //     should only happen on rare occasions, we treat it as data overlap and
     868           1 :         //     don't use this optimization.
     869           1 :         //
     870           1 :         // The file boundary overlap check is simpler to conceptualize. Consider the
     871           1 :         // following example, in which the ingested file lies completely before or
     872           1 :         // after the file being considered.
     873           1 :         //
     874           1 :         //   |--|           |--|  ingested file: [a,b] or [f,g]
     875           1 :         //         |-----|        existing file: [c,e]
     876           1 :         //  _____________________
     877           1 :         //   a  b  c  d  e  f  g
     878           1 :         //
     879           1 :         // In both cases the ingested file can move to considering the next level.
     880           1 :         //
     881           1 :         // File boundary overlap does not necessarily imply data overlap. The check
     882           1 :         // for data overlap is a little more nuanced. Consider the following examples:
     883           1 :         //
     884           1 :         //  1. No data overlap:
     885           1 :         //
     886           1 :         //          |-|   |--|    ingested file: [cc-d] or [ee-ff]
     887           1 :         //  |*--*--*----*------*| existing file: [a-g], points: [a, b, c, dd, g]
     888           1 :         //  _____________________
     889           1 :         //   a  b  c  d  e  f  g
     890           1 :         //
     891           1 :         // In this case the ingested files can "fall through" this level. The checks
     892           1 :         // continue at the next level.
     893           1 :         //
     894           1 :         //  2. Data overlap:
     895           1 :         //
     896           1 :         //            |--|        ingested file: [d-e]
     897           1 :         //  |*--*--*----*------*| existing file: [a-g], points: [a, b, c, dd, g]
     898           1 :         //  _____________________
     899           1 :         //   a  b  c  d  e  f  g
     900           1 :         //
     901           1 :         // In this case the file cannot be ingested into this level as the point 'dd'
     902           1 :         // is in the way.
     903           1 :         //
     904           1 :         // It is worth noting that the check for data overlap is only approximate. In
     905           1 :         // the previous example, the ingested table [d-e] could contain only the
     906           1 :         // points 'd' and 'e', in which case the table would be eligible for
     907           1 :         // considering lower levels. However, such a fine-grained check would need to
     908           1 :         // be exhaustive (comparing points and ranges in both the ingested existing
     909           1 :         // tables) and such a check is prohibitively expensive. Thus Pebble treats any
     910           1 :         // existing point that falls within the ingested table bounds as being "data
     911           1 :         // overlap".
     912           1 : 
     913           1 :         if lsmOverlap[0].Result == overlap.Data {
     914           1 :                 return 0, nil, nil
     915           1 :         }
     916           1 :         targetLevel = 0
     917           1 :         splitFile = nil
     918           1 :         for level := baseLevel; level < numLevels; level++ {
     919           1 :                 var candidateSplitFile *fileMetadata
     920           1 :                 switch lsmOverlap[level].Result {
     921           1 :                 case overlap.Data:
     922           1 :                         // We cannot ingest into or under this level; return the best target level
     923           1 :                         // so far.
     924           1 :                         return targetLevel, splitFile, nil
     925             : 
     926           1 :                 case overlap.OnlyBoundary:
     927           1 :                         if !suggestSplit || lsmOverlap[level].SplitFile == nil {
     928           1 :                                 // We can ingest under this level, but not into this level.
     929           1 :                                 continue
     930             :                         }
     931             :                         // We can ingest into this level if we split this file.
     932           1 :                         candidateSplitFile = lsmOverlap[level].SplitFile
     933             : 
     934           1 :                 case overlap.None:
     935             :                 // We can ingest into this level.
     936             : 
     937           0 :                 default:
     938           0 :                         return 0, nil, base.AssertionFailedf("unexpected WithLevel.Result: %v", lsmOverlap[level].Result)
     939             :                 }
     940             : 
     941             :                 // Check boundary overlap with any ongoing compactions. We consider an
     942             :                 // overlapping compaction that's writing files to an output level as
     943             :                 // equivalent to boundary overlap with files in that output level.
     944             :                 //
     945             :                 // We cannot check for data overlap with the new SSTs compaction will produce
     946             :                 // since compaction hasn't been done yet. However, there's no need to check
     947             :                 // since all keys in them will be from levels in [c.startLevel,
     948             :                 // c.outputLevel], and all those levels have already had their data overlap
     949             :                 // tested negative (else we'd have returned earlier).
     950             :                 //
     951             :                 // An alternative approach would be to cancel these compactions and proceed
     952             :                 // with an ingest-time split on this level if necessary. However, compaction
     953             :                 // cancellation can result in significant wasted effort and is best avoided
     954             :                 // unless necessary.
     955           1 :                 overlaps := false
     956           1 :                 for c := range compactions {
     957           1 :                         if c.outputLevel == nil || level != c.outputLevel.level {
     958           1 :                                 continue
     959             :                         }
     960           1 :                         if cmp(meta.Smallest.UserKey, c.largest.UserKey) <= 0 &&
     961           1 :                                 cmp(meta.Largest.UserKey, c.smallest.UserKey) >= 0 {
     962           1 :                                 overlaps = true
     963           1 :                                 break
     964             :                         }
     965             :                 }
     966           1 :                 if !overlaps {
     967           1 :                         targetLevel = level
     968           1 :                         splitFile = candidateSplitFile
     969           1 :                 }
     970             :         }
     971           1 :         return targetLevel, splitFile, nil
     972             : }
     973             : 
     974             : // Ingest ingests a set of sstables into the DB. Ingestion of the files is
     975             : // atomic and semantically equivalent to creating a single batch containing all
     976             : // of the mutations in the sstables. Ingestion may require the memtable to be
     977             : // flushed. The ingested sstable files are moved into the DB and must reside on
     978             : // the same filesystem as the DB. Sstables can be created for ingestion using
     979             : // sstable.Writer. On success, Ingest removes the input paths.
     980             : //
     981             : // Two types of sstables are accepted for ingestion(s): one is sstables present
     982             : // in the instance's vfs.FS and can be referenced locally. The other is sstables
     983             : // present in remote.Storage, referred to as shared or foreign sstables. These
     984             : // shared sstables can be linked through objstorageprovider.Provider, and do not
     985             : // need to already be present on the local vfs.FS. Foreign sstables must all fit
     986             : // in an excise span, and are destined for a level specified in SharedSSTMeta.
     987             : //
     988             : // All sstables *must* be Sync()'d by the caller after all bytes are written
     989             : // and before its file handle is closed; failure to do so could violate
     990             : // durability or lead to corrupted on-disk state. This method cannot, in a
     991             : // platform-and-FS-agnostic way, ensure that all sstables in the input are
     992             : // properly synced to disk. Opening new file handles and Sync()-ing them
     993             : // does not always guarantee durability; see the discussion here on that:
     994             : // https://github.com/cockroachdb/pebble/pull/835#issuecomment-663075379
     995             : //
     996             : // Ingestion loads each sstable into the lowest level of the LSM which it
     997             : // doesn't overlap (see ingestTargetLevel). If an sstable overlaps a memtable,
     998             : // ingestion forces the memtable to flush, and then waits for the flush to
     999             : // occur. In some cases, such as with no foreign sstables and no excise span,
    1000             : // ingestion that gets blocked on a memtable can join the flushable queue and
    1001             : // finish even before the memtable has been flushed.
    1002             : //
    1003             : // The steps for ingestion are:
    1004             : //
    1005             : //  1. Allocate file numbers for every sstable being ingested.
    1006             : //  2. Load the metadata for all sstables being ingested.
    1007             : //  3. Sort the sstables by smallest key, verifying non overlap (for local
    1008             : //     sstables).
    1009             : //  4. Hard link (or copy) the local sstables into the DB directory.
    1010             : //  5. Allocate a sequence number to use for all of the entries in the
    1011             : //     local sstables. This is the step where overlap with memtables is
    1012             : //     determined. If there is overlap, we remember the most recent memtable
    1013             : //     that overlaps.
    1014             : //  6. Update the sequence number in the ingested local sstables. (Remote
    1015             : //     sstables get fixed sequence numbers that were determined at load time.)
    1016             : //  7. Wait for the most recent memtable that overlaps to flush (if any).
    1017             : //  8. Add the ingested sstables to the version (DB.ingestApply).
    1018             : //     8.1.  If an excise span was specified, figure out what sstables in the
    1019             : //     current version overlap with the excise span, and create new virtual
    1020             : //     sstables out of those sstables that exclude the excised span (DB.excise).
    1021             : //  9. Publish the ingestion sequence number.
    1022             : //
    1023             : // Note that if the mutable memtable overlaps with ingestion, a flush of the
    1024             : // memtable is forced equivalent to DB.Flush. Additionally, subsequent
    1025             : // mutations that get sequence numbers larger than the ingestion sequence
    1026             : // number get queued up behind the ingestion waiting for it to complete. This
    1027             : // can produce a noticeable hiccup in performance. See
    1028             : // https://github.com/cockroachdb/pebble/issues/25 for an idea for how to fix
    1029             : // this hiccup.
    1030           1 : func (d *DB) Ingest(paths []string) error {
    1031           1 :         if err := d.closed.Load(); err != nil {
    1032           1 :                 panic(err)
    1033             :         }
    1034           1 :         if d.opts.ReadOnly {
    1035           1 :                 return ErrReadOnly
    1036           1 :         }
    1037           1 :         _, err := d.ingest(paths, nil /* shared */, KeyRange{}, false, nil /* external */)
    1038           1 :         return err
    1039             : }
    1040             : 
    1041             : // IngestOperationStats provides some information about where in the LSM the
    1042             : // bytes were ingested.
    1043             : type IngestOperationStats struct {
    1044             :         // Bytes is the total bytes in the ingested sstables.
    1045             :         Bytes uint64
    1046             :         // ApproxIngestedIntoL0Bytes is the approximate number of bytes ingested
    1047             :         // into L0. This value is approximate when flushable ingests are active and
    1048             :         // an ingest overlaps an entry in the flushable queue. Currently, this
    1049             :         // approximation is very rough, only including tables that overlapped the
    1050             :         // memtable. This estimate may be improved with #2112.
    1051             :         ApproxIngestedIntoL0Bytes uint64
    1052             :         // MemtableOverlappingFiles is the count of ingested sstables
    1053             :         // that overlapped keys in the memtables.
    1054             :         MemtableOverlappingFiles int
    1055             : }
    1056             : 
    1057             : // ExternalFile are external sstables that can be referenced through
    1058             : // objprovider and ingested as remote files that will not be refcounted or
    1059             : // cleaned up. For use with online restore. Note that the underlying sstable
    1060             : // could contain keys outside the [Smallest,Largest) bounds; however Pebble
    1061             : // is expected to only read the keys within those bounds.
    1062             : type ExternalFile struct {
    1063             :         // Locator is the shared.Locator that can be used with objProvider to
    1064             :         // resolve a reference to this external sstable.
    1065             :         Locator remote.Locator
    1066             : 
    1067             :         // ObjName is the unique name of this sstable on Locator.
    1068             :         ObjName string
    1069             : 
    1070             :         // Size of the referenced proportion of the virtualized sstable. An estimate
    1071             :         // is acceptable in lieu of the backing file size.
    1072             :         Size uint64
    1073             : 
    1074             :         // StartKey and EndKey define the bounds of the sstable; the ingestion
    1075             :         // of this file will only result in keys within [StartKey, EndKey) if
    1076             :         // EndKeyIsInclusive is false or [StartKey, EndKey] if it is true.
    1077             :         // These bounds are loose i.e. it's possible for keys to not span the
    1078             :         // entirety of this range.
    1079             :         //
    1080             :         // StartKey and EndKey user keys must not have suffixes.
    1081             :         //
    1082             :         // Multiple ExternalFiles in one ingestion must all have non-overlapping
    1083             :         // bounds.
    1084             :         StartKey, EndKey []byte
    1085             : 
    1086             :         // EndKeyIsInclusive is true if EndKey should be treated as inclusive.
    1087             :         EndKeyIsInclusive bool
    1088             : 
    1089             :         // HasPointKey and HasRangeKey denote whether this file contains point keys
    1090             :         // or range keys. If both structs are false, an error is returned during
    1091             :         // ingestion.
