LCOV - code coverage report
Current view: top level - pebble - compaction.go (source / functions) Hit Total Coverage
Test: 2024-11-16 08:16Z 9ed54bc4 - tests only.lcov Lines: 2033 2200 92.4 %
Date: 2024-11-16 08:17:17 Functions: 0 0 -

          Line data    Source code
       1             : // Copyright 2013 The LevelDB-Go and Pebble Authors. All rights reserved. Use
       2             : // of this source code is governed by a BSD-style license that can be found in
       3             : // the LICENSE file.
       4             : 
       5             : package pebble
       6             : 
       7             : import (
       8             :         "bytes"
       9             :         "context"
      10             :         "fmt"
      11             :         "math"
      12             :         "runtime/pprof"
      13             :         "slices"
      14             :         "sort"
      15             :         "sync/atomic"
      16             :         "time"
      17             : 
      18             :         "github.com/cockroachdb/crlib/crtime"
      19             :         "github.com/cockroachdb/errors"
      20             :         "github.com/cockroachdb/pebble/internal/base"
      21             :         "github.com/cockroachdb/pebble/internal/compact"
      22             :         "github.com/cockroachdb/pebble/internal/keyspan"
      23             :         "github.com/cockroachdb/pebble/internal/keyspan/keyspanimpl"
      24             :         "github.com/cockroachdb/pebble/internal/manifest"
      25             :         "github.com/cockroachdb/pebble/internal/sstableinternal"
      26             :         "github.com/cockroachdb/pebble/objstorage"
      27             :         "github.com/cockroachdb/pebble/objstorage/objstorageprovider/objiotracing"
      28             :         "github.com/cockroachdb/pebble/objstorage/remote"
      29             :         "github.com/cockroachdb/pebble/sstable"
      30             :         "github.com/cockroachdb/pebble/vfs"
      31             : )
      32             : 
      33             : var errEmptyTable = errors.New("pebble: empty table")
      34             : 
      35             : // ErrCancelledCompaction is returned if a compaction is cancelled by a
      36             : // concurrent excise or ingest-split operation.
      37             : var ErrCancelledCompaction = errors.New("pebble: compaction cancelled by a concurrent operation, will retry compaction")
      38             : 
      39             : var compactLabels = pprof.Labels("pebble", "compact")
      40             : var flushLabels = pprof.Labels("pebble", "flush")
      41             : var gcLabels = pprof.Labels("pebble", "gc")
      42             : 
      43             : // expandedCompactionByteSizeLimit is the maximum number of bytes in all
      44             : // compacted files. We avoid expanding the lower level file set of a compaction
      45             : // if it would make the total compaction cover more than this many bytes.
      46           1 : func expandedCompactionByteSizeLimit(opts *Options, level int, availBytes uint64) uint64 {
      47           1 :         v := uint64(25 * opts.Level(level).TargetFileSize)
      48           1 : 
      49           1 :         // Never expand a compaction beyond half the available capacity, divided
      50           1 :         // by the maximum number of concurrent compactions. Each of the concurrent
      51           1 :         // compactions may expand up to this limit, so this attempts to limit
      52           1 :         // compactions to half of available disk space. Note that this will not
      53           1 :         // prevent compaction picking from pursuing compactions that are larger
      54           1 :         // than this threshold before expansion.
      55           1 :         diskMax := (availBytes / 2) / uint64(opts.MaxConcurrentCompactions())
      56           1 :         if v > diskMax {
      57           1 :                 v = diskMax
      58           1 :         }
      59           1 :         return v
      60             : }
      61             : 
      62             : // maxGrandparentOverlapBytes is the maximum bytes of overlap with level+1
      63             : // before we stop building a single file in a level-1 to level compaction.
      64           1 : func maxGrandparentOverlapBytes(opts *Options, level int) uint64 {
      65           1 :         return uint64(10 * opts.Level(level).TargetFileSize)
      66           1 : }
      67             : 
      68             : // maxReadCompactionBytes is used to prevent read compactions which
      69             : // are too wide.
      70           1 : func maxReadCompactionBytes(opts *Options, level int) uint64 {
      71           1 :         return uint64(10 * opts.Level(level).TargetFileSize)
      72           1 : }
      73             : 
      74             : // noCloseIter wraps around a FragmentIterator, intercepting and eliding
      75             : // calls to Close. It is used during compaction to ensure that rangeDelIters
      76             : // are not closed prematurely.
      77             : type noCloseIter struct {
      78             :         keyspan.FragmentIterator
      79             : }
      80             : 
      81           1 : func (i *noCloseIter) Close() {}
      82             : 
      83             : type compactionLevel struct {
      84             :         level int
      85             :         files manifest.LevelSlice
      86             :         // l0SublevelInfo contains information about L0 sublevels being compacted.
      87             :         // It's only set for the start level of a compaction starting out of L0 and
      88             :         // is nil for all other compactions.
      89             :         l0SublevelInfo []sublevelInfo
      90             : }
      91             : 
      92           1 : func (cl compactionLevel) Clone() compactionLevel {
      93           1 :         newCL := compactionLevel{
      94           1 :                 level: cl.level,
      95           1 :                 files: cl.files,
      96           1 :         }
      97           1 :         return newCL
      98           1 : }
      99           1 : func (cl compactionLevel) String() string {
     100           1 :         return fmt.Sprintf(`Level %d, Files %s`, cl.level, cl.files)
     101           1 : }
     102             : 
     103             : // compactionWritable is a objstorage.Writable wrapper that, on every write,
     104             : // updates a metric in `versions` on bytes written by in-progress compactions so
     105             : // far. It also increments a per-compaction `written` int.
     106             : type compactionWritable struct {
     107             :         objstorage.Writable
     108             : 
     109             :         versions *versionSet
     110             :         written  *int64
     111             : }
     112             : 
     113             : // Write is part of the objstorage.Writable interface.
