LCOV - code coverage report
Current view: top level - pebble/sstable/rowblk - rowblk_iter.go (source / functions) Hit Total Coverage
Test: 2024-09-04 08:16Z 137a1655 - tests only.lcov Lines: 1113 1345 82.8 %
Date: 2024-09-04 08:16:49 Functions: 0 0 -

          Line data    Source code
       1             : // Copyright 2018 The LevelDB-Go and Pebble Authors. All rights reserved. Use
       2             : // of this source code is governed by a BSD-style license that can be found in
       3             : // the LICENSE file.
       4             : 
       5             : package rowblk
       6             : 
       7             : import (
       8             :         "bytes"
       9             :         "context"
      10             :         "encoding/binary"
      11             :         "fmt"
      12             :         "io"
      13             :         "slices"
      14             :         "sort"
      15             :         "unsafe"
      16             : 
      17             :         "github.com/cockroachdb/errors"
      18             :         "github.com/cockroachdb/pebble/internal/base"
      19             :         "github.com/cockroachdb/pebble/internal/invariants"
      20             :         "github.com/cockroachdb/pebble/internal/manual"
      21             :         "github.com/cockroachdb/pebble/internal/treeprinter"
      22             :         "github.com/cockroachdb/pebble/sstable/block"
      23             : )
      24             : 
      25             : // Iter is an iterator over a single block of data.
      26             : //
      27             : // An Iter provides an additional guarantee around key stability when a block
      28             : // has a restart interval of 1 (i.e. when there is no prefix compression). Key
      29             : // stability refers to whether the InternalKey.UserKey bytes returned by a
      30             : // positioning call will remain stable after a subsequent positioning call. The
      31             : // normal case is that a positioning call will invalidate any previously
      32             : // returned InternalKey.UserKey. If a block has a restart interval of 1 (no
      33             : // prefix compression), Iter guarantees that InternalKey.UserKey will point to
      34             : // the key as stored in the block itself which will remain valid until the Iter
      35             : // is closed. The key stability guarantee is used by the range tombstone and
      36             : // range key code, which knows that the respective blocks are always encoded
      37             : // with a restart interval of 1. This per-block key stability guarantee is
      38             : // sufficient for range tombstones and range deletes as they are always encoded
      39             : // in a single block. Note: this stability guarantee no longer holds for a block
      40             : // iter with synthetic prefix/suffix replacement, but we don't use the synthetic
      41             : // suffix/prefix functionality of Iter for range keys.
      42             : //
      43             : // An Iter also provides a value stability guarantee for range deletions and
      44             : // range keys since there is only a single range deletion and range key block
      45             : // per sstable and the Iter will not release the bytes for the block until it is
      46             : // closed.
      47             : //
      48             : // Note on why Iter knows about lazyValueHandling:
      49             : //
      50             : // Iter's positioning functions (that return a LazyValue), are too
      51             : // complex to inline even prior to lazyValueHandling. Iter.Next and
      52             : // Iter.First were by far the cheapest and had costs 195 and 180
      53             : // respectively, which exceeds the budget of 80. We initially tried to keep
      54             : // the lazyValueHandling logic out of Iter by wrapping it with a
      55             : // lazyValueDataBlockIter. singleLevelIter and twoLevelIter would use this
      56             : // wrapped iter. The functions in lazyValueDataBlockIter were simple, in that
      57             : // they called the corresponding Iter func and then decided whether the
      58             : // value was in fact in-place (so return immediately) or needed further
      59             : // handling. But these also turned out too costly for mid-stack inlining since
      60             : // simple calls like the following have a high cost that is barely under the
      61             : // budget of 80
      62             : //
      63             : //      k, v := i.data.SeekGE(key, flags)  // cost 74
      64             : //      k, v := i.data.Next()              // cost 72
      65             : //
      66             : // We have 2 options for minimizing performance regressions:
      67             : //   - Include the lazyValueHandling logic in the already non-inlineable
      68             : //     Iter functions: Since most of the time is spent in data block iters,
      69             : //     it is acceptable to take the small hit of unnecessary branching (which
      70             : //     hopefully branch prediction will predict correctly) for other kinds of
      71             : //     blocks.
      72             : //   - Duplicate the logic of singleLevelIterator and twoLevelIterator for the
      73             : //     v3 sstable and only use the aforementioned lazyValueDataBlockIter for a
      74             : //     v3 sstable. We would want to manage these copies via code generation.
      75             : //
      76             : // We have picked the first option here.
      77             : type Iter struct {
      78             :         cmp   base.Compare
      79             :         split base.Split
      80             : 
      81             :         // Iterator transforms.
      82             :         //
      83             :         // SyntheticSuffix, if set, will replace the decoded ikey.UserKey suffix
      84             :         // before the key is returned to the user. A sequence of iter operations on a
      85             :         // block with a syntheticSuffix rule should return keys as if those operations
      86             :         // ran on a block with keys that all had the syntheticSuffix. As an example:
      87             :         // any sequence of block iter cmds should return the same keys for the
      88             :         // following two blocks:
      89             :         //
      90             :         // blockA: a@3,b@3,c@3
      91             :         // blockB: a@1,b@2,c@1 with syntheticSuffix=3
      92             :         //
      93             :         // To ensure this, Suffix replacement will not change the ordering of keys in
      94             :         // the block because the iter assumes that no two keys in the block share the
      95             :         // same prefix. Furthermore, during SeekGE and SeekLT operations, the block
      96             :         // iterator handles "off by one" errors (explained in more detail in those
      97             :         // functions) when, for a given key, originalSuffix < searchSuffix <
      98             :         // replacementSuffix, with integer comparison. To handle these cases, the
      99             :         // iterator assumes:
     100             :         //
     101             :         //  pebble.Compare(keyPrefix{replacementSuffix},keyPrefix{originalSuffix}) < 0
     102             :         //  for keys with a suffix.
     103             :         //
     104             :         //  NB: it is possible for a block iter to add a synthetic suffix on a key
     105             :         //  without a suffix, which implies
     106             :         //  pebble.Compare(keyPrefix{replacementSuffix},keyPrefix{noSuffix}) > 0 ,
     107             :         //  however, the iterator would never need to handle an off by one error in
     108             :         //  this case since originalSuffix (empty) > searchSuffix (non empty), with
     109             :         //  integer comparison.
     110             :         //
     111             :         //
     112             :         // In addition, we also assume that any block with rangekeys will not contain
     113             :         // a synthetic suffix.
     114             :         transforms block.IterTransforms
     115             : 
     116             :         // offset is the byte index that marks where the current key/value is
     117             :         // encoded in the block.
     118             :         offset int32
     119             :         // nextOffset is the byte index where the next key/value is encoded in the
     120             :         // block.
     121             :         nextOffset int32
     122             :         // A "restart point" in a block is a point where the full key is encoded,
     123             :         // instead of just having a suffix of the key encoded. See readEntry() for
     124             :         // how prefix compression of keys works. Keys in between two restart points
     125             :         // only have a suffix encoded in the block. When restart interval is 1, no
     126             :         // prefix compression of keys happens. This is the case with range tombstone
     127             :         // blocks.
     128             :         //
     129             :         // All restart offsets are listed in increasing order in
     130             :         // i.ptr[i.restarts:len(block)-4], while numRestarts is encoded in the last
     131             :         // 4 bytes of the block as a uint32 (i.ptr[len(block)-4:]). i.restarts can
     132             :         // therefore be seen as the point where data in the block ends, and a list
     133             :         // of offsets of all restart points begins.
     134             :         restarts int32
     135             :         // Number of restart points in this block. Encoded at the end of the block
     136             :         // as a uint32.
     137             :         numRestarts int32
     138             :         ptr         unsafe.Pointer
     139             :         data        []byte
     140             :         // key contains the raw key the iterator is currently pointed at. This may
     141             :         // point directly to data stored in the block (for a key which has no prefix
     142             :         // compression), to fullKey (for a prefix compressed key), or to a slice of
     143             :         // data stored in cachedBuf (during reverse iteration).
     144             :         //
     145             :         // NB: In general, key contains the same logical content as ikey
     146             :         // (i.e. ikey = decode(key)), but if the iterator contains a synthetic suffix
     147             :         // replacement rule, this will not be the case. Therefore, key should never
     148             :         // be used after ikey is set.
     149             :         key []byte
     150             :         // fullKey is a buffer used for key prefix decompression. Note that if
     151             :         // transforms.SyntheticPrifix is not nil, fullKey always starts with that
     152             :         // prefix.
     153             :         fullKey []byte
     154             :         // val contains the value the iterator is currently pointed at. If non-nil,
     155             :         // this points to a slice of the block data.
     156             :         val []byte
     157             :         // ikv contains the decoded internal KV the iterator is currently positioned
     158             :         // at.
     159             :         //
     160             :         // ikv.InternalKey contains the decoded InternalKey the iterator is
     161             :         // currently pointed at. Note that the memory backing ikv.UserKey is either
     162             :         // data stored directly in the block, fullKey, or cachedBuf. The key
     163             :         // stability guarantee for blocks built with a restart interval of 1 is
     164             :         // achieved by having ikv.UserKey always point to data stored directly in
     165             :         // the block.
     166             :         //
     167             :         // ikv.LazyValue is val turned into a LazyValue, whenever a positioning
     168             :         // method returns a non-nil key-value pair.
     169             :         ikv base.InternalKV
     170             :         // cached and cachedBuf are used during reverse iteration. They are needed
     171             :         // because we can't perform prefix decoding in reverse, only in the forward
     172             :         // direction. In order to iterate in reverse, we decode and cache the entries
     173             :         // between two restart points.
     174             :         //
     175             :         // Note that cached[len(cached)-1] contains the previous entry to the one the
     176             :         // blockIter is currently pointed at. As usual, nextOffset will contain the
     177             :         // offset of the next entry. During reverse iteration, nextOffset will be
     178             :         // updated to point to offset, and we'll set the blockIter to point at the
     179             :         // entry cached[len(cached)-1]. See Prev() for more details.
     180             :         //
     181             :         // For a block encoded with a restart interval of 1, cached and cachedBuf
     182             :         // will not be used as there are no prefix compressed entries between the
     183             :         // restart points.
     184             :         cached    []blockEntry
     185             :         cachedBuf []byte
     186             :         handle    block.BufferHandle
     187             :         // for block iteration for already loaded blocks.
     188             :         firstUserKey      []byte
     189             :         lazyValueHandling struct {
     190             :                 getValue       block.GetLazyValueForPrefixAndValueHandler
     191             :                 hasValuePrefix bool
     192             :         }
     193             :         synthSuffixBuf            []byte
     194             :         firstUserKeyWithPrefixBuf []byte
     195             : }
     196             : 
     197             : type blockEntry struct {
     198             :         offset   int32
     199             :         keyStart int32
     200             :         keyEnd   int32
     201             :         valStart int32
     202             :         valSize  int32
     203             : }
     204             : 
     205             : // blockIter implements the base.InternalIterator interface.
     206             : var _ base.InternalIterator = (*Iter)(nil)
     207             : 
     208             : // NewIter constructs a new row-oriented block iterator over the provided serialized block.
     209             : func NewIter(
     210             :         cmp base.Compare, split base.Split, block []byte, transforms block.IterTransforms,
     211           1 : ) (*Iter, error) {
     212           1 :         i := &Iter{}
     213           1 :         return i, i.Init(cmp, split, block, transforms)
     214           1 : }
     215             : 
     216             : // String implements fmt.Stringer.
     217           0 : func (i *Iter) String() string {
     218           0 :         return "block"
     219           0 : }
     220             : 
     221             : // Init initializes the block iterator from the provided block.
     222             : func (i *Iter) Init(
     223             :         cmp base.Compare, split base.Split, blk []byte, transforms block.IterTransforms,
     224           1 : ) error {
     225           1 :         numRestarts := int32(binary.LittleEndian.Uint32(blk[len(blk)-4:]))
     226           1 :         if numRestarts == 0 {
     227           0 :                 return base.CorruptionErrorf("pebble/table: invalid table (block has no restart points)")
     228           0 :         }
     229           1 :         i.transforms = transforms
     230           1 :         i.synthSuffixBuf = i.synthSuffixBuf[:0]
     231           1 :         i.split = split
     232           1 :         i.cmp = cmp
     233           1 :         i.restarts = int32(len(blk)) - 4*(1+numRestarts)
     234           1 :         i.numRestarts = numRestarts
     235           1 :         i.ptr = unsafe.Pointer(&blk[0])
     236           1 :         i.data = blk
     237           1 :         if i.transforms.SyntheticPrefix.IsSet() {
     238           1 :                 i.fullKey = append(i.fullKey[:0], i.transforms.SyntheticPrefix...)
     239           1 :         } else {
     240           1 :                 i.fullKey = i.fullKey[:0]
     241           1 :         }
     242           1 :         i.val = nil
     243           1 :         i.clearCache()
     244           1 :         if i.restarts > 0 {
     245           1 :                 if err := i.readFirstKey(); err != nil {
     246           0 :                         return err
     247           0 :                 }
     248           1 :         } else {
     249           1 :                 // Block is empty.
     250           1 :                 i.firstUserKey = nil
     251           1 :         }
     252           1 :         return nil
     253             : }
     254             : 
     255             : // InitHandle initializes an iterator from the provided block handle.
     256             : // NB: two cases of hideObsoletePoints:
     257             : //   - Local sstable iteration: syntheticSeqNum will be set iff the sstable was
     258             : //     ingested.
     259             : //   - Foreign sstable iteration: syntheticSeqNum is always set.
     260             : func (i *Iter) InitHandle(
     261             :         cmp base.Compare, split base.Split, block block.BufferHandle, transforms block.IterTransforms,
     262           1 : ) error {
     263           1 :         i.handle.Release()
     264           1 :         i.handle = block
     265           1 :         return i.Init(cmp, split, block.Get(), transforms)
     266           1 : }
     267             : 
     268             : // SetHasValuePrefix sets whether or not the block iterator should expect values
     269             : // corresponding to Set keys to have a prefix byte.
     270           1 : func (i *Iter) SetHasValuePrefix(hasValuePrefix bool) {
     271           1 :         i.lazyValueHandling.hasValuePrefix = hasValuePrefix
     272           1 : }
     273             : 
     274             : // SetGetLazyValuer sets the value block reader the iterator should use to get
     275             : // lazy values when the value encodes a value prefix.
