Line data Source code
1 : // Copyright 2011 The LevelDB-Go and Pebble Authors. All rights reserved. Use
2 : // of this source code is governed by a BSD-style license that can be found in
3 : // the LICENSE file.
4 :
5 : package pebble
6 :
7 : import (
8 : "bytes"
9 : "context"
10 : "io"
11 : "sync"
12 : "unsafe"
13 :
14 : "github.com/cockroachdb/errors"
15 : "github.com/cockroachdb/pebble/internal/base"
16 : "github.com/cockroachdb/pebble/internal/bytealloc"
17 : "github.com/cockroachdb/pebble/internal/fastrand"
18 : "github.com/cockroachdb/pebble/internal/humanize"
19 : "github.com/cockroachdb/pebble/internal/invariants"
20 : "github.com/cockroachdb/pebble/internal/keyspan"
21 : "github.com/cockroachdb/pebble/internal/keyspan/keyspanimpl"
22 : "github.com/cockroachdb/pebble/internal/manifest"
23 : "github.com/cockroachdb/pebble/internal/rangekeystack"
24 : "github.com/cockroachdb/pebble/internal/treeprinter"
25 : "github.com/cockroachdb/pebble/sstable"
26 : "github.com/cockroachdb/redact"
27 : )
28 :
29 : // iterPos describes the state of the internal iterator, in terms of whether it
30 : // is at the position returned to the user (cur), one ahead of the position
31 : // returned (next for forward iteration and prev for reverse iteration). The cur
32 : // position is split into two states, for forward and reverse iteration, since
33 : // we need to differentiate for switching directions.
34 : //
35 : // There is subtlety in what is considered the current position of the Iterator.
36 : // The internal iterator exposes a sequence of internal keys. There is not
37 : // always a single internalIterator position corresponding to the position
38 : // returned to the user. Consider the example:
39 : //
40 : // a.MERGE.9 a.MERGE.8 a.MERGE.7 a.SET.6 b.DELETE.9 b.DELETE.5 b.SET.4
41 : // \ /
42 : // \ Iterator.Key() = 'a' /
43 : //
44 : // The Iterator exposes one valid position at user key 'a' and the two exhausted
45 : // positions at the beginning and end of iteration. The underlying
46 : // internalIterator contains 7 valid positions and 2 exhausted positions.
47 : //
48 : // Iterator positioning methods must set iterPos to iterPosCur{Foward,Backward}
49 : // iff the user key at the current internalIterator position equals the
50 : // Iterator.Key returned to the user. This guarantees that a call to nextUserKey
51 : // or prevUserKey will advance to the next or previous iterator position.
52 : // iterPosCur{Forward,Backward} does not make any guarantee about the internal
53 : // iterator position among internal keys with matching user keys, and it will
54 : // vary subtly depending on the particular key kinds encountered. In the above
55 : // example, the iterator returning 'a' may set iterPosCurForward if the internal
56 : // iterator is positioned at any of a.MERGE.9, a.MERGE.8, a.MERGE.7 or a.SET.6.
57 : //
58 : // When setting iterPos to iterPosNext or iterPosPrev, the internal iterator
59 : // must be advanced to the first internalIterator position at a user key greater
60 : // (iterPosNext) or less (iterPosPrev) than the key returned to the user. An
61 : // internalIterator position that's !Valid() must also be considered greater or
62 : // less—depending on the direction of iteration—than the last valid Iterator
63 : // position.
64 : type iterPos int8
65 :
66 : const (
67 : iterPosCurForward iterPos = 0
68 : iterPosNext iterPos = 1
69 : iterPosPrev iterPos = -1
70 : iterPosCurReverse iterPos = -2
71 :
72 : // For limited iteration. When the iterator is at iterPosCurForwardPaused
73 : // - Next*() call should behave as if the internal iterator is already
74 : // at next (akin to iterPosNext).
75 : // - Prev*() call should behave as if the internal iterator is at the
76 : // current key (akin to iterPosCurForward).
77 : //
78 : // Similar semantics apply to CurReversePaused.
79 : iterPosCurForwardPaused iterPos = 2
80 : iterPosCurReversePaused iterPos = -3
81 : )
82 :
83 : // Approximate gap in bytes between samples of data read during iteration.
84 : // This is multiplied with a default ReadSamplingMultiplier of 1 << 4 to yield
85 : // 1 << 20 (1MB). The 1MB factor comes from:
86 : // https://github.com/cockroachdb/pebble/issues/29#issuecomment-494477985
87 : const readBytesPeriod uint64 = 1 << 16
88 :
89 : var errReversePrefixIteration = errors.New("pebble: unsupported reverse prefix iteration")
90 :
91 : // IteratorMetrics holds per-iterator metrics. These do not change over the
92 : // lifetime of the iterator.
93 : type IteratorMetrics struct {
94 : // The read amplification experienced by this iterator. This is the sum of
95 : // the memtables, the L0 sublevels and the non-empty Ln levels. Higher read
96 : // amplification generally results in slower reads, though allowing higher
97 : // read amplification can also result in faster writes.
98 : ReadAmp int
99 : }
100 :
101 : // IteratorStatsKind describes the two kind of iterator stats.
102 : type IteratorStatsKind int8
103 :
104 : const (
105 : // InterfaceCall represents calls to Iterator.
106 : InterfaceCall IteratorStatsKind = iota
107 : // InternalIterCall represents calls by Iterator to its internalIterator.
108 : InternalIterCall
109 : // NumStatsKind is the number of kinds, and is used for array sizing.
110 : NumStatsKind
111 : )
112 :
113 : // IteratorStats contains iteration stats.
114 : type IteratorStats struct {
115 : // ForwardSeekCount includes SeekGE, SeekPrefixGE, First.
116 : ForwardSeekCount [NumStatsKind]int
117 : // ReverseSeek includes SeekLT, Last.
118 : ReverseSeekCount [NumStatsKind]int
119 : // ForwardStepCount includes Next.
120 : ForwardStepCount [NumStatsKind]int
121 : // ReverseStepCount includes Prev.
122 : ReverseStepCount [NumStatsKind]int
123 : InternalStats InternalIteratorStats
124 : RangeKeyStats RangeKeyIteratorStats
125 : }
126 :
127 : var _ redact.SafeFormatter = &IteratorStats{}
128 :
129 : // InternalIteratorStats contains miscellaneous stats produced by internal
130 : // iterators.
131 : type InternalIteratorStats = base.InternalIteratorStats
132 :
133 : // RangeKeyIteratorStats contains miscellaneous stats about range keys
134 : // encountered by the iterator.
135 : type RangeKeyIteratorStats struct {
136 : // Count records the number of range keys encountered during
137 : // iteration. Range keys may be counted multiple times if the iterator
138 : // leaves a range key's bounds and then returns.
139 : Count int
140 : // ContainedPoints records the number of point keys encountered within the
141 : // bounds of a range key. Note that this includes point keys with suffixes
142 : // that sort both above and below the covering range key's suffix.
143 : ContainedPoints int
144 : // SkippedPoints records the count of the subset of ContainedPoints point
145 : // keys that were skipped during iteration due to range-key masking. It does
146 : // not include point keys that were never loaded because a
147 : // RangeKeyMasking.Filter excluded the entire containing block.
148 : SkippedPoints int
149 : }
150 :
151 : // Merge adds all of the argument's statistics to the receiver. It may be used
152 : // to accumulate stats across multiple iterators.
153 0 : func (s *RangeKeyIteratorStats) Merge(o RangeKeyIteratorStats) {
154 0 : s.Count += o.Count
155 0 : s.ContainedPoints += o.ContainedPoints
156 0 : s.SkippedPoints += o.SkippedPoints
157 0 : }
158 :
159 0 : func (s *RangeKeyIteratorStats) String() string {
160 0 : return redact.StringWithoutMarkers(s)
161 0 : }
162 :
163 : // SafeFormat implements the redact.SafeFormatter interface.
164 0 : func (s *RangeKeyIteratorStats) SafeFormat(p redact.SafePrinter, verb rune) {
165 0 : p.Printf("range keys: %s, contained points: %s (%s skipped)",
166 0 : humanize.Count.Uint64(uint64(s.Count)),
167 0 : humanize.Count.Uint64(uint64(s.ContainedPoints)),
168 0 : humanize.Count.Uint64(uint64(s.SkippedPoints)))
169 0 : }
170 :
171 : // LazyValue is a lazy value. See the long comment in base.LazyValue.
172 : type LazyValue = base.LazyValue
173 :
174 : // Iterator iterates over a DB's key/value pairs in key order.
175 : //
176 : // An iterator must be closed after use, but it is not necessary to read an
177 : // iterator until exhaustion.
178 : //
179 : // An iterator is not goroutine-safe, but it is safe to use multiple iterators
180 : // concurrently, with each in a dedicated goroutine.
181 : //
182 : // It is also safe to use an iterator concurrently with modifying its
183 : // underlying DB, if that DB permits modification. However, the resultant
184 : // key/value pairs are not guaranteed to be a consistent snapshot of that DB
185 : // at a particular point in time.
186 : //
187 : // If an iterator encounters an error during any operation, it is stored by
188 : // the Iterator and surfaced through the Error method. All absolute
189 : // positioning methods (eg, SeekLT, SeekGT, First, Last, etc) reset any
190 : // accumulated error before positioning. All relative positioning methods (eg,
191 : // Next, Prev) return without advancing if the iterator has an accumulated
192 : // error.
193 : type Iterator struct {
194 : // The context is stored here since (a) Iterators are expected to be
195 : // short-lived (since they pin memtables and sstables), (b) plumbing a
196 : // context into every method is very painful, (c) they do not (yet) respect
197 : // context cancellation and are only used for tracing.
198 : ctx context.Context
199 : opts IterOptions
200 : merge Merge
201 : comparer base.Comparer
202 : iter internalIterator
203 : pointIter topLevelIterator
204 : // Either readState or version is set, but not both.
205 : readState *readState
206 : version *version
207 : // rangeKey holds iteration state specific to iteration over range keys.
208 : // The range key field may be nil if the Iterator has never been configured
209 : // to iterate over range keys. Its non-nilness cannot be used to determine
210 : // if the Iterator is currently iterating over range keys: For that, consult
211 : // the IterOptions using opts.rangeKeys(). If non-nil, its rangeKeyIter
212 : // field is guaranteed to be non-nil too.
213 : rangeKey *iteratorRangeKeyState
214 : // rangeKeyMasking holds state for range-key masking of point keys.
215 : rangeKeyMasking rangeKeyMasking
216 : err error
217 : // When iterValidityState=IterValid, key represents the current key, which
218 : // is backed by keyBuf.
219 : key []byte
220 : keyBuf []byte
221 : value LazyValue
222 : // For use in LazyValue.Clone.
223 : valueBuf []byte
224 : fetcher base.LazyFetcher
225 : // For use in LazyValue.Value.
226 : lazyValueBuf []byte
227 : valueCloser io.Closer
228 : // boundsBuf holds two buffers used to store the lower and upper bounds.
229 : // Whenever the Iterator's bounds change, the new bounds are copied into
230 : // boundsBuf[boundsBufIdx]. The two bounds share a slice to reduce
231 : // allocations. opts.LowerBound and opts.UpperBound point into this slice.
232 : boundsBuf [2][]byte
233 : boundsBufIdx int
234 : // iterKV reflects the latest position of iter, except when SetBounds is
235 : // called. In that case, it is explicitly set to nil.
236 : iterKV *base.InternalKV
237 : alloc *iterAlloc
238 : getIterAlloc *getIterAlloc
239 : prefixOrFullSeekKey []byte
240 : readSampling readSampling
241 : stats IteratorStats
242 : externalReaders [][]*sstable.Reader
243 :
244 : // Following fields used when constructing an iterator stack, eg, in Clone
245 : // and SetOptions or when re-fragmenting a batch's range keys/range dels.
246 : // Non-nil if this Iterator includes a Batch.
247 : batch *Batch
248 : newIters tableNewIters
249 : newIterRangeKey keyspanimpl.TableNewSpanIter
250 : lazyCombinedIter lazyCombinedIter
251 : seqNum base.SeqNum
252 : // batchSeqNum is used by Iterators over indexed batches to detect when the
253 : // underlying batch has been mutated. The batch beneath an indexed batch may
254 : // be mutated while the Iterator is open, but new keys are not surfaced
255 : // until the next call to SetOptions.
256 : batchSeqNum base.SeqNum
257 : // batch{PointIter,RangeDelIter,RangeKeyIter} are used when the Iterator is
258 : // configured to read through an indexed batch. If a batch is set, these
259 : // iterators will be included within the iterator stack regardless of
260 : // whether the batch currently contains any keys of their kind. These
261 : // pointers are used during a call to SetOptions to refresh the Iterator's
262 : // view of its indexed batch.
263 : batchPointIter batchIter
264 : batchRangeDelIter keyspan.Iter
265 : batchRangeKeyIter keyspan.Iter
266 : // merging is a pointer to this iterator's point merging iterator. It
267 : // appears here because key visibility is handled by the merging iterator.
268 : // During SetOptions on an iterator over an indexed batch, this field is
269 : // used to update the merging iterator's batch snapshot.
270 : merging *mergingIter
271 :
272 : // Keeping the bools here after all the 8 byte aligned fields shrinks the
273 : // sizeof this struct by 24 bytes.
274 :
275 : // INVARIANT:
276 : // iterValidityState==IterAtLimit <=>
277 : // pos==iterPosCurForwardPaused || pos==iterPosCurReversePaused
278 : iterValidityState IterValidityState
279 : // Set to true by SetBounds, SetOptions. Causes the Iterator to appear
280 : // exhausted externally, while preserving the correct iterValidityState for
281 : // the iterator's internal state. Preserving the correct internal validity
282 : // is used for SeekPrefixGE(..., trySeekUsingNext), and SeekGE/SeekLT
283 : // optimizations after "no-op" calls to SetBounds and SetOptions.
284 : requiresReposition bool
285 : // The position of iter. When this is iterPos{Prev,Next} the iter has been
286 : // moved past the current key-value, which can only happen if
287 : // iterValidityState=IterValid, i.e., there is something to return to the
288 : // client for the current position.
289 : pos iterPos
290 : // Relates to the prefixOrFullSeekKey field above.
291 : hasPrefix bool
292 : // Used for deriving the value of SeekPrefixGE(..., trySeekUsingNext),
293 : // and SeekGE/SeekLT optimizations
294 : lastPositioningOp lastPositioningOpKind
295 : // Used for determining when it's safe to perform SeekGE optimizations that
296 : // reuse the iterator state to avoid the cost of a full seek if the iterator
297 : // is already positioned in the correct place. If the iterator's view of its
298 : // indexed batch was just refreshed, some optimizations cannot be applied on
299 : // the first seek after the refresh:
300 : // - SeekGE has a no-op optimization that does not seek on the internal
301 : // iterator at all if the iterator is already in the correct place.
302 : // This optimization cannot be performed if the internal iterator was
303 : // last positioned when the iterator had a different view of an
304 : // underlying batch.
305 : // - Seek[Prefix]GE set flags.TrySeekUsingNext()=true when the seek key is
306 : // greater than the previous operation's seek key, under the expectation
307 : // that the various internal iterators can use their current position to
308 : // avoid a full expensive re-seek. This applies to the batchIter as well.
309 : // However, if the view of the batch was just refreshed, the batchIter's
310 : // position is not useful because it may already be beyond new keys less
311 : // than the seek key. To prevent the use of this optimization in
312 : // batchIter, Seek[Prefix]GE set flags.BatchJustRefreshed()=true if this
313 : // bit is enabled.
314 : batchJustRefreshed bool
315 : // batchOnlyIter is set to true for Batch.NewBatchOnlyIter.
316 : batchOnlyIter bool
317 : // Used in some tests to disable the random disabling of seek optimizations.
318 : forceEnableSeekOpt bool
319 : // Set to true if NextPrefix is not currently permitted. Defaults to false
320 : // in case an iterator never had any bounds.
321 : nextPrefixNotPermittedByUpperBound bool
322 : }
323 :
324 : // cmp is a convenience shorthand for the i.comparer.Compare function.
325 1 : func (i *Iterator) cmp(a, b []byte) int {
326 1 : return i.comparer.Compare(a, b)
327 1 : }
328 :
329 : // equal is a convenience shorthand for the i.comparer.Equal function.
330 1 : func (i *Iterator) equal(a, b []byte) bool {
331 1 : return i.comparer.Equal(a, b)
332 1 : }
333 :
334 : // iteratorRangeKeyState holds an iterator's range key iteration state.
335 : type iteratorRangeKeyState struct {
336 : opts *IterOptions
337 : cmp base.Compare
338 : split base.Split
339 : // rangeKeyIter holds the range key iterator stack that iterates over the
340 : // merged spans across the entirety of the LSM.
341 : rangeKeyIter keyspan.FragmentIterator
342 : iiter keyspan.InterleavingIter
343 : // stale is set to true when the range key state recorded here (in start,
344 : // end and keys) may not be in sync with the current range key at the
345 : // interleaving iterator's current position.
346 : //
347 : // When the interelaving iterator passes over a new span, it invokes the
348 : // SpanChanged hook defined on the `rangeKeyMasking` type, which sets stale
349 : // to true if the span is non-nil.
350 : //
351 : // The parent iterator may not be positioned over the interleaving
352 : // iterator's current position (eg, i.iterPos = iterPos{Next,Prev}), so
353 : // {keys,start,end} are only updated to the new range key during a call to
354 : // Iterator.saveRangeKey.
355 : stale bool
356 : // updated is used to signal to the Iterator client whether the state of
357 : // range keys has changed since the previous iterator position through the
358 : // `RangeKeyChanged` method. It's set to true during an Iterator positioning
359 : // operation that changes the state of the current range key. Each Iterator
360 : // positioning operation sets it back to false before executing.
361 : //
362 : // TODO(jackson): The lifecycle of {stale,updated,prevPosHadRangeKey} is
363 : // intricate and confusing. Try to refactor to reduce complexity.
364 : updated bool
365 : // prevPosHadRangeKey records whether the previous Iterator position had a
366 : // range key (HasPointAndRage() = (_, true)). It's updated at the beginning
367 : // of each new Iterator positioning operation. It's required by saveRangeKey to
368 : // to set `updated` appropriately: Without this record of the previous iterator
369 : // state, it's ambiguous whether an iterator only temporarily stepped onto a
370 : // position without a range key.
371 : prevPosHadRangeKey bool
372 : // rangeKeyOnly is set to true if at the current iterator position there is
373 : // no point key, only a range key start boundary.
374 : rangeKeyOnly bool
375 : // hasRangeKey is true when the current iterator position has a covering
376 : // range key (eg, a range key with bounds [<lower>,<upper>) such that
377 : // <lower> ≤ Key() < <upper>).
378 : hasRangeKey bool
379 : // start and end are the [start, end) boundaries of the current range keys.
380 : start []byte
381 : end []byte
382 :
383 : rangeKeyBuffers
384 :
385 : // iterConfig holds fields that are used for the construction of the
386 : // iterator stack, but do not need to be directly accessed during iteration.
387 : // This struct is bundled within the iteratorRangeKeyState struct to reduce
388 : // allocations.
389 : iterConfig rangekeystack.UserIteratorConfig
390 : }
391 :
392 : type rangeKeyBuffers struct {
393 : // keys is sorted by Suffix ascending.
394 : keys []RangeKeyData
395 : // buf is used to save range-key data before moving the range-key iterator.
396 : // Start and end boundaries, suffixes and values are all copied into buf.
397 : buf bytealloc.A
398 : // internal holds buffers used by the range key internal iterators.