    1092             :         HasPointKey, HasRangeKey bool
    1093             : 
    1094             :         // SyntheticPrefix will prepend this suffix to all keys in the file during
    1095             :         // iteration. Note that the backing file itself is not modified.
    1096             :         //
    1097             :         // SyntheticPrefix must be a prefix of both Bounds.Start and Bounds.End.
    1098             :         SyntheticPrefix []byte
    1099             : 
    1100             :         // SyntheticSuffix will replace the suffix of every key in the file during
    1101             :         // iteration. Note that the file itself is not modified, rather, every key
    1102             :         // returned by an iterator will have the synthetic suffix.
    1103             :         //
    1104             :         // SyntheticSuffix can only be used under the following conditions:
    1105             :         //  - the synthetic suffix must sort before any non-empty suffixes in the
    1106             :         //    backing sst (the entire sst, not just the part restricted to Bounds).
    1107             :         //  - the backing sst must not contain multiple keys with the same prefix.
    1108             :         SyntheticSuffix []byte
    1109             : 
    1110             :         // Level denotes the level at which this file was present at read time
    1111             :         // if the external file was returned by a scan of an existing Pebble
    1112             :         // instance. If Level is 0, this field is ignored.
    1113             :         Level uint8
    1114             : }
    1115             : 
    1116             : // IngestWithStats does the same as Ingest, and additionally returns
    1117             : // IngestOperationStats.
    1118           1 : func (d *DB) IngestWithStats(paths []string) (IngestOperationStats, error) {
    1119           1 :         if err := d.closed.Load(); err != nil {
    1120           0 :                 panic(err)
    1121             :         }
    1122           1 :         if d.opts.ReadOnly {
    1123           0 :                 return IngestOperationStats{}, ErrReadOnly
    1124           0 :         }
    1125           1 :         return d.ingest(paths, nil, KeyRange{}, false, nil)
    1126             : }
    1127             : 
    1128             : // IngestExternalFiles does the same as IngestWithStats, and additionally
    1129             : // accepts external files (with locator info that can be resolved using
    1130             : // d.opts.SharedStorage). These files must also be non-overlapping with
    1131             : // each other, and must be resolvable through d.objProvider.
    1132           1 : func (d *DB) IngestExternalFiles(external []ExternalFile) (IngestOperationStats, error) {
    1133           1 :         if err := d.closed.Load(); err != nil {
    1134           0 :                 panic(err)
    1135             :         }
    1136             : 
    1137           1 :         if d.opts.ReadOnly {
    1138           0 :                 return IngestOperationStats{}, ErrReadOnly
    1139           0 :         }
    1140           1 :         if d.opts.Experimental.RemoteStorage == nil {
    1141           0 :                 return IngestOperationStats{}, errors.New("pebble: cannot ingest external files without shared storage configured")
    1142           0 :         }
    1143           1 :         return d.ingest(nil, nil, KeyRange{}, false, external)
    1144             : }
    1145             : 
    1146             : // IngestAndExcise does the same as IngestWithStats, and additionally accepts a
    1147             : // list of shared files to ingest that can be read from a remote.Storage through
    1148             : // a Provider. All the shared files must live within exciseSpan, and any existing
    1149             : // keys in exciseSpan are deleted by turning existing sstables into virtual
    1150             : // sstables (if not virtual already) and shrinking their spans to exclude
    1151             : // exciseSpan. See the comment at Ingest for a more complete picture of the
    1152             : // ingestion process.
    1153             : //
    1154             : // Panics if this DB instance was not instantiated with a remote.Storage and
    1155             : // shared sstables are present.
    1156             : func (d *DB) IngestAndExcise(
    1157             :         paths []string,
    1158             :         shared []SharedSSTMeta,
    1159             :         external []ExternalFile,
    1160             :         exciseSpan KeyRange,
    1161             :         sstsContainExciseTombstone bool,
    1162           1 : ) (IngestOperationStats, error) {
    1163           1 :         if err := d.closed.Load(); err != nil {
    1164           0 :                 panic(err)
    1165             :         }
    1166           1 :         if d.opts.ReadOnly {
    1167           0 :                 return IngestOperationStats{}, ErrReadOnly
    1168           0 :         }
    1169           1 :         if invariants.Enabled {
    1170           1 :                 // Excise is only supported on prefix keys.
    1171           1 :                 if d.opts.Comparer.Split(exciseSpan.Start) != len(exciseSpan.Start) {
    1172           0 :                         panic("IngestAndExcise called with suffixed start key")
    1173             :                 }
    1174           1 :                 if d.opts.Comparer.Split(exciseSpan.End) != len(exciseSpan.End) {
    1175           0 :                         panic("IngestAndExcise called with suffixed end key")
    1176             :                 }
    1177             :         }
    1178           1 :         if v := d.FormatMajorVersion(); v < FormatMinForSharedObjects {
    1179           0 :                 return IngestOperationStats{}, errors.Errorf(
    1180           0 :                         "store has format major version %d; IngestAndExcise requires at least %d",
    1181           0 :                         v, FormatMinForSharedObjects,
    1182           0 :                 )
    1183           0 :         }
    1184           1 :         return d.ingest(paths, shared, exciseSpan, sstsContainExciseTombstone, external)
    1185             : }
    1186             : 
    1187             : // Both DB.mu and commitPipeline.mu must be held while this is called.
    1188             : func (d *DB) newIngestedFlushableEntry(
    1189             :         meta []*fileMetadata, seqNum base.SeqNum, logNum base.DiskFileNum, exciseSpan KeyRange,
    1190           1 : ) (*flushableEntry, error) {
    1191           1 :         // Update the sequence number for all of the sstables in the
    1192           1 :         // metadata. Writing the metadata to the manifest when the
    1193           1 :         // version edit is applied is the mechanism that persists the
    1194           1 :         // sequence number. The sstables themselves are left unmodified.
    1195           1 :         // In this case, a version edit will only be written to the manifest
    1196           1 :         // when the flushable is eventually flushed. If Pebble restarts in that
    1197           1 :         // time, then we'll lose the ingest sequence number information. But this
    1198           1 :         // information will also be reconstructed on node restart.
    1199           1 :         for i, m := range meta {
    1200           1 :                 if err := setSeqNumInMetadata(m, seqNum+base.SeqNum(i), d.cmp, d.opts.Comparer.FormatKey); err != nil {
    1201           0 :                         return nil, err
    1202           0 :                 }
    1203             :         }
    1204             : 
    1205           1 :         f := newIngestedFlushable(meta, d.opts.Comparer, d.newIters, d.tableNewRangeKeyIter, exciseSpan)
    1206           1 : 
    1207           1 :         // NB: The logNum/seqNum are the WAL number which we're writing this entry
    1208           1 :         // to and the sequence number within the WAL which we'll write this entry
    1209           1 :         // to.
    1210           1 :         entry := d.newFlushableEntry(f, logNum, seqNum)
    1211           1 :         // The flushable entry starts off with a single reader ref, so increment
    1212           1 :         // the FileMetadata.Refs.
    1213           1 :         for _, file := range f.files {
    1214           1 :                 file.FileBacking.Ref()
    1215           1 :         }
    1216           1 :         entry.unrefFiles = func() []*fileBacking {
    1217           1 :                 var obsolete []*fileBacking
    1218           1 :                 for _, file := range f.files {
    1219           1 :                         if file.FileBacking.Unref() == 0 {
    1220           1 :                                 obsolete = append(obsolete, file.FileMetadata.FileBacking)
    1221           1 :                         }
    1222             :                 }
    1223           1 :                 return obsolete
    1224             :         }
    1225             : 
    1226           1 :         entry.flushForced = true
    1227           1 :         entry.releaseMemAccounting = func() {}
    1228           1 :         return entry, nil
    1229             : }
    1230             : 
    1231             : // Both DB.mu and commitPipeline.mu must be held while this is called. Since
    1232             : // we're holding both locks, the order in which we rotate the memtable or
    1233             : // recycle the WAL in this function is irrelevant as long as the correct log
    1234             : // numbers are assigned to the appropriate flushable.
    1235             : func (d *DB) handleIngestAsFlushable(
    1236             :         meta []*fileMetadata, seqNum base.SeqNum, exciseSpan KeyRange,
    1237           1 : ) error {
    1238           1 :         b := d.NewBatch()
    1239           1 :         for _, m := range meta {
    1240           1 :                 b.ingestSST(m.FileNum)
    1241           1 :         }
    1242           1 :         b.setSeqNum(seqNum)
    1243           1 : 
    1244           1 :         // If the WAL is disabled, then the logNum used to create the flushable
    1245           1 :         // entry doesn't matter. We just use the logNum assigned to the current
    1246           1 :         // mutable memtable. If the WAL is enabled, then this logNum will be
    1247           1 :         // overwritten by the logNum of the log which will contain the log entry
    1248           1 :         // for the ingestedFlushable.
    1249           1 :         logNum := d.mu.mem.queue[len(d.mu.mem.queue)-1].logNum
    1250           1 :         if !d.opts.DisableWAL {
    1251           1 :                 // We create a new WAL for the flushable instead of reusing the end of
    1252           1 :                 // the previous WAL. This simplifies the increment of the minimum
    1253           1 :                 // unflushed log number, and also simplifies WAL replay.
    1254           1 :                 var prevLogSize uint64
    1255           1 :                 logNum, prevLogSize = d.rotateWAL()
    1256           1 :                 // As the rotator of the WAL, we're responsible for updating the
    1257           1 :                 // previous flushable queue tail's log size.
    1258           1 :                 d.mu.mem.queue[len(d.mu.mem.queue)-1].logSize = prevLogSize
    1259           1 : 
    1260           1 :                 d.mu.Unlock()
    1261           1 :                 err := d.commit.directWrite(b)
    1262           1 :                 if err != nil {
    1263           0 :                         d.opts.Logger.Fatalf("%v", err)
    1264           0 :                 }
    1265           1 :                 d.mu.Lock()
    1266             :         }
    1267             : 
    1268           1 :         entry, err := d.newIngestedFlushableEntry(meta, seqNum, logNum, exciseSpan)
    1269           1 :         if err != nil {
    1270           0 :                 return err
    1271           0 :         }
    1272           1 :         nextSeqNum := seqNum + base.SeqNum(b.Count())
    1273           1 : 
    1274           1 :         // Set newLogNum to the logNum of the previous flushable. This value is
    1275           1 :         // irrelevant if the WAL is disabled. If the WAL is enabled, then we set
    1276           1 :         // the appropriate value below.
    1277           1 :         newLogNum := d.mu.mem.queue[len(d.mu.mem.queue)-1].logNum
    1278           1 :         if !d.opts.DisableWAL {
    1279           1 :                 // newLogNum will be the WAL num of the next mutable memtable which
    1280           1 :                 // comes after the ingestedFlushable in the flushable queue. The mutable
    1281           1 :                 // memtable will be created below.
    1282           1 :                 //
    1283           1 :                 // The prevLogSize returned by rotateWAL is the WAL to which the
    1284           1 :                 // flushable ingest keys were appended. This intermediary WAL is only
    1285           1 :                 // used to record the flushable ingest and nothing else.
    1286           1 :                 newLogNum, entry.logSize = d.rotateWAL()
    1287           1 :         }
    1288             : 
    1289           1 :         d.mu.versions.metrics.Ingest.Count++
    1290           1 :         currMem := d.mu.mem.mutable
    1291           1 :         // NB: Placing ingested sstables above the current memtables
    1292           1 :         // requires rotating of the existing memtables/WAL. There is
    1293           1 :         // some concern of churning through tiny memtables due to
    1294           1 :         // ingested sstables being placed on top of them, but those
    1295           1 :         // memtables would have to be flushed anyways.
    1296           1 :         d.mu.mem.queue = append(d.mu.mem.queue, entry)
    1297           1 :         d.rotateMemtable(newLogNum, nextSeqNum, currMem, 0 /* minSize */)
    1298           1 :         d.updateReadStateLocked(d.opts.DebugCheck)
    1299           1 :         // TODO(aaditya): is this necessary? we call this already in rotateMemtable above
    1300           1 :         d.maybeScheduleFlush()
    1301           1 :         return nil
    1302             : }
    1303             : 
    1304             : // See comment at Ingest() for details on how this works.