     276           1 : func (i *Iter) SetGetLazyValuer(g block.GetLazyValueForPrefixAndValueHandler) {
     277           1 :         i.lazyValueHandling.getValue = g
     278           1 : 
     279           1 : }
     280             : 
     281             : // Handle returns the underlying block buffer handle, if the iterator was
     282             : // initialized with one.
     283           1 : func (i *Iter) Handle() block.BufferHandle {
     284           1 :         return i.handle
     285           1 : }
     286             : 
     287             : // Invalidate invalidates the block iterator, removing references to the block
     288             : // it was initialized with.
     289           1 : func (i *Iter) Invalidate() {
     290           1 :         i.clearCache()
     291           1 :         i.offset = 0
     292           1 :         i.nextOffset = 0
     293           1 :         i.restarts = 0
     294           1 :         i.numRestarts = 0
     295           1 :         i.data = nil
     296           1 : }
     297             : 
     298             : // IsDataInvalidated returns true when the blockIter has been invalidated
     299             : // using an invalidate call. NB: this is different from blockIter.Valid
     300             : // which is part of the InternalIterator implementation.
     301           1 : func (i *Iter) IsDataInvalidated() bool {
     302           1 :         return i.data == nil
     303           1 : }
     304             : 
     305             : // ResetForReuse resets the blockIter for reuse, retaining buffers to avoid
     306             : // future allocations.
     307           1 : func (i *Iter) ResetForReuse() Iter {
     308           1 :         return Iter{
     309           1 :                 fullKey:                   i.fullKey[:0],
     310           1 :                 cached:                    i.cached[:0],
     311           1 :                 cachedBuf:                 i.cachedBuf[:0],
     312           1 :                 firstUserKeyWithPrefixBuf: i.firstUserKeyWithPrefixBuf[:0],
     313           1 :                 data:                      nil,
     314           1 :         }
     315           1 : }
     316             : 
     317           1 : func (i *Iter) readEntry() {
     318           1 :         ptr := unsafe.Pointer(uintptr(i.ptr) + uintptr(i.offset))
     319           1 : 
     320           1 :         // This is an ugly performance hack. Reading entries from blocks is one of
     321           1 :         // the inner-most routines and decoding the 3 varints per-entry takes
     322           1 :         // significant time. Neither go1.11 or go1.12 will inline decodeVarint for
     323           1 :         // us, so we do it manually. This provides a 10-15% performance improvement
     324           1 :         // on blockIter benchmarks on both go1.11 and go1.12.
     325           1 :         //
     326           1 :         // TODO(peter): remove this hack if go:inline is ever supported.
     327           1 : 
     328           1 :         var shared uint32
     329           1 :         if a := *((*uint8)(ptr)); a < 128 {
     330           1 :                 shared = uint32(a)
     331           1 :                 ptr = unsafe.Pointer(uintptr(ptr) + 1)
     332           1 :         } else if a, b := a&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 1))); b < 128 {
     333           0 :                 shared = uint32(b)<<7 | uint32(a)
     334           0 :                 ptr = unsafe.Pointer(uintptr(ptr) + 2)
     335           0 :         } else if b, c := b&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 2))); c < 128 {
     336           0 :                 shared = uint32(c)<<14 | uint32(b)<<7 | uint32(a)
     337           0 :                 ptr = unsafe.Pointer(uintptr(ptr) + 3)
     338           0 :         } else if c, d := c&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 3))); d < 128 {
     339           0 :                 shared = uint32(d)<<21 | uint32(c)<<14 | uint32(b)<<7 | uint32(a)
     340           0 :                 ptr = unsafe.Pointer(uintptr(ptr) + 4)
     341           0 :         } else {
     342           0 :                 d, e := d&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 4)))
     343           0 :                 shared = uint32(e)<<28 | uint32(d)<<21 | uint32(c)<<14 | uint32(b)<<7 | uint32(a)
     344           0 :                 ptr = unsafe.Pointer(uintptr(ptr) + 5)
     345           0 :         }
     346             : 
     347           1 :         var unshared uint32
     348           1 :         if a := *((*uint8)(ptr)); a < 128 {
     349           1 :                 unshared = uint32(a)
     350           1 :                 ptr = unsafe.Pointer(uintptr(ptr) + 1)
     351           1 :         } else if a, b := a&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 1))); b < 128 {
     352           0 :                 unshared = uint32(b)<<7 | uint32(a)
     353           0 :                 ptr = unsafe.Pointer(uintptr(ptr) + 2)
     354           0 :         } else if b, c := b&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 2))); c < 128 {
     355           0 :                 unshared = uint32(c)<<14 | uint32(b)<<7 | uint32(a)
     356           0 :                 ptr = unsafe.Pointer(uintptr(ptr) + 3)
     357           0 :         } else if c, d := c&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 3))); d < 128 {
     358           0 :                 unshared = uint32(d)<<21 | uint32(c)<<14 | uint32(b)<<7 | uint32(a)
     359           0 :                 ptr = unsafe.Pointer(uintptr(ptr) + 4)
     360           0 :         } else {
     361           0 :                 d, e := d&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 4)))
     362           0 :                 unshared = uint32(e)<<28 | uint32(d)<<21 | uint32(c)<<14 | uint32(b)<<7 | uint32(a)
     363           0 :                 ptr = unsafe.Pointer(uintptr(ptr) + 5)
     364           0 :         }
     365             : 
     366           1 :         var value uint32
     367           1 :         if a := *((*uint8)(ptr)); a < 128 {
     368           1 :                 value = uint32(a)
     369           1 :                 ptr = unsafe.Pointer(uintptr(ptr) + 1)
     370           1 :         } else if a, b := a&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 1))); b < 128 {
     371           1 :                 value = uint32(b)<<7 | uint32(a)
     372           1 :                 ptr = unsafe.Pointer(uintptr(ptr) + 2)
     373           1 :         } else if b, c := b&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 2))); c < 128 {
     374           1 :                 value = uint32(c)<<14 | uint32(b)<<7 | uint32(a)
     375           1 :                 ptr = unsafe.Pointer(uintptr(ptr) + 3)
     376           1 :         } else if c, d := c&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 3))); d < 128 {
     377           1 :                 value = uint32(d)<<21 | uint32(c)<<14 | uint32(b)<<7 | uint32(a)
     378           1 :                 ptr = unsafe.Pointer(uintptr(ptr) + 4)
     379           1 :         } else {
     380           0 :                 d, e := d&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 4)))
     381           0 :                 value = uint32(e)<<28 | uint32(d)<<21 | uint32(c)<<14 | uint32(b)<<7 | uint32(a)
     382           0 :                 ptr = unsafe.Pointer(uintptr(ptr) + 5)
     383           0 :         }
     384           1 :         shared += uint32(len(i.transforms.SyntheticPrefix))
     385           1 :         unsharedKey := getBytes(ptr, int(unshared))
     386           1 :         // TODO(sumeer): move this into the else block below.
     387           1 :         i.fullKey = append(i.fullKey[:shared], unsharedKey...)
     388           1 :         if shared == 0 {
     389           1 :                 // Provide stability for the key across positioning calls if the key
     390           1 :                 // doesn't share a prefix with the previous key. This removes requiring the
     391           1 :                 // key to be copied if the caller knows the block has a restart interval of
     392           1 :                 // 1. An important example of this is range-del blocks.
     393           1 :                 i.key = unsharedKey
     394           1 :         } else {
     395           1 :                 i.key = i.fullKey
     396           1 :         }
     397           1 :         ptr = unsafe.Pointer(uintptr(ptr) + uintptr(unshared))
     398           1 :         i.val = getBytes(ptr, int(value))
     399           1 :         i.nextOffset = int32(uintptr(ptr)-uintptr(i.ptr)) + int32(value)
     400             : }
     401             : 
     402           1 : func (i *Iter) readFirstKey() error {
     403           1 :         ptr := i.ptr
     404           1 : 
     405           1 :         // This is an ugly performance hack. Reading entries from blocks is one of
     406           1 :         // the inner-most routines and decoding the 3 varints per-entry takes
     407           1 :         // significant time. Neither go1.11 or go1.12 will inline decodeVarint for
     408           1 :         // us, so we do it manually. This provides a 10-15% performance improvement
     409           1 :         // on blockIter benchmarks on both go1.11 and go1.12.
     410           1 :         //
     411           1 :         // TODO(peter): remove this hack if go:inline is ever supported.
     412           1 : 
     413           1 :         if shared := *((*uint8)(ptr)); shared == 0 {
     414           1 :                 ptr = unsafe.Pointer(uintptr(ptr) + 1)
     415           1 :         } else {
     416           0 :                 // The shared length is != 0, which is invalid.
     417           0 :                 panic("first key in block must have zero shared length")
     418             :         }
     419             : 
     420           1 :         var unshared uint32
     421           1 :         if a := *((*uint8)(ptr)); a < 128 {
     422           1 :                 unshared = uint32(a)
     423           1 :                 ptr = unsafe.Pointer(uintptr(ptr) + 1)
     424           1 :         } else if a, b := a&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 1))); b < 128 {
     425           0 :                 unshared = uint32(b)<<7 | uint32(a)
     426           0 :                 ptr = unsafe.Pointer(uintptr(ptr) + 2)
     427           0 :         } else if b, c := b&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 2))); c < 128 {
     428           0 :                 unshared = uint32(c)<<14 | uint32(b)<<7 | uint32(a)
     429           0 :                 ptr = unsafe.Pointer(uintptr(ptr) + 3)
     430           0 :         } else if c, d := c&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 3))); d < 128 {
     431           0 :                 unshared = uint32(d)<<21 | uint32(c)<<14 | uint32(b)<<7 | uint32(a)
     432           0 :                 ptr = unsafe.Pointer(uintptr(ptr) + 4)
     433           0 :         } else {
     434           0 :                 d, e := d&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 4)))
     435           0 :                 unshared = uint32(e)<<28 | uint32(d)<<21 | uint32(c)<<14 | uint32(b)<<7 | uint32(a)
     436           0 :                 ptr = unsafe.Pointer(uintptr(ptr) + 5)
     437           0 :         }
     438             : 
     439             :         // Skip the value length.
     440           1 :         if a := *((*uint8)(ptr)); a < 128 {
     441           1 :                 ptr = unsafe.Pointer(uintptr(ptr) + 1)
     442           1 :         } else if a := *((*uint8)(unsafe.Pointer(uintptr(ptr) + 1))); a < 128 {
     443           1 :                 ptr = unsafe.Pointer(uintptr(ptr) + 2)
     444           1 :         } else if a := *((*uint8)(unsafe.Pointer(uintptr(ptr) + 2))); a < 128 {
     445           1 :                 ptr = unsafe.Pointer(uintptr(ptr) + 3)
     446           1 :         } else if a := *((*uint8)(unsafe.Pointer(uintptr(ptr) + 3))); a < 128 {
     447           1 :                 ptr = unsafe.Pointer(uintptr(ptr) + 4)
     448           1 :         } else {
     449           0 :                 ptr = unsafe.Pointer(uintptr(ptr) + 5)
     450           0 :         }
     451             : 
     452           1 :         firstKey := getBytes(ptr, int(unshared))
     453           1 :         // Manually inlining base.DecodeInternalKey provides a 5-10% speedup on
     454           1 :         // BlockIter benchmarks.
     455           1 :         if n := len(firstKey) - 8; n >= 0 {
     456           1 :                 i.firstUserKey = firstKey[:n:n]
     457           1 :         } else {
     458           0 :                 i.firstUserKey = nil
     459           0 :                 return base.CorruptionErrorf("pebble/table: invalid firstKey in block")
     460           0 :         }
     461           1 :         if i.transforms.SyntheticPrefix != nil {
     462           1 :                 i.firstUserKeyWithPrefixBuf = slices.Grow(i.firstUserKeyWithPrefixBuf[:0], len(i.transforms.SyntheticPrefix)+len(i.firstUserKey))
     463           1 :                 i.firstUserKeyWithPrefixBuf = append(i.firstUserKeyWithPrefixBuf, i.transforms.SyntheticPrefix...)
     464           1 :                 i.firstUserKeyWithPrefixBuf = append(i.firstUserKeyWithPrefixBuf, i.firstUserKey...)
     465           1 :                 i.firstUserKey = i.firstUserKeyWithPrefixBuf
     466           1 :         }
     467           1 :         return nil
     468             : }
     469             : 
     470           1 : func (i *Iter) decodeInternalKey(key []byte) (hiddenPoint bool) {
     471           1 :         // Manually inlining base.DecodeInternalKey provides a 5-10% speedup on
     472           1 :         // BlockIter benchmarks.
     473           1 :         if n := len(key) - 8; n >= 0 {
     474           1 :                 trailer := base.InternalKeyTrailer(binary.LittleEndian.Uint64(key[n:]))
     475           1 :                 hiddenPoint = i.transforms.HideObsoletePoints &&
     476           1 :                         (trailer&TrailerObsoleteBit != 0)
     477           1 :                 i.ikv.K.Trailer = trailer & TrailerObsoleteMask
     478           1 :                 i.ikv.K.UserKey = key[:n:n]
     479           1 :                 if n := i.transforms.SyntheticSeqNum; n != 0 {
     480           1 :                         i.ikv.K.SetSeqNum(base.SeqNum(n))
     481           1 :                 }
     482           1 :         } else {
     483           1 :                 i.ikv.K.Trailer = base.InternalKeyTrailer(base.InternalKeyKindInvalid)
     484           1 :                 i.ikv.K.UserKey = nil
     485           1 :         }
     486           1 :         return hiddenPoint
     487             : }
     488             : 
     489             : // maybeReplaceSuffix replaces the suffix in i.ikey.UserKey with
     490             : // i.transforms.syntheticSuffix.
     491           1 : func (i *Iter) maybeReplaceSuffix() {
     492           1 :         if i.transforms.SyntheticSuffix.IsSet() && i.ikv.K.UserKey != nil {
     493           1 :                 prefixLen := i.split(i.ikv.K.UserKey)
     494           1 :                 // If ikey is cached or may get cached, we must copy
     495           1 :                 // UserKey to a new buffer before suffix replacement.
     496           1 :                 i.synthSuffixBuf = append(i.synthSuffixBuf[:0], i.ikv.K.UserKey[:prefixLen]...)