399 : internal rangekeystack.Buffers
400 : }
401 :
402 1 : func (b *rangeKeyBuffers) PrepareForReuse() {
403 1 : const maxKeysReuse = 100
404 1 : if len(b.keys) > maxKeysReuse {
405 0 : b.keys = nil
406 0 : }
407 : // Avoid caching the key buf if it is overly large. The constant is
408 : // fairly arbitrary.
409 1 : if cap(b.buf) >= maxKeyBufCacheSize {
410 1 : b.buf = nil
411 1 : } else {
412 1 : b.buf = b.buf[:0]
413 1 : }
414 1 : b.internal.PrepareForReuse()
415 : }
416 :
417 1 : func (i *iteratorRangeKeyState) init(cmp base.Compare, split base.Split, opts *IterOptions) {
418 1 : i.cmp = cmp
419 1 : i.split = split
420 1 : i.opts = opts
421 1 : }
422 :
423 : var iterRangeKeyStateAllocPool = sync.Pool{
424 1 : New: func() interface{} {
425 1 : return &iteratorRangeKeyState{}
426 1 : },
427 : }
428 :
429 : // isEphemeralPosition returns true iff the current iterator position is
430 : // ephemeral, and won't be visited during subsequent relative positioning
431 : // operations.
432 : //
433 : // The iterator position resulting from a SeekGE or SeekPrefixGE that lands on a
434 : // straddling range key without a coincident point key is such a position.
435 1 : func (i *Iterator) isEphemeralPosition() bool {
436 1 : return i.opts.rangeKeys() && i.rangeKey != nil && i.rangeKey.rangeKeyOnly &&
437 1 : !i.equal(i.rangeKey.start, i.key)
438 1 : }
439 :
440 : type lastPositioningOpKind int8
441 :
442 : const (
443 : unknownLastPositionOp lastPositioningOpKind = iota
444 : seekPrefixGELastPositioningOp
445 : seekGELastPositioningOp
446 : seekLTLastPositioningOp
447 : // internalNextOp is a special internal iterator positioning operation used
448 : // by CanDeterministicallySingleDelete. It exists for enforcing requirements
449 : // around calling CanDeterministicallySingleDelete at most once per external
450 : // iterator position.
451 : internalNextOp
452 : )
453 :
454 : // Limited iteration mode. Not for use with prefix iteration.
455 : //
456 : // SeekGE, SeekLT, Prev, Next have WithLimit variants, that pause the iterator
457 : // at the limit in a best-effort manner. The client should behave correctly
458 : // even if the limits are ignored. These limits are not "deep", in that they
459 : // are not passed down to the underlying collection of internalIterators. This
460 : // is because the limits are transient, and apply only until the next
461 : // iteration call. They serve mainly as a way to bound the amount of work when
462 : // two (or more) Iterators are being coordinated at a higher level.
463 : //
464 : // In limited iteration mode:
465 : // - Avoid using Iterator.Valid if the last call was to a *WithLimit() method.
466 : // The return value from the *WithLimit() method provides a more precise
467 : // disposition.
468 : // - The limit is exclusive for forward and inclusive for reverse.
469 : //
470 : //
471 : // Limited iteration mode & range keys
472 : //
473 : // Limited iteration interacts with range-key iteration. When range key
474 : // iteration is enabled, range keys are interleaved at their start boundaries.
475 : // Limited iteration must ensure that if a range key exists within the limit,
476 : // the iterator visits the range key.
477 : //
478 : // During forward limited iteration, this is trivial: An overlapping range key
479 : // must have a start boundary less than the limit, and the range key's start
480 : // boundary will be interleaved and found to be within the limit.
481 : //
482 : // During reverse limited iteration, the tail of the range key may fall within
483 : // the limit. The range key must be surfaced even if the range key's start
484 : // boundary is less than the limit, and if there are no point keys between the
485 : // current iterator position and the limit. To provide this guarantee, reverse
486 : // limited iteration ignores the limit as long as there is a range key
487 : // overlapping the iteration position.
488 :
489 : // IterValidityState captures the state of the Iterator.
490 : type IterValidityState int8
491 :
492 : const (
493 : // IterExhausted represents an Iterator that is exhausted.
494 : IterExhausted IterValidityState = iota
495 : // IterValid represents an Iterator that is valid.
496 : IterValid
497 : // IterAtLimit represents an Iterator that has a non-exhausted
498 : // internalIterator, but has reached a limit without any key for the
499 : // caller.
500 : IterAtLimit
501 : )
502 :
503 : // readSampling stores variables used to sample a read to trigger a read
504 : // compaction
505 : type readSampling struct {
506 : bytesUntilReadSampling uint64
507 : initialSamplePassed bool
508 : pendingCompactions readCompactionQueue
509 : // forceReadSampling is used for testing purposes to force a read sample on every
510 : // call to Iterator.maybeSampleRead()
511 : forceReadSampling bool
512 : }
513 :
514 1 : func (i *Iterator) findNextEntry(limit []byte) {
515 1 : i.iterValidityState = IterExhausted
516 1 : i.pos = iterPosCurForward
517 1 : if i.opts.rangeKeys() && i.rangeKey != nil {
518 1 : i.rangeKey.rangeKeyOnly = false
519 1 : }
520 :
521 : // Close the closer for the current value if one was open.
522 1 : if i.closeValueCloser() != nil {
523 0 : return
524 0 : }
525 :
526 1 : for i.iterKV != nil {
527 1 : key := i.iterKV.K
528 1 :
529 1 : // The topLevelIterator.StrictSeekPrefixGE contract requires that in
530 1 : // prefix mode [i.hasPrefix=t], every point key returned by the internal
531 1 : // iterator must have the current iteration prefix.
532 1 : if invariants.Enabled && i.hasPrefix {
533 1 : // Range keys are an exception to the contract and may return a different
534 1 : // prefix. This case is explicitly handled in the switch statement below.
535 1 : if key.Kind() != base.InternalKeyKindRangeKeySet {
536 1 : if p := i.comparer.Split.Prefix(key.UserKey); !i.equal(i.prefixOrFullSeekKey, p) {
537 0 : i.opts.logger.Fatalf("pebble: prefix violation: key %q does not have prefix %q\n", key.UserKey, i.prefixOrFullSeekKey)
538 0 : }
539 : }
540 : }
541 :
542 : // Compare with limit every time we start at a different user key.
543 : // Note that given the best-effort contract of limit, we could avoid a
544 : // comparison in the common case by doing this only after
545 : // i.nextUserKey is called for the deletes below. However that makes
546 : // the behavior non-deterministic (since the behavior will vary based
547 : // on what has been compacted), which makes it hard to test with the
548 : // metamorphic test. So we forego that performance optimization.
549 1 : if limit != nil && i.cmp(limit, i.iterKV.K.UserKey) <= 0 {
550 1 : i.iterValidityState = IterAtLimit
551 1 : i.pos = iterPosCurForwardPaused
552 1 : return
553 1 : }
554 :
555 : // If the user has configured a SkipPoint function, invoke it to see
556 : // whether we should skip over the current user key.
557 1 : if i.opts.SkipPoint != nil && key.Kind() != InternalKeyKindRangeKeySet && i.opts.SkipPoint(i.iterKV.K.UserKey) {
558 1 : // NB: We could call nextUserKey, but in some cases the SkipPoint
559 1 : // predicate function might be cheaper than nextUserKey's key copy
560 1 : // and key comparison. This should be the case for MVCC suffix
561 1 : // comparisons, for example. In the future, we could expand the
562 1 : // SkipPoint interface to give the implementor more control over
563 1 : // whether we skip over just the internal key, the user key, or even
564 1 : // the key prefix.
565 1 : i.stats.ForwardStepCount[InternalIterCall]++
566 1 : i.iterKV = i.iter.Next()
567 1 : continue
568 : }
569 :
570 1 : switch key.Kind() {
571 1 : case InternalKeyKindRangeKeySet:
572 1 : if i.hasPrefix {
573 1 : if p := i.comparer.Split.Prefix(key.UserKey); !i.equal(i.prefixOrFullSeekKey, p) {
574 1 : return
575 1 : }
576 : }
577 : // Save the current key.
578 1 : i.keyBuf = append(i.keyBuf[:0], key.UserKey...)
579 1 : i.key = i.keyBuf
580 1 : i.value = LazyValue{}
581 1 : // There may also be a live point key at this userkey that we have
582 1 : // not yet read. We need to find the next entry with this user key
583 1 : // to find it. Save the range key so we don't lose it when we Next
584 1 : // the underlying iterator.
585 1 : i.saveRangeKey()
586 1 : pointKeyExists := i.nextPointCurrentUserKey()
587 1 : if i.err != nil {
588 0 : i.iterValidityState = IterExhausted
589 0 : return
590 0 : }
591 1 : i.rangeKey.rangeKeyOnly = !pointKeyExists
592 1 : i.iterValidityState = IterValid
593 1 : return
594 :
595 1 : case InternalKeyKindDelete, InternalKeyKindSingleDelete, InternalKeyKindDeleteSized:
596 1 : // NB: treating InternalKeyKindSingleDelete as equivalent to DEL is not
597 1 : // only simpler, but is also necessary for correctness due to
598 1 : // InternalKeyKindSSTableInternalObsoleteBit.
599 1 : i.nextUserKey()
600 1 : continue
601 :
602 1 : case InternalKeyKindSet, InternalKeyKindSetWithDelete:
603 1 : i.keyBuf = append(i.keyBuf[:0], key.UserKey...)
604 1 : i.key = i.keyBuf
605 1 : i.value = i.iterKV.V
606 1 : i.iterValidityState = IterValid
607 1 : i.saveRangeKey()
608 1 : return
609 :
610 1 : case InternalKeyKindMerge:
611 1 : // Resolving the merge may advance us to the next point key, which
612 1 : // may be covered by a different set of range keys. Save the range
613 1 : // key state so we don't lose it.
614 1 : i.saveRangeKey()
615 1 : if i.mergeForward(key) {
616 1 : i.iterValidityState = IterValid
617 1 : return
618 1 : }
619 :
620 : // The merge didn't yield a valid key, either because the value
621 : // merger indicated it should be deleted, or because an error was
622 : // encountered.
623 0 : i.iterValidityState = IterExhausted
624 0 : if i.err != nil {
625 0 : return
626 0 : }
627 0 : if i.pos != iterPosNext {
628 0 : i.nextUserKey()
629 0 : }
630 0 : if i.closeValueCloser() != nil {
631 0 : return
632 0 : }
633 0 : i.pos = iterPosCurForward
634 :
635 0 : default:
636 0 : i.err = base.CorruptionErrorf("pebble: invalid internal key kind: %d", errors.Safe(key.Kind()))
637 0 : i.iterValidityState = IterExhausted
638 0 : return
639 : }
640 : }
641 :
642 : // Is iterKey nil due to an error?
643 1 : if err := i.iter.Error(); err != nil {
644 0 : i.err = err
645 0 : i.iterValidityState = IterExhausted
646 0 : }
647 : }
648 :
649 1 : func (i *Iterator) nextPointCurrentUserKey() bool {
650 1 : // If the user has configured a SkipPoint function and the current user key
651 1 : // would be skipped by it, there's no need to step forward looking for a
652 1 : // point key. If we were to find one, it should be skipped anyways.
653 1 : if i.opts.SkipPoint != nil && i.opts.SkipPoint(i.key) {
654 1 : return false
655 1 : }
656 :
657 1 : i.pos = iterPosCurForward
658 1 :
659 1 : i.iterKV = i.iter.Next()
660 1 : i.stats.ForwardStepCount[InternalIterCall]++
661 1 : if i.iterKV == nil {
662 1 : if err := i.iter.Error(); err != nil {
663 0 : i.err = err
664 1 : } else {
665 1 : i.pos = iterPosNext
666 1 : }
667 1 : return false
668 : }
669 1 : if !i.equal(i.key, i.iterKV.K.UserKey) {
670 1 : i.pos = iterPosNext
671 1 : return false
672 1 : }
673 :
674 1 : key := i.iterKV.K
675 1 : switch key.Kind() {
676 0 : case InternalKeyKindRangeKeySet:
677 0 : // RangeKeySets must always be interleaved as the first internal key
678 0 : // for a user key.
679 0 : i.err = base.CorruptionErrorf("pebble: unexpected range key set mid-user key")
680 0 : return false
681 :
682 1 : case InternalKeyKindDelete, InternalKeyKindSingleDelete, InternalKeyKindDeleteSized:
683 1 : // NB: treating InternalKeyKindSingleDelete as equivalent to DEL is not
684 1 : // only simpler, but is also necessary for correctness due to
685 1 : // InternalKeyKindSSTableInternalObsoleteBit.
686 1 : return false
687 :
688 1 : case InternalKeyKindSet, InternalKeyKindSetWithDelete:
689 1 : i.value = i.iterKV.V
690 1 : return true
691 :
692 1 : case InternalKeyKindMerge:
693 1 : return i.mergeForward(key)
694 :
695 0 : default:
696 0 : i.err = base.CorruptionErrorf("pebble: invalid internal key kind: %d", errors.Safe(key.Kind()))
697 0 : return false
698 : }
699 : }
700 :
701 : // mergeForward resolves a MERGE key, advancing the underlying iterator forward
702 : // to merge with subsequent keys with the same userkey. mergeForward returns a
703 : // boolean indicating whether or not the merge yielded a valid key. A merge may
704 : // not yield a valid key if an error occurred, in which case i.err is non-nil,
705 : // or the user's value merger specified the key to be deleted.
706 : //
707 : // mergeForward does not update iterValidityState.
708 1 : func (i *Iterator) mergeForward(key base.InternalKey) (valid bool) {
709 1 : var iterValue []byte
710 1 : iterValue, _, i.err = i.iterKV.Value(nil)
711 1 : if i.err != nil {
712 0 : return false
713 0 : }
714 1 : var valueMerger ValueMerger
715 1 : valueMerger, i.err = i.merge(key.UserKey, iterValue)
716 1 : if i.err != nil {
717 0 : return false
718 0 : }
719 :
720 1 : i.mergeNext(key, valueMerger)
721 1 : if i.err != nil {
722 0 : return false
723 0 : }
724 :
725 1 : var needDelete bool
726 1 : var value []byte
727 1 : value, needDelete, i.valueCloser, i.err = finishValueMerger(
728 1 : valueMerger, true /* includesBase */)
729 1 : i.value = base.MakeInPlaceValue(value)
730 1 : if i.err != nil {
731 0 : return false
732 0 : }
733 1 : if needDelete {
734 0 : _ = i.closeValueCloser()
735 0 : return false
736 0 : }
737 1 : return true
738 : }
739 :
740 1 : func (i *Iterator) closeValueCloser() error {
741 1 : if i.valueCloser != nil {
742 0 : i.err = i.valueCloser.Close()
743 0 : i.valueCloser = nil
744 0 : }
745 1 : return i.err
746 : }
747 :
748 1 : func (i *Iterator) nextUserKey() {
749 1 : if i.iterKV == nil {
750 1 : return
751 1 : }
752 1 : trailer := i.iterKV.K.Trailer
753 1 : done := i.iterKV.K.Trailer <= base.InternalKeyZeroSeqnumMaxTrailer
754 1 : if i.iterValidityState != IterValid {
755 1 : i.keyBuf = append(i.keyBuf[:0], i.iterKV.K.UserKey...)
756 1 : i.key = i.keyBuf
757 1 : }
758 1 : for {
759 1 : i.stats.ForwardStepCount[InternalIterCall]++
760 1 : i.iterKV = i.iter.Next()
761 1 : if i.iterKV == nil {
762 1 : if err := i.iter.Error(); err != nil {
763 0 : i.err = err
764 0 : return
765 0 : }
766 : }
767 : // NB: We're guaranteed to be on the next user key if the previous key
768 : // had a zero sequence number (`done`), or the new key has a trailer
769 : // greater or equal to the previous key's trailer. This is true because
770 : // internal keys with the same user key are sorted by InternalKeyTrailer in
771 : // strictly monotonically descending order. We expect the trailer
772 : // optimization to trigger around 50% of the time with randomly
773 : // distributed writes. We expect it to trigger very frequently when
774 : // iterating through ingested sstables, which contain keys that all have
775 : // the same sequence number.
776 1 : if done || i.iterKV == nil || i.iterKV.K.Trailer >= trailer {
777 1 : break
778 : }
779 1 : if !i.equal(i.key, i.iterKV.K.UserKey) {
780 1 : break
781 : }
782 1 : done = i.iterKV.K.Trailer <= base.InternalKeyZeroSeqnumMaxTrailer
783 1 : trailer = i.iterKV.K.Trailer
784 : }
785 : }
786 :
787 1 : func (i *Iterator) maybeSampleRead() {
788 1 : // This method is only called when a public method of Iterator is
789 1 : // returning, and below we exclude the case were the iterator is paused at
790 1 : // a limit. The effect of these choices is that keys that are deleted, but
791 1 : // are encountered during iteration, are not accounted for in the read
792 1 : // sampling and will not cause read driven compactions, even though we are
793 1 : // incurring cost in iterating over them. And this issue is not limited to
794 1 : // Iterator, which does not see the effect of range deletes, which may be
795 1 : // causing iteration work in mergingIter. It is not clear at this time
796 1 : // whether this is a deficiency worth addressing.
797 1 : if i.iterValidityState != IterValid {
798 1 : return
799 1 : }
800 1 : if i.readState == nil {
801 1 : return
802 1 : }
803 1 : if i.readSampling.forceReadSampling {
804 0 : i.sampleRead()
805 0 : return
806 0 : }
807 1 : samplingPeriod := int32(int64(readBytesPeriod) * i.readState.db.opts.Experimental.ReadSamplingMultiplier)
808 1 : if samplingPeriod <= 0 {
809 0 : return
810 0 : }
811 1 : bytesRead := uint64(len(i.key) + i.value.Len())
812 1 : for i.readSampling.bytesUntilReadSampling < bytesRead {
813 1 : i.readSampling.bytesUntilReadSampling += uint64(fastrand.Uint32n(2 * uint32(samplingPeriod)))
814 1 : // The block below tries to adjust for the case where this is the
815 1 : // first read in a newly-opened iterator. As bytesUntilReadSampling
816 1 : // starts off at zero, we don't want to sample the first read of
817 1 : // every newly-opened iterator, but we do want to sample some of them.
818 1 : if !i.readSampling.initialSamplePassed {
819 1 : i.readSampling.initialSamplePassed = true
820 1 : if fastrand.Uint32n(uint32(i.readSampling.bytesUntilReadSampling)) > uint32(bytesRead) {
821 1 : continue
822 : }
823 : }
824 1 : i.sampleRead()
825 : }
826 1 : i.readSampling.bytesUntilReadSampling -= bytesRead
827 : }
828 :
829 1 : func (i *Iterator) sampleRead() {
830 1 : var topFile *manifest.FileMetadata
831 1 : topLevel, numOverlappingLevels := numLevels, 0
832 1 : mi := i.merging
833 1 : if mi == nil {
834 1 : return
835 1 : }
836 1 : if len(mi.levels) > 1 {
837 1 : mi.ForEachLevelIter(func(li *levelIter) (done bool) {
838 1 : if li.layer.IsFlushableIngests() {
839 0 : return false
840 0 : }
841 1 : l := li.layer.Level()
842 1 : if f := li.iterFile; f != nil {
843 1 : var containsKey bool
844 1 : if i.pos == iterPosNext || i.pos == iterPosCurForward ||
845 1 : i.pos == iterPosCurForwardPaused {
846 1 : containsKey = i.cmp(f.SmallestPointKey.UserKey, i.key) <= 0
847 1 : } else if i.pos == iterPosPrev || i.pos == iterPosCurReverse ||
848 1 : i.pos == iterPosCurReversePaused {
849 1 : containsKey = i.cmp(f.LargestPointKey.UserKey, i.key) >= 0
850 1 : }
851 : // Do nothing if the current key is not contained in f's
852 : // bounds. We could seek the LevelIterator at this level
853 : // to find the right file, but the performance impacts of
854 : // doing that are significant enough to negate the benefits
855 : // of read sampling in the first place. See the discussion
856 : // at:
857 : // https://github.com/cockroachdb/pebble/pull/1041#issuecomment-763226492
858 1 : if containsKey {
859 1 : numOverlappingLevels++
860 1 : if numOverlappingLevels >= 2 {
861 1 : // Terminate the loop early if at least 2 overlapping levels are found.