    1305             : func (d *DB) ingest(
    1306             :         paths []string,
    1307             :         shared []SharedSSTMeta,
    1308             :         exciseSpan KeyRange,
    1309             :         sstsContainExciseTombstone bool,
    1310             :         external []ExternalFile,
    1311           1 : ) (IngestOperationStats, error) {
    1312           1 :         if len(shared) > 0 && d.opts.Experimental.RemoteStorage == nil {
    1313           0 :                 panic("cannot ingest shared sstables with nil SharedStorage")
    1314             :         }
    1315           1 :         if (exciseSpan.Valid() || len(shared) > 0 || len(external) > 0) && d.FormatMajorVersion() < FormatVirtualSSTables {
    1316           0 :                 return IngestOperationStats{}, errors.New("pebble: format major version too old for excise, shared or external sstable ingestion")
    1317           0 :         }
    1318           1 :         if len(external) > 0 && d.FormatMajorVersion() < FormatSyntheticPrefixSuffix {
    1319           1 :                 for i := range external {
    1320           1 :                         if len(external[i].SyntheticPrefix) > 0 {
    1321           1 :                                 return IngestOperationStats{}, errors.New("pebble: format major version too old for synthetic prefix ingestion")
    1322           1 :                         }
    1323           1 :                         if len(external[i].SyntheticSuffix) > 0 {
    1324           1 :                                 return IngestOperationStats{}, errors.New("pebble: format major version too old for synthetic suffix ingestion")
    1325           1 :                         }
    1326             :                 }
    1327             :         }
    1328           1 :         ctx := context.Background()
    1329           1 :         // Allocate file numbers for all of the files being ingested and mark them as
    1330           1 :         // pending in order to prevent them from being deleted. Note that this causes
    1331           1 :         // the file number ordering to be out of alignment with sequence number
    1332           1 :         // ordering. The sorting of L0 tables by sequence number avoids relying on
    1333           1 :         // that (busted) invariant.
    1334           1 :         d.mu.Lock()
    1335           1 :         pendingOutputs := make([]base.FileNum, len(paths)+len(shared)+len(external))
    1336           1 :         for i := 0; i < len(paths)+len(shared)+len(external); i++ {
    1337           1 :                 pendingOutputs[i] = d.mu.versions.getNextFileNum()
    1338           1 :         }
    1339             : 
    1340           1 :         jobID := d.newJobIDLocked()
    1341           1 :         d.mu.Unlock()
    1342           1 : 
    1343           1 :         // Load the metadata for all the files being ingested. This step detects
    1344           1 :         // and elides empty sstables.
    1345           1 :         loadResult, err := ingestLoad(d.opts, d.FormatMajorVersion(), paths, shared, external, d.cacheID, pendingOutputs)
    1346           1 :         if err != nil {
    1347           1 :                 return IngestOperationStats{}, err
    1348           1 :         }
    1349             : 
    1350           1 :         if loadResult.fileCount() == 0 {
    1351           1 :                 // All of the sstables to be ingested were empty. Nothing to do.
    1352           1 :                 return IngestOperationStats{}, nil
    1353           1 :         }
    1354             : 
    1355             :         // Verify the sstables do not overlap.
    1356           1 :         if err := ingestSortAndVerify(d.cmp, loadResult, exciseSpan); err != nil {
    1357           1 :                 return IngestOperationStats{}, err
    1358           1 :         }
    1359             : 
    1360             :         // Hard link the sstables into the DB directory. Since the sstables aren't
    1361             :         // referenced by a version, they won't be used. If the hard linking fails
    1362             :         // (e.g. because the files reside on a different filesystem), ingestLinkLocal
    1363             :         // will fall back to copying, and if that fails we undo our work and return an
    1364             :         // error.
    1365           1 :         if err := ingestLinkLocal(jobID, d.opts, d.objProvider, loadResult.local); err != nil {
    1366           0 :                 return IngestOperationStats{}, err
    1367           0 :         }
    1368             : 
    1369           1 :         err = d.ingestAttachRemote(jobID, loadResult)
    1370           1 :         defer d.ingestUnprotectExternalBackings(loadResult)
    1371           1 :         if err != nil {
    1372           0 :                 return IngestOperationStats{}, err
    1373           0 :         }
    1374             : 
    1375             :         // Make the new tables durable. We need to do this at some point before we
    1376             :         // update the MANIFEST (via logAndApply), otherwise a crash can have the
    1377             :         // tables referenced in the MANIFEST, but not present in the provider.
    1378           1 :         if err := d.objProvider.Sync(); err != nil {
    1379           1 :                 return IngestOperationStats{}, err
    1380           1 :         }
    1381             : 
    1382             :         // metaFlushableOverlaps is a map indicating which of the ingested sstables
    1383             :         // overlap some table in the flushable queue. It's used to approximate
    1384             :         // ingest-into-L0 stats when using flushable ingests.
    1385           1 :         metaFlushableOverlaps := make(map[FileNum]bool, loadResult.fileCount())
    1386           1 :         var mem *flushableEntry
    1387           1 :         var mut *memTable
    1388           1 :         // asFlushable indicates whether the sstable was ingested as a flushable.
    1389           1 :         var asFlushable bool
    1390           1 :         prepare := func(seqNum base.SeqNum) {
    1391           1 :                 // Note that d.commit.mu is held by commitPipeline when calling prepare.
    1392           1 : 
    1393           1 :                 // Determine the set of bounds we care about for the purpose of checking
    1394           1 :                 // for overlap among the flushables. If there's an excise span, we need
    1395           1 :                 // to check for overlap with its bounds as well.
    1396           1 :                 overlapBounds := make([]bounded, 0, loadResult.fileCount()+1)
    1397           1 :                 for _, m := range loadResult.local {
    1398           1 :                         overlapBounds = append(overlapBounds, m.fileMetadata)
    1399           1 :                 }
    1400           1 :                 for _, m := range loadResult.shared {
    1401           1 :                         overlapBounds = append(overlapBounds, m.fileMetadata)
    1402           1 :                 }
    1403           1 :                 for _, m := range loadResult.external {
    1404           1 :                         overlapBounds = append(overlapBounds, m.fileMetadata)
    1405           1 :                 }
    1406           1 :                 if exciseSpan.Valid() {
    1407           1 :                         overlapBounds = append(overlapBounds, &exciseSpan)
    1408           1 :                 }
    1409             : 
    1410           1 :                 d.mu.Lock()
    1411           1 :                 defer d.mu.Unlock()
    1412           1 : 
    1413           1 :                 // Check if any of the currently-open EventuallyFileOnlySnapshots overlap
    1414           1 :                 // in key ranges with the excise span. If so, we need to check for memtable
    1415           1 :                 // overlaps with all bounds of that EventuallyFileOnlySnapshot in addition
    1416           1 :                 // to the ingestion's own bounds too.
    1417           1 : 
    1418           1 :                 if exciseSpan.Valid() {
    1419           1 :                         for s := d.mu.snapshots.root.next; s != &d.mu.snapshots.root; s = s.next {
    1420           1 :                                 if s.efos == nil {
    1421           0 :                                         continue
    1422             :                                 }
    1423           1 :                                 if base.Visible(seqNum, s.efos.seqNum, base.SeqNumMax) {
    1424           0 :                                         // We only worry about snapshots older than the excise. Any snapshots
    1425           0 :                                         // created after the excise should see the excised view of the LSM
    1426           0 :                                         // anyway.
    1427           0 :                                         //
    1428           0 :                                         // Since we delay publishing the excise seqnum as visible until after
    1429           0 :                                         // the apply step, this case will never be hit in practice until we
    1430           0 :                                         // make excises flushable ingests.
    1431           0 :                                         continue
    1432             :                                 }
    1433           1 :                                 if invariants.Enabled {
    1434           1 :                                         if s.efos.hasTransitioned() {
    1435           0 :                                                 panic("unexpected transitioned EFOS in snapshots list")
    1436             :                                         }
    1437             :                                 }
    1438           1 :                                 for i := range s.efos.protectedRanges {
    1439           1 :                                         if !s.efos.protectedRanges[i].OverlapsKeyRange(d.cmp, exciseSpan) {
    1440           1 :                                                 continue
    1441             :                                         }
    1442             :                                         // Our excise conflicts with this EFOS. We need to add its protected
    1443             :                                         // ranges to our overlapBounds. Grow overlapBounds in one allocation
    1444             :                                         // if necesary.
    1445           1 :                                         prs := s.efos.protectedRanges
    1446           1 :                                         if cap(overlapBounds) < len(overlapBounds)+len(prs) {
    1447           1 :                                                 oldOverlapBounds := overlapBounds
    1448           1 :                                                 overlapBounds = make([]bounded, len(oldOverlapBounds), len(oldOverlapBounds)+len(prs))
    1449           1 :                                                 copy(overlapBounds, oldOverlapBounds)
    1450           1 :                                         }
    1451           1 :                                         for i := range prs {
    1452           1 :                                                 overlapBounds = append(overlapBounds, &prs[i])
    1453           1 :                                         }
    1454           1 :                                         break
    1455             :                                 }
    1456             :                         }
    1457             :                 }
    1458             : 
    1459             :                 // Check to see if any files overlap with any of the memtables. The queue
    1460             :                 // is ordered from oldest to newest with the mutable memtable being the
    1461             :                 // last element in the slice. We want to wait for the newest table that
    1462             :                 // overlaps.
    1463             : 
    1464           1 :                 for i := len(d.mu.mem.queue) - 1; i >= 0; i-- {
    1465           1 :                         m := d.mu.mem.queue[i]
    1466           1 :                         m.computePossibleOverlaps(func(b bounded) shouldContinue {
    1467           1 :                                 // If this is the first table to overlap a flushable, save
    1468           1 :                                 // the flushable. This ingest must be ingested or flushed
    1469           1 :                                 // after it.
    1470           1 :                                 if mem == nil {
    1471           1 :                                         mem = m
    1472           1 :                                 }
    1473             : 
    1474           1 :                                 switch v := b.(type) {
    1475           1 :                                 case *fileMetadata:
    1476           1 :                                         // NB: False positives are possible if `m` is a flushable
    1477           1 :                                         // ingest that overlaps the file `v` in bounds but doesn't
    1478           1 :                                         // contain overlapping data. This is considered acceptable
    1479           1 :                                         // because it's rare (in CockroachDB a bound overlap likely
    1480           1 :                                         // indicates a data overlap), and blocking the commit
    1481           1 :                                         // pipeline while we perform I/O to check for overlap may be
    1482           1 :                                         // more disruptive than enqueueing this ingestion on the
    1483           1 :                                         // flushable queue and switching to a new memtable.
    1484           1 :                                         metaFlushableOverlaps[v.FileNum] = true
    1485           1 :                                 case *KeyRange:
    1486             :                                         // An excise span or an EventuallyFileOnlySnapshot protected range;
    1487             :                                         // not a file.
    1488           0 :                                 default:
    1489           0 :                                         panic("unreachable")
    1490             :                                 }
    1491           1 :                                 return continueIteration
    1492             :                         }, overlapBounds...)
    1493             :                 }
    1494             : 
    1495           1 :                 if mem == nil {
    1496           1 :                         // No overlap with any of the queued flushables, so no need to queue
    1497           1 :                         // after them.
    1498           1 : 
    1499           1 :                         // New writes with higher sequence numbers may be concurrently
    1500           1 :                         // committed. We must ensure they don't flush before this ingest
    1501           1 :                         // completes. To do that, we ref the mutable memtable as a writer,
    1502           1 :                         // preventing its flushing (and the flushing of all subsequent
    1503           1 :                         // flushables in the queue). Once we've acquired the manifest lock
    1504           1 :                         // to add the ingested sstables to the LSM, we can unref as we're
    1505           1 :                         // guaranteed that the flush won't edit the LSM before this ingest.