     497           1 :                 i.synthSuffixBuf = append(i.synthSuffixBuf, i.transforms.SyntheticSuffix...)
     498           1 :                 i.ikv.K.UserKey = i.synthSuffixBuf
     499           1 :         }
     500             : }
     501             : 
     502           1 : func (i *Iter) clearCache() {
     503           1 :         i.cached = i.cached[:0]
     504           1 :         i.cachedBuf = i.cachedBuf[:0]
     505           1 : }
     506             : 
     507           1 : func (i *Iter) cacheEntry() {
     508           1 :         var valStart int32
     509           1 :         valSize := int32(len(i.val))
     510           1 :         if valSize > 0 {
     511           1 :                 valStart = int32(uintptr(unsafe.Pointer(&i.val[0])) - uintptr(i.ptr))
     512           1 :         }
     513             : 
     514           1 :         i.cached = append(i.cached, blockEntry{
     515           1 :                 offset:   i.offset,
     516           1 :                 keyStart: int32(len(i.cachedBuf)),
     517           1 :                 keyEnd:   int32(len(i.cachedBuf) + len(i.key)),
     518           1 :                 valStart: valStart,
     519           1 :                 valSize:  valSize,
     520           1 :         })
     521           1 :         i.cachedBuf = append(i.cachedBuf, i.key...)
     522             : }
     523             : 
     524             : // FirstUserKey returns the user key of the first key in the block.
     525           1 : func (i *Iter) FirstUserKey() []byte {
     526           1 :         return i.firstUserKey
     527           1 : }
     528             : 
     529             : // SeekGE implements internalIterator.SeekGE, as documented in the pebble
     530             : // package.
     531           1 : func (i *Iter) SeekGE(key []byte, flags base.SeekGEFlags) *base.InternalKV {
     532           1 :         if invariants.Enabled && i.IsDataInvalidated() {
     533           0 :                 panic(errors.AssertionFailedf("invalidated blockIter used"))
     534             :         }
     535           1 :         searchKey := key
     536           1 :         if i.transforms.SyntheticPrefix != nil {
     537           1 :                 if !bytes.HasPrefix(key, i.transforms.SyntheticPrefix) {
     538           1 :                         // The seek key is before or after the entire block of keys that start
     539           1 :                         // with SyntheticPrefix. To determine which, we need to compare against a
     540           1 :                         // valid key in the block. We use firstUserKey which has the synthetic
     541           1 :                         // prefix.
     542           1 :                         if i.cmp(i.firstUserKey, key) >= 0 {
     543           1 :                                 return i.First()
     544           1 :                         }
     545             :                         // Set the offset to the end of the block to mimic the offset of an
     546             :                         // invalid iterator. This ensures a subsequent i.Prev() returns a valid
     547             :                         // result.
     548           1 :                         i.offset = i.restarts
     549           1 :                         i.nextOffset = i.restarts
     550           1 :                         return nil
     551             :                 }
     552           1 :                 searchKey = key[len(i.transforms.SyntheticPrefix):]
     553             :         }
     554             : 
     555           1 :         i.clearCache()
     556           1 :         // Find the index of the smallest restart point whose key is > the key
     557           1 :         // sought; index will be numRestarts if there is no such restart point.
     558           1 :         i.offset = 0
     559           1 :         var index int32
     560           1 : 
     561           1 :         {
     562           1 :                 // NB: manually inlined sort.Seach is ~5% faster.
     563           1 :                 //
     564           1 :                 // Define f(-1) == false and f(n) == true.
     565           1 :                 // Invariant: f(index-1) == false, f(upper) == true.
     566           1 :                 upper := i.numRestarts
     567           1 :                 for index < upper {
     568           1 :                         h := int32(uint(index+upper) >> 1) // avoid overflow when computing h
     569           1 :                         // index ≤ h < upper
     570           1 :                         offset := decodeRestart(i.data[i.restarts+4*h:])
     571           1 :                         // For a restart point, there are 0 bytes shared with the previous key.
     572           1 :                         // The varint encoding of 0 occupies 1 byte.
     573           1 :                         ptr := unsafe.Pointer(uintptr(i.ptr) + uintptr(offset+1))
     574           1 : 
     575           1 :                         // Decode the key at that restart point, and compare it to the key
     576           1 :                         // sought. See the comment in readEntry for why we manually inline the
     577           1 :                         // varint decoding.
     578           1 :                         var v1 uint32
     579           1 :                         if a := *((*uint8)(ptr)); a < 128 {
     580           1 :                                 v1 = uint32(a)
     581           1 :                                 ptr = unsafe.Pointer(uintptr(ptr) + 1)
     582           1 :                         } else if a, b := a&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 1))); b < 128 {
     583           0 :                                 v1 = uint32(b)<<7 | uint32(a)
     584           0 :                                 ptr = unsafe.Pointer(uintptr(ptr) + 2)
     585           0 :                         } else if b, c := b&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 2))); c < 128 {
     586           0 :                                 v1 = uint32(c)<<14 | uint32(b)<<7 | uint32(a)
     587           0 :                                 ptr = unsafe.Pointer(uintptr(ptr) + 3)
     588           0 :                         } else if c, d := c&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 3))); d < 128 {
     589           0 :                                 v1 = uint32(d)<<21 | uint32(c)<<14 | uint32(b)<<7 | uint32(a)
     590           0 :                                 ptr = unsafe.Pointer(uintptr(ptr) + 4)
     591           0 :                         } else {
     592           0 :                                 d, e := d&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 4)))
     593           0 :                                 v1 = uint32(e)<<28 | uint32(d)<<21 | uint32(c)<<14 | uint32(b)<<7 | uint32(a)
     594           0 :                                 ptr = unsafe.Pointer(uintptr(ptr) + 5)
     595           0 :                         }
     596             : 
     597           1 :                         if *((*uint8)(ptr)) < 128 {
     598           1 :                                 ptr = unsafe.Pointer(uintptr(ptr) + 1)
     599           1 :                         } else if *((*uint8)(unsafe.Pointer(uintptr(ptr) + 1))) < 128 {
     600           1 :                                 ptr = unsafe.Pointer(uintptr(ptr) + 2)
     601           1 :                         } else if *((*uint8)(unsafe.Pointer(uintptr(ptr) + 2))) < 128 {
     602           1 :                                 ptr = unsafe.Pointer(uintptr(ptr) + 3)
     603           1 :                         } else if *((*uint8)(unsafe.Pointer(uintptr(ptr) + 3))) < 128 {
     604           0 :                                 ptr = unsafe.Pointer(uintptr(ptr) + 4)
     605           0 :                         } else {
     606           0 :                                 ptr = unsafe.Pointer(uintptr(ptr) + 5)
     607           0 :                         }
     608             : 
     609             :                         // Manually inlining part of base.DecodeInternalKey provides a 5-10%
     610             :                         // speedup on BlockIter benchmarks.
     611           1 :                         s := getBytes(ptr, int(v1))
     612           1 :                         var k []byte
     613           1 :                         if n := len(s) - 8; n >= 0 {
     614           1 :                                 k = s[:n:n]
     615           1 :                         }
     616             :                         // Else k is invalid, and left as nil
     617             : 
     618           1 :                         if i.cmp(searchKey, k) > 0 {
     619           1 :                                 // The search key is greater than the user key at this restart point.
     620           1 :                                 // Search beyond this restart point, since we are trying to find the
     621           1 :                                 // first restart point with a user key >= the search key.
     622           1 :                                 index = h + 1 // preserves f(i-1) == false
     623           1 :                         } else {
     624           1 :                                 // k >= search key, so prune everything after index (since index
     625           1 :                                 // satisfies the property we are looking for).
     626           1 :                                 upper = h // preserves f(j) == true
     627           1 :                         }
     628             :                 }
     629             :                 // index == upper, f(index-1) == false, and f(upper) (= f(index)) == true
     630             :                 // => answer is index.
     631             :         }
     632             : 
     633             :         // index is the first restart point with key >= search key. Define the keys
     634             :         // between a restart point and the next restart point as belonging to that
     635             :         // restart point.
     636             :         //
     637             :         // Since keys are strictly increasing, if index > 0 then the restart point
     638             :         // at index-1 will be the first one that has some keys belonging to it that
     639             :         // could be equal to the search key.  If index == 0, then all keys in this
     640             :         // block are larger than the key sought, and offset remains at zero.
     641           1 :         if index > 0 {
     642           1 :                 i.offset = decodeRestart(i.data[i.restarts+4*(index-1):])
     643           1 :         }
     644           1 :         i.readEntry()
     645           1 :         hiddenPoint := i.decodeInternalKey(i.key)
     646           1 : 
     647           1 :         // Iterate from that restart point to somewhere >= the key sought.
     648           1 :         if !i.Valid() {
     649           1 :                 return nil
     650           1 :         }
     651             : 
     652             :         // A note on seeking in a block with a suffix replacement rule: even though
     653             :         // the binary search above was conducted on keys without suffix replacement,
     654             :         // Seek will still return the correct suffix replaced key. A binary
     655             :         // search without suffix replacement will land on a key that is _less_ than
     656             :         // the key the search would have landed on if all keys were already suffix
     657             :         // replaced. Since Seek then conducts forward iteration to the first suffix
     658             :         // replaced user key that is greater than or equal to the search key, the
     659             :         // correct key is still returned.
     660             :         //
     661             :         // As an example, consider the following block with a restart interval of 1,
     662             :         // with a replacement suffix of "4":
     663             :         // - Pre-suffix replacement: apple@1, banana@3
     664             :         // - Post-suffix replacement: apple@4, banana@4
     665             :         //
     666             :         // Suppose the client seeks with apple@3. Assuming suffixes sort in reverse
     667             :         // chronological order (i.e. apple@1>apple@3), the binary search without
     668             :         // suffix replacement would return apple@1. A binary search with suffix
     669             :         // replacement would return banana@4. After beginning forward iteration from
     670             :         // either returned restart point, forward iteration would
     671             :         // always return the correct key, banana@4.
     672             :         //
     673             :         // Further, if the user searched with apple@0 (i.e. a suffix less than the
     674             :         // pre replacement suffix) or with apple@5 (a suffix larger than the post
     675             :         // replacement suffix), the binary search with or without suffix replacement
     676             :         // would land on the same key, as we assume the following:
     677             :         // (1) no two keys in the sst share the same prefix.
     678             :         // (2) pebble.Compare(replacementSuffix,originalSuffix) > 0
     679             : 
     680           1 :         i.maybeReplaceSuffix()
     681           1 : 
     682           1 :         if !hiddenPoint && i.cmp(i.ikv.K.UserKey, key) >= 0 {
     683           1 :                 // Initialize i.lazyValue
     684           1 :                 if !i.lazyValueHandling.hasValuePrefix ||
     685           1 :                         i.ikv.K.Kind() != base.InternalKeyKindSet {
     686           1 :                         i.ikv.V = base.MakeInPlaceValue(i.val)
     687           1 :                 } else if i.lazyValueHandling.getValue == nil || !block.ValuePrefix(i.val[0]).IsValueHandle() {
     688           1 :                         i.ikv.V = base.MakeInPlaceValue(i.val[1:])
     689           1 :                 } else {
     690           1 :                         i.ikv.V = i.lazyValueHandling.getValue.GetLazyValueForPrefixAndValueHandle(i.val)
     691           1 :                 }
     692           1 :                 return &i.ikv
     693             :         }
     694           1 :         for i.Next(); i.Valid(); i.Next() {
     695           1 :                 if i.cmp(i.ikv.K.UserKey, key) >= 0 {
     696           1 :                         // i.Next() has already initialized i.ikv.LazyValue.
     697           1 :                         return &i.ikv
     698           1 :                 }
     699             :         }
     700           1 :         return nil
     701             : }
     702             : 
     703             : // SeekPrefixGE implements internalIterator.SeekPrefixGE, as documented in the
     704             : // pebble package.
     705           0 : func (i *Iter) SeekPrefixGE(prefix, key []byte, flags base.SeekGEFlags) *base.InternalKV {
     706           0 :         // This should never be called as prefix iteration is handled by sstable.Iterator.
     707           0 :         panic("pebble: SeekPrefixGE unimplemented")
     708             : }
     709             : 
     710             : // SeekLT implements internalIterator.SeekLT, as documented in the pebble
     711             : // package.
     712           1 : func (i *Iter) SeekLT(key []byte, flags base.SeekLTFlags) *base.InternalKV {
     713           1 :         if invariants.Enabled && i.IsDataInvalidated() {
     714           0 :                 panic(errors.AssertionFailedf("invalidated blockIter used"))
     715             :         }
     716           1 :         searchKey := key
     717           1 :         if i.transforms.SyntheticPrefix != nil {
     718           1 :                 if !bytes.HasPrefix(key, i.transforms.SyntheticPrefix) {
     719           1 :                         // The seek key is before or after the entire block of keys that start
     720           1 :                         // with SyntheticPrefix. To determine which, we need to compare against a
     721           1 :                         // valid key in the block. We use firstUserKey which has the synthetic
     722           1 :                         // prefix.
     723           1 :                         if i.cmp(i.firstUserKey, key) < 0 {
     724           1 :                                 return i.Last()
     725           1 :                         }
     726             :                         // Set the offset to the beginning of the block to mimic an exhausted
     727             :                         // iterator that has conducted backward interation. This ensures a
     728             :                         // subsequent Next() call returns the first key in the block.
     729           1 :                         i.offset = -1
     730           1 :                         i.nextOffset = 0
     731           1 :                         return nil
     732             :                 }
     733           1 :                 searchKey = key[len(i.transforms.SyntheticPrefix):]
     734             :         }
     735             : 
     736           1 :         i.clearCache()
     737           1 :         // Find the index of the smallest restart point whose key is >= the key
     738           1 :         // sought; index will be numRestarts if there is no such restart point.
     739           1 :         i.offset = 0
     740           1 :         var index int32
     741           1 : 
     742           1 :         {
     743           1 :                 // NB: manually inlined sort.Search is ~5% faster.
     744           1 :                 //
     745           1 :                 // Define f(-1) == false and f(n) == true.
     746           1 :                 // Invariant: f(index-1) == false, f(upper) == true.