     114           1 : func (c *compactionWritable) Write(p []byte) error {
     115           1 :         if err := c.Writable.Write(p); err != nil {
     116           0 :                 return err
     117           0 :         }
     118             : 
     119           1 :         *c.written += int64(len(p))
     120           1 :         c.versions.incrementCompactionBytes(int64(len(p)))
     121           1 :         return nil
     122             : }
     123             : 
     124             : type compactionKind int
     125             : 
     126             : const (
     127             :         compactionKindDefault compactionKind = iota
     128             :         compactionKindFlush
     129             :         // compactionKindMove denotes a move compaction where the input file is
     130             :         // retained and linked in a new level without being obsoleted.
     131             :         compactionKindMove
     132             :         // compactionKindCopy denotes a copy compaction where the input file is
     133             :         // copied byte-by-byte into a new file with a new FileNum in the output level.
     134             :         compactionKindCopy
     135             :         // compactionKindDeleteOnly denotes a compaction that only deletes input
     136             :         // files. It can occur when wide range tombstones completely contain sstables.
     137             :         compactionKindDeleteOnly
     138             :         compactionKindElisionOnly
     139             :         compactionKindRead
     140             :         compactionKindTombstoneDensity
     141             :         compactionKindRewrite
     142             :         compactionKindIngestedFlushable
     143             : )
     144             : 
     145           1 : func (k compactionKind) String() string {
     146           1 :         switch k {
     147           1 :         case compactionKindDefault:
     148           1 :                 return "default"
     149           0 :         case compactionKindFlush:
     150           0 :                 return "flush"
     151           1 :         case compactionKindMove:
     152           1 :                 return "move"
     153           1 :         case compactionKindDeleteOnly:
     154           1 :                 return "delete-only"
     155           1 :         case compactionKindElisionOnly:
     156           1 :                 return "elision-only"
     157           1 :         case compactionKindRead:
     158           1 :                 return "read"
     159           0 :         case compactionKindTombstoneDensity:
     160           0 :                 return "tombstone-density"
     161           1 :         case compactionKindRewrite:
     162           1 :                 return "rewrite"
     163           0 :         case compactionKindIngestedFlushable:
     164           0 :                 return "ingested-flushable"
     165           1 :         case compactionKindCopy:
     166           1 :                 return "copy"
     167             :         }
     168           0 :         return "?"
     169             : }
     170             : 
     171             : // compaction is a table compaction from one level to the next, starting from a
     172             : // given version.
     173             : type compaction struct {
     174             :         // cancel is a bool that can be used by other goroutines to signal a compaction
     175             :         // to cancel, such as if a conflicting excise operation raced it to manifest
     176             :         // application. Only holders of the manifest lock will write to this atomic.
     177             :         cancel atomic.Bool
     178             : 
     179             :         kind compactionKind
     180             :         // isDownload is true if this compaction was started as part of a Download
     181             :         // operation. In this case kind is compactionKindCopy or
     182             :         // compactionKindRewrite.
     183             :         isDownload bool
     184             : 
     185             :         cmp       Compare
     186             :         equal     Equal
     187             :         comparer  *base.Comparer
     188             :         formatKey base.FormatKey
     189             :         logger    Logger
     190             :         version   *version
     191             :         stats     base.InternalIteratorStats
     192             :         beganAt   time.Time
     193             :         // versionEditApplied is set to true when a compaction has completed and the
     194             :         // resulting version has been installed (if successful), but the compaction
     195             :         // goroutine is still cleaning up (eg, deleting obsolete files).
     196             :         versionEditApplied bool
     197             :         bufferPool         sstable.BufferPool
     198             : 
     199             :         // startLevel is the level that is being compacted. Inputs from startLevel
     200             :         // and outputLevel will be merged to produce a set of outputLevel files.
     201             :         startLevel *compactionLevel
     202             : 
     203             :         // outputLevel is the level that files are being produced in. outputLevel is
     204             :         // equal to startLevel+1 except when:
     205             :         //    - if startLevel is 0, the output level equals compactionPicker.baseLevel().
     206             :         //    - in multilevel compaction, the output level is the lowest level involved in
     207             :         //      the compaction
     208             :         // A compaction's outputLevel is nil for delete-only compactions.
     209             :         outputLevel *compactionLevel
     210             : 
     211             :         // extraLevels point to additional levels in between the input and output
     212             :         // levels that get compacted in multilevel compactions
     213             :         extraLevels []*compactionLevel
     214             : 
     215             :         inputs []compactionLevel
     216             : 
     217             :         // maxOutputFileSize is the maximum size of an individual table created
     218             :         // during compaction.
     219             :         maxOutputFileSize uint64
     220             :         // maxOverlapBytes is the maximum number of bytes of overlap allowed for a
     221             :         // single output table with the tables in the grandparent level.
     222             :         maxOverlapBytes uint64
     223             : 
     224             :         // flushing contains the flushables (aka memtables) that are being flushed.
     225             :         flushing flushableList
     226             :         // bytesWritten contains the number of bytes that have been written to outputs.
     227             :         bytesWritten int64
     228             : 
     229             :         // The boundaries of the input data.
     230             :         smallest InternalKey
     231             :         largest  InternalKey
     232             : 
     233             :         // A list of fragment iterators to close when the compaction finishes. Used by
     234             :         // input iteration to keep rangeDelIters open for the lifetime of the
     235             :         // compaction, and only close them when the compaction finishes.
     236             :         closers []*noCloseIter
     237             : 
     238             :         // grandparents are the tables in level+2 that overlap with the files being
     239             :         // compacted. Used to determine output table boundaries. Do not assume that the actual files
     240             :         // in the grandparent when this compaction finishes will be the same.
     241             :         grandparents manifest.LevelSlice
     242             : 
     243             :         // Boundaries at which flushes to L0 should be split. Determined by
     244             :         // L0Sublevels. If nil, flushes aren't split.