    1506           1 :                         mut = d.mu.mem.mutable
    1507           1 :                         mut.writerRef()
    1508           1 :                         return
    1509           1 :                 }
    1510             : 
    1511             :                 // The ingestion overlaps with some entry in the flushable queue. If the
    1512             :                 // pre-conditions are met below, we can treat this ingestion as a flushable
    1513             :                 // ingest, otherwise we wait on the memtable flush before ingestion.
    1514             :                 //
    1515             :                 // TODO(aaditya): We should make flushableIngest compatible with remote
    1516             :                 // files.
    1517           1 :                 hasRemoteFiles := len(shared) > 0 || len(external) > 0
    1518           1 :                 canIngestFlushable := d.FormatMajorVersion() >= FormatFlushableIngest &&
    1519           1 :                         (len(d.mu.mem.queue) < d.opts.MemTableStopWritesThreshold) &&
    1520           1 :                         !d.opts.Experimental.DisableIngestAsFlushable() && !hasRemoteFiles
    1521           1 : 
    1522           1 :                 if !canIngestFlushable || (exciseSpan.Valid() && !sstsContainExciseTombstone) {
    1523           1 :                         // We're not able to ingest as a flushable,
    1524           1 :                         // so we must synchronously flush.
    1525           1 :                         //
    1526           1 :                         // TODO(bilal): Currently, if any of the files being ingested are shared or
    1527           1 :                         // there's an excise span present, we cannot use flushable ingests and need
    1528           1 :                         // to wait synchronously. Either remove this caveat by fleshing out
    1529           1 :                         // flushable ingest logic to also account for these cases, or remove this
    1530           1 :                         // comment. Tracking issue: https://github.com/cockroachdb/pebble/issues/2676
    1531           1 :                         if mem.flushable == d.mu.mem.mutable {
    1532           1 :                                 err = d.makeRoomForWrite(nil)
    1533           1 :                         }
    1534             :                         // New writes with higher sequence numbers may be concurrently
    1535             :                         // committed. We must ensure they don't flush before this ingest
    1536             :                         // completes. To do that, we ref the mutable memtable as a writer,
    1537             :                         // preventing its flushing (and the flushing of all subsequent
    1538             :                         // flushables in the queue). Once we've acquired the manifest lock
    1539             :                         // to add the ingested sstables to the LSM, we can unref as we're
    1540             :                         // guaranteed that the flush won't edit the LSM before this ingest.
    1541           1 :                         mut = d.mu.mem.mutable
    1542           1 :                         mut.writerRef()
    1543           1 :                         mem.flushForced = true
    1544           1 :                         d.maybeScheduleFlush()
    1545           1 :                         return
    1546             :                 }
    1547             :                 // Since there aren't too many memtables already queued up, we can
    1548             :                 // slide the ingested sstables on top of the existing memtables.
    1549           1 :                 asFlushable = true
    1550           1 :                 fileMetas := make([]*fileMetadata, len(loadResult.local))
    1551           1 :                 for i := range fileMetas {
    1552           1 :                         fileMetas[i] = loadResult.local[i].fileMetadata
    1553           1 :                 }
    1554           1 :                 err = d.handleIngestAsFlushable(fileMetas, seqNum, exciseSpan)
    1555             :         }
    1556             : 
    1557           1 :         var ve *versionEdit
    1558           1 :         apply := func(seqNum base.SeqNum) {
    1559           1 :                 if err != nil || asFlushable {
    1560           1 :                         // An error occurred during prepare.
    1561           1 :                         if mut != nil {
    1562           0 :                                 if mut.writerUnref() {
    1563           0 :                                         d.mu.Lock()
    1564           0 :                                         d.maybeScheduleFlush()
    1565           0 :                                         d.mu.Unlock()
    1566           0 :                                 }
    1567             :                         }
    1568           1 :                         return
    1569             :                 }
    1570             : 
    1571             :                 // If there's an excise being done atomically with the same ingest, we
    1572             :                 // assign the lowest sequence number in the set of sequence numbers for this
    1573             :                 // ingestion to the excise. Note that we've already allocated fileCount+1
    1574             :                 // sequence numbers in this case.
    1575           1 :                 if exciseSpan.Valid() {
    1576           1 :                         seqNum++ // the first seqNum is reserved for the excise.
    1577           1 :                 }
    1578             :                 // Update the sequence numbers for all ingested sstables'
    1579             :                 // metadata. When the version edit is applied, the metadata is
    1580             :                 // written to the manifest, persisting the sequence number.
    1581             :                 // The sstables themselves are left unmodified.
    1582           1 :                 if err = ingestUpdateSeqNum(
    1583           1 :                         d.cmp, d.opts.Comparer.FormatKey, seqNum, loadResult,
    1584           1 :                 ); err != nil {
    1585           0 :                         if mut != nil {
    1586           0 :                                 if mut.writerUnref() {
    1587           0 :                                         d.mu.Lock()
    1588           0 :                                         d.maybeScheduleFlush()
    1589           0 :                                         d.mu.Unlock()
    1590           0 :                                 }
    1591             :                         }
    1592           0 :                         return
    1593             :                 }
    1594             : 
    1595             :                 // If we overlapped with a memtable in prepare wait for the flush to
    1596             :                 // finish.
    1597           1 :                 if mem != nil {
    1598           1 :                         <-mem.flushed
    1599           1 :                 }
    1600             : 
    1601             :                 // Assign the sstables to the correct level in the LSM and apply the
    1602             :                 // version edit.
    1603           1 :                 ve, err = d.ingestApply(ctx, jobID, loadResult, mut, exciseSpan, seqNum)
    1604             :         }
    1605             : 
    1606             :         // Only one ingest can occur at a time because if not, one would block waiting
    1607             :         // for the other to finish applying. This blocking would happen while holding
    1608             :         // the commit mutex which would prevent unrelated batches from writing their
    1609             :         // changes to the WAL and memtable. This will cause a bigger commit hiccup
    1610             :         // during ingestion.
    1611           1 :         seqNumCount := loadResult.fileCount()
    1612           1 :         if exciseSpan.Valid() {
    1613           1 :                 seqNumCount++
    1614           1 :         }
    1615           1 :         d.commit.ingestSem <- struct{}{}
    1616           1 :         d.commit.AllocateSeqNum(seqNumCount, prepare, apply)
    1617           1 :         <-d.commit.ingestSem
    1618           1 : 
    1619           1 :         if err != nil {
    1620           1 :                 if err2 := ingestCleanup(d.objProvider, loadResult.local); err2 != nil {
    1621           0 :                         d.opts.Logger.Errorf("ingest cleanup failed: %v", err2)
    1622           0 :                 }
    1623           1 :         } else {
    1624           1 :                 // Since we either created a hard link to the ingesting files, or copied
    1625           1 :                 // them over, it is safe to remove the originals paths.
    1626           1 :                 for i := range loadResult.local {
    1627           1 :                         path := loadResult.local[i].path
    1628           1 :                         if err2 := d.opts.FS.Remove(path); err2 != nil {
    1629           1 :                                 d.opts.Logger.Errorf("ingest failed to remove original file: %s", err2)
    1630           1 :                         }
    1631             :                 }
    1632             :         }
    1633             : 
    1634           1 :         info := TableIngestInfo{
    1635           1 :                 JobID:     int(jobID),
    1636           1 :                 Err:       err,
    1637           1 :                 flushable: asFlushable,
    1638           1 :         }
    1639           1 :         if len(loadResult.local) > 0 {
    1640           1 :                 info.GlobalSeqNum = loadResult.local[0].SmallestSeqNum
    1641           1 :         } else if len(loadResult.shared) > 0 {
    1642           1 :                 info.GlobalSeqNum = loadResult.shared[0].SmallestSeqNum
    1643           1 :         } else {
    1644           1 :                 info.GlobalSeqNum = loadResult.external[0].SmallestSeqNum
    1645           1 :         }
    1646           1 :         var stats IngestOperationStats
    1647           1 :         if ve != nil {
    1648           1 :                 info.Tables = make([]struct {
    1649           1 :                         TableInfo
    1650           1 :                         Level int
    1651           1 :                 }, len(ve.NewFiles))
    1652           1 :                 for i := range ve.NewFiles {
    1653           1 :                         e := &ve.NewFiles[i]
    1654           1 :                         info.Tables[i].Level = e.Level
    1655           1 :                         info.Tables[i].TableInfo = e.Meta.TableInfo()
    1656           1 :                         stats.Bytes += e.Meta.Size
    1657           1 :                         if e.Level == 0 {
    1658           1 :                                 stats.ApproxIngestedIntoL0Bytes += e.Meta.Size
    1659           1 :                         }
    1660           1 :                         if metaFlushableOverlaps[e.Meta.FileNum] {
    1661           1 :                                 stats.MemtableOverlappingFiles++
    1662           1 :                         }
    1663             :                 }
    1664           1 :         } else if asFlushable {
    1665           1 :                 // NB: If asFlushable == true, there are no shared sstables.
    1666           1 :                 info.Tables = make([]struct {
    1667           1 :                         TableInfo
    1668           1 :                         Level int
    1669           1 :                 }, len(loadResult.local))
    1670           1 :                 for i, f := range loadResult.local {
    1671           1 :                         info.Tables[i].Level = -1
    1672           1 :                         info.Tables[i].TableInfo = f.TableInfo()
    1673           1 :                         stats.Bytes += f.Size
    1674           1 :                         // We don't have exact stats on which files will be ingested into
    1675           1 :                         // L0, because actual ingestion into the LSM has been deferred until
    1676           1 :                         // flush time. Instead, we infer based on memtable overlap.
    1677           1 :                         //
    1678           1 :                         // TODO(jackson): If we optimistically compute data overlap (#2112)
    1679           1 :                         // before entering the commit pipeline, we can use that overlap to
    1680           1 :                         // improve our approximation by incorporating overlap with L0, not
    1681           1 :                         // just memtables.
    1682           1 :                         if metaFlushableOverlaps[f.FileNum] {
    1683           1 :                                 stats.ApproxIngestedIntoL0Bytes += f.Size
    1684           1 :                                 stats.MemtableOverlappingFiles++
    1685           1 :                         }
    1686             :                 }
    1687             :         }
    1688           1 :         d.opts.EventListener.TableIngested(info)
    1689           1 : 
    1690           1 :         return stats, err
    1691             : }
    1692             : 
    1693             : // excise updates ve to include a replacement of the file m with new virtual
    1694             : // sstables that exclude exciseSpan, returning a slice of newly-created files if
    1695             : // any. If the entirety of m is deleted by exciseSpan, no new sstables are added
    1696             : // and m is deleted. Note that ve is updated in-place.
    1697             : //
    1698             : // The manifest lock must be held when calling this method.
    1699             : func (d *DB) excise(
    1700             :         exciseSpan base.UserKeyBounds, m *fileMetadata, ve *versionEdit, level int,
    1701           1 : ) ([]manifest.NewFileEntry, error) {
    1702           1 :         numCreatedFiles := 0
    1703           1 :         // Check if there's actually an overlap between m and exciseSpan.
    1704           1 :         mBounds := base.UserKeyBoundsFromInternal(m.Smallest, m.Largest)
    1705           1 :         if !exciseSpan.Overlaps(d.cmp, &mBounds) {
    1706           1 :                 return nil, nil
    1707           1 :         }
    1708           1 :         ve.DeletedFiles[deletedFileEntry{
    1709           1 :                 Level:   level,
    1710           1 :                 FileNum: m.FileNum,
    1711           1 :         }] = m
    1712           1 :         // Fast path: m sits entirely within the exciseSpan, so just delete it.
    1713           1 :         if exciseSpan.ContainsInternalKey(d.cmp, m.Smallest) && exciseSpan.ContainsInternalKey(d.cmp, m.Largest) {
    1714           1 :                 return nil, nil
    1715           1 :         }
    1716             : 
    1717           1 :         var iters iterSet
    1718           1 :         var itersLoaded bool
    1719           1 :         defer iters.CloseAll()
    1720           1 :         loadItersIfNecessary := func() error {
    1721           1 :                 if itersLoaded {
    1722           1 :                         return nil
    1723           1 :                 }
    1724           1 :                 var err error
    1725           1 :                 iters, err = d.newIters(context.TODO(), m, &IterOptions{
    1726           1 :                         CategoryAndQoS: sstable.CategoryAndQoS{
    1727           1 :                                 Category: "pebble-ingest",
    1728           1 :                                 QoSLevel: sstable.LatencySensitiveQoSLevel,
    1729           1 :                         },
    1730           1 :                         level: manifest.Level(level),
    1731           1 :                 }, internalIterOpts{}, iterPointKeys|iterRangeDeletions|iterRangeKeys)
    1732           1 :                 itersLoaded = true
    1733           1 :                 return err
    1734             :         }
    1735             : 
    1736           1 :         needsBacking := false
    1737           1 :         // Create a file to the left of the excise span, if necessary.