862 1 : return true
863 1 : }
864 1 : topLevel = l
865 1 : topFile = f
866 : }
867 : }
868 1 : return false
869 : })
870 : }
871 1 : if topFile == nil || topLevel >= numLevels {
872 1 : return
873 1 : }
874 1 : if numOverlappingLevels >= 2 {
875 1 : allowedSeeks := topFile.AllowedSeeks.Add(-1)
876 1 : if allowedSeeks == 0 {
877 0 :
878 0 : // Since the compaction queue can handle duplicates, we can keep
879 0 : // adding to the queue even once allowedSeeks hits 0.
880 0 : // In fact, we NEED to keep adding to the queue, because the queue
881 0 : // is small and evicts older and possibly useful compactions.
882 0 : topFile.AllowedSeeks.Add(topFile.InitAllowedSeeks)
883 0 :
884 0 : read := readCompaction{
885 0 : start: topFile.SmallestPointKey.UserKey,
886 0 : end: topFile.LargestPointKey.UserKey,
887 0 : level: topLevel,
888 0 : fileNum: topFile.FileNum,
889 0 : }
890 0 : i.readSampling.pendingCompactions.add(&read, i.cmp)
891 0 : }
892 : }
893 : }
894 :
895 1 : func (i *Iterator) findPrevEntry(limit []byte) {
896 1 : i.iterValidityState = IterExhausted
897 1 : i.pos = iterPosCurReverse
898 1 : if i.opts.rangeKeys() && i.rangeKey != nil {
899 1 : i.rangeKey.rangeKeyOnly = false
900 1 : }
901 :
902 : // Close the closer for the current value if one was open.
903 1 : if i.valueCloser != nil {
904 0 : i.err = i.valueCloser.Close()
905 0 : i.valueCloser = nil
906 0 : if i.err != nil {
907 0 : i.iterValidityState = IterExhausted
908 0 : return
909 0 : }
910 : }
911 :
912 1 : var valueMerger ValueMerger
913 1 : firstLoopIter := true
914 1 : rangeKeyBoundary := false
915 1 : // The code below compares with limit in multiple places. As documented in
916 1 : // findNextEntry, this is being done to make the behavior of limit
917 1 : // deterministic to allow for metamorphic testing. It is not required by
918 1 : // the best-effort contract of limit.
919 1 : for i.iterKV != nil {
920 1 : key := i.iterKV.K
921 1 :
922 1 : // NB: We cannot pause if the current key is covered by a range key.
923 1 : // Otherwise, the user might not ever learn of a range key that covers
924 1 : // the key space being iterated over in which there are no point keys.
925 1 : // Since limits are best effort, ignoring the limit in this case is
926 1 : // allowed by the contract of limit.
927 1 : if firstLoopIter && limit != nil && i.cmp(limit, i.iterKV.K.UserKey) > 0 && !i.rangeKeyWithinLimit(limit) {
928 1 : i.iterValidityState = IterAtLimit
929 1 : i.pos = iterPosCurReversePaused
930 1 : return
931 1 : }
932 1 : firstLoopIter = false
933 1 :
934 1 : if i.iterValidityState == IterValid {
935 1 : if !i.equal(key.UserKey, i.key) {
936 1 : // We've iterated to the previous user key.
937 1 : i.pos = iterPosPrev
938 1 : if valueMerger != nil {
939 1 : var needDelete bool
940 1 : var value []byte
941 1 : value, needDelete, i.valueCloser, i.err = finishValueMerger(valueMerger, true /* includesBase */)
942 1 : i.value = base.MakeInPlaceValue(value)
943 1 : if i.err == nil && needDelete {
944 0 : // The point key at this key is deleted. If we also have
945 0 : // a range key boundary at this key, we still want to
946 0 : // return. Otherwise, we need to continue looking for
947 0 : // a live key.
948 0 : i.value = LazyValue{}
949 0 : if rangeKeyBoundary {
950 0 : i.rangeKey.rangeKeyOnly = true
951 0 : } else {
952 0 : i.iterValidityState = IterExhausted
953 0 : if i.closeValueCloser() == nil {
954 0 : continue
955 : }
956 : }
957 : }
958 : }
959 1 : if i.err != nil {
960 0 : i.iterValidityState = IterExhausted
961 0 : }
962 1 : return
963 : }
964 : }
965 :
966 : // If the user has configured a SkipPoint function, invoke it to see
967 : // whether we should skip over the current user key.
968 1 : if i.opts.SkipPoint != nil && key.Kind() != InternalKeyKindRangeKeySet && i.opts.SkipPoint(key.UserKey) {
969 1 : // NB: We could call prevUserKey, but in some cases the SkipPoint
970 1 : // predicate function might be cheaper than prevUserKey's key copy
971 1 : // and key comparison. This should be the case for MVCC suffix
972 1 : // comparisons, for example. In the future, we could expand the
973 1 : // SkipPoint interface to give the implementor more control over
974 1 : // whether we skip over just the internal key, the user key, or even
975 1 : // the key prefix.
976 1 : i.stats.ReverseStepCount[InternalIterCall]++
977 1 : i.iterKV = i.iter.Prev()
978 1 : if i.iterKV == nil {
979 1 : if err := i.iter.Error(); err != nil {
980 0 : i.err = err
981 0 : i.iterValidityState = IterExhausted
982 0 : return
983 0 : }
984 : }
985 1 : if limit != nil && i.iterKV != nil && i.cmp(limit, i.iterKV.K.UserKey) > 0 && !i.rangeKeyWithinLimit(limit) {
986 1 : i.iterValidityState = IterAtLimit
987 1 : i.pos = iterPosCurReversePaused
988 1 : return
989 1 : }
990 1 : continue
991 : }
992 :
993 1 : switch key.Kind() {
994 1 : case InternalKeyKindRangeKeySet:
995 1 : // Range key start boundary markers are interleaved with the maximum
996 1 : // sequence number, so if there's a point key also at this key, we
997 1 : // must've already iterated over it.
998 1 : // This is the final entry at this user key, so we may return
999 1 : i.rangeKey.rangeKeyOnly = i.iterValidityState != IterValid
1000 1 : i.keyBuf = append(i.keyBuf[:0], key.UserKey...)
1001 1 : i.key = i.keyBuf
1002 1 : i.iterValidityState = IterValid
1003 1 : i.saveRangeKey()
1004 1 : // In all other cases, previous iteration requires advancing to
1005 1 : // iterPosPrev in order to determine if the key is live and
1006 1 : // unshadowed by another key at the same user key. In this case,
1007 1 : // because range key start boundary markers are always interleaved
1008 1 : // at the maximum sequence number, we know that there aren't any
1009 1 : // additional keys with the same user key in the backward direction.
1010 1 : //
1011 1 : // We Prev the underlying iterator once anyways for consistency, so
1012 1 : // that we can maintain the invariant during backward iteration that
1013 1 : // i.iterPos = iterPosPrev.
1014 1 : i.stats.ReverseStepCount[InternalIterCall]++
1015 1 : i.iterKV = i.iter.Prev()
1016 1 :
1017 1 : // Set rangeKeyBoundary so that on the next iteration, we know to
1018 1 : // return the key even if the MERGE point key is deleted.
1019 1 : rangeKeyBoundary = true
1020 :
1021 1 : case InternalKeyKindDelete, InternalKeyKindSingleDelete, InternalKeyKindDeleteSized:
1022 1 : i.value = LazyValue{}
1023 1 : i.iterValidityState = IterExhausted
1024 1 : valueMerger = nil
1025 1 : i.stats.ReverseStepCount[InternalIterCall]++
1026 1 : i.iterKV = i.iter.Prev()
1027 1 : // Compare with the limit. We could optimize by only checking when
1028 1 : // we step to the previous user key, but detecting that requires a
1029 1 : // comparison too. Note that this position may already passed a
1030 1 : // number of versions of this user key, but they are all deleted, so
1031 1 : // the fact that a subsequent Prev*() call will not see them is
1032 1 : // harmless. Also note that this is the only place in the loop,
1033 1 : // other than the firstLoopIter and SkipPoint cases above, where we
1034 1 : // could step to a different user key and start processing it for
1035 1 : // returning to the caller.
1036 1 : if limit != nil && i.iterKV != nil && i.cmp(limit, i.iterKV.K.UserKey) > 0 && !i.rangeKeyWithinLimit(limit) {
1037 1 : i.iterValidityState = IterAtLimit
1038 1 : i.pos = iterPosCurReversePaused
1039 1 : return
1040 1 : }
1041 1 : continue
1042 :
1043 1 : case InternalKeyKindSet, InternalKeyKindSetWithDelete:
1044 1 : i.keyBuf = append(i.keyBuf[:0], key.UserKey...)
1045 1 : i.key = i.keyBuf
1046 1 : // iterValue is owned by i.iter and could change after the Prev()
1047 1 : // call, so use valueBuf instead. Note that valueBuf is only used
1048 1 : // in this one instance; everywhere else (eg. in findNextEntry),
1049 1 : // we just point i.value to the unsafe i.iter-owned value buffer.
1050 1 : i.value, i.valueBuf = i.iterKV.V.Clone(i.valueBuf[:0], &i.fetcher)
1051 1 : i.saveRangeKey()
1052 1 : i.iterValidityState = IterValid
1053 1 : i.iterKV = i.iter.Prev()
1054 1 : i.stats.ReverseStepCount[InternalIterCall]++
1055 1 : valueMerger = nil
1056 1 : continue
1057 :
1058 1 : case InternalKeyKindMerge:
1059 1 : if i.iterValidityState == IterExhausted {
1060 1 : i.keyBuf = append(i.keyBuf[:0], key.UserKey...)
1061 1 : i.key = i.keyBuf
1062 1 : i.saveRangeKey()
1063 1 : var iterValue []byte
1064 1 : iterValue, _, i.err = i.iterKV.Value(nil)
1065 1 : if i.err != nil {
1066 0 : return
1067 0 : }
1068 1 : valueMerger, i.err = i.merge(i.key, iterValue)
1069 1 : if i.err != nil {
1070 0 : return
1071 0 : }
1072 1 : i.iterValidityState = IterValid
1073 1 : } else if valueMerger == nil {
1074 1 : // Extract value before iterValue since we use value before iterValue
1075 1 : // and the underlying iterator is not required to provide backing
1076 1 : // memory for both simultaneously.
1077 1 : var value []byte
1078 1 : var callerOwned bool
1079 1 : value, callerOwned, i.err = i.value.Value(i.lazyValueBuf)
1080 1 : if callerOwned {
1081 0 : i.lazyValueBuf = value[:0]
1082 0 : }
1083 1 : if i.err != nil {
1084 0 : i.iterValidityState = IterExhausted
1085 0 : return
1086 0 : }
1087 1 : valueMerger, i.err = i.merge(i.key, value)
1088 1 : var iterValue []byte
1089 1 : iterValue, _, i.err = i.iterKV.Value(nil)
1090 1 : if i.err != nil {
1091 0 : i.iterValidityState = IterExhausted
1092 0 : return
1093 0 : }
1094 1 : if i.err == nil {
1095 1 : i.err = valueMerger.MergeNewer(iterValue)
1096 1 : }
1097 1 : if i.err != nil {
1098 0 : i.iterValidityState = IterExhausted
1099 0 : return
1100 0 : }
1101 1 : } else {
1102 1 : var iterValue []byte
1103 1 : iterValue, _, i.err = i.iterKV.Value(nil)
1104 1 : if i.err != nil {
1105 0 : i.iterValidityState = IterExhausted
1106 0 : return
1107 0 : }
1108 1 : i.err = valueMerger.MergeNewer(iterValue)
1109 1 : if i.err != nil {
1110 0 : i.iterValidityState = IterExhausted
1111 0 : return
1112 0 : }
1113 : }
1114 1 : i.iterKV = i.iter.Prev()
1115 1 : i.stats.ReverseStepCount[InternalIterCall]++
1116 1 : continue
1117 :
1118 0 : default:
1119 0 : i.err = base.CorruptionErrorf("pebble: invalid internal key kind: %d", errors.Safe(key.Kind()))
1120 0 : i.iterValidityState = IterExhausted
1121 0 : return
1122 : }
1123 : }
1124 : // i.iterKV == nil, so broke out of the preceding loop.
1125 :
1126 : // Is iterKey nil due to an error?
1127 1 : if i.err = i.iter.Error(); i.err != nil {
1128 0 : i.iterValidityState = IterExhausted
1129 0 : return
1130 0 : }
1131 :
1132 1 : if i.iterValidityState == IterValid {
1133 1 : i.pos = iterPosPrev
1134 1 : if valueMerger != nil {
1135 1 : var needDelete bool
1136 1 : var value []byte
1137 1 : value, needDelete, i.valueCloser, i.err = finishValueMerger(valueMerger, true /* includesBase */)
1138 1 : i.value = base.MakeInPlaceValue(value)
1139 1 : if i.err == nil && needDelete {
1140 0 : i.key = nil
1141 0 : i.value = LazyValue{}
1142 0 : i.iterValidityState = IterExhausted
1143 0 : }
1144 : }
1145 1 : if i.err != nil {
1146 0 : i.iterValidityState = IterExhausted
1147 0 : }
1148 : }
1149 : }
1150 :
1151 1 : func (i *Iterator) prevUserKey() {
1152 1 : if i.iterKV == nil {
1153 1 : return
1154 1 : }
1155 1 : if i.iterValidityState != IterValid {
1156 1 : // If we're going to compare against the prev key, we need to save the
1157 1 : // current key.
1158 1 : i.keyBuf = append(i.keyBuf[:0], i.iterKV.K.UserKey...)
1159 1 : i.key = i.keyBuf
1160 1 : }
1161 1 : for {
1162 1 : i.iterKV = i.iter.Prev()
1163 1 : i.stats.ReverseStepCount[InternalIterCall]++
1164 1 : if i.iterKV == nil {
1165 1 : if err := i.iter.Error(); err != nil {
1166 0 : i.err = err
1167 0 : i.iterValidityState = IterExhausted
1168 0 : }
1169 1 : break
1170 : }
1171 1 : if !i.equal(i.key, i.iterKV.K.UserKey) {
1172 1 : break
1173 : }
1174 : }
1175 : }
1176 :
1177 1 : func (i *Iterator) mergeNext(key InternalKey, valueMerger ValueMerger) {
1178 1 : // Save the current key.
1179 1 : i.keyBuf = append(i.keyBuf[:0], key.UserKey...)
1180 1 : i.key = i.keyBuf
1181 1 :
1182 1 : // Loop looking for older values for this key and merging them.
1183 1 : for {
1184 1 : i.iterKV = i.iter.Next()
1185 1 : i.stats.ForwardStepCount[InternalIterCall]++
1186 1 : if i.iterKV == nil {
1187 1 : if i.err = i.iter.Error(); i.err != nil {
1188 0 : return
1189 0 : }
1190 1 : i.pos = iterPosNext
1191 1 : return
1192 : }
1193 1 : key = i.iterKV.K
1194 1 : if !i.equal(i.key, key.UserKey) {
1195 1 : // We've advanced to the next key.
1196 1 : i.pos = iterPosNext
1197 1 : return
1198 1 : }
1199 1 : switch key.Kind() {
1200 1 : case InternalKeyKindDelete, InternalKeyKindSingleDelete, InternalKeyKindDeleteSized:
1201 1 : // We've hit a deletion tombstone. Return everything up to this
1202 1 : // point.
1203 1 : //
1204 1 : // NB: treating InternalKeyKindSingleDelete as equivalent to DEL is not
1205 1 : // only simpler, but is also necessary for correctness due to
1206 1 : // InternalKeyKindSSTableInternalObsoleteBit.
1207 1 : return
1208 :
1209 1 : case InternalKeyKindSet, InternalKeyKindSetWithDelete:
1210 1 : // We've hit a Set value. Merge with the existing value and return.
1211 1 : var iterValue []byte
1212 1 : iterValue, _, i.err = i.iterKV.Value(nil)
1213 1 : if i.err != nil {
1214 0 : return
1215 0 : }
1216 1 : i.err = valueMerger.MergeOlder(iterValue)
1217 1 : return
1218 :
1219 1 : case InternalKeyKindMerge:
1220 1 : // We've hit another Merge value. Merge with the existing value and
1221 1 : // continue looping.
1222 1 : var iterValue []byte
1223 1 : iterValue, _, i.err = i.iterKV.Value(nil)
1224 1 : if i.err != nil {
1225 0 : return
1226 0 : }
1227 1 : i.err = valueMerger.MergeOlder(iterValue)
1228 1 : if i.err != nil {
1229 0 : return
1230 0 : }
1231 1 : continue
1232 :
1233 0 : case InternalKeyKindRangeKeySet:
1234 0 : // The RANGEKEYSET marker must sort before a MERGE at the same user key.
1235 0 : i.err = base.CorruptionErrorf("pebble: out of order range key marker")
1236 0 : return
1237 :
1238 0 : default:
1239 0 : i.err = base.CorruptionErrorf("pebble: invalid internal key kind: %d", errors.Safe(key.Kind()))
1240 0 : return
1241 : }
1242 : }
1243 : }
1244 :
1245 : // SeekGE moves the iterator to the first key/value pair whose key is greater
1246 : // than or equal to the given key. Returns true if the iterator is pointing at
1247 : // a valid entry and false otherwise.
1248 1 : func (i *Iterator) SeekGE(key []byte) bool {
1249 1 : return i.SeekGEWithLimit(key, nil) == IterValid
1250 1 : }
1251 :
1252 : // SeekGEWithLimit moves the iterator to the first key/value pair whose key is
1253 : // greater than or equal to the given key.
1254 : //
1255 : // If limit is provided, it serves as a best-effort exclusive limit. If the
1256 : // first key greater than or equal to the given search key is also greater than
1257 : // or equal to limit, the Iterator may pause and return IterAtLimit. Because
1258 : // limits are best-effort, SeekGEWithLimit may return a key beyond limit.
1259 : //
1260 : // If the Iterator is configured to iterate over range keys, SeekGEWithLimit
1261 : // guarantees it will surface any range keys with bounds overlapping the
1262 : // keyspace [key, limit).
1263 1 : func (i *Iterator) SeekGEWithLimit(key []byte, limit []byte) IterValidityState {
1264 1 : if i.rangeKey != nil {
1265 1 : // NB: Check Valid() before clearing requiresReposition.
1266 1 : i.rangeKey.prevPosHadRangeKey = i.rangeKey.hasRangeKey && i.Valid()
1267 1 : // If we have a range key but did not expose it at the previous iterator
1268 1 : // position (because the iterator was not at a valid position), updated
1269 1 : // must be true. This ensures that after an iterator op sequence like:
1270 1 : // - Next() → (IterValid, RangeBounds() = [a,b))
1271 1 : // - NextWithLimit(...) → (IterAtLimit, RangeBounds() = -)
1272 1 : // - SeekGE(...) → (IterValid, RangeBounds() = [a,b))
1273 1 : // the iterator returns RangeKeyChanged()=true.
1274 1 : //
1275 1 : // The remainder of this function will only update i.rangeKey.updated if
1276 1 : // the iterator moves into a new range key, or out of the current range
1277 1 : // key.