     245             :         l0Limits [][]byte
     246             : 
     247             :         delElision      compact.TombstoneElision
     248             :         rangeKeyElision compact.TombstoneElision
     249             : 
     250             :         // allowedZeroSeqNum is true if seqnums can be zeroed if there are no
     251             :         // snapshots requiring them to be kept. This determination is made by
     252             :         // looking for an sstable which overlaps the bounds of the compaction at a
     253             :         // lower level in the LSM during runCompaction.
     254             :         allowedZeroSeqNum bool
     255             : 
     256             :         // deletionHints are set if this is a compactionKindDeleteOnly. Used to figure
     257             :         // out whether an input must be deleted in its entirety, or excised into
     258             :         // virtual sstables.
     259             :         deletionHints []deleteCompactionHint
     260             : 
     261             :         // exciseEnabled is set to true if this is a compactionKindDeleteOnly and
     262             :         // this compaction is allowed to excise files.
     263             :         exciseEnabled bool
     264             : 
     265             :         metrics map[int]*LevelMetrics
     266             : 
     267             :         pickerMetrics compactionPickerMetrics
     268             : }
     269             : 
     270             : // inputLargestSeqNumAbsolute returns the maximum LargestSeqNumAbsolute of any
     271             : // input sstables.
     272           1 : func (c *compaction) inputLargestSeqNumAbsolute() base.SeqNum {
     273           1 :         var seqNum base.SeqNum
     274           1 :         for _, cl := range c.inputs {
     275           1 :                 cl.files.Each(func(m *manifest.FileMetadata) {
     276           1 :                         seqNum = max(seqNum, m.LargestSeqNumAbsolute)
     277           1 :                 })
     278             :         }
     279           1 :         return seqNum
     280             : }
     281             : 
     282           1 : func (c *compaction) makeInfo(jobID JobID) CompactionInfo {
     283           1 :         info := CompactionInfo{
     284           1 :                 JobID:       int(jobID),
     285           1 :                 Reason:      c.kind.String(),
     286           1 :                 Input:       make([]LevelInfo, 0, len(c.inputs)),
     287           1 :                 Annotations: []string{},
     288           1 :         }
     289           1 :         if c.isDownload {
     290           1 :                 info.Reason = "download," + info.Reason
     291           1 :         }
     292           1 :         for _, cl := range c.inputs {
     293           1 :                 inputInfo := LevelInfo{Level: cl.level, Tables: nil}
     294           1 :                 iter := cl.files.Iter()
     295           1 :                 for m := iter.First(); m != nil; m = iter.Next() {
     296           1 :                         inputInfo.Tables = append(inputInfo.Tables, m.TableInfo())
     297           1 :                 }
     298           1 :                 info.Input = append(info.Input, inputInfo)
     299             :         }
     300           1 :         if c.outputLevel != nil {
     301           1 :                 info.Output.Level = c.outputLevel.level
     302           1 : 
     303           1 :                 // If there are no inputs from the output level (eg, a move
     304           1 :                 // compaction), add an empty LevelInfo to info.Input.
     305           1 :                 if len(c.inputs) > 0 && c.inputs[len(c.inputs)-1].level != c.outputLevel.level {
     306           0 :                         info.Input = append(info.Input, LevelInfo{Level: c.outputLevel.level})
     307           0 :                 }
     308           1 :         } else {
     309           1 :                 // For a delete-only compaction, set the output level to L6. The
     310           1 :                 // output level is not meaningful here, but complicating the
     311           1 :                 // info.Output interface with a pointer doesn't seem worth the
     312           1 :                 // semantic distinction.
     313           1 :                 info.Output.Level = numLevels - 1
     314           1 :         }
     315             : 
     316           1 :         for i, score := range c.pickerMetrics.scores {
     317           1 :                 info.Input[i].Score = score
     318           1 :         }
     319           1 :         info.SingleLevelOverlappingRatio = c.pickerMetrics.singleLevelOverlappingRatio
     320           1 :         info.MultiLevelOverlappingRatio = c.pickerMetrics.multiLevelOverlappingRatio
     321           1 :         if len(info.Input) > 2 {
     322           1 :                 info.Annotations = append(info.Annotations, "multilevel")
     323           1 :         }
     324           1 :         return info
     325             : }
     326             : 
     327           1 : func (c *compaction) userKeyBounds() base.UserKeyBounds {
     328           1 :         return base.UserKeyBoundsFromInternal(c.smallest, c.largest)
     329           1 : }
     330             : 
     331             : func newCompaction(
     332             :         pc *pickedCompaction, opts *Options, beganAt time.Time, provider objstorage.Provider,
     333           1 : ) *compaction {
     334           1 :         c := &compaction{
     335           1 :                 kind:              compactionKindDefault,
     336           1 :                 cmp:               pc.cmp,
     337           1 :                 equal:             opts.Comparer.Equal,
     338           1 :                 comparer:          opts.Comparer,
     339           1 :                 formatKey:         opts.Comparer.FormatKey,
     340           1 :                 inputs:            pc.inputs,
     341           1 :                 smallest:          pc.smallest,
     342           1 :                 largest:           pc.largest,
     343           1 :                 logger:            opts.Logger,
     344           1 :                 version:           pc.version,
     345           1 :                 beganAt:           beganAt,
     346           1 :                 maxOutputFileSize: pc.maxOutputFileSize,
     347           1 :                 maxOverlapBytes:   pc.maxOverlapBytes,
     348           1 :                 pickerMetrics:     pc.pickerMetrics,
     349           1 :         }
     350           1 :         c.startLevel = &c.inputs[0]
     351           1 :         if pc.startLevel.l0SublevelInfo != nil {
     352           1 :                 c.startLevel.l0SublevelInfo = pc.startLevel.l0SublevelInfo
     353           1 :         }
     354           1 :         c.outputLevel = &c.inputs[1]
     355           1 : 
     356           1 :         if len(pc.extraLevels) > 0 {
     357           1 :                 c.extraLevels = pc.extraLevels
     358           1 :                 c.outputLevel = &c.inputs[len(c.inputs)-1]
     359           1 :         }
     360             :         // Compute the set of outputLevel+1 files that overlap this compaction (these
     361             :         // are the grandparent sstables).