    1738           1 :         // The bounds of this file will be [m.Smallest, lastKeyBefore(exciseSpan.Start)].
    1739           1 :         //
    1740           1 :         // We create bounds that are tight on user keys, and we make the effort to find
    1741           1 :         // the last key in the original sstable that's smaller than exciseSpan.Start
    1742           1 :         // even though it requires some sstable reads. We could choose to create
    1743           1 :         // virtual sstables on loose userKey bounds, in which case we could just set
    1744           1 :         // leftFile.Largest to an exclusive sentinel at exciseSpan.Start. The biggest
    1745           1 :         // issue with that approach would be that it'd lead to lots of small virtual
    1746           1 :         // sstables in the LSM that have no guarantee on containing even a single user
    1747           1 :         // key within the file bounds. This has the potential to increase both read and
    1748           1 :         // write-amp as we will be opening up these sstables only to find no relevant
    1749           1 :         // keys in the read path, and compacting sstables on top of them instead of
    1750           1 :         // directly into the space occupied by them. We choose to incur the cost of
    1751           1 :         // calculating tight bounds at this time instead of creating more work in the
    1752           1 :         // future.
    1753           1 :         //
    1754           1 :         // TODO(bilal): Some of this work can happen without grabbing the manifest
    1755           1 :         // lock; we could grab one currentVersion, release the lock, calculate excised
    1756           1 :         // files, then grab the lock again and recalculate for just the files that
    1757           1 :         // have changed since our previous calculation. Do this optimiaztino as part of
    1758           1 :         // https://github.com/cockroachdb/pebble/issues/2112 .
    1759           1 :         if d.cmp(m.Smallest.UserKey, exciseSpan.Start) < 0 {
    1760           1 :                 leftFile := &fileMetadata{
    1761           1 :                         Virtual:     true,
    1762           1 :                         FileBacking: m.FileBacking,
    1763           1 :                         FileNum:     d.mu.versions.getNextFileNum(),
    1764           1 :                         // Note that these are loose bounds for smallest/largest seqnums, but they're
    1765           1 :                         // sufficient for maintaining correctness.
    1766           1 :                         SmallestSeqNum:        m.SmallestSeqNum,
    1767           1 :                         LargestSeqNum:         m.LargestSeqNum,
    1768           1 :                         LargestSeqNumAbsolute: m.LargestSeqNumAbsolute,
    1769           1 :                         SyntheticPrefix:       m.SyntheticPrefix,
    1770           1 :                         SyntheticSuffix:       m.SyntheticSuffix,
    1771           1 :                 }
    1772           1 :                 if m.HasPointKeys && !exciseSpan.ContainsInternalKey(d.cmp, m.SmallestPointKey) {
    1773           1 :                         // This file will probably contain point keys.
    1774           1 :                         if err := loadItersIfNecessary(); err != nil {
    1775           0 :                                 return nil, err
    1776           0 :                         }
    1777           1 :                         smallestPointKey := m.SmallestPointKey
    1778           1 :                         if kv := iters.Point().SeekLT(exciseSpan.Start, base.SeekLTFlagsNone); kv != nil {
    1779           1 :                                 leftFile.ExtendPointKeyBounds(d.cmp, smallestPointKey, kv.K.Clone())
    1780           1 :                         }
    1781             :                         // Store the min of (exciseSpan.Start, rdel.End) in lastRangeDel. This
    1782             :                         // needs to be a copy if the key is owned by the range del iter.
    1783           1 :                         var lastRangeDel []byte
    1784           1 :                         if rdel, err := iters.RangeDeletion().SeekLT(exciseSpan.Start); err != nil {
    1785           0 :                                 return nil, err
    1786           1 :                         } else if rdel != nil {
    1787           1 :                                 lastRangeDel = append(lastRangeDel[:0], rdel.End...)
    1788           1 :                                 if d.cmp(lastRangeDel, exciseSpan.Start) > 0 {
    1789           1 :                                         lastRangeDel = exciseSpan.Start
    1790           1 :                                 }
    1791             :                         }
    1792           1 :                         if lastRangeDel != nil {
    1793           1 :                                 leftFile.ExtendPointKeyBounds(d.cmp, smallestPointKey, base.MakeExclusiveSentinelKey(InternalKeyKindRangeDelete, lastRangeDel))
    1794           1 :                         }
    1795             :                 }
    1796           1 :                 if m.HasRangeKeys && !exciseSpan.ContainsInternalKey(d.cmp, m.SmallestRangeKey) {
    1797           1 :                         // This file will probably contain range keys.
    1798           1 :                         if err := loadItersIfNecessary(); err != nil {
    1799           0 :                                 return nil, err
    1800           0 :                         }
    1801           1 :                         smallestRangeKey := m.SmallestRangeKey
    1802           1 :                         // Store the min of (exciseSpan.Start, rkey.End) in lastRangeKey. This
    1803           1 :                         // needs to be a copy if the key is owned by the range key iter.
    1804           1 :                         var lastRangeKey []byte
    1805           1 :                         var lastRangeKeyKind InternalKeyKind
    1806           1 :                         if rkey, err := iters.RangeKey().SeekLT(exciseSpan.Start); err != nil {
    1807           0 :                                 return nil, err
    1808           1 :                         } else if rkey != nil {
    1809           1 :                                 lastRangeKey = append(lastRangeKey[:0], rkey.End...)
    1810           1 :                                 if d.cmp(lastRangeKey, exciseSpan.Start) > 0 {
    1811           1 :                                         lastRangeKey = exciseSpan.Start
    1812           1 :                                 }
    1813           1 :                                 lastRangeKeyKind = rkey.Keys[0].Kind()
    1814             :                         }
    1815           1 :                         if lastRangeKey != nil {
    1816           1 :                                 leftFile.ExtendRangeKeyBounds(d.cmp, smallestRangeKey, base.MakeExclusiveSentinelKey(lastRangeKeyKind, lastRangeKey))
    1817           1 :                         }
    1818             :                 }
    1819           1 :                 if leftFile.HasRangeKeys || leftFile.HasPointKeys {
    1820           1 :                         var err error
    1821           1 :                         leftFile.Size, err = d.tableCache.estimateSize(m, leftFile.Smallest.UserKey, leftFile.Largest.UserKey)
    1822           1 :                         if err != nil {
    1823           0 :                                 return nil, err
    1824           0 :                         }
    1825           1 :                         if leftFile.Size == 0 {
    1826           1 :                                 // On occasion, estimateSize gives us a low estimate, i.e. a 0 file size,
    1827           1 :                                 // such as if the excised file only has range keys/dels and no point
    1828           1 :                                 // keys. This can cause panics in places where we divide by file sizes.
    1829           1 :                                 // Correct for it here.
    1830           1 :                                 leftFile.Size = 1
    1831           1 :                         }
    1832           1 :                         if err := leftFile.Validate(d.cmp, d.opts.Comparer.FormatKey); err != nil {
    1833           0 :                                 return nil, err
    1834           0 :                         }
    1835           1 :                         leftFile.ValidateVirtual(m)
    1836           1 :                         ve.NewFiles = append(ve.NewFiles, newFileEntry{Level: level, Meta: leftFile})
    1837           1 :                         needsBacking = true
    1838           1 :                         numCreatedFiles++
    1839             :                 }
    1840             :         }
    1841             :         // Create a file to the right, if necessary.
    1842           1 :         if exciseSpan.ContainsInternalKey(d.cmp, m.Largest) {
    1843           1 :                 // No key exists to the right of the excise span in this file.
    1844           1 :                 if needsBacking && !m.Virtual {
    1845           1 :                         // If m is virtual, then its file backing is already known to the manifest.
    1846           1 :                         // We don't need to create another file backing. Note that there must be
    1847           1 :                         // only one CreatedBackingTables entry per backing sstable. This is
    1848           1 :                         // indicated by the VersionEdit.CreatedBackingTables invariant.
    1849           1 :                         ve.CreatedBackingTables = append(ve.CreatedBackingTables, m.FileBacking)
    1850           1 :                 }
    1851           1 :                 return ve.NewFiles[len(ve.NewFiles)-numCreatedFiles:], nil
    1852             :         }
    1853             :         // Create a new file, rightFile, between [firstKeyAfter(exciseSpan.End), m.Largest].
    1854             :         //
    1855             :         // See comment before the definition of leftFile for the motivation behind
    1856             :         // calculating tight user-key bounds.
    1857           1 :         rightFile := &fileMetadata{
    1858           1 :                 Virtual:     true,
    1859           1 :                 FileBacking: m.FileBacking,
    1860           1 :                 FileNum:     d.mu.versions.getNextFileNum(),
    1861           1 :                 // Note that these are loose bounds for smallest/largest seqnums, but they're
    1862           1 :                 // sufficient for maintaining correctness.
    1863           1 :                 SmallestSeqNum:        m.SmallestSeqNum,
    1864           1 :                 LargestSeqNum:         m.LargestSeqNum,
    1865           1 :                 LargestSeqNumAbsolute: m.LargestSeqNumAbsolute,
    1866           1 :                 SyntheticPrefix:       m.SyntheticPrefix,
    1867           1 :                 SyntheticSuffix:       m.SyntheticSuffix,
    1868           1 :         }
    1869           1 :         if m.HasPointKeys && !exciseSpan.ContainsInternalKey(d.cmp, m.LargestPointKey) {
    1870           1 :                 // This file will probably contain point keys
    1871           1 :                 if err := loadItersIfNecessary(); err != nil {
    1872           0 :                         return nil, err
    1873           0 :                 }
    1874           1 :                 largestPointKey := m.LargestPointKey
    1875           1 :                 if kv := iters.Point().SeekGE(exciseSpan.End.Key, base.SeekGEFlagsNone); kv != nil {
    1876           1 :                         if exciseSpan.End.Kind == base.Inclusive && d.equal(exciseSpan.End.Key, kv.K.UserKey) {
    1877           0 :                                 return nil, base.AssertionFailedf("cannot excise with an inclusive end key and data overlap at end key")
    1878           0 :                         }
    1879           1 :                         rightFile.ExtendPointKeyBounds(d.cmp, kv.K.Clone(), largestPointKey)
    1880             :                 }
    1881             :                 // Store the max of (exciseSpan.End, rdel.Start) in firstRangeDel. This
    1882             :                 // needs to be a copy if the key is owned by the range del iter.
    1883           1 :                 var firstRangeDel []byte
    1884           1 :                 rdel, err := iters.RangeDeletion().SeekGE(exciseSpan.End.Key)
    1885           1 :                 if err != nil {
    1886           0 :                         return nil, err
    1887           1 :                 } else if rdel != nil {
    1888           1 :                         firstRangeDel = append(firstRangeDel[:0], rdel.Start...)
    1889           1 :                         if d.cmp(firstRangeDel, exciseSpan.End.Key) < 0 {
    1890           1 :                                 // NB: This can only be done if the end bound is exclusive.
    1891           1 :                                 if exciseSpan.End.Kind != base.Exclusive {
    1892           0 :                                         return nil, base.AssertionFailedf("cannot truncate rangedel during excise with an inclusive upper bound")
    1893           0 :                                 }
    1894           1 :                                 firstRangeDel = exciseSpan.End.Key
    1895             :                         }
    1896             :                 }
    1897           1 :                 if firstRangeDel != nil {
    1898           1 :                         smallestPointKey := rdel.SmallestKey()
    1899           1 :                         smallestPointKey.UserKey = firstRangeDel
    1900           1 :                         rightFile.ExtendPointKeyBounds(d.cmp, smallestPointKey, largestPointKey)
    1901           1 :                 }
    1902             :         }
    1903           1 :         if m.HasRangeKeys && !exciseSpan.ContainsInternalKey(d.cmp, m.LargestRangeKey) {
    1904           1 :                 // This file will probably contain range keys.