1278 1 : i.rangeKey.updated = i.rangeKey.hasRangeKey && !i.Valid() && i.opts.rangeKeys()
1279 1 : }
1280 1 : lastPositioningOp := i.lastPositioningOp
1281 1 : // Set it to unknown, since this operation may not succeed, in which case
1282 1 : // the SeekGE following this should not make any assumption about iterator
1283 1 : // position.
1284 1 : i.lastPositioningOp = unknownLastPositionOp
1285 1 : i.requiresReposition = false
1286 1 : i.err = nil // clear cached iteration error
1287 1 : i.hasPrefix = false
1288 1 : i.stats.ForwardSeekCount[InterfaceCall]++
1289 1 : if lowerBound := i.opts.GetLowerBound(); lowerBound != nil && i.cmp(key, lowerBound) < 0 {
1290 1 : key = lowerBound
1291 1 : } else if upperBound := i.opts.GetUpperBound(); upperBound != nil && i.cmp(key, upperBound) > 0 {
1292 1 : key = upperBound
1293 1 : }
1294 1 : seekInternalIter := true
1295 1 :
1296 1 : var flags base.SeekGEFlags
1297 1 : if i.batchJustRefreshed {
1298 0 : i.batchJustRefreshed = false
1299 0 : flags = flags.EnableBatchJustRefreshed()
1300 0 : }
1301 1 : if lastPositioningOp == seekGELastPositioningOp {
1302 1 : cmp := i.cmp(i.prefixOrFullSeekKey, key)
1303 1 : // If this seek is to the same or later key, and the iterator is
1304 1 : // already positioned there, this is a noop. This can be helpful for
1305 1 : // sparse key spaces that have many deleted keys, where one can avoid
1306 1 : // the overhead of iterating past them again and again.
1307 1 : if cmp <= 0 {
1308 1 : if !flags.BatchJustRefreshed() &&
1309 1 : (i.iterValidityState == IterExhausted ||
1310 1 : (i.iterValidityState == IterValid && i.cmp(key, i.key) <= 0 &&
1311 1 : (limit == nil || i.cmp(i.key, limit) < 0))) {
1312 1 : // Noop
1313 1 : if i.forceEnableSeekOpt || !testingDisableSeekOpt(key, uintptr(unsafe.Pointer(i))) {
1314 1 : i.lastPositioningOp = seekGELastPositioningOp
1315 1 : return i.iterValidityState
1316 1 : }
1317 : }
1318 : // cmp == 0 is not safe to optimize since
1319 : // - i.pos could be at iterPosNext, due to a merge.
1320 : // - Even if i.pos were at iterPosCurForward, we could have a DELETE,
1321 : // SET pair for a key, and the iterator would have moved past DELETE
1322 : // but stayed at iterPosCurForward. A similar situation occurs for a
1323 : // MERGE, SET pair where the MERGE is consumed and the iterator is
1324 : // at the SET.
1325 : // We also leverage the IterAtLimit <=> i.pos invariant defined in the
1326 : // comment on iterValidityState, to exclude any cases where i.pos
1327 : // is iterPosCur{Forward,Reverse}Paused. This avoids the need to
1328 : // special-case those iterator positions and their interactions with
1329 : // TrySeekUsingNext, as the main uses for TrySeekUsingNext in CockroachDB
1330 : // do not use limited Seeks in the first place.
1331 1 : if cmp < 0 && i.iterValidityState != IterAtLimit && limit == nil {
1332 1 : flags = flags.EnableTrySeekUsingNext()
1333 1 : }
1334 1 : if testingDisableSeekOpt(key, uintptr(unsafe.Pointer(i))) && !i.forceEnableSeekOpt {
1335 1 : flags = flags.DisableTrySeekUsingNext()
1336 1 : }
1337 1 : if !flags.BatchJustRefreshed() && i.pos == iterPosCurForwardPaused && i.cmp(key, i.iterKV.K.UserKey) <= 0 {
1338 1 : // Have some work to do, but don't need to seek, and we can
1339 1 : // start doing findNextEntry from i.iterKey.
1340 1 : seekInternalIter = false
1341 1 : }
1342 : }
1343 : }
1344 1 : if seekInternalIter {
1345 1 : i.iterKV = i.iter.SeekGE(key, flags)
1346 1 : i.stats.ForwardSeekCount[InternalIterCall]++
1347 1 : if err := i.iter.Error(); err != nil {
1348 0 : i.err = err
1349 0 : i.iterValidityState = IterExhausted
1350 0 : return i.iterValidityState
1351 0 : }
1352 : }
1353 1 : i.findNextEntry(limit)
1354 1 : i.maybeSampleRead()
1355 1 : if i.Error() == nil {
1356 1 : // Prepare state for a future noop optimization.
1357 1 : i.prefixOrFullSeekKey = append(i.prefixOrFullSeekKey[:0], key...)
1358 1 : i.lastPositioningOp = seekGELastPositioningOp
1359 1 : }
1360 1 : return i.iterValidityState
1361 : }
1362 :
1363 : // SeekPrefixGE moves the iterator to the first key/value pair whose key is
1364 : // greater than or equal to the given key and which has the same "prefix" as
1365 : // the given key. The prefix for a key is determined by the user-defined
1366 : // Comparer.Split function. The iterator will not observe keys not matching the
1367 : // "prefix" of the search key. Calling SeekPrefixGE puts the iterator in prefix
1368 : // iteration mode. The iterator remains in prefix iteration until a subsequent
1369 : // call to another absolute positioning method (SeekGE, SeekLT, First,
1370 : // Last). Reverse iteration (Prev) is not supported when an iterator is in
1371 : // prefix iteration mode. Returns true if the iterator is pointing at a valid
1372 : // entry and false otherwise.
1373 : //
1374 : // The semantics of SeekPrefixGE are slightly unusual and designed for
1375 : // iteration to be able to take advantage of bloom filters that have been
1376 : // created on the "prefix". If you're not using bloom filters, there is no
1377 : // reason to use SeekPrefixGE.
1378 : //
1379 : // An example Split function may separate a timestamp suffix from the prefix of
1380 : // the key.
1381 : //
1382 : // Split(<key>@<timestamp>) -> <key>
1383 : //
1384 : // Consider the keys "a@1", "a@2", "aa@3", "aa@4". The prefixes for these keys
1385 : // are "a", and "aa". Note that despite "a" and "aa" sharing a prefix by the
1386 : // usual definition, those prefixes differ by the definition of the Split
1387 : // function. To see how this works, consider the following set of calls on this
1388 : // data set:
1389 : //
1390 : // SeekPrefixGE("a@0") -> "a@1"
1391 : // Next() -> "a@2"
1392 : // Next() -> EOF
1393 : //
1394 : // If you're just looking to iterate over keys with a shared prefix, as
1395 : // defined by the configured comparer, set iterator bounds instead:
1396 : //
1397 : // iter := db.NewIter(&pebble.IterOptions{
1398 : // LowerBound: []byte("prefix"),
1399 : // UpperBound: []byte("prefiy"),
1400 : // })
1401 : // for iter.First(); iter.Valid(); iter.Next() {
1402 : // // Only keys beginning with "prefix" will be visited.
1403 : // }
1404 : //
1405 : // See ExampleIterator_SeekPrefixGE for a working example.
1406 : //
1407 : // When iterating with range keys enabled, all range keys encountered are
1408 : // truncated to the seek key's prefix's bounds. The truncation of the upper
1409 : // bound requires that the database's Comparer is configured with a
1410 : // ImmediateSuccessor method. For example, a SeekPrefixGE("a@9") call with the
1411 : // prefix "a" will truncate range key bounds to [a,ImmediateSuccessor(a)].
1412 1 : func (i *Iterator) SeekPrefixGE(key []byte) bool {
1413 1 : if i.rangeKey != nil {
1414 1 : // NB: Check Valid() before clearing requiresReposition.
1415 1 : i.rangeKey.prevPosHadRangeKey = i.rangeKey.hasRangeKey && i.Valid()
1416 1 : // If we have a range key but did not expose it at the previous iterator
1417 1 : // position (because the iterator was not at a valid position), updated
1418 1 : // must be true. This ensures that after an iterator op sequence like:
1419 1 : // - Next() → (IterValid, RangeBounds() = [a,b))
1420 1 : // - NextWithLimit(...) → (IterAtLimit, RangeBounds() = -)
1421 1 : // - SeekPrefixGE(...) → (IterValid, RangeBounds() = [a,b))
1422 1 : // the iterator returns RangeKeyChanged()=true.
1423 1 : //
1424 1 : // The remainder of this function will only update i.rangeKey.updated if
1425 1 : // the iterator moves into a new range key, or out of the current range
1426 1 : // key.
1427 1 : i.rangeKey.updated = i.rangeKey.hasRangeKey && !i.Valid() && i.opts.rangeKeys()
1428 1 : }
1429 1 : lastPositioningOp := i.lastPositioningOp
1430 1 : // Set it to unknown, since this operation may not succeed, in which case
1431 1 : // the SeekPrefixGE following this should not make any assumption about
1432 1 : // iterator position.
1433 1 : i.lastPositioningOp = unknownLastPositionOp
1434 1 : i.requiresReposition = false
1435 1 : i.err = nil // clear cached iteration error
1436 1 : i.stats.ForwardSeekCount[InterfaceCall]++
1437 1 : if i.comparer.ImmediateSuccessor == nil && i.opts.KeyTypes != IterKeyTypePointsOnly {
1438 0 : panic("pebble: ImmediateSuccessor must be provided for SeekPrefixGE with range keys")
1439 : }
1440 1 : prefixLen := i.comparer.Split(key)
1441 1 : keyPrefix := key[:prefixLen]
1442 1 : var flags base.SeekGEFlags
1443 1 : if i.batchJustRefreshed {
1444 0 : flags = flags.EnableBatchJustRefreshed()
1445 0 : i.batchJustRefreshed = false
1446 0 : }
1447 1 : if lastPositioningOp == seekPrefixGELastPositioningOp {
1448 1 : if !i.hasPrefix {
1449 0 : panic("lastPositioningOpsIsSeekPrefixGE is true, but hasPrefix is false")
1450 : }
1451 : // The iterator has not been repositioned after the last SeekPrefixGE.
1452 : // See if we are seeking to a larger key, since then we can optimize
1453 : // the seek by using next. Note that we could also optimize if Next
1454 : // has been called, if the iterator is not exhausted and the current
1455 : // position is <= the seek key. We are keeping this limited for now
1456 : // since such optimizations require care for correctness, and to not
1457 : // become de-optimizations (if one usually has to do all the next
1458 : // calls and then the seek). This SeekPrefixGE optimization
1459 : // specifically benefits CockroachDB.
1460 1 : cmp := i.cmp(i.prefixOrFullSeekKey, keyPrefix)
1461 1 : // cmp == 0 is not safe to optimize since
1462 1 : // - i.pos could be at iterPosNext, due to a merge.
1463 1 : // - Even if i.pos were at iterPosCurForward, we could have a DELETE,
1464 1 : // SET pair for a key, and the iterator would have moved past DELETE
1465 1 : // but stayed at iterPosCurForward. A similar situation occurs for a
1466 1 : // MERGE, SET pair where the MERGE is consumed and the iterator is
1467 1 : // at the SET.
1468 1 : // In general some versions of i.prefix could have been consumed by
1469 1 : // the iterator, so we only optimize for cmp < 0.
1470 1 : if cmp < 0 {
1471 1 : flags = flags.EnableTrySeekUsingNext()
1472 1 : }
1473 1 : if testingDisableSeekOpt(key, uintptr(unsafe.Pointer(i))) && !i.forceEnableSeekOpt {
1474 1 : flags = flags.DisableTrySeekUsingNext()
1475 1 : }
1476 : }
1477 : // Make a copy of the prefix so that modifications to the key after
1478 : // SeekPrefixGE returns does not affect the stored prefix.
1479 1 : if cap(i.prefixOrFullSeekKey) < prefixLen {
1480 1 : i.prefixOrFullSeekKey = make([]byte, prefixLen)
1481 1 : } else {
1482 1 : i.prefixOrFullSeekKey = i.prefixOrFullSeekKey[:prefixLen]
1483 1 : }
1484 1 : i.hasPrefix = true
1485 1 : copy(i.prefixOrFullSeekKey, keyPrefix)
1486 1 :
1487 1 : if lowerBound := i.opts.GetLowerBound(); lowerBound != nil && i.cmp(key, lowerBound) < 0 {
1488 1 : if p := i.comparer.Split.Prefix(lowerBound); !bytes.Equal(i.prefixOrFullSeekKey, p) {
1489 1 : i.err = errors.New("pebble: SeekPrefixGE supplied with key outside of lower bound")
1490 1 : i.iterValidityState = IterExhausted
1491 1 : return false
1492 1 : }
1493 1 : key = lowerBound
1494 1 : } else if upperBound := i.opts.GetUpperBound(); upperBound != nil && i.cmp(key, upperBound) > 0 {
1495 1 : if p := i.comparer.Split.Prefix(upperBound); !bytes.Equal(i.prefixOrFullSeekKey, p) {
1496 1 : i.err = errors.New("pebble: SeekPrefixGE supplied with key outside of upper bound")
1497 1 : i.iterValidityState = IterExhausted
1498 1 : return false
1499 1 : }
1500 1 : key = upperBound
1501 : }
1502 1 : i.iterKV = i.iter.SeekPrefixGE(i.prefixOrFullSeekKey, key, flags)
1503 1 : i.stats.ForwardSeekCount[InternalIterCall]++
1504 1 : i.findNextEntry(nil)
1505 1 : i.maybeSampleRead()
1506 1 : if i.Error() == nil {
1507 1 : i.lastPositioningOp = seekPrefixGELastPositioningOp
1508 1 : }
1509 1 : return i.iterValidityState == IterValid
1510 : }
1511 :
1512 : // Deterministic disabling (in testing mode) of the seek optimizations. It uses
1513 : // the iterator pointer, since we want diversity in iterator behavior for the
1514 : // same key. Used for tests.
1515 1 : func testingDisableSeekOpt(key []byte, ptr uintptr) bool {
1516 1 : if !invariants.Enabled {
1517 0 : return false
1518 0 : }
1519 : // Fibonacci hash https://probablydance.com/2018/06/16/fibonacci-hashing-the-optimization-that-the-world-forgot-or-a-better-alternative-to-integer-modulo/
1520 1 : simpleHash := (11400714819323198485 * uint64(ptr)) >> 63
1521 1 : return key != nil && key[0]&byte(1) == 0 && simpleHash == 0
1522 : }
1523 :
1524 : // SeekLT moves the iterator to the last key/value pair whose key is less than
1525 : // the given key. Returns true if the iterator is pointing at a valid entry and
1526 : // false otherwise.
1527 1 : func (i *Iterator) SeekLT(key []byte) bool {
1528 1 : return i.SeekLTWithLimit(key, nil) == IterValid
1529 1 : }
1530 :
1531 : // SeekLTWithLimit moves the iterator to the last key/value pair whose key is
1532 : // less than the given key.
1533 : //
1534 : // If limit is provided, it serves as a best-effort inclusive limit. If the last
1535 : // key less than the given search key is also less than limit, the Iterator may
1536 : // pause and return IterAtLimit. Because limits are best-effort, SeekLTWithLimit
1537 : // may return a key beyond limit.
1538 : //
1539 : // If the Iterator is configured to iterate over range keys, SeekLTWithLimit
1540 : // guarantees it will surface any range keys with bounds overlapping the
1541 : // keyspace up to limit.
1542 1 : func (i *Iterator) SeekLTWithLimit(key []byte, limit []byte) IterValidityState {
1543 1 : if i.rangeKey != nil {
1544 1 : // NB: Check Valid() before clearing requiresReposition.
1545 1 : i.rangeKey.prevPosHadRangeKey = i.rangeKey.hasRangeKey && i.Valid()
1546 1 : // If we have a range key but did not expose it at the previous iterator
1547 1 : // position (because the iterator was not at a valid position), updated
1548 1 : // must be true. This ensures that after an iterator op sequence like:
1549 1 : // - Next() → (IterValid, RangeBounds() = [a,b))
1550 1 : // - NextWithLimit(...) → (IterAtLimit, RangeBounds() = -)
1551 1 : // - SeekLTWithLimit(...) → (IterValid, RangeBounds() = [a,b))
1552 1 : // the iterator returns RangeKeyChanged()=true.
1553 1 : //
1554 1 : // The remainder of this function will only update i.rangeKey.updated if
1555 1 : // the iterator moves into a new range key, or out of the current range
1556 1 : // key.
1557 1 : i.rangeKey.updated = i.rangeKey.hasRangeKey && !i.Valid() && i.opts.rangeKeys()
1558 1 : }
1559 1 : lastPositioningOp := i.lastPositioningOp
1560 1 : // Set it to unknown, since this operation may not succeed, in which case
1561 1 : // the SeekLT following this should not make any assumption about iterator
1562 1 : // position.
1563 1 : i.lastPositioningOp = unknownLastPositionOp
1564 1 : i.batchJustRefreshed = false
1565 1 : i.requiresReposition = false
1566 1 : i.err = nil // clear cached iteration error
1567 1 : i.stats.ReverseSeekCount[InterfaceCall]++
1568 1 : if upperBound := i.opts.GetUpperBound(); upperBound != nil && i.cmp(key, upperBound) > 0 {
1569 1 : key = upperBound
1570 1 : } else if lowerBound := i.opts.GetLowerBound(); lowerBound != nil && i.cmp(key, lowerBound) < 0 {
1571 1 : key = lowerBound
1572 1 : }
1573 1 : i.hasPrefix = false
1574 1 : seekInternalIter := true
1575 1 : // The following noop optimization only applies when i.batch == nil, since
1576 1 : // an iterator over a batch is iterating over mutable data, that may have
1577 1 : // changed since the last seek.
1578 1 : if lastPositioningOp == seekLTLastPositioningOp && i.batch == nil {
1579 1 : cmp := i.cmp(key, i.prefixOrFullSeekKey)
1580 1 : // If this seek is to the same or earlier key, and the iterator is
1581 1 : // already positioned there, this is a noop. This can be helpful for
1582 1 : // sparse key spaces that have many deleted keys, where one can avoid
1583 1 : // the overhead of iterating past them again and again.
1584 1 : if cmp <= 0 {
1585 1 : // NB: when pos != iterPosCurReversePaused, the invariant
1586 1 : // documented earlier implies that iterValidityState !=
1587 1 : // IterAtLimit.
1588 1 : if i.iterValidityState == IterExhausted ||
1589 1 : (i.iterValidityState == IterValid && i.cmp(i.key, key) < 0 &&
1590 1 : (limit == nil || i.cmp(limit, i.key) <= 0)) {
1591 1 : if !testingDisableSeekOpt(key, uintptr(unsafe.Pointer(i))) {
1592 1 : i.lastPositioningOp = seekLTLastPositioningOp
1593 1 : return i.iterValidityState
1594 1 : }
1595 : }
1596 1 : if i.pos == iterPosCurReversePaused && i.cmp(i.iterKV.K.UserKey, key) < 0 {
1597 1 : // Have some work to do, but don't need to seek, and we can
1598 1 : // start doing findPrevEntry from i.iterKey.
1599 1 : seekInternalIter = false
1600 1 : }
1601 : }
1602 : }
1603 1 : if seekInternalIter {
1604 1 : i.iterKV = i.iter.SeekLT(key, base.SeekLTFlagsNone)
1605 1 : i.stats.ReverseSeekCount[InternalIterCall]++
1606 1 : if err := i.iter.Error(); err != nil {
1607 0 : i.err = err
1608 0 : i.iterValidityState = IterExhausted
1609 0 : return i.iterValidityState
1610 0 : }
1611 : }
1612 1 : i.findPrevEntry(limit)
1613 1 : i.maybeSampleRead()
1614 1 : if i.Error() == nil && i.batch == nil {
1615 1 : // Prepare state for a future noop optimization.