     747           1 :                 upper := i.numRestarts
     748           1 :                 for index < upper {
     749           1 :                         h := int32(uint(index+upper) >> 1) // avoid overflow when computing h
     750           1 :                         // index ≤ h < upper
     751           1 :                         offset := decodeRestart(i.data[i.restarts+4*h:])
     752           1 :                         // For a restart point, there are 0 bytes shared with the previous key.
     753           1 :                         // The varint encoding of 0 occupies 1 byte.
     754           1 :                         ptr := unsafe.Pointer(uintptr(i.ptr) + uintptr(offset+1))
     755           1 : 
     756           1 :                         // Decode the key at that restart point, and compare it to the key
     757           1 :                         // sought. See the comment in readEntry for why we manually inline the
     758           1 :                         // varint decoding.
     759           1 :                         var v1 uint32
     760           1 :                         if a := *((*uint8)(ptr)); a < 128 {
     761           1 :                                 v1 = uint32(a)
     762           1 :                                 ptr = unsafe.Pointer(uintptr(ptr) + 1)
     763           1 :                         } else if a, b := a&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 1))); b < 128 {
     764           0 :                                 v1 = uint32(b)<<7 | uint32(a)
     765           0 :                                 ptr = unsafe.Pointer(uintptr(ptr) + 2)
     766           0 :                         } else if b, c := b&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 2))); c < 128 {
     767           0 :                                 v1 = uint32(c)<<14 | uint32(b)<<7 | uint32(a)
     768           0 :                                 ptr = unsafe.Pointer(uintptr(ptr) + 3)
     769           0 :                         } else if c, d := c&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 3))); d < 128 {
     770           0 :                                 v1 = uint32(d)<<21 | uint32(c)<<14 | uint32(b)<<7 | uint32(a)
     771           0 :                                 ptr = unsafe.Pointer(uintptr(ptr) + 4)
     772           0 :                         } else {
     773           0 :                                 d, e := d&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 4)))
     774           0 :                                 v1 = uint32(e)<<28 | uint32(d)<<21 | uint32(c)<<14 | uint32(b)<<7 | uint32(a)
     775           0 :                                 ptr = unsafe.Pointer(uintptr(ptr) + 5)
     776           0 :                         }
     777             : 
     778           1 :                         if *((*uint8)(ptr)) < 128 {
     779           1 :                                 ptr = unsafe.Pointer(uintptr(ptr) + 1)
     780           1 :                         } else if *((*uint8)(unsafe.Pointer(uintptr(ptr) + 1))) < 128 {
     781           0 :                                 ptr = unsafe.Pointer(uintptr(ptr) + 2)
     782           1 :                         } else if *((*uint8)(unsafe.Pointer(uintptr(ptr) + 2))) < 128 {
     783           1 :                                 ptr = unsafe.Pointer(uintptr(ptr) + 3)
     784           1 :                         } else if *((*uint8)(unsafe.Pointer(uintptr(ptr) + 3))) < 128 {
     785           0 :                                 ptr = unsafe.Pointer(uintptr(ptr) + 4)
     786           0 :                         } else {
     787           0 :                                 ptr = unsafe.Pointer(uintptr(ptr) + 5)
     788           0 :                         }
     789             : 
     790             :                         // Manually inlining part of base.DecodeInternalKey provides a 5-10%
     791             :                         // speedup on BlockIter benchmarks.
     792           1 :                         s := getBytes(ptr, int(v1))
     793           1 :                         var k []byte
     794           1 :                         if n := len(s) - 8; n >= 0 {
     795           1 :                                 k = s[:n:n]
     796           1 :                         }
     797             :                         // Else k is invalid, and left as nil
     798             : 
     799           1 :                         if i.cmp(searchKey, k) > 0 {
     800           1 :                                 // The search key is greater than the user key at this restart point.
     801           1 :                                 // Search beyond this restart point, since we are trying to find the
     802           1 :                                 // first restart point with a user key >= the search key.
     803           1 :                                 index = h + 1 // preserves f(i-1) == false
     804           1 :                         } else {
     805           1 :                                 // k >= search key, so prune everything after index (since index
     806           1 :                                 // satisfies the property we are looking for).
     807           1 :                                 upper = h // preserves f(j) == true
     808           1 :                         }
     809             :                 }
     810             :                 // index == upper, f(index-1) == false, and f(upper) (= f(index)) == true
     811             :                 // => answer is index.
     812             :         }
     813             : 
     814           1 :         if index == 0 {
     815           1 :                 if i.transforms.SyntheticSuffix.IsSet() {
     816           1 :                         // The binary search was conducted on keys without suffix replacement,
     817           1 :                         // implying the first key in the block may be less than the search key. To
     818           1 :                         // double check, get the first key in the block with suffix replacement
     819           1 :                         // and compare to the search key. Consider the following example: suppose
     820           1 :                         // the user searches with a@3, the first key in the block is a@2 and the
     821           1 :                         // block contains a suffix replacement rule of 4. Since a@3 sorts before
     822           1 :                         // a@2, the binary search would return index==0. Without conducting the
     823           1 :                         // suffix replacement, the SeekLT would incorrectly return nil. With
     824           1 :                         // suffix replacement though, a@4 should be returned as a@4 sorts before
     825           1 :                         // a@3.
     826           1 :                         ikv := i.First()
     827           1 :                         if i.cmp(ikv.K.UserKey, key) < 0 {
     828           1 :                                 return ikv
     829           1 :                         }
     830             :                 }
     831             :                 // If index == 0 then all keys in this block are larger than the key
     832             :                 // sought, so there is no match.
     833           1 :                 i.offset = -1
     834           1 :                 i.nextOffset = 0
     835           1 :                 return nil
     836             :         }
     837             : 
     838             :         // INVARIANT: index > 0
     839             : 
     840             :         // Ignoring suffix replacement, index is the first restart point with key >=
     841             :         // search key. Define the keys between a restart point and the next restart
     842             :         // point as belonging to that restart point. Note that index could be equal to
     843             :         // i.numRestarts, i.e., we are past the last restart.  Since keys are strictly
     844             :         // increasing, then the restart point at index-1 will be the first one that
     845             :         // has some keys belonging to it that are less than the search key.
     846             :         //
     847             :         // Next, we will search between the restart at index-1 and the restart point
     848             :         // at index, for the first key >= key, and then on finding it, return
     849             :         // i.Prev(). We need to know when we have hit the offset for index, since then
     850             :         // we can stop searching. targetOffset encodes that offset for index.
     851           1 :         targetOffset := i.restarts
     852           1 :         i.offset = decodeRestart(i.data[i.restarts+4*(index-1):])
     853           1 :         if index < i.numRestarts {
     854           1 :                 targetOffset = decodeRestart(i.data[i.restarts+4*(index):])
     855           1 : 
     856           1 :                 if i.transforms.SyntheticSuffix.IsSet() {
     857           1 :                         // The binary search was conducted on keys without suffix replacement,
     858           1 :                         // implying the returned restart point (index) may be less than the search
     859           1 :                         // key, breaking the assumption described above.
     860           1 :                         //
     861           1 :                         // For example: consider this block with a replacement ts of 4, and
     862           1 :                         // restart interval of 1: - pre replacement: a@3,b@2,c@3 - post
     863           1 :                         // replacement: a@4,b@4,c@4
     864           1 :                         //
     865           1 :                         // Suppose the client calls SeekLT(b@3), SeekLT must return b@4.
     866           1 :                         //
     867           1 :                         // If the client calls  SeekLT(b@3), the binary search would return b@2,
     868           1 :                         // the lowest key geq to b@3, pre-suffix replacement. Then, SeekLT will
     869           1 :                         // begin forward iteration from a@3, the previous restart point, to
     870           1 :                         // b{suffix}. The iteration stops when it encounters a key geq to the
     871           1 :                         // search key or if it reaches the upper bound. Without suffix
     872           1 :                         // replacement, we can assume that the upper bound of this forward
     873           1 :                         // iteration, b{suffix}, is greater than the search key, as implied by the
     874           1 :                         // binary search.
     875           1 :                         //
     876           1 :                         // If we naively hold this assumption with suffix replacement, the
     877           1 :                         // iteration would terminate at the upper bound, b@4, call i.Prev, and
     878           1 :                         // incorrectly return a@4. To correct for this, if the original returned
     879           1 :                         // index is less than the search key, shift our forward iteration to begin
     880           1 :                         // at index instead of index -1. With suffix replacement the key at index
     881           1 :                         // is guaranteed to be the highest restart point less than the seach key
     882           1 :                         // (i.e. the same property of index-1 for a block without suffix
     883           1 :                         // replacement). This property holds because of the invariant that a block
     884           1 :                         // with suffix replacement will not have two keys that share the same
     885           1 :                         // prefix. To consider the above example, binary searching with b@3 landed
     886           1 :                         // naively at a@3, but since b@4<b@3, we shift our forward iteration to
     887           1 :                         // begin at b@4. We never need to shift by more than one restart point
     888           1 :                         // (i.e. to c@4) because it's impossible for the search key to be greater
     889           1 :                         // than the key at the next restart point in the block because that
     890           1 :                         // key will always have a different prefix. Put another way, because no
     891           1 :                         // key in the block shares the same prefix, naive binary search should
     892           1 :                         // always land at most 1 restart point off the correct one.
     893           1 : 
     894           1 :                         naiveOffset := i.offset
     895           1 :                         // Shift up to the original binary search result and decode the key.
     896           1 :                         i.offset = targetOffset
     897           1 :                         i.readEntry()
     898           1 :                         i.decodeInternalKey(i.key)
     899           1 :                         i.maybeReplaceSuffix()
     900           1 : 
     901           1 :                         // If the binary search point is actually less than the search key, post
     902           1 :                         // replacement, bump the target offset.
     903           1 :                         if i.cmp(i.ikv.K.UserKey, key) < 0 {
     904           1 :                                 i.offset = targetOffset
     905           1 :                                 if index+1 < i.numRestarts {
     906           1 :                                         // if index+1 is within the i.data bounds, use it to find the target
     907           1 :                                         // offset.
     908           1 :                                         targetOffset = decodeRestart(i.data[i.restarts+4*(index+1):])
     909           1 :                                 } else {
     910           1 :                                         targetOffset = i.restarts
     911           1 :                                 }
     912           1 :                         } else {
     913           1 :                                 i.offset = naiveOffset
     914           1 :                         }
     915             :                 }
     916             :         }
     917             : 
     918             :         // Init nextOffset for the forward iteration below.
     919           1 :         i.nextOffset = i.offset
     920           1 : 
     921           1 :         for {
     922           1 :                 i.offset = i.nextOffset
     923           1 :                 i.readEntry()
     924           1 :                 // When hidden keys are common, there is additional optimization possible
     925           1 :                 // by not caching entries that are hidden (note that some calls to
     926           1 :                 // cacheEntry don't decode the internal key before caching, but checking
     927           1 :                 // whether a key is hidden does not require full decoding). However, we do
     928           1 :                 // need to use the blockEntry.offset in the cache for the first entry at
     929           1 :                 // the reset point to do the binary search when the cache is empty -- so
     930           1 :                 // we would need to cache that first entry (though not the key) even if
     931           1 :                 // was hidden. Our current assumption is that if there are large numbers
     932           1 :                 // of hidden keys we will be able to skip whole blocks (using block
     933           1 :                 // property filters) so we don't bother optimizing.
     934           1 :                 hiddenPoint := i.decodeInternalKey(i.key)
     935           1 :                 i.maybeReplaceSuffix()
     936           1 : 
     937           1 :                 // NB: we don't use the hiddenPoint return value of decodeInternalKey
     938           1 :                 // since we want to stop as soon as we reach a key >= ikey.UserKey, so
     939           1 :                 // that we can reverse.
     940           1 :                 if i.cmp(i.ikv.K.UserKey, key) >= 0 {
     941           1 :                         // The current key is greater than or equal to our search key. Back up to
     942           1 :                         // the previous key which was less than our search key. Note that this for
     943           1 :                         // loop will execute at least once with this if-block not being true, so
     944           1 :                         // the key we are backing up to is the last one this loop cached.
     945           1 :                         return i.Prev()
     946           1 :                 }
     947             : 
     948           1 :                 if i.nextOffset >= targetOffset {
     949           1 :                         // We've reached the end of the current restart block. Return the
     950           1 :                         // current key if not hidden, else call Prev().
     951           1 :                         //
     952           1 :                         // When the restart interval is 1, the first iteration of the for loop
     953           1 :                         // will bring us here. In that case ikey is backed by the block so we
     954           1 :                         // get the desired key stability guarantee for the lifetime of the
     955           1 :                         // blockIter. That is, we never cache anything and therefore never
     956           1 :                         // return a key backed by cachedBuf.
     957           1 :                         if hiddenPoint {
     958           1 :                                 return i.Prev()
     959           1 :                         }
     960           1 :                         break
     961             :                 }
     962           1 :                 i.cacheEntry()
     963             :         }
     964             : 
     965           1 :         if !i.Valid() {
     966           1 :                 return nil
     967           1 :         }
     968           1 :         if !i.lazyValueHandling.hasValuePrefix ||
     969           1 :                 i.ikv.K.Kind() != base.InternalKeyKindSet {
     970           1 :                 i.ikv.V = base.MakeInPlaceValue(i.val)
     971           1 :         } else if i.lazyValueHandling.getValue == nil || !block.ValuePrefix(i.val[0]).IsValueHandle() {
     972           1 :                 i.ikv.V = base.MakeInPlaceValue(i.val[1:])
     973           1 :         } else {
     974           1 :                 i.ikv.V = i.lazyValueHandling.getValue.GetLazyValueForPrefixAndValueHandle(i.val)
     975           1 :         }
     976           1 :         return &i.ikv
     977             : }
     978             : 
     979             : // First implements internalIterator.First, as documented in the pebble
     980             : // package.