    1905           1 :                 if err := loadItersIfNecessary(); err != nil {
    1906           0 :                         return nil, err
    1907           0 :                 }
    1908           1 :                 largestRangeKey := m.LargestRangeKey
    1909           1 :                 // Store the max of (exciseSpan.End, rkey.Start) in firstRangeKey. This
    1910           1 :                 // needs to be a copy if the key is owned by the range key iter.
    1911           1 :                 var firstRangeKey []byte
    1912           1 :                 rkey, err := iters.RangeKey().SeekGE(exciseSpan.End.Key)
    1913           1 :                 if err != nil {
    1914           0 :                         return nil, err
    1915           1 :                 } else if rkey != nil {
    1916           1 :                         firstRangeKey = append(firstRangeKey[:0], rkey.Start...)
    1917           1 :                         if d.cmp(firstRangeKey, exciseSpan.End.Key) < 0 {
    1918           1 :                                 if exciseSpan.End.Kind != base.Exclusive {
    1919           0 :                                         return nil, base.AssertionFailedf("cannot truncate range key during excise with an inclusive upper bound")
    1920           0 :                                 }
    1921           1 :                                 firstRangeKey = exciseSpan.End.Key
    1922             :                         }
    1923             :                 }
    1924           1 :                 if firstRangeKey != nil {
    1925           1 :                         smallestRangeKey := rkey.SmallestKey()
    1926           1 :                         smallestRangeKey.UserKey = firstRangeKey
    1927           1 :                         // We call ExtendRangeKeyBounds so any internal boundType fields are
    1928           1 :                         // set correctly. Note that this is mildly wasteful as we'll be comparing
    1929           1 :                         // rightFile.{Smallest,Largest}RangeKey with themselves, which can be
    1930           1 :                         // avoided if we exported ExtendOverallKeyBounds or so.
    1931           1 :                         rightFile.ExtendRangeKeyBounds(d.cmp, smallestRangeKey, largestRangeKey)
    1932           1 :                 }
    1933             :         }
    1934           1 :         if rightFile.HasRangeKeys || rightFile.HasPointKeys {
    1935           1 :                 var err error
    1936           1 :                 rightFile.Size, err = d.tableCache.estimateSize(m, rightFile.Smallest.UserKey, rightFile.Largest.UserKey)
    1937           1 :                 if err != nil {
    1938           0 :                         return nil, err
    1939           0 :                 }
    1940           1 :                 if rightFile.Size == 0 {
    1941           1 :                         // On occasion, estimateSize gives us a low estimate, i.e. a 0 file size,
    1942           1 :                         // such as if the excised file only has range keys/dels and no point keys.
    1943           1 :                         // This can cause panics in places where we divide by file sizes. Correct
    1944           1 :                         // for it here.
    1945           1 :                         rightFile.Size = 1
    1946           1 :                 }
    1947           1 :                 if err := rightFile.Validate(d.cmp, d.opts.Comparer.FormatKey); err != nil {
    1948           0 :                         return nil, err
    1949           0 :                 }
    1950           1 :                 rightFile.ValidateVirtual(m)
    1951           1 :                 ve.NewFiles = append(ve.NewFiles, newFileEntry{Level: level, Meta: rightFile})
    1952           1 :                 needsBacking = true
    1953           1 :                 numCreatedFiles++
    1954             :         }
    1955             : 
    1956           1 :         if needsBacking && !m.Virtual {
    1957           1 :                 // If m is virtual, then its file backing is already known to the manifest.
    1958           1 :                 // We don't need to create another file backing. Note that there must be
    1959           1 :                 // only one CreatedBackingTables entry per backing sstable. This is
    1960           1 :                 // indicated by the VersionEdit.CreatedBackingTables invariant.
    1961           1 :                 ve.CreatedBackingTables = append(ve.CreatedBackingTables, m.FileBacking)
    1962           1 :         }
    1963             : 
    1964           1 :         return ve.NewFiles[len(ve.NewFiles)-numCreatedFiles:], nil
    1965             : }
    1966             : 
    1967             : type ingestSplitFile struct {
    1968             :         // ingestFile is the file being ingested.
    1969             :         ingestFile *fileMetadata
    1970             :         // splitFile is the file that needs to be split to allow ingestFile to slot
    1971             :         // into `level` level.
    1972             :         splitFile *fileMetadata
    1973             :         // The level where ingestFile will go (and where splitFile already is).
    1974             :         level int
    1975             : }
    1976             : 
    1977             : // ingestSplit splits files specified in `files` and updates ve in-place to
    1978             : // account for existing files getting split into two virtual sstables. The map
    1979             : // `replacedFiles` contains an in-progress map of all files that have been
    1980             : // replaced with new virtual sstables in this version edit so far, which is also
    1981             : // updated in-place.
    1982             : //
    1983             : // d.mu as well as the manifest lock must be held when calling this method.
    1984             : func (d *DB) ingestSplit(
    1985             :         ve *versionEdit,
    1986             :         updateMetrics func(*fileMetadata, int, []newFileEntry),
    1987             :         files []ingestSplitFile,
    1988             :         replacedFiles map[base.FileNum][]newFileEntry,
    1989           1 : ) error {
    1990           1 :         for _, s := range files {
    1991           1 :                 ingestFileBounds := s.ingestFile.UserKeyBounds()
    1992           1 :                 // replacedFiles can be thought of as a tree, where we start iterating with
    1993           1 :                 // s.splitFile and run its fileNum through replacedFiles, then find which of
    1994           1 :                 // the replaced files overlaps with s.ingestFile, which becomes the new
    1995           1 :                 // splitFile, then we check splitFile's replacements in replacedFiles again
    1996           1 :                 // for overlap with s.ingestFile, and so on until we either can't find the
    1997           1 :                 // current splitFile in replacedFiles (i.e. that's the file that now needs to
    1998           1 :                 // be split), or we don't find a file that overlaps with s.ingestFile, which
    1999           1 :                 // means a prior ingest split already produced enough room for s.ingestFile
    2000           1 :                 // to go into this level without necessitating another ingest split.
    2001           1 :                 splitFile := s.splitFile
    2002           1 :                 for splitFile != nil {
    2003           1 :                         replaced, ok := replacedFiles[splitFile.FileNum]
    2004           1 :                         if !ok {
    2005           1 :                                 break
    2006             :                         }
    2007           1 :                         updatedSplitFile := false
    2008           1 :                         for i := range replaced {
    2009           1 :                                 if replaced[i].Meta.Overlaps(d.cmp, &ingestFileBounds) {
    2010           1 :                                         if updatedSplitFile {
    2011           0 :                                                 // This should never happen because the earlier ingestTargetLevel
    2012           0 :                                                 // function only finds split file candidates that are guaranteed to
    2013           0 :                                                 // have no data overlap, only boundary overlap. See the comments
    2014           0 :                                                 // in that method to see the definitions of data vs boundary
    2015           0 :                                                 // overlap. That, plus the fact that files in `replaced` are
    2016           0 :                                                 // guaranteed to have file bounds that are tight on user keys
    2017           0 :                                                 // (as that's what `d.excise` produces), means that the only case
    2018           0 :                                                 // where we overlap with two or more files in `replaced` is if we
    2019           0 :                                                 // actually had data overlap all along, or if the ingestion files
    2020           0 :                                                 // were overlapping, either of which is an invariant violation.
    2021           0 :                                                 panic("updated with two files in ingestSplit")
    2022             :                                         }
    2023           1 :                                         splitFile = replaced[i].Meta
    2024           1 :                                         updatedSplitFile = true
    2025             :                                 }
    2026             :                         }
    2027           1 :                         if !updatedSplitFile {
    2028           1 :                                 // None of the replaced files overlapped with the file being ingested.
    2029           1 :                                 // This can happen if we've already excised a span overlapping with
    2030           1 :                                 // this file, or if we have consecutive ingested files that can slide
    2031           1 :                                 // within the same gap between keys in an existing file. For instance,
    2032           1 :                                 // if an existing file has keys a and g and we're ingesting b-c, d-e,
    2033           1 :                                 // the first loop iteration will split the existing file into one that
    2034           1 :                                 // ends in a and another that starts at g, and the second iteration will
    2035           1 :                                 // fall into this case and require no splitting.
    2036           1 :                                 //
    2037           1 :                                 // No splitting necessary.
    2038           1 :                                 splitFile = nil
    2039           1 :                         }
    2040             :                 }
    2041           1 :                 if splitFile == nil {
    2042           1 :                         continue
    2043             :                 }
    2044             :                 // NB: excise operates on [start, end). We're splitting at [start, end]
    2045             :                 // (assuming !s.ingestFile.Largest.IsExclusiveSentinel()). The conflation
    2046             :                 // of exclusive vs inclusive end bounds should not make a difference here
    2047             :                 // as we're guaranteed to not have any data overlap between splitFile and
    2048             :                 // s.ingestFile. d.excise will return an error if we pass an inclusive user
    2049             :                 // key bound _and_ we end up seeing data overlap at the end key.
    2050           1 :                 added, err := d.excise(base.UserKeyBoundsFromInternal(s.ingestFile.Smallest, s.ingestFile.Largest), splitFile, ve, s.level)
    2051           1 :                 if err != nil {
    2052           0 :                         return err
    2053           0 :                 }
    2054           1 :                 if _, ok := ve.DeletedFiles[deletedFileEntry{
    2055           1 :                         Level:   s.level,
    2056           1 :                         FileNum: splitFile.FileNum,
    2057           1 :                 }]; !ok {
    2058           0 :                         panic("did not split file that was expected to be split")
    2059             :                 }
    2060           1 :                 replacedFiles[splitFile.FileNum] = added
    2061           1 :                 for i := range added {
    2062           1 :                         addedBounds := added[i].Meta.UserKeyBounds()
    2063           1 :                         if s.ingestFile.Overlaps(d.cmp, &addedBounds) {
    2064           0 :                                 panic("ingest-time split produced a file that overlaps with ingested file")
    2065             :                         }
    2066             :                 }
    2067           1 :                 updateMetrics(splitFile, s.level, added)
    2068             :         }
    2069             :         // Flatten the version edit by removing any entries from ve.NewFiles that
    2070             :         // are also in ve.DeletedFiles.
    2071           1 :         newNewFiles := ve.NewFiles[:0]
    2072           1 :         for i := range ve.NewFiles {
    2073           1 :                 fn := ve.NewFiles[i].Meta.FileNum
    2074           1 :                 deEntry := deletedFileEntry{Level: ve.NewFiles[i].Level, FileNum: fn}
    2075           1 :                 if _, ok := ve.DeletedFiles[deEntry]; ok {
    2076           1 :                         delete(ve.DeletedFiles, deEntry)
    2077           1 :                 } else {
    2078           1 :                         newNewFiles = append(newNewFiles, ve.NewFiles[i])
    2079           1 :                 }
    2080             :         }
    2081           1 :         ve.NewFiles = newNewFiles
    2082           1 :         return nil
    2083             : }
    2084             : 
    2085             : func (d *DB) ingestApply(
    2086             :         ctx context.Context,
    2087             :         jobID JobID,
    2088             :         lr ingestLoadResult,
    2089             :         mut *memTable,
    2090             :         exciseSpan KeyRange,
    2091             :         exciseSeqNum base.SeqNum,
    2092           1 : ) (*versionEdit, error) {
    2093           1 :         d.mu.Lock()
    2094           1 :         defer d.mu.Unlock()
    2095           1 : 
    2096           1 :         ve := &versionEdit{
    2097           1 :                 NewFiles: make([]newFileEntry, lr.fileCount()),
    2098           1 :         }
    2099           1 :         if exciseSpan.Valid() || (d.opts.Experimental.IngestSplit != nil && d.opts.Experimental.IngestSplit()) {
    2100           1 :                 ve.DeletedFiles = map[manifest.DeletedFileEntry]*manifest.FileMetadata{}
    2101           1 :         }
    2102           1 :         metrics := make(map[int]*LevelMetrics)
    2103           1 : 
    2104           1 :         // Lock the manifest for writing before we use the current version to
    2105           1 :         // determine the target level. This prevents two concurrent ingestion jobs
    2106           1 :         // from using the same version to determine the target level, and also
    2107           1 :         // provides serialization with concurrent compaction and flush jobs.