1616 1 : i.prefixOrFullSeekKey = append(i.prefixOrFullSeekKey[:0], key...)
1617 1 : i.lastPositioningOp = seekLTLastPositioningOp
1618 1 : }
1619 1 : return i.iterValidityState
1620 : }
1621 :
1622 : // First moves the iterator the first key/value pair. Returns true if the
1623 : // iterator is pointing at a valid entry and false otherwise.
1624 1 : func (i *Iterator) First() bool {
1625 1 : if i.rangeKey != nil {
1626 1 : // NB: Check Valid() before clearing requiresReposition.
1627 1 : i.rangeKey.prevPosHadRangeKey = i.rangeKey.hasRangeKey && i.Valid()
1628 1 : // If we have a range key but did not expose it at the previous iterator
1629 1 : // position (because the iterator was not at a valid position), updated
1630 1 : // must be true. This ensures that after an iterator op sequence like:
1631 1 : // - Next() → (IterValid, RangeBounds() = [a,b))
1632 1 : // - NextWithLimit(...) → (IterAtLimit, RangeBounds() = -)
1633 1 : // - First(...) → (IterValid, RangeBounds() = [a,b))
1634 1 : // the iterator returns RangeKeyChanged()=true.
1635 1 : //
1636 1 : // The remainder of this function will only update i.rangeKey.updated if
1637 1 : // the iterator moves into a new range key, or out of the current range
1638 1 : // key.
1639 1 : i.rangeKey.updated = i.rangeKey.hasRangeKey && !i.Valid() && i.opts.rangeKeys()
1640 1 : }
1641 1 : i.err = nil // clear cached iteration error
1642 1 : i.hasPrefix = false
1643 1 : i.batchJustRefreshed = false
1644 1 : i.lastPositioningOp = unknownLastPositionOp
1645 1 : i.requiresReposition = false
1646 1 : i.stats.ForwardSeekCount[InterfaceCall]++
1647 1 :
1648 1 : i.err = i.iterFirstWithinBounds()
1649 1 : if i.err != nil {
1650 0 : i.iterValidityState = IterExhausted
1651 0 : return false
1652 0 : }
1653 1 : i.findNextEntry(nil)
1654 1 : i.maybeSampleRead()
1655 1 : return i.iterValidityState == IterValid
1656 : }
1657 :
1658 : // Last moves the iterator the last key/value pair. Returns true if the
1659 : // iterator is pointing at a valid entry and false otherwise.
1660 1 : func (i *Iterator) Last() bool {
1661 1 : if i.rangeKey != nil {
1662 1 : // NB: Check Valid() before clearing requiresReposition.
1663 1 : i.rangeKey.prevPosHadRangeKey = i.rangeKey.hasRangeKey && i.Valid()
1664 1 : // If we have a range key but did not expose it at the previous iterator
1665 1 : // position (because the iterator was not at a valid position), updated
1666 1 : // must be true. This ensures that after an iterator op sequence like:
1667 1 : // - Next() → (IterValid, RangeBounds() = [a,b))
1668 1 : // - NextWithLimit(...) → (IterAtLimit, RangeBounds() = -)
1669 1 : // - Last(...) → (IterValid, RangeBounds() = [a,b))
1670 1 : // the iterator returns RangeKeyChanged()=true.
1671 1 : //
1672 1 : // The remainder of this function will only update i.rangeKey.updated if
1673 1 : // the iterator moves into a new range key, or out of the current range
1674 1 : // key.
1675 1 : i.rangeKey.updated = i.rangeKey.hasRangeKey && !i.Valid() && i.opts.rangeKeys()
1676 1 : }
1677 1 : i.err = nil // clear cached iteration error
1678 1 : i.hasPrefix = false
1679 1 : i.batchJustRefreshed = false
1680 1 : i.lastPositioningOp = unknownLastPositionOp
1681 1 : i.requiresReposition = false
1682 1 : i.stats.ReverseSeekCount[InterfaceCall]++
1683 1 :
1684 1 : if i.err = i.iterLastWithinBounds(); i.err != nil {
1685 0 : i.iterValidityState = IterExhausted
1686 0 : return false
1687 0 : }
1688 1 : i.findPrevEntry(nil)
1689 1 : i.maybeSampleRead()
1690 1 : return i.iterValidityState == IterValid
1691 : }
1692 :
1693 : // Next moves the iterator to the next key/value pair. Returns true if the
1694 : // iterator is pointing at a valid entry and false otherwise.
1695 1 : func (i *Iterator) Next() bool {
1696 1 : return i.nextWithLimit(nil) == IterValid
1697 1 : }
1698 :
1699 : // NextWithLimit moves the iterator to the next key/value pair.
1700 : //
1701 : // If limit is provided, it serves as a best-effort exclusive limit. If the next
1702 : // key is greater than or equal to limit, the Iterator may pause and return
1703 : // IterAtLimit. Because limits are best-effort, NextWithLimit may return a key
1704 : // beyond limit.
1705 : //
1706 : // If the Iterator is configured to iterate over range keys, NextWithLimit
1707 : // guarantees it will surface any range keys with bounds overlapping the
1708 : // keyspace up to limit.
1709 1 : func (i *Iterator) NextWithLimit(limit []byte) IterValidityState {
1710 1 : return i.nextWithLimit(limit)
1711 1 : }
1712 :
1713 : // NextPrefix moves the iterator to the next key/value pair with a key
1714 : // containing a different prefix than the current key. Prefixes are determined
1715 : // by Comparer.Split. Exhausts the iterator if invoked while in prefix-iteration
1716 : // mode.
1717 : //
1718 : // It is not permitted to invoke NextPrefix while at a IterAtLimit position.
1719 : // When called in this condition, NextPrefix has non-deterministic behavior.
1720 : //
1721 : // It is not permitted to invoke NextPrefix when the Iterator has an
1722 : // upper-bound that is a versioned MVCC key (see the comment for
1723 : // Comparer.Split). It returns an error in this case.
1724 1 : func (i *Iterator) NextPrefix() bool {
1725 1 : if i.nextPrefixNotPermittedByUpperBound {
1726 1 : i.lastPositioningOp = unknownLastPositionOp
1727 1 : i.requiresReposition = false
1728 1 : i.err = errors.Errorf("NextPrefix not permitted with upper bound %s",
1729 1 : i.comparer.FormatKey(i.opts.UpperBound))
1730 1 : i.iterValidityState = IterExhausted
1731 1 : return false
1732 1 : }
1733 1 : if i.hasPrefix {
1734 1 : i.iterValidityState = IterExhausted
1735 1 : return false
1736 1 : }
1737 1 : if i.Error() != nil {
1738 1 : return false
1739 1 : }
1740 1 : return i.nextPrefix() == IterValid
1741 : }
1742 :
1743 1 : func (i *Iterator) nextPrefix() IterValidityState {
1744 1 : if i.rangeKey != nil {
1745 1 : // NB: Check Valid() before clearing requiresReposition.
1746 1 : i.rangeKey.prevPosHadRangeKey = i.rangeKey.hasRangeKey && i.Valid()
1747 1 : // If we have a range key but did not expose it at the previous iterator
1748 1 : // position (because the iterator was not at a valid position), updated
1749 1 : // must be true. This ensures that after an iterator op sequence like:
1750 1 : // - Next() → (IterValid, RangeBounds() = [a,b))
1751 1 : // - NextWithLimit(...) → (IterAtLimit, RangeBounds() = -)
1752 1 : // - NextWithLimit(...) → (IterValid, RangeBounds() = [a,b))
1753 1 : // the iterator returns RangeKeyChanged()=true.
1754 1 : //
1755 1 : // The remainder of this function will only update i.rangeKey.updated if
1756 1 : // the iterator moves into a new range key, or out of the current range
1757 1 : // key.
1758 1 : i.rangeKey.updated = i.rangeKey.hasRangeKey && !i.Valid() && i.opts.rangeKeys()
1759 1 : }
1760 :
1761 : // Although NextPrefix documents that behavior at IterAtLimit is undefined,
1762 : // this function handles these cases as a simple prefix-agnostic Next. This
1763 : // is done for deterministic behavior in the metamorphic tests.
1764 : //
1765 : // TODO(jackson): If the metamorphic test operation generator is adjusted to
1766 : // make generation of some operations conditional on the previous
1767 : // operations, then we can remove this behavior and explicitly error.
1768 :
1769 1 : i.lastPositioningOp = unknownLastPositionOp
1770 1 : i.requiresReposition = false
1771 1 : switch i.pos {
1772 1 : case iterPosCurForward:
1773 1 : // Positioned on the current key. Advance to the next prefix.
1774 1 : i.internalNextPrefix(i.comparer.Split(i.key))
1775 1 : case iterPosCurForwardPaused:
1776 : // Positioned at a limit. Implement as a prefix-agnostic Next. See TODO
1777 : // up above. The iterator is already positioned at the next key.
1778 1 : case iterPosCurReverse:
1779 1 : // Switching directions.
1780 1 : // Unless the iterator was exhausted, reverse iteration needs to
1781 1 : // position the iterator at iterPosPrev.
1782 1 : if i.iterKV != nil {
1783 0 : i.err = errors.New("switching from reverse to forward but iter is not at prev")
1784 0 : i.iterValidityState = IterExhausted
1785 0 : return i.iterValidityState
1786 0 : }
1787 : // The Iterator is exhausted and i.iter is positioned before the first
1788 : // key. Reposition to point to the first internal key.
1789 1 : if i.err = i.iterFirstWithinBounds(); i.err != nil {
1790 0 : i.iterValidityState = IterExhausted
1791 0 : return i.iterValidityState
1792 0 : }
1793 1 : case iterPosCurReversePaused:
1794 1 : // Positioned at a limit. Implement as a prefix-agnostic Next. See TODO
1795 1 : // up above.
1796 1 : //
1797 1 : // Switching directions; The iterator must not be exhausted since it
1798 1 : // paused.
1799 1 : if i.iterKV == nil {
1800 0 : i.err = errors.New("switching paused from reverse to forward but iter is exhausted")
1801 0 : i.iterValidityState = IterExhausted
1802 0 : return i.iterValidityState
1803 0 : }
1804 1 : i.nextUserKey()
1805 1 : case iterPosPrev:
1806 1 : // The underlying iterator is pointed to the previous key (this can
1807 1 : // only happen when switching iteration directions).
1808 1 : if i.iterKV == nil {
1809 1 : // We're positioned before the first key. Need to reposition to point to
1810 1 : // the first key.
1811 1 : i.err = i.iterFirstWithinBounds()
1812 1 : if i.iterKV == nil {
1813 0 : i.iterValidityState = IterExhausted
1814 0 : return i.iterValidityState
1815 0 : }
1816 1 : if invariants.Enabled && !i.equal(i.iterKV.K.UserKey, i.key) {
1817 0 : i.opts.getLogger().Fatalf("pebble: invariant violation: First internal iterator from iterPosPrev landed on %q, not %q",
1818 0 : i.iterKV.K.UserKey, i.key)
1819 0 : }
1820 1 : } else {
1821 1 : // Move the internal iterator back onto the user key stored in
1822 1 : // i.key. iterPosPrev guarantees that it's positioned at the last
1823 1 : // key with the user key less than i.key, so we're guaranteed to
1824 1 : // land on the correct key with a single Next.
1825 1 : i.iterKV = i.iter.Next()
1826 1 : if i.iterKV == nil {
1827 0 : // This should only be possible if i.iter.Next() encountered an
1828 0 : // error.
1829 0 : if i.iter.Error() == nil {
1830 0 : i.opts.getLogger().Fatalf("pebble: invariant violation: Nexting internal iterator from iterPosPrev found nothing")
1831 0 : }
1832 : // NB: Iterator.Error() will return i.iter.Error().
1833 0 : i.iterValidityState = IterExhausted
1834 0 : return i.iterValidityState
1835 : }
1836 1 : if invariants.Enabled && !i.equal(i.iterKV.K.UserKey, i.key) {
1837 0 : i.opts.getLogger().Fatalf("pebble: invariant violation: Nexting internal iterator from iterPosPrev landed on %q, not %q",
1838 0 : i.iterKV.K.UserKey, i.key)
1839 0 : }
1840 : }
1841 : // The internal iterator is now positioned at i.key. Advance to the next
1842 : // prefix.
1843 1 : i.internalNextPrefix(i.comparer.Split(i.key))
1844 1 : case iterPosNext:
1845 1 : // Already positioned on the next key. Only call nextPrefixKey if the
1846 1 : // next key shares the same prefix.
1847 1 : if i.iterKV != nil {
1848 1 : currKeyPrefixLen := i.comparer.Split(i.key)
1849 1 : if bytes.Equal(i.comparer.Split.Prefix(i.iterKV.K.UserKey), i.key[:currKeyPrefixLen]) {
1850 1 : i.internalNextPrefix(currKeyPrefixLen)
1851 1 : }
1852 : }
1853 : }
1854 :
1855 1 : i.stats.ForwardStepCount[InterfaceCall]++
1856 1 : i.findNextEntry(nil /* limit */)
1857 1 : i.maybeSampleRead()
1858 1 : return i.iterValidityState
1859 : }
1860 :
1861 1 : func (i *Iterator) internalNextPrefix(currKeyPrefixLen int) {
1862 1 : if i.iterKV == nil {
1863 1 : return
1864 1 : }
1865 : // The Next "fast-path" is not really a fast-path when there is more than
1866 : // one version. However, even with TableFormatPebblev3, there is a small
1867 : // slowdown (~10%) for one version if we remove it and only call NextPrefix.
1868 : // When there are two versions, only calling NextPrefix is ~30% faster.
1869 1 : i.stats.ForwardStepCount[InternalIterCall]++
1870 1 : if i.iterKV = i.iter.Next(); i.iterKV == nil {
1871 1 : return
1872 1 : }
1873 1 : if !bytes.Equal(i.comparer.Split.Prefix(i.iterKV.K.UserKey), i.key[:currKeyPrefixLen]) {
1874 1 : return
1875 1 : }
1876 1 : i.stats.ForwardStepCount[InternalIterCall]++
1877 1 : i.prefixOrFullSeekKey = i.comparer.ImmediateSuccessor(i.prefixOrFullSeekKey[:0], i.key[:currKeyPrefixLen])
1878 1 : if i.iterKV.K.IsExclusiveSentinel() {
1879 0 : panic(errors.AssertionFailedf("pebble: unexpected exclusive sentinel key: %q", i.iterKV.K))
1880 : }
1881 :
1882 1 : i.iterKV = i.iter.NextPrefix(i.prefixOrFullSeekKey)
1883 1 : if invariants.Enabled && i.iterKV != nil {
1884 1 : if p := i.comparer.Split.Prefix(i.iterKV.K.UserKey); i.cmp(p, i.prefixOrFullSeekKey) < 0 {
1885 0 : panic(errors.AssertionFailedf("pebble: iter.NextPrefix did not advance beyond the current prefix: now at %q; expected to be geq %q",
1886 0 : i.iterKV.K, i.prefixOrFullSeekKey))
1887 : }
1888 : }
1889 : }
1890 :
1891 1 : func (i *Iterator) nextWithLimit(limit []byte) IterValidityState {
1892 1 : i.stats.ForwardStepCount[InterfaceCall]++
1893 1 : if i.hasPrefix {
1894 1 : if limit != nil {
1895 1 : i.err = errors.New("cannot use limit with prefix iteration")
1896 1 : i.iterValidityState = IterExhausted
1897 1 : return i.iterValidityState
1898 1 : } else if i.iterValidityState == IterExhausted {
1899 1 : // No-op, already exhausted. We avoid executing the Next because it
1900 1 : // can break invariants: Specifically, a file that fails the bloom
1901 1 : // filter test may result in its level being removed from the
1902 1 : // merging iterator. The level's removal can cause a lazy combined
1903 1 : // iterator to miss range keys and trigger a switch to combined
1904 1 : // iteration at a larger key, breaking keyspan invariants.
1905 1 : return i.iterValidityState
1906 1 : }
1907 : }
1908 1 : if i.err != nil {
1909 1 : return i.iterValidityState
1910 1 : }
1911 1 : if i.rangeKey != nil {
1912 1 : // NB: Check Valid() before clearing requiresReposition.
1913 1 : i.rangeKey.prevPosHadRangeKey = i.rangeKey.hasRangeKey && i.Valid()
1914 1 : // If we have a range key but did not expose it at the previous iterator
1915 1 : // position (because the iterator was not at a valid position), updated
1916 1 : // must be true. This ensures that after an iterator op sequence like:
1917 1 : // - Next() → (IterValid, RangeBounds() = [a,b))
1918 1 : // - NextWithLimit(...) → (IterAtLimit, RangeBounds() = -)
1919 1 : // - NextWithLimit(...) → (IterValid, RangeBounds() = [a,b))
1920 1 : // the iterator returns RangeKeyChanged()=true.
1921 1 : //
1922 1 : // The remainder of this function will only update i.rangeKey.updated if
1923 1 : // the iterator moves into a new range key, or out of the current range
1924 1 : // key.
1925 1 : i.rangeKey.updated = i.rangeKey.hasRangeKey && !i.Valid() && i.opts.rangeKeys()
1926 1 : }
1927 1 : i.lastPositioningOp = unknownLastPositionOp
1928 1 : i.requiresReposition = false
1929 1 : switch i.pos {
1930 1 : case iterPosCurForward:
1931 1 : i.nextUserKey()
1932 1 : case iterPosCurForwardPaused:
1933 : // Already at the right place.
1934 1 : case iterPosCurReverse:
1935 1 : // Switching directions.
1936 1 : // Unless the iterator was exhausted, reverse iteration needs to
1937 1 : // position the iterator at iterPosPrev.
1938 1 : if i.iterKV != nil {
1939 0 : i.err = errors.New("switching from reverse to forward but iter is not at prev")
1940 0 : i.iterValidityState = IterExhausted
1941 0 : return i.iterValidityState
1942 0 : }
1943 : // We're positioned before the first key. Need to reposition to point to
1944 : // the first key.
1945 1 : if i.err = i.iterFirstWithinBounds(); i.err != nil {
1946 0 : i.iterValidityState = IterExhausted
1947 0 : return i.iterValidityState
1948 0 : }
1949 1 : case iterPosCurReversePaused:
1950 1 : // Switching directions.
1951 1 : // The iterator must not be exhausted since it paused.
1952 1 : if i.iterKV == nil {
1953 0 : i.err = errors.New("switching paused from reverse to forward but iter is exhausted")
1954 0 : i.iterValidityState = IterExhausted
1955 0 : return i.iterValidityState
1956 0 : }
1957 1 : i.nextUserKey()
1958 1 : case iterPosPrev:
1959 1 : // The underlying iterator is pointed to the previous key (this can
1960 1 : // only happen when switching iteration directions). We set
1961 1 : // i.iterValidityState to IterExhausted here to force the calls to
1962 1 : // nextUserKey to save the current key i.iter is pointing at in order
1963 1 : // to determine when the next user-key is reached.
1964 1 : i.iterValidityState = IterExhausted
1965 1 : if i.iterKV == nil {
1966 1 : // We're positioned before the first key. Need to reposition to point to
1967 1 : // the first key.
1968 1 : i.err = i.iterFirstWithinBounds()
1969 1 : } else {
1970 1 : i.nextUserKey()
1971 1 : }
1972 1 : if i.err != nil {
1973 0 : i.iterValidityState = IterExhausted
1974 0 : return i.iterValidityState
1975 0 : }
1976 1 : i.nextUserKey()
1977 1 : case iterPosNext:
1978 : // Already at the right place.
1979 : }
1980 1 : i.findNextEntry(limit)
1981 1 : i.maybeSampleRead()
1982 1 : return i.iterValidityState
1983 : }
1984 :
1985 : // Prev moves the iterator to the previous key/value pair. Returns true if the
1986 : // iterator is pointing at a valid entry and false otherwise.