     362           1 :         if c.outputLevel.level+1 < numLevels {
     363           1 :                 c.grandparents = c.version.Overlaps(c.outputLevel.level+1, c.userKeyBounds())
     364           1 :         }
     365           1 :         c.delElision, c.rangeKeyElision = compact.SetupTombstoneElision(
     366           1 :                 c.cmp, c.version, c.outputLevel.level, base.UserKeyBoundsFromInternal(c.smallest, c.largest),
     367           1 :         )
     368           1 :         c.kind = pc.kind
     369           1 : 
     370           1 :         if c.kind == compactionKindDefault && c.outputLevel.files.Empty() && !c.hasExtraLevelData() &&
     371           1 :                 c.startLevel.files.Len() == 1 && c.grandparents.SizeSum() <= c.maxOverlapBytes {
     372           1 :                 // This compaction can be converted into a move or copy from one level
     373           1 :                 // to the next. We avoid such a move if there is lots of overlapping
     374           1 :                 // grandparent data. Otherwise, the move could create a parent file
     375           1 :                 // that will require a very expensive merge later on.
     376           1 :                 iter := c.startLevel.files.Iter()
     377           1 :                 meta := iter.First()
     378           1 :                 isRemote := false
     379           1 :                 // We should always be passed a provider, except in some unit tests.
     380           1 :                 if provider != nil {
     381           1 :                         isRemote = !objstorage.IsLocalTable(provider, meta.FileBacking.DiskFileNum)
     382           1 :                 }
     383             :                 // Avoid a trivial move or copy if all of these are true, as rewriting a
     384             :                 // new file is better:
     385             :                 //
     386             :                 // 1) The source file is a virtual sstable
     387             :                 // 2) The existing file `meta` is on non-remote storage
     388             :                 // 3) The output level prefers shared storage
     389           1 :                 mustCopy := !isRemote && remote.ShouldCreateShared(opts.Experimental.CreateOnShared, c.outputLevel.level)
     390           1 :                 if mustCopy {
     391           1 :                         // If the source is virtual, it's best to just rewrite the file as all
     392           1 :                         // conditions in the above comment are met.
     393           1 :                         if !meta.Virtual {
     394           1 :                                 c.kind = compactionKindCopy
     395           1 :                         }
     396           1 :                 } else {
     397           1 :                         c.kind = compactionKindMove
     398           1 :                 }
     399             :         }
     400           1 :         return c
     401             : }
     402             : 
     403             : func newDeleteOnlyCompaction(
     404             :         opts *Options,
     405             :         cur *version,
     406             :         inputs []compactionLevel,
     407             :         beganAt time.Time,
     408             :         hints []deleteCompactionHint,
     409             :         exciseEnabled bool,
     410           1 : ) *compaction {
     411           1 :         c := &compaction{
     412           1 :                 kind:          compactionKindDeleteOnly,
     413           1 :                 cmp:           opts.Comparer.Compare,
     414           1 :                 equal:         opts.Comparer.Equal,
     415           1 :                 comparer:      opts.Comparer,
     416           1 :                 formatKey:     opts.Comparer.FormatKey,
     417           1 :                 logger:        opts.Logger,
     418           1 :                 version:       cur,
     419           1 :                 beganAt:       beganAt,
     420           1 :                 inputs:        inputs,
     421           1 :                 deletionHints: hints,
     422           1 :                 exciseEnabled: exciseEnabled,
     423           1 :         }
     424           1 : 
     425           1 :         // Set c.smallest, c.largest.
     426           1 :         files := make([]manifest.LevelIterator, 0, len(inputs))
     427           1 :         for _, in := range inputs {
     428           1 :                 files = append(files, in.files.Iter())
     429           1 :         }
     430           1 :         c.smallest, c.largest = manifest.KeyRange(opts.Comparer.Compare, files...)
     431           1 :         return c
     432             : }
     433             : 
     434           1 : func adjustGrandparentOverlapBytesForFlush(c *compaction, flushingBytes uint64) {
     435           1 :         // Heuristic to place a lower bound on compaction output file size
     436           1 :         // caused by Lbase. Prior to this heuristic we have observed an L0 in
     437           1 :         // production with 310K files of which 290K files were < 10KB in size.
     438           1 :         // Our hypothesis is that it was caused by L1 having 2600 files and
     439           1 :         // ~10GB, such that each flush got split into many tiny files due to
     440           1 :         // overlapping with most of the files in Lbase.
     441           1 :         //
     442           1 :         // The computation below is general in that it accounts
     443           1 :         // for flushing different volumes of data (e.g. we may be flushing
     444           1 :         // many memtables). For illustration, we consider the typical
     445           1 :         // example of flushing a 64MB memtable. So 12.8MB output,
     446           1 :         // based on the compression guess below. If the compressed bytes
     447           1 :         // guess is an over-estimate we will end up with smaller files,
     448           1 :         // and if an under-estimate we will end up with larger files.
     449           1 :         // With a 2MB target file size, 7 files. We are willing to accept
     450           1 :         // 4x the number of files, if it results in better write amplification
     451           1 :         // when later compacting to Lbase, i.e., ~450KB files (target file
     452           1 :         // size / 4).
     453           1 :         //
     454           1 :         // Note that this is a pessimistic heuristic in that
     455           1 :         // fileCountUpperBoundDueToGrandparents could be far from the actual
     456           1 :         // number of files produced due to the grandparent limits. For
     457           1 :         // example, in the extreme, consider a flush that overlaps with 1000
     458           1 :         // files in Lbase f0...f999, and the initially calculated value of
     459           1 :         // maxOverlapBytes will cause splits at f10, f20,..., f990, which
     460           1 :         // means an upper bound file count of 100 files. Say the input bytes
     461           1 :         // in the flush are such that acceptableFileCount=10. We will fatten
     462           1 :         // up maxOverlapBytes by 10x to ensure that the upper bound file count
     463           1 :         // drops to 10. However, it is possible that in practice, even without
     464           1 :         // this change, we would have produced no more than 10 files, and that
     465           1 :         // this change makes the files unnecessarily wide. Say the input bytes
     466           1 :         // are distributed such that 10% are in f0...f9, 10% in f10...f19, ...