    2108           1 :         // logAndApply unconditionally releases the manifest lock, but any earlier
    2109           1 :         // returns must unlock the manifest.
    2110           1 :         d.mu.versions.logLock()
    2111           1 : 
    2112           1 :         if mut != nil {
    2113           1 :                 // Unref the mutable memtable to allows its flush to proceed. Now that we've
    2114           1 :                 // acquired the manifest lock, we can be certain that if the mutable
    2115           1 :                 // memtable has received more recent conflicting writes, the flush won't
    2116           1 :                 // beat us to applying to the manifest resulting in sequence number
    2117           1 :                 // inversion. Even though we call maybeScheduleFlush right now, this flush
    2118           1 :                 // will apply after our ingestion.
    2119           1 :                 if mut.writerUnref() {
    2120           1 :                         d.maybeScheduleFlush()
    2121           1 :                 }
    2122             :         }
    2123             : 
    2124           1 :         current := d.mu.versions.currentVersion()
    2125           1 :         overlapChecker := &overlapChecker{
    2126           1 :                 comparer: d.opts.Comparer,
    2127           1 :                 newIters: d.newIters,
    2128           1 :                 opts: IterOptions{
    2129           1 :                         logger: d.opts.Logger,
    2130           1 :                         CategoryAndQoS: sstable.CategoryAndQoS{
    2131           1 :                                 Category: "pebble-ingest",
    2132           1 :                                 QoSLevel: sstable.LatencySensitiveQoSLevel,
    2133           1 :                         },
    2134           1 :                 },
    2135           1 :                 v: current,
    2136           1 :         }
    2137           1 :         shouldIngestSplit := d.opts.Experimental.IngestSplit != nil &&
    2138           1 :                 d.opts.Experimental.IngestSplit() && d.FormatMajorVersion() >= FormatVirtualSSTables
    2139           1 :         baseLevel := d.mu.versions.picker.getBaseLevel()
    2140           1 :         // filesToSplit is a list where each element is a pair consisting of a file
    2141           1 :         // being ingested and a file being split to make room for an ingestion into
    2142           1 :         // that level. Each ingested file will appear at most once in this list. It
    2143           1 :         // is possible for split files to appear twice in this list.
    2144           1 :         filesToSplit := make([]ingestSplitFile, 0)
    2145           1 :         checkCompactions := false
    2146           1 :         for i := 0; i < lr.fileCount(); i++ {
    2147           1 :                 // Determine the lowest level in the LSM for which the sstable doesn't
    2148           1 :                 // overlap any existing files in the level.
    2149           1 :                 var m *fileMetadata
    2150           1 :                 specifiedLevel := -1
    2151           1 :                 isShared := false
    2152           1 :                 isExternal := false
    2153           1 :                 if i < len(lr.local) {
    2154           1 :                         // local file.
    2155           1 :                         m = lr.local[i].fileMetadata
    2156           1 :                 } else if (i - len(lr.local)) < len(lr.shared) {
    2157           1 :                         // shared file.
    2158           1 :                         isShared = true
    2159           1 :                         sharedIdx := i - len(lr.local)
    2160           1 :                         m = lr.shared[sharedIdx].fileMetadata
    2161           1 :                         specifiedLevel = int(lr.shared[sharedIdx].shared.Level)
    2162           1 :                 } else {
    2163           1 :                         // external file.
    2164           1 :                         isExternal = true
    2165           1 :                         externalIdx := i - (len(lr.local) + len(lr.shared))
    2166           1 :                         m = lr.external[externalIdx].fileMetadata
    2167           1 :                         if lr.externalFilesHaveLevel {
    2168           1 :                                 specifiedLevel = int(lr.external[externalIdx].external.Level)
    2169           1 :                         }
    2170             :                 }
    2171             : 
    2172             :                 // Add to CreatedBackingTables if this is a new backing.
    2173             :                 //
    2174             :                 // Shared files always have a new backing. External files have new backings
    2175             :                 // iff the backing disk file num and the file num match (see ingestAttachRemote).
    2176           1 :                 if isShared || (isExternal && m.FileBacking.DiskFileNum == base.DiskFileNum(m.FileNum)) {
    2177           1 :                         ve.CreatedBackingTables = append(ve.CreatedBackingTables, m.FileBacking)
    2178           1 :                 }
    2179             : 
    2180           1 :                 f := &ve.NewFiles[i]
    2181           1 :                 var err error
    2182           1 :                 if specifiedLevel != -1 {
    2183           1 :                         f.Level = specifiedLevel
    2184           1 :                 } else {
    2185           1 :                         var splitFile *fileMetadata
    2186           1 :                         if exciseSpan.Valid() && exciseSpan.Contains(d.cmp, m.Smallest) && exciseSpan.Contains(d.cmp, m.Largest) {
    2187           1 :                                 // This file fits perfectly within the excise span. We can slot it at
    2188           1 :                                 // L6, or sharedLevelsStart - 1 if we have shared files.
    2189           1 :                                 if len(lr.shared) > 0 || lr.externalFilesHaveLevel {
    2190           1 :                                         f.Level = sharedLevelsStart - 1
    2191           1 :                                         if baseLevel > f.Level {
    2192           1 :                                                 f.Level = 0
    2193           1 :                                         }
    2194           1 :                                 } else {
    2195           1 :                                         f.Level = 6
    2196           1 :                                 }
    2197           1 :                         } else {
    2198           1 :                                 // We check overlap against the LSM without holding DB.mu. Note that we
    2199           1 :                                 // are still holding the log lock, so the version cannot change.
    2200           1 :                                 // TODO(radu): perform this check optimistically outside of the log lock.
    2201           1 :                                 var lsmOverlap overlap.WithLSM
    2202           1 :                                 lsmOverlap, err = func() (overlap.WithLSM, error) {
    2203           1 :                                         d.mu.Unlock()
    2204           1 :                                         defer d.mu.Lock()
    2205           1 :                                         return overlapChecker.DetermineLSMOverlap(ctx, m.UserKeyBounds())
    2206           1 :                                 }()
    2207           1 :                                 if err == nil {
    2208           1 :                                         f.Level, splitFile, err = ingestTargetLevel(
    2209           1 :                                                 ctx, d.cmp, lsmOverlap, baseLevel, d.mu.compact.inProgress, m, shouldIngestSplit,
    2210           1 :                                         )
    2211           1 :                                 }
    2212             :                         }
    2213             : 
    2214           1 :                         if splitFile != nil {
    2215           1 :                                 if invariants.Enabled {
    2216           1 :                                         if lf := current.Levels[f.Level].Find(d.cmp, splitFile); lf.Empty() {
    2217           0 :                                                 panic("splitFile returned is not in level it should be")
    2218             :                                         }
    2219             :                                 }
    2220             :                                 // We take advantage of the fact that we won't drop the db mutex
    2221             :                                 // between now and the call to logAndApply. So, no files should
    2222             :                                 // get added to a new in-progress compaction at this point. We can
    2223             :                                 // avoid having to iterate on in-progress compactions to cancel them
    2224             :                                 // if none of the files being split have a compacting state.
    2225           1 :                                 if splitFile.IsCompacting() {
    2226           0 :                                         checkCompactions = true
    2227           0 :                                 }
    2228           1 :                                 filesToSplit = append(filesToSplit, ingestSplitFile{ingestFile: m, splitFile: splitFile, level: f.Level})
    2229             :                         }
    2230             :                 }
    2231           1 :                 if err != nil {
    2232           0 :                         d.mu.versions.logUnlock()
    2233           0 :                         return nil, err
    2234           0 :                 }
    2235           1 :                 if isShared && f.Level < sharedLevelsStart {
    2236           0 :                         panic(fmt.Sprintf("cannot slot a shared file higher than the highest shared level: %d < %d",
    2237           0 :                                 f.Level, sharedLevelsStart))
    2238             :                 }
    2239           1 :                 f.Meta = m
    2240           1 :                 levelMetrics := metrics[f.Level]
    2241           1 :                 if levelMetrics == nil {
    2242           1 :                         levelMetrics = &LevelMetrics{}
    2243           1 :                         metrics[f.Level] = levelMetrics
    2244           1 :                 }
    2245           1 :                 levelMetrics.NumFiles++
    2246           1 :                 levelMetrics.Size += int64(m.Size)
    2247           1 :                 levelMetrics.BytesIngested += m.Size
    2248           1 :                 levelMetrics.TablesIngested++
    2249             :         }
    2250             :         // replacedFiles maps files excised due to exciseSpan (or splitFiles returned
    2251             :         // by ingestTargetLevel), to files that were created to replace it. This map
    2252             :         // is used to resolve references to split files in filesToSplit, as it is
    2253             :         // possible for a file that we want to split to no longer exist or have a
    2254             :         // newer fileMetadata due to a split induced by another ingestion file, or an
    2255             :         // excise.
    2256           1 :         replacedFiles := make(map[base.FileNum][]newFileEntry)
    2257           1 :         updateLevelMetricsOnExcise := func(m *fileMetadata, level int, added []newFileEntry) {
    2258           1 :                 levelMetrics := metrics[level]
    2259           1 :                 if levelMetrics == nil {
    2260           1 :                         levelMetrics = &LevelMetrics{}
    2261           1 :                         metrics[level] = levelMetrics
    2262           1 :                 }
    2263           1 :                 levelMetrics.NumFiles--
    2264           1 :                 levelMetrics.Size -= int64(m.Size)
    2265           1 :                 for i := range added {
    2266           1 :                         levelMetrics.NumFiles++
    2267           1 :                         levelMetrics.Size += int64(added[i].Meta.Size)
    2268           1 :                 }
    2269             :         }
    2270           1 :         if exciseSpan.Valid() {
    2271           1 :                 // Iterate through all levels and find files that intersect with exciseSpan.
    2272           1 :                 //
    2273           1 :                 // TODO(bilal): We could drop the DB mutex here as we don't need it for
    2274           1 :                 // excises; we only need to hold the version lock which we already are
    2275           1 :                 // holding. However releasing the DB mutex could mess with the
    2276           1 :                 // ingestTargetLevel calculation that happened above, as it assumed that it
    2277           1 :                 // had a complete view of in-progress compactions that wouldn't change
    2278           1 :                 // until logAndApply is called. If we were to drop the mutex now, we could
    2279           1 :                 // schedule another in-progress compaction that would go into the chosen target
    2280           1 :                 // level and lead to file overlap within level (which would panic in
    2281           1 :                 // logAndApply). We should drop the db mutex here, do the excise, then
    2282           1 :                 // re-grab the DB mutex and rerun just the in-progress compaction check to
    2283           1 :                 // see if any new compactions are conflicting with our chosen target levels
    2284           1 :                 // for files, and if they are, we should signal those compactions to error
    2285           1 :                 // out.
    2286           1 :                 for level := range current.Levels {
    2287           1 :                         overlaps := current.Overlaps(level, exciseSpan.UserKeyBounds())
    2288           1 :                         iter := overlaps.Iter()
    2289           1 : 
    2290           1 :                         for m := iter.First(); m != nil; m = iter.Next() {
    2291           1 :                                 newFiles, err := d.excise(exciseSpan.UserKeyBounds(), m, ve, level)
    2292           1 :                                 if err != nil {
    2293           0 :                                         return nil, err
    2294           0 :                                 }
    2295             : 
    2296           1 :                                 if _, ok := ve.DeletedFiles[deletedFileEntry{
    2297           1 :                                         Level:   level,
    2298           1 :                                         FileNum: m.FileNum,
    2299           1 :                                 }]; !ok {
    2300           1 :                                         // We did not excise this file.
    2301           1 :                                         continue
    2302             :                                 }
    2303           1 :                                 replacedFiles[m.FileNum] = newFiles
    2304           1 :                                 updateLevelMetricsOnExcise(m, level, newFiles)
    2305             :                         }
    2306             :                 }
    2307             :         }
    2308           1 :         if len(filesToSplit) > 0 {
    2309           1 :                 // For the same reasons as the above call to excise, we hold the db mutex
    2310           1 :                 // while calling this method.