1987 1 : func (i *Iterator) Prev() bool {
1988 1 : return i.PrevWithLimit(nil) == IterValid
1989 1 : }
1990 :
1991 : // PrevWithLimit moves the iterator to the previous key/value pair.
1992 : //
1993 : // If limit is provided, it serves as a best-effort inclusive limit. If the
1994 : // previous key is less than limit, the Iterator may pause and return
1995 : // IterAtLimit. Because limits are best-effort, PrevWithLimit may return a key
1996 : // beyond limit.
1997 : //
1998 : // If the Iterator is configured to iterate over range keys, PrevWithLimit
1999 : // guarantees it will surface any range keys with bounds overlapping the
2000 : // keyspace up to limit.
2001 1 : func (i *Iterator) PrevWithLimit(limit []byte) IterValidityState {
2002 1 : i.stats.ReverseStepCount[InterfaceCall]++
2003 1 : if i.err != nil {
2004 1 : return i.iterValidityState
2005 1 : }
2006 1 : if i.rangeKey != nil {
2007 1 : // NB: Check Valid() before clearing requiresReposition.
2008 1 : i.rangeKey.prevPosHadRangeKey = i.rangeKey.hasRangeKey && i.Valid()
2009 1 : // If we have a range key but did not expose it at the previous iterator
2010 1 : // position (because the iterator was not at a valid position), updated
2011 1 : // must be true. This ensures that after an iterator op sequence like:
2012 1 : // - Next() → (IterValid, RangeBounds() = [a,b))
2013 1 : // - NextWithLimit(...) → (IterAtLimit, RangeBounds() = -)
2014 1 : // - PrevWithLimit(...) → (IterValid, RangeBounds() = [a,b))
2015 1 : // the iterator returns RangeKeyChanged()=true.
2016 1 : //
2017 1 : // The remainder of this function will only update i.rangeKey.updated if
2018 1 : // the iterator moves into a new range key, or out of the current range
2019 1 : // key.
2020 1 : i.rangeKey.updated = i.rangeKey.hasRangeKey && !i.Valid() && i.opts.rangeKeys()
2021 1 : }
2022 1 : i.lastPositioningOp = unknownLastPositionOp
2023 1 : i.requiresReposition = false
2024 1 : if i.hasPrefix {
2025 1 : i.err = errReversePrefixIteration
2026 1 : i.iterValidityState = IterExhausted
2027 1 : return i.iterValidityState
2028 1 : }
2029 1 : switch i.pos {
2030 1 : case iterPosCurForward:
2031 : // Switching directions, and will handle this below.
2032 1 : case iterPosCurForwardPaused:
2033 : // Switching directions, and will handle this below.
2034 1 : case iterPosCurReverse:
2035 1 : i.prevUserKey()
2036 1 : case iterPosCurReversePaused:
2037 : // Already at the right place.
2038 1 : case iterPosNext:
2039 : // The underlying iterator is pointed to the next key (this can only happen
2040 : // when switching iteration directions). We will handle this below.
2041 1 : case iterPosPrev:
2042 : // Already at the right place.
2043 : }
2044 1 : if i.pos == iterPosCurForward || i.pos == iterPosNext || i.pos == iterPosCurForwardPaused {
2045 1 : // Switching direction.
2046 1 : stepAgain := i.pos == iterPosNext
2047 1 :
2048 1 : // Synthetic range key markers are a special case. Consider SeekGE(b)
2049 1 : // which finds a range key [a, c). To ensure the user observes the range
2050 1 : // key, the Iterator pauses at Key() = b. The iterator must advance the
2051 1 : // internal iterator to see if there's also a coincident point key at
2052 1 : // 'b', leaving the iterator at iterPosNext if there's not.
2053 1 : //
2054 1 : // This is a problem: Synthetic range key markers are only interleaved
2055 1 : // during the original seek. A subsequent Prev() of i.iter will not move
2056 1 : // back onto the synthetic range key marker. In this case where the
2057 1 : // previous iterator position was a synthetic range key start boundary,
2058 1 : // we must not step a second time.
2059 1 : if i.isEphemeralPosition() {
2060 1 : stepAgain = false
2061 1 : }
2062 :
2063 : // We set i.iterValidityState to IterExhausted here to force the calls
2064 : // to prevUserKey to save the current key i.iter is pointing at in
2065 : // order to determine when the prev user-key is reached.
2066 1 : i.iterValidityState = IterExhausted
2067 1 : if i.iterKV == nil {
2068 1 : // We're positioned after the last key. Need to reposition to point to
2069 1 : // the last key.
2070 1 : i.err = i.iterLastWithinBounds()
2071 1 : } else {
2072 1 : i.prevUserKey()
2073 1 : }
2074 1 : if i.err != nil {
2075 0 : return i.iterValidityState
2076 0 : }
2077 1 : if stepAgain {
2078 1 : i.prevUserKey()
2079 1 : if i.err != nil {
2080 0 : return i.iterValidityState
2081 0 : }
2082 : }
2083 : }
2084 1 : i.findPrevEntry(limit)
2085 1 : i.maybeSampleRead()
2086 1 : return i.iterValidityState
2087 : }
2088 :
2089 : // iterFirstWithinBounds moves the internal iterator to the first key,
2090 : // respecting bounds.
2091 1 : func (i *Iterator) iterFirstWithinBounds() error {
2092 1 : i.stats.ForwardSeekCount[InternalIterCall]++
2093 1 : if lowerBound := i.opts.GetLowerBound(); lowerBound != nil {
2094 1 : i.iterKV = i.iter.SeekGE(lowerBound, base.SeekGEFlagsNone)
2095 1 : } else {
2096 1 : i.iterKV = i.iter.First()
2097 1 : }
2098 1 : if i.iterKV == nil {
2099 1 : return i.iter.Error()
2100 1 : }
2101 1 : return nil
2102 : }
2103 :
2104 : // iterLastWithinBounds moves the internal iterator to the last key, respecting
2105 : // bounds.
2106 1 : func (i *Iterator) iterLastWithinBounds() error {
2107 1 : i.stats.ReverseSeekCount[InternalIterCall]++
2108 1 : if upperBound := i.opts.GetUpperBound(); upperBound != nil {
2109 1 : i.iterKV = i.iter.SeekLT(upperBound, base.SeekLTFlagsNone)
2110 1 : } else {
2111 1 : i.iterKV = i.iter.Last()
2112 1 : }
2113 1 : if i.iterKV == nil {
2114 1 : return i.iter.Error()
2115 1 : }
2116 1 : return nil
2117 : }
2118 :
2119 : // RangeKeyData describes a range key's data, set through RangeKeySet. The key
2120 : // boundaries of the range key is provided by Iterator.RangeBounds.
2121 : type RangeKeyData struct {
2122 : Suffix []byte
2123 : Value []byte
2124 : }
2125 :
2126 : // rangeKeyWithinLimit is called during limited reverse iteration when
2127 : // positioned over a key beyond the limit. If there exists a range key that lies
2128 : // within the limit, the iterator must not pause in order to ensure the user has
2129 : // an opportunity to observe the range key within limit.
2130 : //
2131 : // It would be valid to ignore the limit whenever there's a range key covering
2132 : // the key, but that would introduce nondeterminism. To preserve determinism for
2133 : // testing, the iterator ignores the limit only if the covering range key does
2134 : // cover the keyspace within the limit.
2135 : //
2136 : // This awkwardness exists because range keys are interleaved at their inclusive
2137 : // start positions. Note that limit is inclusive.
2138 1 : func (i *Iterator) rangeKeyWithinLimit(limit []byte) bool {
2139 1 : if i.rangeKey == nil || !i.opts.rangeKeys() {
2140 1 : return false
2141 1 : }
2142 1 : s := i.rangeKey.iiter.Span()
2143 1 : // If the range key ends beyond the limit, then the range key does not cover
2144 1 : // any portion of the keyspace within the limit and it is safe to pause.
2145 1 : return s != nil && i.cmp(s.End, limit) > 0
2146 : }
2147 :
2148 : // saveRangeKey saves the current range key to the underlying iterator's current
2149 : // range key state. If the range key has not changed, saveRangeKey is a no-op.
2150 : // If there is a new range key, saveRangeKey copies all of the key, value and
2151 : // suffixes into Iterator-managed buffers.
2152 1 : func (i *Iterator) saveRangeKey() {
2153 1 : if i.rangeKey == nil || i.opts.KeyTypes == IterKeyTypePointsOnly {
2154 1 : return
2155 1 : }
2156 :
2157 1 : s := i.rangeKey.iiter.Span()
2158 1 : if s == nil {
2159 1 : i.rangeKey.hasRangeKey = false
2160 1 : i.rangeKey.updated = i.rangeKey.prevPosHadRangeKey
2161 1 : return
2162 1 : } else if !i.rangeKey.stale {
2163 1 : // The range key `s` is identical to the one currently saved. No-op.
2164 1 : return
2165 1 : }
2166 :
2167 1 : if s.KeysOrder != keyspan.BySuffixAsc {
2168 0 : panic("pebble: range key span's keys unexpectedly not in ascending suffix order")
2169 : }
2170 :
2171 : // Although `i.rangeKey.stale` is true, the span s may still be identical
2172 : // to the currently saved span. This is possible when seeking the iterator,
2173 : // which may land back on the same range key. If we previously had a range
2174 : // key and the new one has an identical start key, then it must be the same
2175 : // range key and we can avoid copying and keep `i.rangeKey.updated=false`.
2176 : //
2177 : // TODO(jackson): These key comparisons could be avoidable during relative
2178 : // positioning operations continuing in the same direction, because these
2179 : // ops will never encounter the previous position's range key while
2180 : // stale=true. However, threading whether the current op is a seek or step
2181 : // maybe isn't worth it. This key comparison is only necessary once when we
2182 : // step onto a new range key, which should be relatively rare.
2183 1 : if i.rangeKey.prevPosHadRangeKey && i.equal(i.rangeKey.start, s.Start) &&
2184 1 : i.equal(i.rangeKey.end, s.End) {
2185 1 : i.rangeKey.updated = false
2186 1 : i.rangeKey.stale = false
2187 1 : i.rangeKey.hasRangeKey = true
2188 1 : return
2189 1 : }
2190 1 : i.stats.RangeKeyStats.Count += len(s.Keys)
2191 1 : i.rangeKey.buf.Reset()
2192 1 : i.rangeKey.hasRangeKey = true
2193 1 : i.rangeKey.updated = true
2194 1 : i.rangeKey.stale = false
2195 1 : i.rangeKey.buf, i.rangeKey.start = i.rangeKey.buf.Copy(s.Start)
2196 1 : i.rangeKey.buf, i.rangeKey.end = i.rangeKey.buf.Copy(s.End)
2197 1 : i.rangeKey.keys = i.rangeKey.keys[:0]
2198 1 : for j := 0; j < len(s.Keys); j++ {
2199 1 : if invariants.Enabled {
2200 1 : if s.Keys[j].Kind() != base.InternalKeyKindRangeKeySet {
2201 0 : panic("pebble: user iteration encountered non-RangeKeySet key kind")
2202 1 : } else if j > 0 && i.comparer.CompareSuffixes(s.Keys[j].Suffix, s.Keys[j-1].Suffix) < 0 {
2203 0 : panic("pebble: user iteration encountered range keys not in suffix order")
2204 : }
2205 : }
2206 1 : var rkd RangeKeyData
2207 1 : i.rangeKey.buf, rkd.Suffix = i.rangeKey.buf.Copy(s.Keys[j].Suffix)
2208 1 : i.rangeKey.buf, rkd.Value = i.rangeKey.buf.Copy(s.Keys[j].Value)
2209 1 : i.rangeKey.keys = append(i.rangeKey.keys, rkd)
2210 : }
2211 : }
2212 :
2213 : // RangeKeyChanged indicates whether the most recent iterator positioning
2214 : // operation resulted in the iterator stepping into or out of a new range key.
2215 : // If true, previously returned range key bounds and data has been invalidated.
2216 : // If false, previously obtained range key bounds, suffix and value slices are
2217 : // still valid and may continue to be read.
2218 : //
2219 : // Invalid iterator positions are considered to not hold range keys, meaning
2220 : // that if an iterator steps from an IterExhausted or IterAtLimit position onto
2221 : // a position with a range key, RangeKeyChanged will yield true.
2222 1 : func (i *Iterator) RangeKeyChanged() bool {
2223 1 : return i.iterValidityState == IterValid && i.rangeKey != nil && i.rangeKey.updated
2224 1 : }
2225 :
2226 : // HasPointAndRange indicates whether there exists a point key, a range key or
2227 : // both at the current iterator position.
2228 1 : func (i *Iterator) HasPointAndRange() (hasPoint, hasRange bool) {
2229 1 : if i.iterValidityState != IterValid || i.requiresReposition {
2230 0 : return false, false
2231 0 : }
2232 1 : if i.opts.KeyTypes == IterKeyTypePointsOnly {
2233 1 : return true, false
2234 1 : }
2235 1 : return i.rangeKey == nil || !i.rangeKey.rangeKeyOnly, i.rangeKey != nil && i.rangeKey.hasRangeKey
2236 : }
2237 :
2238 : // RangeBounds returns the start (inclusive) and end (exclusive) bounds of the
2239 : // range key covering the current iterator position. RangeBounds returns nil
2240 : // bounds if there is no range key covering the current iterator position, or
2241 : // the iterator is not configured to surface range keys.
2242 : //
2243 : // If valid, the returned start bound is less than or equal to Key() and the
2244 : // returned end bound is greater than Key().
2245 1 : func (i *Iterator) RangeBounds() (start, end []byte) {
2246 1 : if i.rangeKey == nil || !i.opts.rangeKeys() || !i.rangeKey.hasRangeKey {
2247 0 : return nil, nil
2248 0 : }
2249 1 : return i.rangeKey.start, i.rangeKey.end
2250 : }
2251 :
2252 : // Key returns the key of the current key/value pair, or nil if done. The
2253 : // caller should not modify the contents of the returned slice, and its
2254 : // contents may change on the next call to Next.
2255 : //
2256 : // If positioned at an iterator position that only holds a range key, Key()
2257 : // always returns the start bound of the range key. Otherwise, it returns the
2258 : // point key's key.
2259 1 : func (i *Iterator) Key() []byte {
2260 1 : return i.key
2261 1 : }
2262 :
2263 : // Value returns the value of the current key/value pair, or nil if done. The
2264 : // caller should not modify the contents of the returned slice, and its
2265 : // contents may change on the next call to Next.
2266 : //
2267 : // Only valid if HasPointAndRange() returns true for hasPoint.
2268 : // Deprecated: use ValueAndErr instead.
2269 1 : func (i *Iterator) Value() []byte {
2270 1 : val, _ := i.ValueAndErr()
2271 1 : return val
2272 1 : }
2273 :
2274 : // ValueAndErr returns the value, and any error encountered in extracting the value.
2275 : // REQUIRES: i.Error()==nil and HasPointAndRange() returns true for hasPoint.
2276 : //
2277 : // The caller should not modify the contents of the returned slice, and its
2278 : // contents may change on the next call to Next.
2279 1 : func (i *Iterator) ValueAndErr() ([]byte, error) {
2280 1 : val, callerOwned, err := i.value.Value(i.lazyValueBuf)
2281 1 : if err != nil {
2282 0 : i.err = err
2283 0 : i.iterValidityState = IterExhausted
2284 0 : }
2285 1 : if callerOwned {
2286 1 : i.lazyValueBuf = val[:0]
2287 1 : }
2288 1 : return val, err
2289 : }
2290 :
2291 : // LazyValue returns the LazyValue. Only for advanced use cases.
2292 : // REQUIRES: i.Error()==nil and HasPointAndRange() returns true for hasPoint.
2293 0 : func (i *Iterator) LazyValue() LazyValue {
2294 0 : return i.value
2295 0 : }
2296 :
2297 : // RangeKeys returns the range key values and their suffixes covering the
2298 : // current iterator position. The range bounds may be retrieved separately
2299 : // through Iterator.RangeBounds().
2300 1 : func (i *Iterator) RangeKeys() []RangeKeyData {
2301 1 : if i.rangeKey == nil || !i.opts.rangeKeys() || !i.rangeKey.hasRangeKey {
2302 0 : return nil
2303 0 : }
2304 1 : return i.rangeKey.keys
2305 : }
2306 :
2307 : // Valid returns true if the iterator is positioned at a valid key/value pair
2308 : // and false otherwise.
2309 1 : func (i *Iterator) Valid() bool {
2310 1 : valid := i.iterValidityState == IterValid && !i.requiresReposition
2311 1 : if invariants.Enabled {
2312 1 : if err := i.Error(); valid && err != nil {
2313 0 : panic(errors.AssertionFailedf("pebble: iterator is valid with non-nil Error: %+v", err))
2314 : }
2315 : }
2316 1 : return valid
2317 : }
2318 :
2319 : // Error returns any accumulated error.
2320 1 : func (i *Iterator) Error() error {
2321 1 : if i.err != nil {
2322 1 : return i.err
2323 1 : }
2324 1 : if i.iter != nil {
2325 1 : return i.iter.Error()
2326 1 : }
2327 0 : return nil
2328 : }
2329 :
2330 : const maxKeyBufCacheSize = 4 << 10 // 4 KB
2331 :
2332 : // Close closes the iterator and returns any accumulated error. Exhausting
2333 : // all the key/value pairs in a table is not considered to be an error.
2334 : // It is not valid to call any method, including Close, after the iterator
2335 : // has been closed.
2336 1 : func (i *Iterator) Close() error {
2337 1 : // Close the child iterator before releasing the readState because when the
2338 1 : // readState is released sstables referenced by the readState may be deleted
2339 1 : // which will fail on Windows if the sstables are still open by the child
2340 1 : // iterator.
2341 1 : if i.iter != nil {
2342 1 : i.err = firstError(i.err, i.iter.Close())
2343 1 :
2344 1 : // Closing i.iter did not necessarily close the point and range key
2345 1 : // iterators. Calls to SetOptions may have 'disconnected' either one
2346 1 : // from i.iter if iteration key types were changed. Both point and range
2347 1 : // key iterators are preserved in case the iterator needs to switch key
2348 1 : // types again. We explicitly close both of these iterators here.
2349 1 : //
2350 1 : // NB: If the iterators were still connected to i.iter, they may be
2351 1 : // closed, but calling Close on a closed internal iterator or fragment
2352 1 : // iterator is allowed.
2353 1 : if i.pointIter != nil {
2354 1 : i.err = firstError(i.err, i.pointIter.Close())
2355 1 : }
2356 1 : if i.rangeKey != nil && i.rangeKey.rangeKeyIter != nil {
2357 1 : i.rangeKey.rangeKeyIter.Close()
2358 1 : }
2359 : }
2360 1 : err := i.err
2361 1 :
2362 1 : if i.readState != nil {
2363 1 : if i.readSampling.pendingCompactions.size > 0 {
2364 0 : // Copy pending read compactions using db.mu.Lock()
2365 0 : i.readState.db.mu.Lock()
2366 0 : i.readState.db.mu.compact.readCompactions.combine(&i.readSampling.pendingCompactions, i.cmp)
2367 0 : reschedule := i.readState.db.mu.compact.rescheduleReadCompaction
2368 0 : i.readState.db.mu.compact.rescheduleReadCompaction = false
2369 0 : concurrentCompactions := i.readState.db.mu.compact.compactingCount
2370 0 : i.readState.db.mu.Unlock()
2371 0 :
2372 0 : if reschedule && concurrentCompactions == 0 {
2373 0 : // In a read heavy workload, flushes may not happen frequently enough to
2374 0 : // schedule compactions.