     467           1 :         // 10% in f80...f89 and 10% in f990...f999. The original value of
     468           1 :         // maxOverlapBytes would have actually produced only 10 sstables. But
     469           1 :         // by increasing maxOverlapBytes by 10x, we may produce 1 sstable that
     470           1 :         // spans f0...f89, i.e., a much wider sstable than necessary.
     471           1 :         //
     472           1 :         // We could produce a tighter estimate of
     473           1 :         // fileCountUpperBoundDueToGrandparents if we had knowledge of the key
     474           1 :         // distribution of the flush. The 4x multiplier mentioned earlier is
     475           1 :         // a way to try to compensate for this pessimism.
     476           1 :         //
     477           1 :         // TODO(sumeer): we don't have compression info for the data being
     478           1 :         // flushed, but it is likely that existing files that overlap with
     479           1 :         // this flush in Lbase are representative wrt compression ratio. We
     480           1 :         // could store the uncompressed size in FileMetadata and estimate
     481           1 :         // the compression ratio.
     482           1 :         const approxCompressionRatio = 0.2
     483           1 :         approxOutputBytes := approxCompressionRatio * float64(flushingBytes)
     484           1 :         approxNumFilesBasedOnTargetSize :=
     485           1 :                 int(math.Ceil(approxOutputBytes / float64(c.maxOutputFileSize)))
     486           1 :         acceptableFileCount := float64(4 * approxNumFilesBasedOnTargetSize)
     487           1 :         // The byte calculation is linear in numGrandparentFiles, but we will
     488           1 :         // incur this linear cost in compact.Runner.TableSplitLimit() too, so we are
     489           1 :         // also willing to pay it now. We could approximate this cheaply by using the
     490           1 :         // mean file size of Lbase.
     491           1 :         grandparentFileBytes := c.grandparents.SizeSum()
     492           1 :         fileCountUpperBoundDueToGrandparents :=
     493           1 :                 float64(grandparentFileBytes) / float64(c.maxOverlapBytes)
     494           1 :         if fileCountUpperBoundDueToGrandparents > acceptableFileCount {
     495           1 :                 c.maxOverlapBytes = uint64(
     496           1 :                         float64(c.maxOverlapBytes) *
     497           1 :                                 (fileCountUpperBoundDueToGrandparents / acceptableFileCount))
     498           1 :         }
     499             : }
     500             : 
     501             : func newFlush(
     502             :         opts *Options, cur *version, baseLevel int, flushing flushableList, beganAt time.Time,
     503           1 : ) (*compaction, error) {
     504           1 :         c := &compaction{
     505           1 :                 kind:              compactionKindFlush,
     506           1 :                 cmp:               opts.Comparer.Compare,
     507           1 :                 equal:             opts.Comparer.Equal,
     508           1 :                 comparer:          opts.Comparer,
     509           1 :                 formatKey:         opts.Comparer.FormatKey,
     510           1 :                 logger:            opts.Logger,
     511           1 :                 version:           cur,
     512           1 :                 beganAt:           beganAt,
     513           1 :                 inputs:            []compactionLevel{{level: -1}, {level: 0}},
     514           1 :                 maxOutputFileSize: math.MaxUint64,
     515           1 :                 maxOverlapBytes:   math.MaxUint64,
     516           1 :                 flushing:          flushing,
     517           1 :         }
     518           1 :         c.startLevel = &c.inputs[0]
     519           1 :         c.outputLevel = &c.inputs[1]
     520           1 : 
     521           1 :         if len(flushing) > 0 {
     522           1 :                 if _, ok := flushing[0].flushable.(*ingestedFlushable); ok {
     523           1 :                         if len(flushing) != 1 {
     524           0 :                                 panic("pebble: ingestedFlushable must be flushed one at a time.")
     525             :                         }
     526           1 :                         c.kind = compactionKindIngestedFlushable
     527           1 :                         return c, nil
     528             :                 }
     529             :         }
     530             : 
     531             :         // Make sure there's no ingestedFlushable after the first flushable in the
     532             :         // list.
     533           1 :         for _, f := range flushing {
     534           1 :                 if _, ok := f.flushable.(*ingestedFlushable); ok {
     535           0 :                         panic("pebble: flushing shouldn't contain ingestedFlushable flushable")
     536             :                 }
     537             :         }
     538             : 
     539           1 :         if cur.L0Sublevels != nil {
     540           1 :                 c.l0Limits = cur.L0Sublevels.FlushSplitKeys()
     541           1 :         }
     542             : 
     543           1 :         smallestSet, largestSet := false, false
     544           1 :         updatePointBounds := func(iter internalIterator) {
     545           1 :                 if kv := iter.First(); kv != nil {
     546           1 :                         if !smallestSet ||
     547           1 :                                 base.InternalCompare(c.cmp, c.smallest, kv.K) > 0 {
     548           1 :                                 smallestSet = true
     549           1 :                                 c.smallest = kv.K.Clone()
     550           1 :                         }
     551             :                 }
     552           1 :                 if kv := iter.Last(); kv != nil {
     553           1 :                         if !largestSet ||
     554           1 :                                 base.InternalCompare(c.cmp, c.largest, kv.K) < 0 {
     555           1 :                                 largestSet = true
     556           1 :                                 c.largest = kv.K.Clone()
     557           1 :                         }
     558             :                 }
     559             :         }
     560             : 
     561           1 :         updateRangeBounds := func(iter keyspan.FragmentIterator) error {
     562           1 :                 // File bounds require s != nil && !s.Empty(). We only need to check for
     563           1 :                 // s != nil here, as the memtable's FragmentIterator would never surface
     564           1 :                 // empty spans.