    2311           1 :                 if err := d.ingestSplit(ve, updateLevelMetricsOnExcise, filesToSplit, replacedFiles); err != nil {
    2312           0 :                         return nil, err
    2313           0 :                 }
    2314             :         }
    2315           1 :         if len(filesToSplit) > 0 || exciseSpan.Valid() {
    2316           1 :                 for c := range d.mu.compact.inProgress {
    2317           1 :                         if c.versionEditApplied {
    2318           0 :                                 continue
    2319             :                         }
    2320             :                         // Check if this compaction overlaps with the excise span. Note that just
    2321             :                         // checking if the inputs individually overlap with the excise span
    2322             :                         // isn't sufficient; for instance, a compaction could have [a,b] and [e,f]
    2323             :                         // as inputs and write it all out as [a,b,e,f] in one sstable. If we're
    2324             :                         // doing a [c,d) excise at the same time as this compaction, we will have
    2325             :                         // to error out the whole compaction as we can't guarantee it hasn't/won't
    2326             :                         // write a file overlapping with the excise span.
    2327           1 :                         if exciseSpan.OverlapsInternalKeyRange(d.cmp, c.smallest, c.largest) {
    2328           1 :                                 c.cancel.Store(true)
    2329           1 :                         }
    2330             :                         // Check if this compaction's inputs have been replaced due to an
    2331             :                         // ingest-time split. In that case, cancel the compaction as a newly picked
    2332             :                         // compaction would need to include any new files that slid in between
    2333             :                         // previously-existing files. Note that we cancel any compaction that has a
    2334             :                         // file that was ingest-split as an input, even if it started before this
    2335             :                         // ingestion.
    2336           1 :                         if checkCompactions {
    2337           0 :                                 for i := range c.inputs {
    2338           0 :                                         iter := c.inputs[i].files.Iter()
    2339           0 :                                         for f := iter.First(); f != nil; f = iter.Next() {
    2340           0 :                                                 if _, ok := replacedFiles[f.FileNum]; ok {
    2341           0 :                                                         c.cancel.Store(true)
    2342           0 :                                                         break
    2343             :                                                 }
    2344             :                                         }
    2345             :                                 }
    2346             :                         }
    2347             :                 }
    2348             :         }
    2349             : 
    2350           1 :         if err := d.mu.versions.logAndApply(jobID, ve, metrics, false /* forceRotation */, func() []compactionInfo {
    2351           1 :                 return d.getInProgressCompactionInfoLocked(nil)
    2352           1 :         }); err != nil {
    2353           1 :                 // Note: any error during logAndApply is fatal; this won't be reachable in production.
    2354           1 :                 return nil, err
    2355           1 :         }
    2356             : 
    2357             :         // Check for any EventuallyFileOnlySnapshots that could be watching for
    2358             :         // an excise on this span. There should be none as the
    2359             :         // computePossibleOverlaps steps should have forced these EFOS to transition
    2360             :         // to file-only snapshots by now. If we see any that conflict with this
    2361             :         // excise, panic.
    2362           1 :         if exciseSpan.Valid() {
    2363           1 :                 for s := d.mu.snapshots.root.next; s != &d.mu.snapshots.root; s = s.next {
    2364           0 :                         // Skip non-EFOS snapshots, and also skip any EFOS that were created
    2365           0 :                         // *after* the excise.
    2366           0 :                         if s.efos == nil || base.Visible(exciseSeqNum, s.efos.seqNum, base.SeqNumMax) {
    2367           0 :                                 continue
    2368             :                         }
    2369           0 :                         efos := s.efos
    2370           0 :                         // TODO(bilal): We can make this faster by taking advantage of the sorted
    2371           0 :                         // nature of protectedRanges to do a sort.Search, or even maintaining a
    2372           0 :                         // global list of all protected ranges instead of having to peer into every
    2373           0 :                         // snapshot.
    2374           0 :                         for i := range efos.protectedRanges {
    2375           0 :                                 if efos.protectedRanges[i].OverlapsKeyRange(d.cmp, exciseSpan) {
    2376           0 :                                         panic("unexpected excise of an EventuallyFileOnlySnapshot's bounds")
    2377             :                                 }
    2378             :                         }
    2379             :                 }
    2380             :         }
    2381             : 
    2382           1 :         d.mu.versions.metrics.Ingest.Count++
    2383           1 : 
    2384           1 :         d.updateReadStateLocked(d.opts.DebugCheck)
    2385           1 :         // updateReadStateLocked could have generated obsolete tables, schedule a
    2386           1 :         // cleanup job if necessary.
    2387           1 :         d.deleteObsoleteFiles(jobID)
    2388           1 :         d.updateTableStatsLocked(ve.NewFiles)
    2389           1 :         // The ingestion may have pushed a level over the threshold for compaction,
    2390           1 :         // so check to see if one is necessary and schedule it.
    2391           1 :         d.maybeScheduleCompaction()
    2392           1 :         var toValidate []manifest.NewFileEntry
    2393           1 :         dedup := make(map[base.DiskFileNum]struct{})
    2394           1 :         for _, entry := range ve.NewFiles {
    2395           1 :                 if _, ok := dedup[entry.Meta.FileBacking.DiskFileNum]; !ok {
    2396           1 :                         toValidate = append(toValidate, entry)
    2397           1 :                         dedup[entry.Meta.FileBacking.DiskFileNum] = struct{}{}
    2398           1 :                 }
    2399             :         }
    2400           1 :         d.maybeValidateSSTablesLocked(toValidate)
    2401           1 :         return ve, nil
    2402             : }
    2403             : 
    2404             : // maybeValidateSSTablesLocked adds the slice of newFileEntrys to the pending
    2405             : // queue of files to be validated, when the feature is enabled.
    2406             : //
    2407             : // Note that if two entries with the same backing file are added twice, then the
    2408             : // block checksums for the backing file will be validated twice.
    2409             : //
    2410             : // DB.mu must be locked when calling.
    2411           1 : func (d *DB) maybeValidateSSTablesLocked(newFiles []newFileEntry) {
    2412           1 :         // Only add to the validation queue when the feature is enabled.
    2413           1 :         if !d.opts.Experimental.ValidateOnIngest {
    2414           1 :                 return
    2415           1 :         }
    2416             : 
    2417           1 :         d.mu.tableValidation.pending = append(d.mu.tableValidation.pending, newFiles...)
    2418           1 :         if d.shouldValidateSSTablesLocked() {
    2419           1 :                 go d.validateSSTables()
    2420           1 :         }
    2421             : }
    2422             : 
    2423             : // shouldValidateSSTablesLocked returns true if SSTable validation should run.
    2424             : // DB.mu must be locked when calling.
    2425           1 : func (d *DB) shouldValidateSSTablesLocked() bool {
    2426           1 :         return !d.mu.tableValidation.validating &&
    2427           1 :                 d.closed.Load() == nil &&
    2428           1 :                 d.opts.Experimental.ValidateOnIngest &&
    2429           1 :                 len(d.mu.tableValidation.pending) > 0
    2430           1 : }
    2431             : 
    2432             : // validateSSTables runs a round of validation on the tables in the pending
    2433             : // queue.
    2434           1 : func (d *DB) validateSSTables() {
    2435           1 :         d.mu.Lock()
    2436           1 :         if !d.shouldValidateSSTablesLocked() {
    2437           1 :                 d.mu.Unlock()
    2438           1 :                 return
    2439           1 :         }
    2440             : 
    2441           1 :         pending := d.mu.tableValidation.pending
    2442           1 :         d.mu.tableValidation.pending = nil
    2443           1 :         d.mu.tableValidation.validating = true
    2444           1 :         jobID := d.newJobIDLocked()
    2445           1 :         rs := d.loadReadState()
    2446           1 : 
    2447           1 :         // Drop DB.mu before performing IO.
    2448           1 :         d.mu.Unlock()
    2449           1 : 
    2450           1 :         // Validate all tables in the pending queue. This could lead to a situation
    2451           1 :         // where we are starving IO from other tasks due to having to page through
    2452           1 :         // all the blocks in all the sstables in the queue.
    2453           1 :         // TODO(travers): Add some form of pacing to avoid IO starvation.
    2454           1 : 
    2455           1 :         // If we fail to validate any files due to reasons other than uncovered
    2456           1 :         // corruption, accumulate them and re-queue them for another attempt.
    2457           1 :         var retry []manifest.NewFileEntry
    2458           1 : 
    2459           1 :         for _, f := range pending {
    2460           1 :                 // The file may have been moved or deleted since it was ingested, in
    2461           1 :                 // which case we skip.
    2462           1 :                 if !rs.current.Contains(f.Level, f.Meta) {
    2463           0 :                         // Assume the file was moved to a lower level. It is rare enough
    2464           0 :                         // that a table is moved or deleted between the time it was ingested
    2465           0 :                         // and the time the validation routine runs that the overall cost of
    2466           0 :                         // this inner loop is tolerably low, when amortized over all
    2467           0 :                         // ingested tables.
    2468           0 :                         found := false
    2469           0 :                         for i := f.Level + 1; i < numLevels; i++ {
    2470           0 :                                 if rs.current.Contains(i, f.Meta) {
    2471           0 :                                         found = true
    2472           0 :                                         break
    2473             :                                 }
    2474             :                         }
    2475           0 :                         if !found {
    2476           0 :                                 continue
    2477             :                         }
    2478             :                 }
    2479             : 
    2480           1 :                 var err error
    2481           1 :                 if f.Meta.Virtual {
    2482           1 :                         err = d.tableCache.withVirtualReader(
    2483           1 :                                 f.Meta.VirtualMeta(), func(v sstable.VirtualReader) error {
    2484           1 :                                         return v.ValidateBlockChecksumsOnBacking()
    2485           1 :                                 })
    2486           1 :                 } else {
    2487           1 :                         err = d.tableCache.withReader(
    2488           1 :                                 f.Meta.PhysicalMeta(), func(r *sstable.Reader) error {
    2489           1 :                                         return r.ValidateBlockChecksums()
    2490           1 :                                 })
    2491             :                 }
    2492             : 
    2493           1 :                 if err != nil {
    2494           1 :                         if IsCorruptionError(err) {
    2495           1 :                                 // TODO(travers): Hook into the corruption reporting pipeline, once
    2496           1 :                                 // available. See pebble#1192.
    2497           1 :                                 d.opts.Logger.Fatalf("pebble: encountered corruption during ingestion: %s", err)
    2498           1 :                         } else {
    2499           1 :                                 // If there was some other, possibly transient, error that
    2500           1 :                                 // caused table validation to fail inform the EventListener and
    2501           1 :                                 // move on. We remember the table so that we can retry it in a
    2502           1 :                                 // subsequent table validation job.
    2503           1 :                                 //
    2504           1 :                                 // TODO(jackson): If the error is not transient, this will retry
    2505           1 :                                 // validation indefinitely. While not great, it's the same
    2506           1 :                                 // behavior as erroring flushes and compactions. We should
    2507           1 :                                 // address this as a part of #270.
    2508           1 :                                 d.opts.EventListener.BackgroundError(err)
    2509           1 :                                 retry = append(retry, f)
    2510           1 :                                 continue
    2511             :                         }
    2512             :                 }
    2513             : 
    2514           1 :                 d.opts.EventListener.TableValidated(TableValidatedInfo{
    2515           1 :                         JobID: int(jobID),
    2516           1 :                         Meta:  f.Meta,
    2517           1 :                 })
    2518             :         }
    2519           1 :         rs.unref()
    2520           1 :         d.mu.Lock()
    2521           1 :         defer d.mu.Unlock()
    2522           1 :         d.mu.tableValidation.pending = append(d.mu.tableValidation.pending, retry...)
    2523           1 :         d.mu.tableValidation.validating = false
    2524           1 :         d.mu.tableValidation.cond.Broadcast()
    2525           1 :         if d.shouldValidateSSTablesLocked() {
    2526           1 :                 go d.validateSSTables()
    2527           1 :         }
    2528             : }

Generated by: LCOV version 1.14