2375 0 : i.readState.db.compactionSchedulers.Add(1)
2376 0 : go i.readState.db.maybeScheduleCompactionAsync()
2377 0 : }
2378 : }
2379 :
2380 1 : i.readState.unref()
2381 1 : i.readState = nil
2382 : }
2383 :
2384 1 : if i.version != nil {
2385 1 : i.version.Unref()
2386 1 : }
2387 :
2388 1 : for _, readers := range i.externalReaders {
2389 0 : for _, r := range readers {
2390 0 : err = firstError(err, r.Close())
2391 0 : }
2392 : }
2393 :
2394 : // Close the closer for the current value if one was open.
2395 1 : if i.valueCloser != nil {
2396 0 : err = firstError(err, i.valueCloser.Close())
2397 0 : i.valueCloser = nil
2398 0 : }
2399 :
2400 1 : if i.rangeKey != nil {
2401 1 :
2402 1 : i.rangeKey.rangeKeyBuffers.PrepareForReuse()
2403 1 : *i.rangeKey = iteratorRangeKeyState{
2404 1 : rangeKeyBuffers: i.rangeKey.rangeKeyBuffers,
2405 1 : }
2406 1 : iterRangeKeyStateAllocPool.Put(i.rangeKey)
2407 1 : i.rangeKey = nil
2408 1 : }
2409 1 : if alloc := i.alloc; alloc != nil {
2410 1 : // Avoid caching the key buf if it is overly large. The constant is fairly
2411 1 : // arbitrary.
2412 1 : if cap(i.keyBuf) >= maxKeyBufCacheSize {
2413 0 : alloc.keyBuf = nil
2414 1 : } else {
2415 1 : alloc.keyBuf = i.keyBuf
2416 1 : }
2417 1 : if cap(i.prefixOrFullSeekKey) >= maxKeyBufCacheSize {
2418 0 : alloc.prefixOrFullSeekKey = nil
2419 1 : } else {
2420 1 : alloc.prefixOrFullSeekKey = i.prefixOrFullSeekKey
2421 1 : }
2422 1 : for j := range i.boundsBuf {
2423 1 : if cap(i.boundsBuf[j]) >= maxKeyBufCacheSize {
2424 0 : alloc.boundsBuf[j] = nil
2425 1 : } else {
2426 1 : alloc.boundsBuf[j] = i.boundsBuf[j]
2427 1 : }
2428 : }
2429 1 : *alloc = iterAlloc{
2430 1 : keyBuf: alloc.keyBuf,
2431 1 : boundsBuf: alloc.boundsBuf,
2432 1 : prefixOrFullSeekKey: alloc.prefixOrFullSeekKey,
2433 1 : }
2434 1 : iterAllocPool.Put(alloc)
2435 1 : } else if alloc := i.getIterAlloc; alloc != nil {
2436 1 : if cap(i.keyBuf) >= maxKeyBufCacheSize {
2437 0 : alloc.keyBuf = nil
2438 1 : } else {
2439 1 : alloc.keyBuf = i.keyBuf
2440 1 : }
2441 1 : *alloc = getIterAlloc{
2442 1 : keyBuf: alloc.keyBuf,
2443 1 : }
2444 1 : getIterAllocPool.Put(alloc)
2445 : }
2446 1 : return err
2447 : }
2448 :
2449 : // SetBounds sets the lower and upper bounds for the iterator. Once SetBounds
2450 : // returns, the caller is free to mutate the provided slices.
2451 : //
2452 : // The iterator will always be invalidated and must be repositioned with a call
2453 : // to SeekGE, SeekPrefixGE, SeekLT, First, or Last.
2454 1 : func (i *Iterator) SetBounds(lower, upper []byte) {
2455 1 : // Ensure that the Iterator appears exhausted, regardless of whether we
2456 1 : // actually have to invalidate the internal iterator. Optimizations that
2457 1 : // avoid exhaustion are an internal implementation detail that shouldn't
2458 1 : // leak through the interface. The caller should still call an absolute
2459 1 : // positioning method to reposition the iterator.
2460 1 : i.requiresReposition = true
2461 1 :
2462 1 : if ((i.opts.LowerBound == nil) == (lower == nil)) &&
2463 1 : ((i.opts.UpperBound == nil) == (upper == nil)) &&
2464 1 : i.equal(i.opts.LowerBound, lower) &&
2465 1 : i.equal(i.opts.UpperBound, upper) {
2466 1 : // Unchanged, noop.
2467 1 : return
2468 1 : }
2469 :
2470 : // Copy the user-provided bounds into an Iterator-owned buffer, and set them
2471 : // on i.opts.{Lower,Upper}Bound.
2472 1 : i.processBounds(lower, upper)
2473 1 :
2474 1 : i.iter.SetBounds(i.opts.LowerBound, i.opts.UpperBound)
2475 1 : // If the iterator has an open point iterator that's not currently being
2476 1 : // used, propagate the new bounds to it.
2477 1 : if i.pointIter != nil && !i.opts.pointKeys() {
2478 1 : i.pointIter.SetBounds(i.opts.LowerBound, i.opts.UpperBound)
2479 1 : }
2480 : // If the iterator has a range key iterator, propagate bounds to it. The
2481 : // top-level SetBounds on the interleaving iterator (i.iter) won't propagate
2482 : // bounds to the range key iterator stack, because the FragmentIterator
2483 : // interface doesn't define a SetBounds method. We need to directly inform
2484 : // the iterConfig stack.
2485 1 : if i.rangeKey != nil {
2486 1 : i.rangeKey.iterConfig.SetBounds(i.opts.LowerBound, i.opts.UpperBound)
2487 1 : }
2488 :
2489 : // Even though this is not a positioning operation, the alteration of the
2490 : // bounds means we cannot optimize Seeks by using Next.
2491 1 : i.invalidate()
2492 : }
2493 :
2494 : // SetContext replaces the context provided at iterator creation, or the last
2495 : // one provided by SetContext. Even though iterators are expected to be
2496 : // short-lived, there are some cases where either (a) iterators are used far
2497 : // from the code that created them, (b) iterators are reused (while being
2498 : // short-lived) for processing different requests. For such scenarios, we
2499 : // allow the caller to replace the context.
2500 0 : func (i *Iterator) SetContext(ctx context.Context) {
2501 0 : i.ctx = ctx
2502 0 : i.iter.SetContext(ctx)
2503 0 : // If the iterator has an open point iterator that's not currently being
2504 0 : // used, propagate the new context to it.
2505 0 : if i.pointIter != nil && !i.opts.pointKeys() {
2506 0 : i.pointIter.SetContext(i.ctx)
2507 0 : }
2508 : }
2509 :
2510 : // Initialization and changing of the bounds must call processBounds.
2511 : // processBounds saves the bounds and computes derived state from those
2512 : // bounds.
2513 1 : func (i *Iterator) processBounds(lower, upper []byte) {
2514 1 : // Copy the user-provided bounds into an Iterator-owned buffer. We can't
2515 1 : // overwrite the current bounds, because some internal iterators compare old
2516 1 : // and new bounds for optimizations.
2517 1 :
2518 1 : buf := i.boundsBuf[i.boundsBufIdx][:0]
2519 1 : if lower != nil {
2520 1 : buf = append(buf, lower...)
2521 1 : i.opts.LowerBound = buf
2522 1 : } else {
2523 1 : i.opts.LowerBound = nil
2524 1 : }
2525 1 : i.nextPrefixNotPermittedByUpperBound = false
2526 1 : if upper != nil {
2527 1 : buf = append(buf, upper...)
2528 1 : i.opts.UpperBound = buf[len(buf)-len(upper):]
2529 1 : if i.comparer.Split(i.opts.UpperBound) != len(i.opts.UpperBound) {
2530 1 : // Setting an upper bound that is a versioned MVCC key. This means
2531 1 : // that a key can have some MVCC versions before the upper bound and
2532 1 : // some after. This causes significant complications for NextPrefix,
2533 1 : // so we bar the user of NextPrefix.
2534 1 : i.nextPrefixNotPermittedByUpperBound = true
2535 1 : }
2536 1 : } else {
2537 1 : i.opts.UpperBound = nil
2538 1 : }
2539 1 : i.boundsBuf[i.boundsBufIdx] = buf
2540 1 : i.boundsBufIdx = 1 - i.boundsBufIdx
2541 : }
2542 :
2543 : // SetOptions sets new iterator options for the iterator. Note that the lower
2544 : // and upper bounds applied here will supersede any bounds set by previous calls
2545 : // to SetBounds.
2546 : //
2547 : // Note that the slices provided in this SetOptions must not be changed by the
2548 : // caller until the iterator is closed, or a subsequent SetBounds or SetOptions
2549 : // has returned. This is because comparisons between the existing and new bounds
2550 : // are sometimes used to optimize seeking. See the extended commentary on
2551 : // SetBounds.
2552 : //
2553 : // If the iterator was created over an indexed mutable batch, the iterator's
2554 : // view of the mutable batch is refreshed.
2555 : //
2556 : // The iterator will always be invalidated and must be repositioned with a call
2557 : // to SeekGE, SeekPrefixGE, SeekLT, First, or Last.
2558 : //
2559 : // If only lower and upper bounds need to be modified, prefer SetBounds.
2560 1 : func (i *Iterator) SetOptions(o *IterOptions) {
2561 1 : if i.externalReaders != nil {
2562 0 : if err := validateExternalIterOpts(o); err != nil {
2563 0 : panic(err)
2564 : }
2565 : }
2566 :
2567 : // Ensure that the Iterator appears exhausted, regardless of whether we
2568 : // actually have to invalidate the internal iterator. Optimizations that
2569 : // avoid exhaustion are an internal implementation detail that shouldn't
2570 : // leak through the interface. The caller should still call an absolute
2571 : // positioning method to reposition the iterator.
2572 1 : i.requiresReposition = true
2573 1 :
2574 1 : // Check if global state requires we close all internal iterators.
2575 1 : //
2576 1 : // If the Iterator is in an error state, invalidate the existing iterators
2577 1 : // so that we reconstruct an iterator state from scratch.
2578 1 : //
2579 1 : // If OnlyReadGuaranteedDurable changed, the iterator stacks are incorrect,
2580 1 : // improperly including or excluding memtables. Invalidate them so that
2581 1 : // finishInitializingIter will reconstruct them.
2582 1 : closeBoth := i.err != nil ||
2583 1 : o.OnlyReadGuaranteedDurable != i.opts.OnlyReadGuaranteedDurable
2584 1 :
2585 1 : // If either options specify block property filters for an iterator stack,
2586 1 : // reconstruct it.
2587 1 : if i.pointIter != nil && (closeBoth || len(o.PointKeyFilters) > 0 || len(i.opts.PointKeyFilters) > 0 ||
2588 1 : o.RangeKeyMasking.Filter != nil || i.opts.RangeKeyMasking.Filter != nil || o.SkipPoint != nil ||
2589 1 : i.opts.SkipPoint != nil) {
2590 1 : i.err = firstError(i.err, i.pointIter.Close())
2591 1 : i.pointIter = nil
2592 1 : }
2593 1 : if i.rangeKey != nil {
2594 1 : if closeBoth || len(o.RangeKeyFilters) > 0 || len(i.opts.RangeKeyFilters) > 0 {
2595 1 : i.rangeKey.rangeKeyIter.Close()
2596 1 : i.rangeKey = nil
2597 1 : } else {
2598 1 : // If there's still a range key iterator stack, invalidate the
2599 1 : // iterator. This ensures RangeKeyChanged() returns true if a
2600 1 : // subsequent positioning operation discovers a range key. It also
2601 1 : // prevents seek no-op optimizations.
2602 1 : i.invalidate()
2603 1 : }
2604 : }
2605 :
2606 : // If the iterator is backed by a batch that's been mutated, refresh its
2607 : // existing point and range-key iterators, and invalidate the iterator to
2608 : // prevent seek-using-next optimizations. If we don't yet have a point-key
2609 : // iterator or range-key iterator but we require one, it'll be created in
2610 : // the slow path that reconstructs the iterator in finishInitializingIter.
2611 1 : if i.batch != nil {
2612 1 : nextBatchSeqNum := (base.SeqNum(len(i.batch.data)) | base.SeqNumBatchBit)
2613 1 : if nextBatchSeqNum != i.batchSeqNum {
2614 1 : i.batchSeqNum = nextBatchSeqNum
2615 1 : if i.merging != nil {
2616 1 : i.merging.batchSnapshot = nextBatchSeqNum
2617 1 : }
2618 : // Prevent a no-op seek optimization on the next seek. We won't be
2619 : // able to reuse the top-level Iterator state, because it may be
2620 : // incorrect after the inclusion of new batch mutations.
2621 1 : i.batchJustRefreshed = true
2622 1 : if i.pointIter != nil && i.batch.countRangeDels > 0 {
2623 0 : if i.batchRangeDelIter.Count() == 0 {
2624 0 : // When we constructed this iterator, there were no
2625 0 : // rangedels in the batch. Iterator construction will
2626 0 : // have excluded the batch rangedel iterator from the
2627 0 : // point iterator stack. We need to reconstruct the
2628 0 : // point iterator to add i.batchRangeDelIter into the
2629 0 : // iterator stack.
2630 0 : i.err = firstError(i.err, i.pointIter.Close())
2631 0 : i.pointIter = nil
2632 0 : } else {
2633 0 : // There are range deletions in the batch and we already
2634 0 : // have a batch rangedel iterator. We can update the
2635 0 : // batch rangedel iterator in place.
2636 0 : //
2637 0 : // NB: There may or may not be new range deletions. We
2638 0 : // can't tell based on i.batchRangeDelIter.Count(),
2639 0 : // which is the count of fragmented range deletions, NOT
2640 0 : // the number of range deletions written to the batch
2641 0 : // [i.batch.countRangeDels].
2642 0 : i.batch.initRangeDelIter(&i.opts, &i.batchRangeDelIter, nextBatchSeqNum)
2643 0 : }
2644 : }
2645 1 : if i.rangeKey != nil && i.batch.countRangeKeys > 0 {
2646 0 : if i.batchRangeKeyIter.Count() == 0 {
2647 0 : // When we constructed this iterator, there were no range
2648 0 : // keys in the batch. Iterator construction will have
2649 0 : // excluded the batch rangekey iterator from the range key
2650 0 : // iterator stack. We need to reconstruct the range key
2651 0 : // iterator to add i.batchRangeKeyIter into the iterator
2652 0 : // stack.
2653 0 : i.rangeKey.rangeKeyIter.Close()
2654 0 : i.rangeKey = nil
2655 0 : } else {
2656 0 : // There are range keys in the batch and we already
2657 0 : // have a batch rangekey iterator. We can update the batch
2658 0 : // rangekey iterator in place.
2659 0 : //
2660 0 : // NB: There may or may not be new range keys. We can't
2661 0 : // tell based on i.batchRangeKeyIter.Count(), which is the
2662 0 : // count of fragmented range keys, NOT the number of
2663 0 : // range keys written to the batch [i.batch.countRangeKeys].
2664 0 : i.batch.initRangeKeyIter(&i.opts, &i.batchRangeKeyIter, nextBatchSeqNum)
2665 0 : i.invalidate()
2666 0 : }
2667 : }
2668 : }
2669 : }
2670 :
2671 : // Reset combinedIterState.initialized in case the iterator key types
2672 : // changed. If there's already a range key iterator stack, the combined
2673 : // iterator is already initialized. Additionally, if the iterator is not
2674 : // configured to include range keys, mark it as initialized to signal that
2675 : // lower level iterators should not trigger a switch to combined iteration.
2676 1 : i.lazyCombinedIter.combinedIterState = combinedIterState{
2677 1 : initialized: i.rangeKey != nil || !i.opts.rangeKeys(),
2678 1 : }
2679 1 :
2680 1 : boundsEqual := ((i.opts.LowerBound == nil) == (o.LowerBound == nil)) &&
2681 1 : ((i.opts.UpperBound == nil) == (o.UpperBound == nil)) &&
2682 1 : i.equal(i.opts.LowerBound, o.LowerBound) &&
2683 1 : i.equal(i.opts.UpperBound, o.UpperBound)
2684 1 :
2685 1 : if boundsEqual && o.KeyTypes == i.opts.KeyTypes &&
2686 1 : (i.pointIter != nil || !i.opts.pointKeys()) &&
2687 1 : (i.rangeKey != nil || !i.opts.rangeKeys() || i.opts.KeyTypes == IterKeyTypePointsAndRanges) &&
2688 1 : i.comparer.CompareSuffixes(o.RangeKeyMasking.Suffix, i.opts.RangeKeyMasking.Suffix) == 0 &&
2689 1 : o.UseL6Filters == i.opts.UseL6Filters {
2690 1 : // The options are identical, so we can likely use the fast path. In
2691 1 : // addition to all the above constraints, we cannot use the fast path if
2692 1 : // configured to perform lazy combined iteration but an indexed batch
2693 1 : // used by the iterator now contains range keys. Lazy combined iteration
2694 1 : // is not compatible with batch range keys because we always need to
2695 1 : // merge the batch's range keys into iteration.
2696 1 : if i.rangeKey != nil || !i.opts.rangeKeys() || i.batch == nil || i.batch.countRangeKeys == 0 {
2697 1 : // Fast path. This preserves the Seek-using-Next optimizations as
2698 1 : // long as the iterator wasn't already invalidated up above.
2699 1 : return
2700 1 : }
2701 : }
2702 : // Slow path.
2703 :
2704 : // The options changed. Save the new ones to i.opts.
2705 1 : if boundsEqual {
2706 1 : // Copying the options into i.opts will overwrite LowerBound and
2707 1 : // UpperBound fields with the user-provided slices. We need to hold on
2708 1 : // to the Pebble-owned slices, so save them and re-set them after the
2709 1 : // copy.
2710 1 : lower, upper := i.opts.LowerBound, i.opts.UpperBound
2711 1 : i.opts = *o
2712 1 : i.opts.LowerBound, i.opts.UpperBound = lower, upper
2713 1 : } else {
2714 1 : i.opts = *o
2715 1 : i.processBounds(o.LowerBound, o.UpperBound)
2716 1 : // Propagate the changed bounds to the existing point iterator.
2717 1 : // NB: We propagate i.opts.{Lower,Upper}Bound, not o.{Lower,Upper}Bound
2718 1 : // because i.opts now point to buffers owned by Pebble.
2719 1 : if i.pointIter != nil {
2720 1 : i.pointIter.SetBounds(i.opts.LowerBound, i.opts.UpperBound)
2721 1 : }
2722 1 : if i.rangeKey != nil {
2723 1 : i.rangeKey.iterConfig.SetBounds(i.opts.LowerBound, i.opts.UpperBound)
2724 1 : }
2725 : }
2726 :
2727 : // Even though this is not a positioning operation, the invalidation of the
2728 : // iterator stack means we cannot optimize Seeks by using Next.
2729 1 : i.invalidate()
2730 1 :
2731 1 : // Iterators created through NewExternalIter have a different iterator
2732 1 : // initialization process.
2733 1 : if i.externalReaders != nil {
2734 0 : finishInitializingExternal(i.ctx, i)
2735 0 : return
2736 0 : }
2737 1 : finishInitializingIter(i.ctx, i.alloc)
2738 : }
2739 :
2740 1 : func (i *Iterator) invalidate() {
2741 1 : i.lastPositioningOp = unknownLastPositionOp
2742 1 : i.hasPrefix = false
2743 1 : i.iterKV = nil
2744 1 : i.err = nil
2745 1 : // This switch statement isn't necessary for correctness since callers
2746 1 : // should call a repositioning method. We could have arbitrarily set i.pos
2747 1 : // to one of the values. But it results in more intuitive behavior in
2748 1 : // tests, which do not always reposition.