     565           1 :                 if s, err := iter.First(); err != nil {
     566           0 :                         return err
     567           1 :                 } else if s != nil {
     568           1 :                         if key := s.SmallestKey(); !smallestSet ||
     569           1 :                                 base.InternalCompare(c.cmp, c.smallest, key) > 0 {
     570           1 :                                 smallestSet = true
     571           1 :                                 c.smallest = key.Clone()
     572           1 :                         }
     573             :                 }
     574           1 :                 if s, err := iter.Last(); err != nil {
     575           0 :                         return err
     576           1 :                 } else if s != nil {
     577           1 :                         if key := s.LargestKey(); !largestSet ||
     578           1 :                                 base.InternalCompare(c.cmp, c.largest, key) < 0 {
     579           1 :                                 largestSet = true
     580           1 :                                 c.largest = key.Clone()
     581           1 :                         }
     582             :                 }
     583           1 :                 return nil
     584             :         }
     585             : 
     586           1 :         var flushingBytes uint64
     587           1 :         for i := range flushing {
     588           1 :                 f := flushing[i]
     589           1 :                 updatePointBounds(f.newIter(nil))
     590           1 :                 if rangeDelIter := f.newRangeDelIter(nil); rangeDelIter != nil {
     591           1 :                         if err := updateRangeBounds(rangeDelIter); err != nil {
     592           0 :                                 return nil, err
     593           0 :                         }
     594             :                 }
     595           1 :                 if rangeKeyIter := f.newRangeKeyIter(nil); rangeKeyIter != nil {
     596           1 :                         if err := updateRangeBounds(rangeKeyIter); err != nil {
     597           0 :                                 return nil, err
     598           0 :                         }
     599             :                 }
     600           1 :                 flushingBytes += f.inuseBytes()
     601             :         }
     602             : 
     603           1 :         if opts.FlushSplitBytes > 0 {
     604           1 :                 c.maxOutputFileSize = uint64(opts.Level(0).TargetFileSize)
     605           1 :                 c.maxOverlapBytes = maxGrandparentOverlapBytes(opts, 0)
     606           1 :                 c.grandparents = c.version.Overlaps(baseLevel, c.userKeyBounds())
     607           1 :                 adjustGrandparentOverlapBytesForFlush(c, flushingBytes)
     608           1 :         }
     609             : 
     610             :         // We don't elide tombstones for flushes.
     611           1 :         c.delElision, c.rangeKeyElision = compact.NoTombstoneElision(), compact.NoTombstoneElision()
     612           1 :         return c, nil
     613             : }
     614             : 
     615           1 : func (c *compaction) hasExtraLevelData() bool {
     616           1 :         if len(c.extraLevels) == 0 {
     617           1 :                 // not a multi level compaction
     618           1 :                 return false
     619           1 :         } else if c.extraLevels[0].files.Empty() {
     620           1 :                 // a multi level compaction without data in the intermediate input level;
     621           1 :                 // e.g. for a multi level compaction with levels 4,5, and 6, this could
     622           1 :                 // occur if there is no files to compact in 5, or in 5 and 6 (i.e. a move).
     623           1 :                 return false
     624           1 :         }
     625           1 :         return true
     626             : }
     627             : 
     628             : // errorOnUserKeyOverlap returns an error if the last two written sstables in
     629             : // this compaction have revisions of the same user key present in both sstables,
     630             : // when it shouldn't (eg. when splitting flushes).
     631           1 : func (c *compaction) errorOnUserKeyOverlap(ve *versionEdit) error {
     632           1 :         if n := len(ve.NewFiles); n > 1 {
     633           1 :                 meta := ve.NewFiles[n-1].Meta
     634           1 :                 prevMeta := ve.NewFiles[n-2].Meta
     635           1 :                 if !prevMeta.Largest.IsExclusiveSentinel() &&
     636           1 :                         c.cmp(prevMeta.Largest.UserKey, meta.Smallest.UserKey) >= 0 {
     637           1 :                         return errors.Errorf("pebble: compaction split user key across two sstables: %s in %s and %s",
     638           1 :                                 prevMeta.Largest.Pretty(c.formatKey),
     639           1 :                                 prevMeta.FileNum,
     640           1 :                                 meta.FileNum)
     641           1 :                 }
     642             :         }
     643           1 :         return nil
     644             : }
     645             : 
     646             : // allowZeroSeqNum returns true if seqnum's can be zeroed if there are no
     647             : // snapshots requiring them to be kept. It performs this determination by
     648             : // looking at the TombstoneElision values which are set up based on sstables
     649             : // which overlap the bounds of the compaction at a lower level in the LSM.
     650           1 : func (c *compaction) allowZeroSeqNum() bool {
     651           1 :         // TODO(peter): we disable zeroing of seqnums during flushing to match
     652           1 :         // RocksDB behavior and to avoid generating overlapping sstables during
     653           1 :         // DB.replayWAL. When replaying WAL files at startup, we flush after each
     654           1 :         // WAL is replayed building up a single version edit that is
     655           1 :         // applied. Because we don't apply the version edit after each flush, this
     656           1 :         // code doesn't know that L0 contains files and zeroing of seqnums should
     657           1 :         // be disabled. That is fixable, but it seems safer to just match the
     658           1 :         // RocksDB behavior for now.
     659           1 :         return len(c.flushing) == 0 && c.delElision.ElidesEverything() && c.rangeKeyElision.ElidesEverything()
     660           1 : }
     661             : 
     662             : // newInputIters returns an iterator over all the input tables in a compaction.
     663             : func (c *compaction) newInputIters(
     664             :         newIters tableNewIters, newRangeKeyIter keyspanimpl.TableNewSpanIter,
     665             : ) (
     666             :         pointIter internalIterator,
     667             :         rangeDelIter, rangeKeyIter keyspan.FragmentIterator,
     668             :         retErr error,
     669           1 : ) {
     670           1 :         // Validate the ordering of compaction input files for defense in depth.