     981           1 : func (i *Iter) First() *base.InternalKV {
     982           1 :         if invariants.Enabled && i.IsDataInvalidated() {
     983           0 :                 panic(errors.AssertionFailedf("invalidated blockIter used"))
     984             :         }
     985             : 
     986           1 :         i.offset = 0
     987           1 :         if !i.Valid() {
     988           1 :                 return nil
     989           1 :         }
     990           1 :         i.clearCache()
     991           1 :         i.readEntry()
     992           1 :         hiddenPoint := i.decodeInternalKey(i.key)
     993           1 :         if hiddenPoint {
     994           1 :                 return i.Next()
     995           1 :         }
     996           1 :         i.maybeReplaceSuffix()
     997           1 :         if !i.lazyValueHandling.hasValuePrefix ||
     998           1 :                 i.ikv.K.Kind() != base.InternalKeyKindSet {
     999           1 :                 i.ikv.V = base.MakeInPlaceValue(i.val)
    1000           1 :         } else if i.lazyValueHandling.getValue == nil || !block.ValuePrefix(i.val[0]).IsValueHandle() {
    1001           1 :                 i.ikv.V = base.MakeInPlaceValue(i.val[1:])
    1002           1 :         } else {
    1003           1 :                 i.ikv.V = i.lazyValueHandling.getValue.GetLazyValueForPrefixAndValueHandle(i.val)
    1004           1 :         }
    1005           1 :         return &i.ikv
    1006             : }
    1007             : 
    1008             : const restartMaskLittleEndianHighByteWithoutSetHasSamePrefix byte = 0b0111_1111
    1009             : const restartMaskLittleEndianHighByteOnlySetHasSamePrefix byte = 0b1000_0000
    1010             : 
    1011           1 : func decodeRestart(b []byte) int32 {
    1012           1 :         _ = b[3] // bounds check hint to compiler; see golang.org/issue/14808
    1013           1 :         return int32(uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 |
    1014           1 :                 uint32(b[3]&restartMaskLittleEndianHighByteWithoutSetHasSamePrefix)<<24)
    1015           1 : }
    1016             : 
    1017             : // Last implements internalIterator.Last, as documented in the pebble package.
    1018           1 : func (i *Iter) Last() *base.InternalKV {
    1019           1 :         if invariants.Enabled && i.IsDataInvalidated() {
    1020           0 :                 panic(errors.AssertionFailedf("invalidated blockIter used"))
    1021             :         }
    1022             : 
    1023             :         // Seek forward from the last restart point.
    1024           1 :         i.offset = decodeRestart(i.data[i.restarts+4*(i.numRestarts-1):])
    1025           1 :         if !i.Valid() {
    1026           1 :                 return nil
    1027           1 :         }
    1028             : 
    1029           1 :         i.readEntry()
    1030           1 :         i.clearCache()
    1031           1 : 
    1032           1 :         for i.nextOffset < i.restarts {
    1033           1 :                 i.cacheEntry()
    1034           1 :                 i.offset = i.nextOffset
    1035           1 :                 i.readEntry()
    1036           1 :         }
    1037             : 
    1038           1 :         hiddenPoint := i.decodeInternalKey(i.key)
    1039           1 :         if hiddenPoint {
    1040           1 :                 return i.Prev()
    1041           1 :         }
    1042           1 :         i.maybeReplaceSuffix()
    1043           1 :         if !i.lazyValueHandling.hasValuePrefix ||
    1044           1 :                 i.ikv.K.Kind() != base.InternalKeyKindSet {
    1045           1 :                 i.ikv.V = base.MakeInPlaceValue(i.val)
    1046           1 :         } else if i.lazyValueHandling.getValue == nil || !block.ValuePrefix(i.val[0]).IsValueHandle() {
    1047           1 :                 i.ikv.V = base.MakeInPlaceValue(i.val[1:])
    1048           1 :         } else {
    1049           1 :                 i.ikv.V = i.lazyValueHandling.getValue.GetLazyValueForPrefixAndValueHandle(i.val)
    1050           1 :         }
    1051           1 :         return &i.ikv
    1052             : }
    1053             : 
    1054             : // Next implements internalIterator.Next, as documented in the pebble
    1055             : // package.
    1056           1 : func (i *Iter) Next() *base.InternalKV {
    1057           1 :         if len(i.cachedBuf) > 0 {
    1058           1 :                 // We're switching from reverse iteration to forward iteration. We need to
    1059           1 :                 // populate i.fullKey with the current key we're positioned at so that
    1060           1 :                 // readEntry() can use i.fullKey for key prefix decompression. Note that we
    1061           1 :                 // don't know whether i.key is backed by i.cachedBuf or i.fullKey (if
    1062           1 :                 // SeekLT was the previous call, i.key may be backed by i.fullKey), but
    1063           1 :                 // copying into i.fullKey works for both cases.
    1064           1 :                 //
    1065           1 :                 // TODO(peter): Rather than clearing the cache, we could instead use the
    1066           1 :                 // cache until it is exhausted. This would likely be faster than falling
    1067           1 :                 // through to the normal forward iteration code below.
    1068           1 :                 i.fullKey = append(i.fullKey[:0], i.key...)
    1069           1 :                 i.clearCache()
    1070           1 :         }
    1071             : 
    1072             : start:
    1073           1 :         i.offset = i.nextOffset
    1074           1 :         if !i.Valid() {
    1075           1 :                 return nil
    1076           1 :         }
    1077           1 :         i.readEntry()
    1078           1 :         // Manually inlined version of i.decodeInternalKey(i.key).
    1079           1 :         if n := len(i.key) - 8; n >= 0 {
    1080           1 :                 trailer := base.InternalKeyTrailer(binary.LittleEndian.Uint64(i.key[n:]))
    1081           1 :                 hiddenPoint := i.transforms.HideObsoletePoints &&
    1082           1 :                         (trailer&TrailerObsoleteBit != 0)
    1083           1 :                 i.ikv.K.Trailer = trailer & TrailerObsoleteMask
    1084           1 :                 i.ikv.K.UserKey = i.key[:n:n]
    1085           1 :                 if n := i.transforms.SyntheticSeqNum; n != 0 {
    1086           1 :                         i.ikv.K.SetSeqNum(base.SeqNum(n))
    1087           1 :                 }
    1088           1 :                 if hiddenPoint {
    1089           1 :                         goto start
    1090             :                 }
    1091           1 :                 if i.transforms.SyntheticSuffix.IsSet() {
    1092           1 :                         // Inlined version of i.maybeReplaceSuffix()
    1093           1 :                         prefixLen := i.split(i.ikv.K.UserKey)
    1094           1 :                         i.synthSuffixBuf = append(i.synthSuffixBuf[:0], i.ikv.K.UserKey[:prefixLen]...)
    1095           1 :                         i.synthSuffixBuf = append(i.synthSuffixBuf, i.transforms.SyntheticSuffix...)
    1096           1 :                         i.ikv.K.UserKey = i.synthSuffixBuf
    1097           1 :                 }
    1098           0 :         } else {
    1099           0 :                 i.ikv.K.Trailer = base.InternalKeyTrailer(base.InternalKeyKindInvalid)
    1100           0 :                 i.ikv.K.UserKey = nil
    1101           0 :         }
    1102           1 :         if !i.lazyValueHandling.hasValuePrefix ||
    1103           1 :                 i.ikv.K.Kind() != base.InternalKeyKindSet {
    1104           1 :                 i.ikv.V = base.MakeInPlaceValue(i.val)
    1105           1 :         } else if i.lazyValueHandling.getValue == nil || !block.ValuePrefix(i.val[0]).IsValueHandle() {
    1106           1 :                 i.ikv.V = base.MakeInPlaceValue(i.val[1:])
    1107           1 :         } else {
    1108           1 :                 i.ikv.V = i.lazyValueHandling.getValue.GetLazyValueForPrefixAndValueHandle(i.val)
    1109           1 :         }
    1110           1 :         return &i.ikv
    1111             : }
    1112             : 
    1113             : // NextPrefix implements (base.InternalIterator).NextPrefix.
    1114           1 : func (i *Iter) NextPrefix(succKey []byte) *base.InternalKV {
    1115           1 :         if i.lazyValueHandling.hasValuePrefix {
    1116           1 :                 return i.nextPrefixV3(succKey)
    1117           1 :         }
    1118           1 :         const nextsBeforeSeek = 3
    1119           1 :         kv := i.Next()
    1120           1 :         for j := 1; kv != nil && i.cmp(kv.K.UserKey, succKey) < 0; j++ {
    1121           1 :                 if j >= nextsBeforeSeek {
    1122           1 :                         return i.SeekGE(succKey, base.SeekGEFlagsNone)
    1123           1 :                 }
    1124           1 :                 kv = i.Next()
    1125             :         }
    1126           1 :         return kv
    1127             : }
    1128             : 
    1129           1 : func (i *Iter) nextPrefixV3(succKey []byte) *base.InternalKV {
    1130           1 :         // Doing nexts that involve a key comparison can be expensive (and the cost
    1131           1 :         // depends on the key length), so we use the same threshold of 3 that we use
    1132           1 :         // for TableFormatPebblev2 in blockIter.nextPrefix above. The next fast path
    1133           1 :         // that looks at setHasSamePrefix takes ~5ns per key, which is ~150x faster
    1134           1 :         // than doing a SeekGE within the block, so we do this 16 times
    1135           1 :         // (~5ns*16=80ns), and then switch to looking at restarts. Doing the binary
    1136           1 :         // search for the restart consumes > 100ns. If the number of versions is >
    1137           1 :         // 17, we will increment nextFastCount to 17, then do a binary search, and
    1138           1 :         // on average need to find a key between two restarts, so another 8 steps
    1139           1 :         // corresponding to nextFastCount, for a mean total of 17 + 8 = 25 such
    1140           1 :         // steps.
    1141           1 :         //
    1142           1 :         // TODO(sumeer): use the configured restartInterval for the sstable when it
    1143           1 :         // was written (which we don't currently store) instead of the default value
    1144           1 :         // of 16.
    1145           1 :         const nextCmpThresholdBeforeSeek = 3
    1146           1 :         const nextFastThresholdBeforeRestarts = 16
    1147           1 :         nextCmpCount := 0
    1148           1 :         nextFastCount := 0
    1149           1 :         usedRestarts := false
    1150           1 :         // INVARIANT: blockIter is valid.
    1151           1 :         if invariants.Enabled && !i.Valid() {
    1152           0 :                 panic(errors.AssertionFailedf("nextPrefixV3 called on invalid blockIter"))
    1153             :         }
    1154           1 :         prevKeyIsSet := i.ikv.Kind() == base.InternalKeyKindSet
    1155           1 :         for {
    1156           1 :                 i.offset = i.nextOffset
    1157           1 :                 if !i.Valid() {
    1158           1 :                         return nil
    1159           1 :                 }
    1160             :                 // Need to decode the length integers, so we can compute nextOffset.
    1161           1 :                 ptr := unsafe.Pointer(uintptr(i.ptr) + uintptr(i.offset))
    1162           1 :                 // This is an ugly performance hack. Reading entries from blocks is one of
    1163           1 :                 // the inner-most routines and decoding the 3 varints per-entry takes
    1164           1 :                 // significant time. Neither go1.11 or go1.12 will inline decodeVarint for
    1165           1 :                 // us, so we do it manually. This provides a 10-15% performance improvement
    1166           1 :                 // on blockIter benchmarks on both go1.11 and go1.12.
    1167           1 :                 //
    1168           1 :                 // TODO(peter): remove this hack if go:inline is ever supported.
    1169           1 : 
    1170           1 :                 // Decode the shared key length integer.
    1171           1 :                 var shared uint32
    1172           1 :                 if a := *((*uint8)(ptr)); a < 128 {
    1173           1 :                         shared = uint32(a)
    1174           1 :                         ptr = unsafe.Pointer(uintptr(ptr) + 1)
    1175           1 :                 } else if a, b := a&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 1))); b < 128 {
    1176           0 :                         shared = uint32(b)<<7 | uint32(a)
    1177           0 :                         ptr = unsafe.Pointer(uintptr(ptr) + 2)
    1178           0 :                 } else if b, c := b&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 2))); c < 128 {
    1179           0 :                         shared = uint32(c)<<14 | uint32(b)<<7 | uint32(a)
    1180           0 :                         ptr = unsafe.Pointer(uintptr(ptr) + 3)
    1181           0 :                 } else if c, d := c&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 3))); d < 128 {
    1182           0 :                         shared = uint32(d)<<21 | uint32(c)<<14 | uint32(b)<<7 | uint32(a)
    1183           0 :                         ptr = unsafe.Pointer(uintptr(ptr) + 4)
    1184           0 :                 } else {
    1185           0 :                         d, e := d&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 4)))
    1186           0 :                         shared = uint32(e)<<28 | uint32(d)<<21 | uint32(c)<<14 | uint32(b)<<7 | uint32(a)
    1187           0 :                         ptr = unsafe.Pointer(uintptr(ptr) + 5)
    1188           0 :                 }
    1189             :                 // Decode the unshared key length integer.
    1190           1 :                 var unshared uint32
    1191           1 :                 if a := *((*uint8)(ptr)); a < 128 {
    1192           1 :                         unshared = uint32(a)
    1193           1 :                         ptr = unsafe.Pointer(uintptr(ptr) + 1)
    1194           1 :                 } else if a, b := a&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 1))); b < 128 {
    1195           0 :                         unshared = uint32(b)<<7 | uint32(a)
    1196           0 :                         ptr = unsafe.Pointer(uintptr(ptr) + 2)
    1197           0 :                 } else if b, c := b&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 2))); c < 128 {
    1198           0 :                         unshared = uint32(c)<<14 | uint32(b)<<7 | uint32(a)
    1199           0 :                         ptr = unsafe.Pointer(uintptr(ptr) + 3)
    1200           0 :                 } else if c, d := c&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 3))); d < 128 {
    1201           0 :                         unshared = uint32(d)<<21 | uint32(c)<<14 | uint32(b)<<7 | uint32(a)
    1202           0 :                         ptr = unsafe.Pointer(uintptr(ptr) + 4)
    1203           0 :                 } else {
    1204           0 :                         d, e := d&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 4)))
    1205           0 :                         unshared = uint32(e)<<28 | uint32(d)<<21 | uint32(c)<<14 | uint32(b)<<7 | uint32(a)
    1206           0 :                         ptr = unsafe.Pointer(uintptr(ptr) + 5)
    1207           0 :                 }
    1208             :                 // Decode the value length integer.