2749 1 : switch i.pos {
2750 1 : case iterPosCurForward, iterPosNext, iterPosCurForwardPaused:
2751 1 : i.pos = iterPosCurForward
2752 1 : case iterPosCurReverse, iterPosPrev, iterPosCurReversePaused:
2753 1 : i.pos = iterPosCurReverse
2754 : }
2755 1 : i.iterValidityState = IterExhausted
2756 1 : if i.rangeKey != nil {
2757 1 : i.rangeKey.iiter.Invalidate()
2758 1 : i.rangeKey.prevPosHadRangeKey = false
2759 1 : }
2760 : }
2761 :
2762 : // Metrics returns per-iterator metrics.
2763 0 : func (i *Iterator) Metrics() IteratorMetrics {
2764 0 : m := IteratorMetrics{
2765 0 : ReadAmp: 1,
2766 0 : }
2767 0 : if mi, ok := i.iter.(*mergingIter); ok {
2768 0 : m.ReadAmp = len(mi.levels)
2769 0 : }
2770 0 : return m
2771 : }
2772 :
2773 : // ResetStats resets the stats to 0.
2774 0 : func (i *Iterator) ResetStats() {
2775 0 : i.stats = IteratorStats{}
2776 0 : }
2777 :
2778 : // Stats returns the current stats.
2779 0 : func (i *Iterator) Stats() IteratorStats {
2780 0 : return i.stats
2781 0 : }
2782 :
2783 : // CloneOptions configures an iterator constructed through Iterator.Clone.
2784 : type CloneOptions struct {
2785 : // IterOptions, if non-nil, define the iterator options to configure a
2786 : // cloned iterator. If nil, the clone adopts the same IterOptions as the
2787 : // iterator being cloned.
2788 : IterOptions *IterOptions
2789 : // RefreshBatchView may be set to true when cloning an Iterator over an
2790 : // indexed batch. When false, the clone adopts the same (possibly stale)
2791 : // view of the indexed batch as the cloned Iterator. When true, the clone is
2792 : // constructed with a refreshed view of the batch, observing all of the
2793 : // batch's mutations at the time of the Clone. If the cloned iterator was
2794 : // not constructed to read over an indexed batch, RefreshVatchView has no
2795 : // effect.
2796 : RefreshBatchView bool
2797 : }
2798 :
2799 : // Clone creates a new Iterator over the same underlying data, i.e., over the
2800 : // same {batch, memtables, sstables}). The resulting iterator is not positioned.
2801 : // It starts with the same IterOptions, unless opts.IterOptions is set.
2802 : //
2803 : // When called on an Iterator over an indexed batch, the clone's visibility of
2804 : // the indexed batch is determined by CloneOptions.RefreshBatchView. If false,
2805 : // the clone inherits the iterator's current (possibly stale) view of the batch,
2806 : // and callers may call SetOptions to subsequently refresh the clone's view to
2807 : // include all batch mutations. If true, the clone is constructed with a
2808 : // complete view of the indexed batch's mutations at the time of the Clone.
2809 : //
2810 : // Callers can use Clone if they need multiple iterators that need to see
2811 : // exactly the same underlying state of the DB. This should not be used to
2812 : // extend the lifetime of the data backing the original Iterator since that
2813 : // will cause an increase in memory and disk usage (use NewSnapshot for that
2814 : // purpose).
2815 1 : func (i *Iterator) Clone(opts CloneOptions) (*Iterator, error) {
2816 1 : return i.CloneWithContext(context.Background(), opts)
2817 1 : }
2818 :
2819 : // CloneWithContext is like Clone, and additionally accepts a context for
2820 : // tracing.
2821 1 : func (i *Iterator) CloneWithContext(ctx context.Context, opts CloneOptions) (*Iterator, error) {
2822 1 : if opts.IterOptions == nil {
2823 1 : opts.IterOptions = &i.opts
2824 1 : }
2825 1 : if i.batchOnlyIter {
2826 0 : return nil, errors.Errorf("cannot Clone a batch-only Iterator")
2827 0 : }
2828 1 : readState := i.readState
2829 1 : vers := i.version
2830 1 : if readState == nil && vers == nil {
2831 0 : return nil, errors.Errorf("cannot Clone a closed Iterator")
2832 0 : }
2833 : // i is already holding a ref, so there is no race with unref here.
2834 : //
2835 : // TODO(bilal): If the underlying iterator was created on a snapshot, we could
2836 : // grab a reference to the current readState instead of reffing the original
2837 : // readState. This allows us to release references to some zombie sstables
2838 : // and memtables.
2839 1 : if readState != nil {
2840 1 : readState.ref()
2841 1 : }
2842 1 : if vers != nil {
2843 1 : vers.Ref()
2844 1 : }
2845 : // Bundle various structures under a single umbrella in order to allocate
2846 : // them together.
2847 1 : buf := iterAllocPool.Get().(*iterAlloc)
2848 1 : dbi := &buf.dbi
2849 1 : *dbi = Iterator{
2850 1 : ctx: ctx,
2851 1 : opts: *opts.IterOptions,
2852 1 : alloc: buf,
2853 1 : merge: i.merge,
2854 1 : comparer: i.comparer,
2855 1 : readState: readState,
2856 1 : version: vers,
2857 1 : keyBuf: buf.keyBuf,
2858 1 : prefixOrFullSeekKey: buf.prefixOrFullSeekKey,
2859 1 : boundsBuf: buf.boundsBuf,
2860 1 : batch: i.batch,
2861 1 : batchSeqNum: i.batchSeqNum,
2862 1 : newIters: i.newIters,
2863 1 : newIterRangeKey: i.newIterRangeKey,
2864 1 : seqNum: i.seqNum,
2865 1 : }
2866 1 : dbi.processBounds(dbi.opts.LowerBound, dbi.opts.UpperBound)
2867 1 :
2868 1 : // If the caller requested the clone have a current view of the indexed
2869 1 : // batch, set the clone's batch sequence number appropriately.
2870 1 : if i.batch != nil && opts.RefreshBatchView {
2871 1 : dbi.batchSeqNum = (base.SeqNum(len(i.batch.data)) | base.SeqNumBatchBit)
2872 1 : }
2873 :
2874 1 : return finishInitializingIter(ctx, buf), nil
2875 : }
2876 :
2877 : // Merge adds all of the argument's statistics to the receiver. It may be used
2878 : // to accumulate stats across multiple iterators.
2879 0 : func (stats *IteratorStats) Merge(o IteratorStats) {
2880 0 : for i := InterfaceCall; i < NumStatsKind; i++ {
2881 0 : stats.ForwardSeekCount[i] += o.ForwardSeekCount[i]
2882 0 : stats.ReverseSeekCount[i] += o.ReverseSeekCount[i]
2883 0 : stats.ForwardStepCount[i] += o.ForwardStepCount[i]
2884 0 : stats.ReverseStepCount[i] += o.ReverseStepCount[i]
2885 0 : }
2886 0 : stats.InternalStats.Merge(o.InternalStats)
2887 0 : stats.RangeKeyStats.Merge(o.RangeKeyStats)
2888 : }
2889 :
2890 0 : func (stats *IteratorStats) String() string {
2891 0 : return redact.StringWithoutMarkers(stats)
2892 0 : }
2893 :
2894 : // SafeFormat implements the redact.SafeFormatter interface.
2895 0 : func (stats *IteratorStats) SafeFormat(s redact.SafePrinter, verb rune) {
2896 0 : if stats.ReverseSeekCount[InterfaceCall] == 0 && stats.ReverseSeekCount[InternalIterCall] == 0 {
2897 0 : s.Printf("seeked %s times (%s internal)",
2898 0 : humanize.Count.Uint64(uint64(stats.ForwardSeekCount[InterfaceCall])),
2899 0 : humanize.Count.Uint64(uint64(stats.ForwardSeekCount[InternalIterCall])),
2900 0 : )
2901 0 : } else {
2902 0 : s.Printf("seeked %s times (%s fwd/%s rev, internal: %s fwd/%s rev)",
2903 0 : humanize.Count.Uint64(uint64(stats.ForwardSeekCount[InterfaceCall]+stats.ReverseSeekCount[InterfaceCall])),
2904 0 : humanize.Count.Uint64(uint64(stats.ForwardSeekCount[InterfaceCall])),
2905 0 : humanize.Count.Uint64(uint64(stats.ReverseSeekCount[InterfaceCall])),
2906 0 : humanize.Count.Uint64(uint64(stats.ForwardSeekCount[InternalIterCall])),
2907 0 : humanize.Count.Uint64(uint64(stats.ReverseSeekCount[InternalIterCall])),
2908 0 : )
2909 0 : }
2910 0 : s.SafeString("; ")
2911 0 :
2912 0 : if stats.ReverseStepCount[InterfaceCall] == 0 && stats.ReverseStepCount[InternalIterCall] == 0 {
2913 0 : s.Printf("stepped %s times (%s internal)",
2914 0 : humanize.Count.Uint64(uint64(stats.ForwardStepCount[InterfaceCall])),
2915 0 : humanize.Count.Uint64(uint64(stats.ForwardStepCount[InternalIterCall])),
2916 0 : )
2917 0 : } else {
2918 0 : s.Printf("stepped %s times (%s fwd/%s rev, internal: %s fwd/%s rev)",
2919 0 : humanize.Count.Uint64(uint64(stats.ForwardStepCount[InterfaceCall]+stats.ReverseStepCount[InterfaceCall])),
2920 0 : humanize.Count.Uint64(uint64(stats.ForwardStepCount[InterfaceCall])),
2921 0 : humanize.Count.Uint64(uint64(stats.ReverseStepCount[InterfaceCall])),
2922 0 : humanize.Count.Uint64(uint64(stats.ForwardStepCount[InternalIterCall])),
2923 0 : humanize.Count.Uint64(uint64(stats.ReverseStepCount[InternalIterCall])),
2924 0 : )
2925 0 : }
2926 :
2927 0 : if stats.InternalStats != (InternalIteratorStats{}) {
2928 0 : s.SafeString("; ")
2929 0 : stats.InternalStats.SafeFormat(s, verb)
2930 0 : }
2931 0 : if stats.RangeKeyStats != (RangeKeyIteratorStats{}) {
2932 0 : s.SafeString(", ")
2933 0 : stats.RangeKeyStats.SafeFormat(s, verb)
2934 0 : }
2935 : }
2936 :
2937 : // CanDeterministicallySingleDelete takes a valid iterator and examines internal
2938 : // state to determine if a SingleDelete deleting Iterator.Key() would
2939 : // deterministically delete the key. CanDeterministicallySingleDelete requires
2940 : // the iterator to be oriented in the forward direction (eg, the last
2941 : // positioning operation must've been a First, a Seek[Prefix]GE, or a
2942 : // Next[Prefix][WithLimit]).
2943 : //
2944 : // This function does not change the external position of the iterator, and all
2945 : // positioning methods should behave the same as if it was never called. This
2946 : // function will only return a meaningful result the first time it's invoked at
2947 : // an iterator position. This function invalidates the iterator Value's memory,
2948 : // and the caller must not rely on the memory safety of the previous Iterator
2949 : // position.
2950 : //
2951 : // If CanDeterministicallySingleDelete returns true AND the key at the iterator
2952 : // position is not modified between the creation of the Iterator and the commit
2953 : // of a batch containing a SingleDelete over the key, then the caller can be
2954 : // assured that SingleDelete is equivalent to Delete on the local engine, but it
2955 : // may not be true on another engine that received the same writes and with
2956 : // logically equivalent state since this engine may have collapsed multiple SETs
2957 : // into one.
2958 1 : func CanDeterministicallySingleDelete(it *Iterator) (bool, error) {
2959 1 : // This function may only be called once per external iterator position. We
2960 1 : // can validate this by checking the last positioning operation.
2961 1 : if it.lastPositioningOp == internalNextOp {
2962 1 : return false, errors.New("pebble: CanDeterministicallySingleDelete called twice")
2963 1 : }
2964 1 : validity, kind := it.internalNext()
2965 1 : var shadowedBySingleDelete bool
2966 1 : for validity == internalNextValid {
2967 1 : switch kind {
2968 1 : case InternalKeyKindDelete, InternalKeyKindDeleteSized:
2969 1 : // A DEL or DELSIZED tombstone is okay. An internal key
2970 1 : // sequence like SINGLEDEL; SET; DEL; SET can be handled
2971 1 : // deterministically. If there are SETs further down, we
2972 1 : // don't care about them.
2973 1 : return true, nil
2974 1 : case InternalKeyKindSingleDelete:
2975 1 : // A SingleDelete is okay as long as when that SingleDelete was
2976 1 : // written, it was written deterministically (eg, with its own
2977 1 : // CanDeterministicallySingleDelete check). Validate that it was
2978 1 : // written deterministically. We'll allow one set to appear after
2979 1 : // the SingleDelete.
2980 1 : shadowedBySingleDelete = true
2981 1 : validity, kind = it.internalNext()
2982 1 : continue
2983 1 : case InternalKeyKindSet, InternalKeyKindSetWithDelete, InternalKeyKindMerge:
2984 1 : // If we observed a single delete, it's allowed to delete 1 key.
2985 1 : // We'll keep looping to validate that the internal keys beneath the
2986 1 : // already-written single delete are copacetic.
2987 1 : if shadowedBySingleDelete {
2988 1 : shadowedBySingleDelete = false
2989 1 : validity, kind = it.internalNext()
2990 1 : continue
2991 : }
2992 : // We encountered a shadowed SET, SETWITHDEL, MERGE. A SINGLEDEL
2993 : // that deleted the KV at the original iterator position could
2994 : // result in this key becoming visible.
2995 1 : return false, nil
2996 0 : case InternalKeyKindRangeDelete:
2997 0 : // RangeDeletes are handled by the merging iterator and should never
2998 0 : // be observed by the top-level Iterator.
2999 0 : panic(errors.AssertionFailedf("pebble: unexpected range delete"))
3000 0 : case InternalKeyKindRangeKeySet, InternalKeyKindRangeKeyUnset, InternalKeyKindRangeKeyDelete:
3001 0 : // Range keys are interleaved at the maximal sequence number and
3002 0 : // should never be observed within a user key.
3003 0 : panic(errors.AssertionFailedf("pebble: unexpected range key"))
3004 0 : default:
3005 0 : panic(errors.AssertionFailedf("pebble: unexpected key kind: %s", errors.Safe(kind)))
3006 : }
3007 : }
3008 1 : if validity == internalNextError {
3009 1 : return false, it.Error()
3010 1 : }
3011 1 : return true, nil
3012 : }
3013 :
3014 : // internalNextValidity enumerates the potential outcomes of a call to
3015 : // internalNext.
3016 : type internalNextValidity int8
3017 :
3018 : const (
3019 : // internalNextError is returned by internalNext when an error occurred and
3020 : // the caller is responsible for checking iter.Error().
3021 : internalNextError internalNextValidity = iota
3022 : // internalNextExhausted is returned by internalNext when the next internal
3023 : // key is an internal key with a different user key than Iterator.Key().
3024 : internalNextExhausted
3025 : // internalNextValid is returned by internalNext when the internal next
3026 : // found a shadowed internal key with a user key equal to Iterator.Key().
3027 : internalNextValid
3028 : )
3029 :
3030 : // internalNext advances internal Iterator state forward to expose the
3031 : // InternalKeyKind of the next internal key with a user key equal to Key().
3032 : //
3033 : // internalNext is a highly specialized operation and is unlikely to be
3034 : // generally useful. See Iterator.Next for how to reposition the iterator to the
3035 : // next key. internalNext requires the Iterator to be at a valid position in the
3036 : // forward direction (the last positioning operation must've been a First, a
3037 : // Seek[Prefix]GE, or a Next[Prefix][WithLimit] and Valid() must return true).
3038 : //
3039 : // internalNext, unlike all other Iterator methods, exposes internal LSM state.
3040 : // internalNext advances the Iterator's internal iterator to the next shadowed
3041 : // key with a user key equal to Key(). When a key is overwritten or deleted, its
3042 : // removal from the LSM occurs lazily as a part of compactions. internalNext
3043 : // allows the caller to see whether an obsolete internal key exists with the
3044 : // current Key(), and what it's key kind is. Note that the existence of an
3045 : // internal key is nondeterministic and dependent on internal LSM state. These
3046 : // semantics are unlikely to be applicable to almost all use cases.
3047 : //
3048 : // If internalNext finds a key that shares the same user key as Key(), it
3049 : // returns internalNextValid and the internal key's kind. If internalNext
3050 : // encounters an error, it returns internalNextError and the caller is expected
3051 : // to call Iterator.Error() to retrieve it. In all other circumstances,
3052 : // internalNext returns internalNextExhausted, indicating that there are no more
3053 : // additional internal keys with the user key Key().
3054 : //
3055 : // internalNext does not change the external position of the iterator, and a
3056 : // Next operation should behave the same as if internalNext was never called.
3057 : // internalNext does invalidate the iterator Value's memory, and the caller must
3058 : // not rely on the memory safety of the previous Iterator position.
3059 1 : func (i *Iterator) internalNext() (internalNextValidity, base.InternalKeyKind) {
3060 1 : i.stats.ForwardStepCount[InterfaceCall]++
3061 1 : if i.err != nil {
3062 1 : return internalNextError, base.InternalKeyKindInvalid
3063 1 : } else if i.iterValidityState != IterValid {
3064 1 : return internalNextExhausted, base.InternalKeyKindInvalid
3065 1 : }
3066 1 : i.lastPositioningOp = internalNextOp
3067 1 :
3068 1 : switch i.pos {
3069 1 : case iterPosCurForward:
3070 1 : i.iterKV = i.iter.Next()
3071 1 : if i.iterKV == nil {
3072 1 : // We check i.iter.Error() here and return an internalNextError enum
3073 1 : // variant so that the caller does not need to check i.iter.Error()
3074 1 : // in the common case that the next internal key has a new user key.
3075 1 : if i.err = i.iter.Error(); i.err != nil {
3076 0 : return internalNextError, base.InternalKeyKindInvalid
3077 0 : }
3078 1 : i.pos = iterPosNext
3079 1 : return internalNextExhausted, base.InternalKeyKindInvalid
3080 1 : } else if i.comparer.Equal(i.iterKV.K.UserKey, i.key) {
3081 1 : return internalNextValid, i.iterKV.Kind()
3082 1 : }
3083 1 : i.pos = iterPosNext
3084 1 : return internalNextExhausted, base.InternalKeyKindInvalid
3085 1 : case iterPosCurReverse, iterPosCurReversePaused, iterPosPrev:
3086 1 : i.err = errors.New("switching from reverse to forward via internalNext is prohibited")
3087 1 : i.iterValidityState = IterExhausted
3088 1 : return internalNextError, base.InternalKeyKindInvalid
3089 1 : case iterPosNext, iterPosCurForwardPaused:
3090 1 : // The previous method already moved onto the next user key. This is
3091 1 : // only possible if
3092 1 : // - the last positioning method was a call to internalNext, and we
3093 1 : // advanced to a new user key.
3094 1 : // - the previous non-internalNext iterator operation encountered a
3095 1 : // range key or merge, forcing an internal Next that found a new
3096 1 : // user key that's not equal to i.Iterator.Key().
3097 1 : return internalNextExhausted, base.InternalKeyKindInvalid
3098 0 : default:
3099 0 : panic("unreachable")
3100 : }
3101 : }
3102 :
3103 : var _ base.IteratorDebug = (*Iterator)(nil)
3104 :
3105 : // DebugTree implements the base.IteratorDebug interface.
3106 0 : func (i *Iterator) DebugTree(tp treeprinter.Node) {
3107 0 : n := tp.Childf("%T(%p)", i, i)
3108 0 : if i.iter != nil {
3109 0 : i.iter.DebugTree(n)
3110 0 : }
3111 0 : if i.pointIter != nil {
3112 0 : i.pointIter.DebugTree(n)
3113 0 : }
3114 : }
|