     671           1 :         if len(c.flushing) == 0 {
     672           1 :                 if c.startLevel.level >= 0 {
     673           1 :                         err := manifest.CheckOrdering(c.cmp, c.formatKey,
     674           1 :                                 manifest.Level(c.startLevel.level), c.startLevel.files.Iter())
     675           1 :                         if err != nil {
     676           1 :                                 return nil, nil, nil, err
     677           1 :                         }
     678             :                 }
     679           1 :                 err := manifest.CheckOrdering(c.cmp, c.formatKey,
     680           1 :                         manifest.Level(c.outputLevel.level), c.outputLevel.files.Iter())
     681           1 :                 if err != nil {
     682           1 :                         return nil, nil, nil, err
     683           1 :                 }
     684           1 :                 if c.startLevel.level == 0 {
     685           1 :                         if c.startLevel.l0SublevelInfo == nil {
     686           0 :                                 panic("l0SublevelInfo not created for compaction out of L0")
     687             :                         }
     688           1 :                         for _, info := range c.startLevel.l0SublevelInfo {
     689           1 :                                 err := manifest.CheckOrdering(c.cmp, c.formatKey,
     690           1 :                                         info.sublevel, info.Iter())
     691           1 :                                 if err != nil {
     692           1 :                                         return nil, nil, nil, err
     693           1 :                                 }
     694             :                         }
     695             :                 }
     696           1 :                 if len(c.extraLevels) > 0 {
     697           1 :                         if len(c.extraLevels) > 1 {
     698           0 :                                 panic("n>2 multi level compaction not implemented yet")
     699             :                         }
     700           1 :                         interLevel := c.extraLevels[0]
     701           1 :                         err := manifest.CheckOrdering(c.cmp, c.formatKey,
     702           1 :                                 manifest.Level(interLevel.level), interLevel.files.Iter())
     703           1 :                         if err != nil {
     704           0 :                                 return nil, nil, nil, err
     705           0 :                         }
     706             :                 }
     707             :         }
     708             : 
     709             :         // There are three classes of keys that a compaction needs to process: point
     710             :         // keys, range deletion tombstones and range keys. Collect all iterators for
     711             :         // all these classes of keys from all the levels. We'll aggregate them
     712             :         // together farther below.
     713             :         //
     714             :         // numInputLevels is an approximation of the number of iterator levels. Due
     715             :         // to idiosyncrasies in iterator construction, we may (rarely) exceed this
     716             :         // initial capacity.
     717           1 :         numInputLevels := max(len(c.flushing), len(c.inputs))
     718           1 :         iters := make([]internalIterator, 0, numInputLevels)
     719           1 :         rangeDelIters := make([]keyspan.FragmentIterator, 0, numInputLevels)
     720           1 :         rangeKeyIters := make([]keyspan.FragmentIterator, 0, numInputLevels)
     721           1 : 
     722           1 :         // If construction of the iterator inputs fails, ensure that we close all
     723           1 :         // the consitutent iterators.
     724           1 :         defer func() {
     725           1 :                 if retErr != nil {
     726           0 :                         for _, iter := range iters {
     727           0 :                                 if iter != nil {
     728           0 :                                         iter.Close()
     729           0 :                                 }
     730             :                         }
     731           0 :                         for _, rangeDelIter := range rangeDelIters {
     732           0 :                                 rangeDelIter.Close()
     733           0 :                         }
     734             :                 }
     735             :         }()
     736           1 :         iterOpts := IterOptions{
     737           1 :                 Category: categoryCompaction,
     738           1 :                 logger:   c.logger,
     739           1 :         }
     740           1 : 
     741           1 :         // Populate iters, rangeDelIters and rangeKeyIters with the appropriate
     742           1 :         // constituent iterators. This depends on whether this is a flush or a
     743           1 :         // compaction.
     744           1 :         if len(c.flushing) != 0 {
     745           1 :                 // If flushing, we need to build the input iterators over the memtables
     746           1 :                 // stored in c.flushing.
     747           1 :                 for i := range c.flushing {
     748           1 :                         f := c.flushing[i]
     749           1 :                         iters = append(iters, f.newFlushIter(nil))
     750           1 :                         rangeDelIter := f.newRangeDelIter(nil)
     751           1 :                         if rangeDelIter != nil {
     752           1 :                                 rangeDelIters = append(rangeDelIters, rangeDelIter)
     753           1 :                         }
     754           1 :                         if rangeKeyIter := f.newRangeKeyIter(nil); rangeKeyIter != nil {
     755           1 :                                 rangeKeyIters = append(rangeKeyIters, rangeKeyIter)
     756           1 :                         }
     757             :                 }
     758           1 :         } else {
     759           1 :                 addItersForLevel := func(level *compactionLevel, l manifest.Layer) error {
     760           1 :                         // Add a *levelIter for point iterators. Because we don't call
     761           1 :                         // initRangeDel, the levelIter will close and forget the range
     762           1 :                         // deletion iterator when it steps on to a new file. Surfacing range
     763           1 :                         // deletions to compactions are handled below.
     764           1 :                         iters = append(iters, newLevelIter(context.Background(),
     765           1 :                                 iterOpts, c.comparer, newIters, level.files.Iter(), l, internalIterOpts{
     766           1 :                                         compaction: true,
     767           1 :                                         bufferPool: &c.bufferPool,
     768           1 :                                 }))
     769           1 :                         // TODO(jackson): Use keyspanimpl.LevelIter to avoid loading all the range
     770           1 :                         // deletions into memory upfront. (See #2015, which reverted this.) There
     771           1 :                         // will be no user keys that are split between sstables within a level in
     772           1 :                         // Cockroach 23.1, which unblocks this optimization.