    1209           1 :                 var value uint32
    1210           1 :                 if a := *((*uint8)(ptr)); a < 128 {
    1211           1 :                         value = uint32(a)
    1212           1 :                         ptr = unsafe.Pointer(uintptr(ptr) + 1)
    1213           1 :                 } else if a, b := a&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 1))); b < 128 {
    1214           0 :                         value = uint32(b)<<7 | uint32(a)
    1215           0 :                         ptr = unsafe.Pointer(uintptr(ptr) + 2)
    1216           0 :                 } else if b, c := b&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 2))); c < 128 {
    1217           0 :                         value = uint32(c)<<14 | uint32(b)<<7 | uint32(a)
    1218           0 :                         ptr = unsafe.Pointer(uintptr(ptr) + 3)
    1219           0 :                 } else if c, d := c&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 3))); d < 128 {
    1220           0 :                         value = uint32(d)<<21 | uint32(c)<<14 | uint32(b)<<7 | uint32(a)
    1221           0 :                         ptr = unsafe.Pointer(uintptr(ptr) + 4)
    1222           0 :                 } else {
    1223           0 :                         d, e := d&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 4)))
    1224           0 :                         value = uint32(e)<<28 | uint32(d)<<21 | uint32(c)<<14 | uint32(b)<<7 | uint32(a)
    1225           0 :                         ptr = unsafe.Pointer(uintptr(ptr) + 5)
    1226           0 :                 }
    1227           1 :                 if i.transforms.SyntheticPrefix != nil {
    1228           0 :                         shared += uint32(len(i.transforms.SyntheticPrefix))
    1229           0 :                 }
    1230             :                 // The starting position of the value.
    1231           1 :                 valuePtr := unsafe.Pointer(uintptr(ptr) + uintptr(unshared))
    1232           1 :                 i.nextOffset = int32(uintptr(valuePtr)-uintptr(i.ptr)) + int32(value)
    1233           1 :                 if invariants.Enabled && unshared < 8 {
    1234           0 :                         // This should not happen since only the key prefix is shared, so even
    1235           0 :                         // if the prefix length is the same as the user key length, the unshared
    1236           0 :                         // will include the trailer.
    1237           0 :                         panic(errors.AssertionFailedf("unshared %d is too small", unshared))
    1238             :                 }
    1239             :                 // The trailer is written in little endian, so the key kind is the first
    1240             :                 // byte in the trailer that is encoded in the slice [unshared-8:unshared].
    1241           1 :                 keyKind := base.InternalKeyKind((*[manual.MaxArrayLen]byte)(ptr)[unshared-8])
    1242           1 :                 keyKind = keyKind & base.InternalKeyKindSSTableInternalObsoleteMask
    1243           1 :                 prefixChanged := false
    1244           1 :                 if keyKind == base.InternalKeyKindSet {
    1245           1 :                         if invariants.Enabled && value == 0 {
    1246           0 :                                 panic(errors.AssertionFailedf("value is of length 0, but we expect a valuePrefix"))
    1247             :                         }
    1248           1 :                         valPrefix := *((*block.ValuePrefix)(valuePtr))
    1249           1 :                         if valPrefix.SetHasSamePrefix() {
    1250           1 :                                 // Fast-path. No need to assemble i.fullKey, or update i.key. We know
    1251           1 :                                 // that subsequent keys will not have a shared length that is greater
    1252           1 :                                 // than the prefix of the current key, which is also the prefix of
    1253           1 :                                 // i.key. Since we are continuing to iterate, we don't need to
    1254           1 :                                 // initialize i.ikey and i.lazyValue (these are initialized before
    1255           1 :                                 // returning).
    1256           1 :                                 nextFastCount++
    1257           1 :                                 if nextFastCount > nextFastThresholdBeforeRestarts {
    1258           1 :                                         if usedRestarts {
    1259           0 :                                                 // Exhausted iteration budget. This will never happen unless
    1260           0 :                                                 // someone is using a restart interval > 16. It is just to guard
    1261           0 :                                                 // against long restart intervals causing too much iteration.
    1262           0 :                                                 break
    1263             :                                         }
    1264             :                                         // Haven't used restarts yet, so find the first restart at or beyond
    1265             :                                         // the current offset.
    1266           1 :                                         targetOffset := i.offset
    1267           1 :                                         var index int32
    1268           1 :                                         {
    1269           1 :                                                 // NB: manually inlined sort.Sort is ~5% faster.
    1270           1 :                                                 //
    1271           1 :                                                 // f defined for a restart point is true iff the offset >=
    1272           1 :                                                 // targetOffset.
    1273           1 :                                                 // Define f(-1) == false and f(i.numRestarts) == true.
    1274           1 :                                                 // Invariant: f(index-1) == false, f(upper) == true.
    1275           1 :                                                 upper := i.numRestarts
    1276           1 :                                                 for index < upper {
    1277           1 :                                                         h := int32(uint(index+upper) >> 1) // avoid overflow when computing h
    1278           1 :                                                         // index ≤ h < upper
    1279           1 :                                                         offset := decodeRestart(i.data[i.restarts+4*h:])
    1280           1 :                                                         if offset < targetOffset {
    1281           1 :                                                                 index = h + 1 // preserves f(index-1) == false
    1282           1 :                                                         } else {
    1283           1 :                                                                 upper = h // preserves f(upper) == true
    1284           1 :                                                         }
    1285             :                                                 }
    1286             :                                                 // index == upper, f(index-1) == false, and f(upper) (= f(index)) == true
    1287             :                                                 // => answer is index.
    1288             :                                         }
    1289           1 :                                         usedRestarts = true
    1290           1 :                                         nextFastCount = 0
    1291           1 :                                         if index == i.numRestarts {
    1292           1 :                                                 // Already past the last real restart, so iterate a bit more until
    1293           1 :                                                 // we are done with the block.
    1294           1 :                                                 continue
    1295             :                                         }
    1296             :                                         // Have some real restarts after index. NB: index is the first
    1297             :                                         // restart at or beyond the current offset.
    1298           1 :                                         startingIndex := index
    1299           1 :                                         for index != i.numRestarts &&
    1300           1 :                                                 // The restart at index is 4 bytes written in little endian format
    1301           1 :                                                 // starting at i.restart+4*index. The 0th byte is the least
    1302           1 :                                                 // significant and the 3rd byte is the most significant. Since the
    1303           1 :                                                 // most significant bit of the 3rd byte is what we use for
    1304           1 :                                                 // encoding the set-has-same-prefix information, the indexing
    1305           1 :                                                 // below has +3.
    1306           1 :                                                 i.data[i.restarts+4*index+3]&restartMaskLittleEndianHighByteOnlySetHasSamePrefix != 0 {
    1307           1 :                                                 // We still have the same prefix, so move to the next restart.
    1308           1 :                                                 index++
    1309           1 :                                         }
    1310             :                                         // index is the first restart that did not have the same prefix.
    1311           1 :                                         if index != startingIndex {
    1312           1 :                                                 // Managed to skip past at least one restart. Resume iteration
    1313           1 :                                                 // from index-1. Since nextFastCount has been reset to 0, we
    1314           1 :                                                 // should be able to iterate to the next prefix.
    1315           1 :                                                 i.offset = decodeRestart(i.data[i.restarts+4*(index-1):])
    1316           1 :                                                 i.readEntry()
    1317           1 :                                         }
    1318             :                                         // Else, unable to skip past any restart. Resume iteration. Since
    1319             :                                         // nextFastCount has been reset to 0, we should be able to iterate
    1320             :                                         // to the next prefix.
    1321           1 :                                         continue
    1322             :                                 }
    1323           1 :                                 continue
    1324           1 :                         } else if prevKeyIsSet {
    1325           1 :                                 prefixChanged = true
    1326           1 :                         }
    1327           1 :                 } else {
    1328           1 :                         prevKeyIsSet = false
    1329           1 :                 }
    1330             :                 // Slow-path cases:
    1331             :                 // - (Likely) The prefix has changed.
    1332             :                 // - (Unlikely) The prefix has not changed.
    1333             :                 // We assemble the key etc. under the assumption that it is the likely
    1334             :                 // case.
    1335           1 :                 unsharedKey := getBytes(ptr, int(unshared))
    1336           1 :                 // TODO(sumeer): move this into the else block below. This is a bit tricky
    1337           1 :                 // since the current logic assumes we have always copied the latest key
    1338           1 :                 // into fullKey, which is why when we get to the next key we can (a)
    1339           1 :                 // access i.fullKey[:shared], (b) append only the unsharedKey to
    1340           1 :                 // i.fullKey. For (a), we can access i.key[:shared] since that memory is
    1341           1 :                 // valid (even if unshared). For (b), we will need to remember whether
    1342           1 :                 // i.key refers to i.fullKey or not, and can append the unsharedKey only
    1343           1 :                 // in the former case and for the latter case need to copy the shared part
    1344           1 :                 // too. This same comment applies to the other place where we can do this
    1345           1 :                 // optimization, in readEntry().
    1346           1 :                 i.fullKey = append(i.fullKey[:shared], unsharedKey...)
    1347           1 :                 i.val = getBytes(valuePtr, int(value))
    1348           1 :                 if shared == 0 {
    1349           1 :                         // Provide stability for the key across positioning calls if the key
    1350           1 :                         // doesn't share a prefix with the previous key. This removes requiring the
    1351           1 :                         // key to be copied if the caller knows the block has a restart interval of
    1352           1 :                         // 1. An important example of this is range-del blocks.
    1353           1 :                         i.key = unsharedKey
    1354           1 :                 } else {
    1355           1 :                         i.key = i.fullKey
    1356           1 :                 }
    1357             :                 // Manually inlined version of i.decodeInternalKey(i.key).
    1358           1 :                 hiddenPoint := false
    1359           1 :                 if n := len(i.key) - 8; n >= 0 {
    1360           1 :                         trailer := base.InternalKeyTrailer(binary.LittleEndian.Uint64(i.key[n:]))
    1361           1 :                         hiddenPoint = i.transforms.HideObsoletePoints &&
    1362           1 :                                 (trailer&TrailerObsoleteBit != 0)
    1363           1 :                         i.ikv.K = base.InternalKey{
    1364           1 :                                 Trailer: trailer & TrailerObsoleteMask,
    1365           1 :                                 UserKey: i.key[:n:n],
    1366           1 :                         }
    1367           1 :                         if n := i.transforms.SyntheticSeqNum; n != 0 {
    1368           0 :                                 i.ikv.K.SetSeqNum(base.SeqNum(n))
    1369           0 :                         }
    1370           1 :                         if i.transforms.SyntheticSuffix.IsSet() {
    1371           0 :                                 // Inlined version of i.maybeReplaceSuffix()
    1372           0 :                                 prefixLen := i.split(i.ikv.K.UserKey)
    1373           0 :                                 i.synthSuffixBuf = append(i.synthSuffixBuf[:0], i.ikv.K.UserKey[:prefixLen]...)
    1374           0 :                                 i.synthSuffixBuf = append(i.synthSuffixBuf, i.transforms.SyntheticSuffix...)
    1375           0 :                                 i.ikv.K.UserKey = i.synthSuffixBuf
    1376           0 :                         }
    1377           0 :                 } else {
    1378           0 :                         i.ikv.K.Trailer = base.InternalKeyTrailer(base.InternalKeyKindInvalid)
    1379           0 :                         i.ikv.K.UserKey = nil
    1380           0 :                 }
    1381           1 :                 nextCmpCount++
    1382           1 :                 if invariants.Enabled && prefixChanged && i.cmp(i.ikv.K.UserKey, succKey) < 0 {
    1383           0 :                         panic(errors.AssertionFailedf("prefix should have changed but %x < %x",
    1384           0 :                                 i.ikv.K.UserKey, succKey))
    1385             :                 }
    1386           1 :                 if prefixChanged || i.cmp(i.ikv.K.UserKey, succKey) >= 0 {
    1387           1 :                         // Prefix has changed.
    1388           1 :                         if hiddenPoint {
    1389           0 :                                 return i.Next()
    1390           0 :                         }
    1391           1 :                         if invariants.Enabled && !i.lazyValueHandling.hasValuePrefix {
    1392           0 :                                 panic(errors.AssertionFailedf("nextPrefixV3 being run for non-v3 sstable"))
    1393             :                         }
    1394           1 :                         if i.ikv.K.Kind() != base.InternalKeyKindSet {
    1395           1 :                                 i.ikv.V = base.MakeInPlaceValue(i.val)
    1396           1 :                         } else if i.lazyValueHandling.getValue == nil || !block.ValuePrefix(i.val[0]).IsValueHandle() {
    1397           1 :                                 i.ikv.V = base.MakeInPlaceValue(i.val[1:])
    1398           1 :                         } else {
    1399           0 :                                 i.ikv.V = i.lazyValueHandling.getValue.GetLazyValueForPrefixAndValueHandle(i.val)
    1400           0 :                         }
    1401           1 :                         return &i.ikv
    1402             :                 }
    1403             :                 // Else prefix has not changed.
    1404             : 
    1405           1 :                 if nextCmpCount >= nextCmpThresholdBeforeSeek {
    1406           1 :                         break
    1407             :                 }
    1408             :         }
    1409           1 :         return i.SeekGE(succKey, base.SeekGEFlagsNone)
    1410             : }
    1411             : 
    1412             : // Prev implements internalIterator.Prev, as documented in the pebble
    1413             : // package.
    1414           1 : func (i *Iter) Prev() *base.InternalKV {
    1415           1 : start:
    1416           1 :         for n := len(i.cached) - 1; n >= 0; n-- {
    1417           1 :                 i.nextOffset = i.offset
    1418           1 :                 e := &i.cached[n]
    1419           1 :                 i.offset = e.offset
    1420           1 :                 i.val = getBytes(unsafe.Pointer(uintptr(i.ptr)+uintptr(e.valStart)), int(e.valSize))
    1421           1 :                 // Manually inlined version of i.decodeInternalKey(i.key).
    1422           1 :                 i.key = i.cachedBuf[e.keyStart:e.keyEnd]
    1423           1 :                 if n := len(i.key) - 8; n >= 0 {
    1424           1 :                         trailer := base.InternalKeyTrailer(binary.LittleEndian.Uint64(i.key[n:]))
    1425           1 :                         hiddenPoint := i.transforms.HideObsoletePoints &&
    1426           1 :                                 (trailer&TrailerObsoleteBit != 0)
    1427           1 :                         if hiddenPoint {
    1428           1 :                                 continue
    1429             :                         }
    1430           1 :                         i.ikv.K = base.InternalKey{
    1431           1 :                                 Trailer: trailer & TrailerObsoleteMask,
    1432           1 :                                 UserKey: i.key[:n:n],
    1433           1 :                         }
    1434           1 :                         if n := i.transforms.SyntheticSeqNum; n != 0 {
    1435           1 :                                 i.ikv.K.SetSeqNum(base.SeqNum(n))
    1436           1 :                         }
    1437           1 :                         if i.transforms.SyntheticSuffix.IsSet() {
    1438           1 :                                 // Inlined version of i.maybeReplaceSuffix()
    1439           1 :                                 prefixLen := i.split(i.ikv.K.UserKey)
    1440           1 :                                 // If ikey is cached or may get cached, we must de-reference
    1441           1 :                                 // UserKey before suffix replacement.
    1442           1 :                                 i.synthSuffixBuf = append(i.synthSuffixBuf[:0], i.ikv.K.UserKey[:prefixLen]...)
    1443           1 :                                 i.synthSuffixBuf = append(i.synthSuffixBuf, i.transforms.SyntheticSuffix...)
    1444           1 :                                 i.ikv.K.UserKey = i.synthSuffixBuf
    1445           1 :                         }
    1446           0 :                 } else {
    1447           0 :                         i.ikv.K.Trailer = base.InternalKeyTrailer(base.InternalKeyKindInvalid)
    1448           0 :                         i.ikv.K.UserKey = nil
    1449           0 :                 }
    1450           1 :                 i.cached = i.cached[:n]
    1451           1 :                 if !i.lazyValueHandling.hasValuePrefix ||
    1452           1 :                         i.ikv.K.Kind() != base.InternalKeyKindSet {
    1453           1 :                         i.ikv.V = base.MakeInPlaceValue(i.val)
    1454           1 :                 } else if i.lazyValueHandling.getValue == nil || !block.ValuePrefix(i.val[0]).IsValueHandle() {
    1455           1 :                         i.ikv.V = base.MakeInPlaceValue(i.val[1:])
    1456           1 :                 } else {
    1457           1 :                         i.ikv.V = i.lazyValueHandling.getValue.GetLazyValueForPrefixAndValueHandle(i.val)
    1458           1 :                 }
    1459           1 :                 return &i.ikv
    1460             :         }
    1461             : 
    1462           1 :         i.clearCache()
    1463           1 :         if i.offset <= 0 {
    1464           1 :                 i.offset = -1
    1465           1 :                 i.nextOffset = 0
    1466           1 :                 return nil
    1467           1 :         }
    1468             : 
    1469           1 :         targetOffset := i.offset
    1470           1 :         var index int32
    1471           1 : 
    1472           1 :         {
    1473           1 :                 // NB: manually inlined sort.Sort is ~5% faster.
    1474           1 :                 //
    1475           1 :                 // Define f(-1) == false and f(n) == true.
    1476           1 :                 // Invariant: f(index-1) == false, f(upper) == true.
    1477           1 :                 upper := i.numRestarts
    1478           1 :                 for index < upper {
    1479           1 :                         h := int32(uint(index+upper) >> 1) // avoid overflow when computing h
    1480           1 :                         // index ≤ h < upper
    1481           1 :                         offset := decodeRestart(i.data[i.restarts+4*h:])
    1482           1 :                         if offset < targetOffset {
    1483           1 :                                 // Looking for the first restart that has offset >= targetOffset, so
    1484           1 :                                 // ignore h and earlier.
    1485           1 :                                 index = h + 1 // preserves f(i-1) == false
    1486           1 :                         } else {
    1487           1 :                                 upper = h // preserves f(j) == true
    1488           1 :                         }
    1489             :                 }
    1490             :                 // index == upper, f(index-1) == false, and f(upper) (= f(index)) == true
    1491             :                 // => answer is index.
    1492             :         }
    1493             : 
    1494             :         // index is first restart with offset >= targetOffset. Note that
    1495             :         // targetOffset may not be at a restart point since one can call Prev()
    1496             :         // after Next() (so the cache was not populated) and targetOffset refers to
    1497             :         // the current entry. index-1 must have an offset < targetOffset (it can't
    1498             :         // be equal to targetOffset since the binary search would have selected that
    1499             :         // as the index).
    1500           1 :         i.offset = 0
    1501           1 :         if index > 0 {
    1502           1 :                 i.offset = decodeRestart(i.data[i.restarts+4*(index-1):])
    1503           1 :         }
    1504             :         // TODO(sumeer): why is the else case not an error given targetOffset is a
    1505             :         // valid offset.
    1506             : 
    1507           1 :         i.readEntry()
    1508           1 : 
    1509           1 :         // We stop when i.nextOffset == targetOffset since the targetOffset is the
    1510           1 :         // entry we are stepping back from, and we don't need to cache the entry
    1511           1 :         // before it, since it is the candidate to return.
    1512           1 :         for i.nextOffset < targetOffset {
    1513           1 :                 i.cacheEntry()
    1514           1 :                 i.offset = i.nextOffset
    1515           1 :                 i.readEntry()
    1516           1 :         }
    1517             : 
    1518           1 :         hiddenPoint := i.decodeInternalKey(i.key)
    1519           1 :         if hiddenPoint {
    1520           1 :                 // Use the cache.
    1521           1 :                 goto start
    1522             :         }
    1523           1 :         if i.transforms.SyntheticSuffix.IsSet() {
    1524           1 :                 // Inlined version of i.maybeReplaceSuffix()
    1525           1 :                 prefixLen := i.split(i.ikv.K.UserKey)
    1526           1 :                 // If ikey is cached or may get cached, we must de-reference
    1527           1 :                 // UserKey before suffix replacement.
    1528           1 :                 i.synthSuffixBuf = append(i.synthSuffixBuf[:0], i.ikv.K.UserKey[:prefixLen]...)
    1529           1 :                 i.synthSuffixBuf = append(i.synthSuffixBuf, i.transforms.SyntheticSuffix...)
    1530           1 :                 i.ikv.K.UserKey = i.synthSuffixBuf
    1531           1 :         }
    1532           1 :         if !i.lazyValueHandling.hasValuePrefix ||
    1533           1 :                 i.ikv.K.Kind() != base.InternalKeyKindSet {
    1534           1 :                 i.ikv.V = base.MakeInPlaceValue(i.val)
    1535           1 :         } else if i.lazyValueHandling.getValue == nil || !block.ValuePrefix(i.val[0]).IsValueHandle() {
    1536           1 :                 i.ikv.V = base.MakeInPlaceValue(i.val[1:])
    1537           1 :         } else {
    1538           1 :                 i.ikv.V = i.lazyValueHandling.getValue.GetLazyValueForPrefixAndValueHandle(i.val)
    1539           1 :         }
    1540           1 :         return &i.ikv
    1541             : }
    1542             : 
    1543             : // Key returns the internal key at the current iterator position.
    1544           0 : func (i *Iter) Key() *base.InternalKey {
    1545           0 :         return &i.ikv.K
    1546           0 : }
    1547             : 
    1548             : // KV returns the internal KV at the current iterator position.
    1549           1 : func (i *Iter) KV() *base.InternalKV {
    1550           1 :         return &i.ikv
    1551           1 : }
    1552             : 
    1553             : // Value returns the value at the current iterator position.
    1554           0 : func (i *Iter) Value() base.LazyValue {
    1555           0 :         return i.ikv.V
    1556           0 : }
    1557             : 
    1558             : // Error implements internalIterator.Error, as documented in the pebble
    1559             : // package.
    1560           1 : func (i *Iter) Error() error {
    1561           1 :         return nil // infallible
    1562           1 : }
    1563             : 
    1564             : // Close implements internalIterator.Close, as documented in the pebble
    1565             : // package.
    1566           1 : func (i *Iter) Close() error {
    1567           1 :         i.handle.Release()
    1568           1 :         i.handle = block.BufferHandle{}
    1569           1 :         i.val = nil
    1570           1 :         i.ikv = base.InternalKV{}
    1571           1 :         i.lazyValueHandling.getValue = nil
    1572           1 :         return nil
    1573           1 : }
    1574             : 
    1575             : // SetBounds implements base.InternalIterator. It panics, as bounds should
    1576             : // always be handled the by the parent sstable iterator.
    1577           0 : func (i *Iter) SetBounds(lower, upper []byte) {
    1578           0 :         // This should never be called as bounds are handled by sstable.Iterator.
    1579           0 :         panic("pebble: SetBounds unimplemented")
    1580             : }
    1581             : 
    1582             : // SetContext implements base.InternalIterator.
    1583           0 : func (i *Iter) SetContext(_ context.Context) {}
    1584             : 
    1585             : // Valid returns true if the iterator is currently positioned at a valid KV.
    1586           1 : func (i *Iter) Valid() bool {
    1587           1 :         return i.offset >= 0 && i.offset < i.restarts
    1588           1 : }
    1589             : 
    1590             : // DebugTree is part of the InternalIterator interface.
    1591           0 : func (i *Iter) DebugTree(tp treeprinter.Node) {
    1592           0 :         tp.Childf("%T(%p)", i, i)
    1593           0 : }
    1594             : 
    1595           1 : func (i *Iter) getRestart(idx int) int32 {
    1596           1 :         return int32(binary.LittleEndian.Uint32(i.data[i.restarts+4*int32(idx):]))
    1597           1 : }
    1598             : 
    1599           1 : func (i *Iter) isRestartPoint() bool {
    1600           1 :         j := sort.Search(int(i.numRestarts), func(j int) bool {
    1601           1 :                 return i.getRestart(j) >= i.offset
    1602           1 :         })
    1603           1 :         return j < int(i.numRestarts) && i.getRestart(j) == i.offset
    1604             : }
    1605             : 
    1606             : // DescribeKV is a function that formats a key-value pair, writing the
    1607             : // description to w.
    1608             : type DescribeKV func(w io.Writer, key *base.InternalKey, val []byte, enc KVEncoding)
    1609             : 
    1610             : // KVEncoding describes the encoding of a key-value pair within the block.
    1611             : type KVEncoding struct {
    1612             :         // IsRestart is true if the key is a restart point.
    1613             :         IsRestart bool
    1614             :         // Offset is the position within the block at which the key-value pair is
    1615             :         // encoded.
    1616             :         Offset int32
    1617             :         // Length is the total length of the KV pair as it is encoded in the block
    1618             :         // format.
    1619             :         Length int32
    1620             :         // KeyShared is the number of bytes this KV's user key shared with its predecessor.
    1621             :         KeyShared uint32
    1622             :         // KeyUnshared is the number of bytes this KV's user key did not share with
    1623             :         // its predecessor.
    1624             :         KeyUnshared uint32
    1625             :         // ValueLen is the length of the internal value.
    1626             :         ValueLen uint32
    1627             : }
    1628             : 
    1629             : // Describe describes the contents of a block, writing the description to w.
    1630             : // It invokes fmtKV to describe each key-value pair.
    1631           1 : func (i *Iter) Describe(w io.Writer, blkOffset uint64, fmtKV DescribeKV) {
    1632           1 :         for kv := i.First(); kv != nil; kv = i.Next() {
    1633           1 :                 enc := KVEncoding{
    1634           1 :                         IsRestart: i.isRestartPoint(),
    1635           1 :                         Offset:    i.offset,
    1636           1 :                         Length:    int32(i.nextOffset - i.offset),
    1637           1 :                 }
    1638           1 :                 ptr := unsafe.Pointer(uintptr(i.ptr) + uintptr(i.offset))
    1639           1 :                 enc.KeyShared, ptr = decodeVarint(ptr)
    1640           1 :                 enc.KeyUnshared, ptr = decodeVarint(ptr)
    1641           1 :                 enc.ValueLen, _ = decodeVarint(ptr)
    1642           1 :                 fmtKV(w, &kv.K, kv.V.ValueOrHandle, enc)
    1643           1 :         }
    1644             :         // Format the restart points.
    1645           1 :         for j := 0; j < int(i.numRestarts); j++ {
    1646           1 :                 offset := i.getRestart(j)
    1647           1 :                 // TODO(jackson): This formatting seems bizarre. We're taking blkOffset
    1648           1 :                 // which is an offset in the physical, compressed file, and adding the
    1649           1 :                 // offset of the KV pair within the uncompressed block. We should just
    1650           1 :                 // print offsets relative to the block start.
    1651           1 :                 fmt.Fprintf(w, "%10d    [restart %d]\n",
    1652           1 :                         blkOffset+uint64(i.restarts+4*int32(j)), blkOffset+uint64(offset))
    1653           1 :         }
    1654             : }
    1655             : 
    1656             : // RawIter is an iterator over a single block of data. Unlike blockIter,
    1657             : // keys are stored in "raw" format (i.e. not as internal keys). Note that there
    1658             : // is significant similarity between this code and the code in blockIter. Yet
    1659             : // reducing duplication is difficult due to the blockIter being performance
    1660             : // critical. RawIter must only be used for blocks where the value is
    1661             : // stored together with the key.
    1662             : type RawIter struct {
    1663             :         cmp         base.Compare
    1664             :         offset      int32
    1665             :         nextOffset  int32
    1666             :         restarts    int32
    1667             :         numRestarts int32
    1668             :         ptr         unsafe.Pointer
    1669             :         data        []byte
    1670             :         key, val    []byte
    1671             :         ikey        base.InternalKey
    1672             :         cached      []blockEntry
    1673             :         cachedBuf   []byte
    1674             : }
    1675             : 
    1676             : // NewRawIter constructs a new raw block iterator.
    1677           1 : func NewRawIter(cmp base.Compare, block []byte) (*RawIter, error) {
    1678           1 :         i := &RawIter{}
    1679           1 :         return i, i.Init(cmp, block)
    1680           1 : }
    1681             : 
    1682             : // Init initializes the raw block iterator.
    1683           1 : func (i *RawIter) Init(cmp base.Compare, blk []byte) error {
    1684           1 :         numRestarts := int32(binary.LittleEndian.Uint32(blk[len(blk)-4:]))
    1685           1 :         if numRestarts == 0 {
    1686           0 :                 return base.CorruptionErrorf("pebble/table: invalid table (block has no restart points)")
    1687           0 :         }
    1688           1 :         i.cmp = cmp
    1689           1 :         i.restarts = int32(len(blk)) - 4*(1+numRestarts)
    1690           1 :         i.numRestarts = numRestarts
    1691           1 :         i.ptr = unsafe.Pointer(&blk[0])
    1692           1 :         i.data = blk
    1693           1 :         if i.key == nil {
    1694           1 :                 i.key = make([]byte, 0, 256)
    1695           1 :         } else {
    1696           0 :                 i.key = i.key[:0]
    1697           0 :         }
    1698           1 :         i.val = nil
    1699           1 :         i.clearCache()
    1700           1 :         return nil
    1701             : }
    1702             : 
    1703           1 : func (i *RawIter) readEntry() {
    1704           1 :         ptr := unsafe.Pointer(uintptr(i.ptr) + uintptr(i.offset))
    1705           1 :         shared, ptr := decodeVarint(ptr)
    1706           1 :         unshared, ptr := decodeVarint(ptr)
    1707           1 :         value, ptr := decodeVarint(ptr)
    1708           1 :         i.key = append(i.key[:shared], getBytes(ptr, int(unshared))...)
    1709           1 :         i.key = i.key[:len(i.key):len(i.key)]
    1710           1 :         ptr = unsafe.Pointer(uintptr(ptr) + uintptr(unshared))
    1711           1 :         i.val = getBytes(ptr, int(value))
    1712           1 :         i.nextOffset = int32(uintptr(ptr)-uintptr(i.ptr)) + int32(value)
    1713           1 : }
    1714             : 
    1715           1 : func (i *RawIter) loadEntry() {
    1716           1 :         i.readEntry()
    1717           1 :         i.ikey.UserKey = i.key
    1718           1 : }
    1719             : 
    1720           1 : func (i *RawIter) clearCache() {
    1721           1 :         i.cached = i.cached[:0]
    1722           1 :         i.cachedBuf = i.cachedBuf[:0]
    1723           1 : }
    1724             : 
    1725           1 : func (i *RawIter) cacheEntry() {
    1726           1 :         var valStart int32
    1727           1 :         valSize := int32(len(i.val))
    1728           1 :         if valSize > 0 {
    1729           0 :                 valStart = int32(uintptr(unsafe.Pointer(&i.val[0])) - uintptr(i.ptr))
    1730           0 :         }
    1731             : 
    1732           1 :         i.cached = append(i.cached, blockEntry{
    1733           1 :                 offset:   i.offset,
    1734           1 :                 keyStart: int32(len(i.cachedBuf)),
    1735           1 :                 keyEnd:   int32(len(i.cachedBuf) + len(i.key)),
    1736           1 :                 valStart: valStart,
    1737           1 :                 valSize:  valSize,
    1738           1 :         })
    1739           1 :         i.cachedBuf = append(i.cachedBuf, i.key...)
    1740             : }
    1741             : 
    1742             : // SeekGE implements internalIterator.SeekGE, as documented in the pebble
    1743             : // package.
    1744           1 : func (i *RawIter) SeekGE(key []byte) bool {
    1745           1 :         // Find the index of the smallest restart point whose key is > the key
    1746           1 :         // sought; index will be numRestarts if there is no such restart point.
    1747           1 :         i.offset = 0
    1748           1 :         index := sort.Search(int(i.numRestarts), func(j int) bool {
    1749           1 :                 offset := int32(binary.LittleEndian.Uint32(i.data[int(i.restarts)+4*j:]))
    1750           1 :                 // For a restart point, there are 0 bytes shared with the previous key.
    1751           1 :                 // The varint encoding of 0 occupies 1 byte.
    1752           1 :                 ptr := unsafe.Pointer(uintptr(i.ptr) + uintptr(offset+1))
    1753           1 :                 // Decode the key at that restart point, and compare it to the key sought.
    1754           1 :                 v1, ptr := decodeVarint(ptr)
    1755           1 :                 _, ptr = decodeVarint(ptr)
    1756           1 :                 s := getBytes(ptr, int(v1))
    1757           1 :                 return i.cmp(key, s) < 0
    1758           1 :         })
    1759             : 
    1760             :         // Since keys are strictly increasing, if index > 0 then the restart point at
    1761             :         // index-1 will be the largest whose key is <= the key sought.  If index ==
    1762             :         // 0, then all keys in this block are larger than the key sought, and offset
    1763             :         // remains at zero.
    1764           1 :         if index > 0 {
    1765           1 :                 i.offset = int32(binary.LittleEndian.Uint32(i.data[int(i.restarts)+4*(index-1):]))
    1766           1 :         }
    1767           1 :         i.loadEntry()
    1768           1 : 
    1769           1 :         // Iterate from that restart point to somewhere >= the key sought.
    1770           1 :         for valid := i.Valid(); valid; valid = i.Next() {
    1771           1 :                 if i.cmp(key, i.key) <= 0 {
    1772           1 :                         break
    1773             :                 }
    1774             :         }
    1775           1 :         return i.Valid()
    1776             : }
    1777             : 
    1778             : // First implements internalIterator.First, as documented in the pebble
    1779             : // package.
    1780           1 : func (i *RawIter) First() bool {
    1781           1 :         i.offset = 0
    1782           1 :         i.loadEntry()
    1783           1 :         return i.Valid()
    1784           1 : }
    1785             : 
    1786             : // Last implements internalIterator.Last, as documented in the pebble package.
    1787           1 : func (i *RawIter) Last() bool {
    1788           1 :         // Seek forward from the last restart point.
    1789           1 :         i.offset = int32(binary.LittleEndian.Uint32(i.data[i.restarts+4*(i.numRestarts-1):]))
    1790           1 : 
    1791           1 :         i.readEntry()
    1792           1 :         i.clearCache()
    1793           1 :         i.cacheEntry()
    1794           1 : 
    1795           1 :         for i.nextOffset < i.restarts {
    1796           1 :                 i.offset = i.nextOffset
    1797           1 :                 i.readEntry()
    1798           1 :                 i.cacheEntry()
    1799           1 :         }
    1800             : 
    1801           1 :         i.ikey.UserKey = i.key
    1802           1 :         return i.Valid()
    1803             : }
    1804             : 
    1805             : // Next implements internalIterator.Next, as documented in the pebble
    1806             : // package.
    1807           1 : func (i *RawIter) Next() bool {
    1808           1 :         i.offset = i.nextOffset
    1809           1 :         if !i.Valid() {
    1810           1 :                 return false
    1811           1 :         }
    1812           1 :         i.loadEntry()
    1813           1 :         return true
    1814             : }
    1815             : 
    1816             : // Prev implements internalIterator.Prev, as documented in the pebble
    1817             : // package.
    1818           1 : func (i *RawIter) Prev() bool {
    1819           1 :         if n := len(i.cached) - 1; n > 0 && i.cached[n].offset == i.offset {
    1820           1 :                 i.nextOffset = i.offset
    1821           1 :                 e := &i.cached[n-1]
    1822           1 :                 i.offset = e.offset
    1823           1 :                 i.val = getBytes(unsafe.Pointer(uintptr(i.ptr)+uintptr(e.valStart)), int(e.valSize))
    1824           1 :                 i.ikey.UserKey = i.cachedBuf[e.keyStart:e.keyEnd]
    1825           1 :                 i.cached = i.cached[:n]
    1826           1 :                 return true
    1827           1 :         }
    1828             : 
    1829           1 :         if i.offset == 0 {
    1830           1 :                 i.offset = -1
    1831           1 :                 i.nextOffset = 0
    1832           1 :                 return false
    1833           1 :         }
    1834             : 
    1835           0 :         targetOffset := i.offset
    1836           0 :         index := sort.Search(int(i.numRestarts), func(j int) bool {
    1837           0 :                 offset := int32(binary.LittleEndian.Uint32(i.data[int(i.restarts)+4*j:]))
    1838           0 :                 return offset >= targetOffset
    1839           0 :         })
    1840           0 :         i.offset = 0
    1841           0 :         if index > 0 {
    1842           0 :                 i.offset = int32(binary.LittleEndian.Uint32(i.data[int(i.restarts)+4*(index-1):]))
    1843           0 :         }
    1844             : 
    1845           0 :         i.readEntry()
    1846           0 :         i.clearCache()
    1847           0 :         i.cacheEntry()
    1848           0 : 
    1849           0 :         for i.nextOffset < targetOffset {
    1850           0 :                 i.offset = i.nextOffset
    1851           0 :                 i.readEntry()
    1852           0 :                 i.cacheEntry()
    1853           0 :         }
    1854             : 
    1855           0 :         i.ikey.UserKey = i.key
    1856           0 :         return true
    1857             : }
    1858             : 
    1859             : // Key implements internalIterator.Key, as documented in the pebble package.
    1860           1 : func (i *RawIter) Key() base.InternalKey {
    1861           1 :         return i.ikey
    1862           1 : }
    1863             : 
    1864             : // Value implements internalIterator.Value, as documented in the pebble
    1865             : // package.
    1866           1 : func (i *RawIter) Value() []byte {
    1867           1 :         return i.val
    1868           1 : }
    1869             : 
    1870             : // Valid implements internalIterator.Valid, as documented in the pebble
    1871             : // package.
    1872           1 : func (i *RawIter) Valid() bool {
    1873           1 :         return i.offset >= 0 && i.offset < i.restarts
    1874           1 : }
    1875             : 
    1876             : // Error implements internalIterator.Error, as documented in the pebble
    1877             : // package.
    1878           0 : func (i *RawIter) Error() error {
    1879           0 :         return nil
    1880           0 : }
    1881             : 
    1882             : // Close implements internalIterator.Close, as documented in the pebble
    1883             : // package.
    1884           1 : func (i *RawIter) Close() error {
    1885           1 :         i.val = nil
    1886           1 :         return nil
    1887           1 : }
    1888             : 
    1889             : // DebugTree is part of the InternalIterator interface.
    1890           0 : func (i *RawIter) DebugTree(tp treeprinter.Node) {
    1891           0 :         tp.Childf("%T(%p)", i, i)
    1892           0 : }
    1893             : 
    1894           1 : func (i *RawIter) getRestart(idx int) int32 {
    1895           1 :         return int32(binary.LittleEndian.Uint32(i.data[i.restarts+4*int32(idx):]))
    1896           1 : }
    1897             : 
    1898           1 : func (i *RawIter) isRestartPoint() bool {
    1899           1 :         j := sort.Search(int(i.numRestarts), func(j int) bool {
    1900           1 :                 return i.getRestart(j) >= i.offset
    1901           1 :         })
    1902           1 :         return j < int(i.numRestarts) && i.getRestart(j) == i.offset
    1903             : }
    1904             : 
    1905             : // Describe describes the contents of a block, writing the description to w.
    1906             : // It invokes fmtKV to describe each key-value pair.
    1907           1 : func (i *RawIter) Describe(w io.Writer, blkOffset uint64, fmtKV DescribeKV) {
    1908           1 :         for valid := i.First(); valid; valid = i.Next() {
    1909           1 :                 enc := KVEncoding{
    1910           1 :                         IsRestart: i.isRestartPoint(),
    1911           1 :                         Offset:    i.offset,
    1912           1 :                         Length:    int32(i.nextOffset - i.offset),
    1913           1 :                 }
    1914           1 :                 ptr := unsafe.Pointer(uintptr(i.ptr) + uintptr(i.offset))
    1915           1 :                 enc.KeyShared, ptr = decodeVarint(ptr)
    1916           1 :                 enc.KeyUnshared, ptr = decodeVarint(ptr)
    1917           1 :                 enc.ValueLen, _ = decodeVarint(ptr)
    1918           1 :                 fmtKV(w, &i.ikey, i.val, enc)
    1919           1 :                 if i.isRestartPoint() {
    1920           1 :                         fmt.Fprintf(w, " [restart]\n")
    1921           1 :                 } else {
    1922           1 :                         fmt.Fprintf(w, "\n")
    1923           1 :                 }
    1924             :         }
    1925             :         // Format the restart points.
    1926           1 :         for j := 0; j < int(i.numRestarts); j++ {
    1927           1 :                 offset := i.getRestart(j)
    1928           1 :                 // TODO(jackson): This formatting seems bizarre. We're taking blkOffset
    1929           1 :                 // which is an offset in the physical, compressed file, and adding the
    1930           1 :                 // offset of the KV pair within the uncompressed block. We should just
    1931           1 :                 // print offsets relative to the block start.
    1932           1 :                 fmt.Fprintf(w, "%10d    [restart %d]\n",
    1933           1 :                         blkOffset+uint64(i.restarts+4*int32(j)), blkOffset+uint64(offset))
    1934           1 :         }
    1935             : }
    1936             : 
    1937           1 : func getBytes(ptr unsafe.Pointer, length int) []byte {
    1938           1 :         return (*[manual.MaxArrayLen]byte)(ptr)[:length:length]
    1939           1 : }
    1940             : 
    1941           1 : func decodeVarint(ptr unsafe.Pointer) (uint32, unsafe.Pointer) {
    1942           1 :         if a := *((*uint8)(ptr)); a < 128 {
    1943           1 :                 return uint32(a),
    1944           1 :                         unsafe.Pointer(uintptr(ptr) + 1)
    1945           1 :         } else if a, b := a&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 1))); b < 128 {
    1946           1 :                 return uint32(b)<<7 | uint32(a),
    1947           1 :                         unsafe.Pointer(uintptr(ptr) + 2)
    1948           1 :         } else if b, c := b&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 2))); c < 128 {
    1949           0 :                 return uint32(c)<<14 | uint32(b)<<7 | uint32(a),
    1950           0 :                         unsafe.Pointer(uintptr(ptr) + 3)
    1951           0 :         } else if c, d := c&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 3))); d < 128 {
    1952           0 :                 return uint32(d)<<21 | uint32(c)<<14 | uint32(b)<<7 | uint32(a),
    1953           0 :                         unsafe.Pointer(uintptr(ptr) + 4)
    1954           0 :         } else {
    1955           0 :                 d, e := d&0x7f, *((*uint8)(unsafe.Pointer(uintptr(ptr) + 4)))
    1956           0 :                 return uint32(e)<<28 | uint32(d)<<21 | uint32(c)<<14 | uint32(b)<<7 | uint32(a),
    1957           0 :                         unsafe.Pointer(uintptr(ptr) + 5)
    1958           0 :         }
    1959             : }

Generated by: LCOV version 1.14