     773           1 : 
     774           1 :                         // Add the range deletion iterator for each file as an independent level
     775           1 :                         // in mergingIter, as opposed to making a levelIter out of those. This
     776           1 :                         // is safer as levelIter expects all keys coming from underlying
     777           1 :                         // iterators to be in order. Due to compaction / tombstone writing
     778           1 :                         // logic in finishOutput(), it is possible for range tombstones to not
     779           1 :                         // be strictly ordered across all files in one level.
     780           1 :                         //
     781           1 :                         // Consider this example from the metamorphic tests (also repeated in
     782           1 :                         // finishOutput()), consisting of three L3 files with their bounds
     783           1 :                         // specified in square brackets next to the file name:
     784           1 :                         //
     785           1 :                         // ./000240.sst   [tmgc#391,MERGE-tmgc#391,MERGE]
     786           1 :                         // tmgc#391,MERGE [786e627a]
     787           1 :                         // tmgc-udkatvs#331,RANGEDEL
     788           1 :                         //
     789           1 :                         // ./000241.sst   [tmgc#384,MERGE-tmgc#384,MERGE]
     790           1 :                         // tmgc#384,MERGE [666c7070]
     791           1 :                         // tmgc-tvsalezade#383,RANGEDEL
     792           1 :                         // tmgc-tvsalezade#331,RANGEDEL
     793           1 :                         //
     794           1 :                         // ./000242.sst   [tmgc#383,RANGEDEL-tvsalezade#72057594037927935,RANGEDEL]
     795           1 :                         // tmgc-tvsalezade#383,RANGEDEL
     796           1 :                         // tmgc#375,SET [72646c78766965616c72776865676e79]
     797           1 :                         // tmgc-tvsalezade#356,RANGEDEL
     798           1 :                         //
     799           1 :                         // Here, the range tombstone in 000240.sst falls "after" one in
     800           1 :                         // 000241.sst, despite 000240.sst being ordered "before" 000241.sst for
     801           1 :                         // levelIter's purposes. While each file is still consistent before its
     802           1 :                         // bounds, it's safer to have all rangedel iterators be visible to
     803           1 :                         // mergingIter.
     804           1 :                         iter := level.files.Iter()
     805           1 :                         for f := iter.First(); f != nil; f = iter.Next() {
     806           1 :                                 rangeDelIter, err := c.newRangeDelIter(newIters, iter.Take(), iterOpts, l)
     807           1 :                                 if err != nil {
     808           0 :                                         // The error will already be annotated with the BackingFileNum, so
     809           0 :                                         // we annotate it with the FileNum.
     810           0 :                                         return errors.Wrapf(err, "pebble: could not open table %s", errors.Safe(f.FileNum))
     811           0 :                                 }
     812           1 :                                 if rangeDelIter == nil {
     813           1 :                                         continue
     814             :                                 }
     815           1 :                                 rangeDelIters = append(rangeDelIters, rangeDelIter)
     816           1 :                                 c.closers = append(c.closers, rangeDelIter)
     817             :                         }
     818             : 
     819             :                         // Check if this level has any range keys.
     820           1 :                         hasRangeKeys := false
     821           1 :                         for f := iter.First(); f != nil; f = iter.Next() {
     822           1 :                                 if f.HasRangeKeys {
     823           1 :                                         hasRangeKeys = true
     824           1 :                                         break
     825             :                                 }
     826             :                         }
     827           1 :                         if hasRangeKeys {
     828           1 :                                 newRangeKeyIterWrapper := func(ctx context.Context, file *manifest.FileMetadata, iterOptions keyspan.SpanIterOptions) (keyspan.FragmentIterator, error) {
     829           1 :                                         rangeKeyIter, err := newRangeKeyIter(ctx, file, iterOptions)
     830           1 :                                         if err != nil {
     831           0 :                                                 return nil, err
     832           1 :                                         } else if rangeKeyIter == nil {
     833           0 :                                                 return emptyKeyspanIter, nil
     834           0 :                                         }
     835             :                                         // Ensure that the range key iter is not closed until the compaction is
     836             :                                         // finished. This is necessary because range key processing
     837             :                                         // requires the range keys to be held in memory for up to the
     838             :                                         // lifetime of the compaction.
     839           1 :                                         noCloseIter := &noCloseIter{rangeKeyIter}
     840           1 :                                         c.closers = append(c.closers, noCloseIter)
     841           1 : 
     842           1 :                                         // We do not need to truncate range keys to sstable boundaries, or
     843           1 :                                         // only read within the file's atomic compaction units, unlike with
     844           1 :                                         // range tombstones. This is because range keys were added after we
     845           1 :                                         // stopped splitting user keys across sstables, so all the range keys
     846           1 :                                         // in this sstable must wholly lie within the file's bounds.
     847           1 :                                         return noCloseIter, err
     848             :                                 }
     849           1 :                                 li := keyspanimpl.NewLevelIter(
     850           1 :                                         context.Background(), keyspan.SpanIterOptions{}, c.cmp,
     851           1 :                                         newRangeKeyIterWrapper, level.files.Iter(), l, manifest.KeyTypeRange,
     852           1 :                                 )
     853           1 :                                 rangeKeyIters = append(rangeKeyIters, li)
     854             :                         }
     855           1 :                         return nil
     856             :                 }
     857             : 
     858           1 :                 for i := range c.inputs {
     859           1 :                         // If the level is annotated with l0SublevelInfo, expand it into one
     860           1 :                         // level per sublevel.
     861           1 :                         // TODO(jackson): Perform this expansion even earlier when we pick the
     862           1 :                         // compaction?
     863           1 :                         if len(c.inputs[i].l0SublevelInfo) > 0 {
     864           1 :                                 for _, info := range c.startLevel.l0SublevelInfo {
     865           1 :                                         sublevelCompactionLevel := &compactionLevel{0, info.LevelSlice, nil}
     866           1 :                                         if err := addItersForLevel(sublevelCompactionLevel, info.sublevel); err != nil {
     867           0 :                                                 return nil, nil, nil, err
     868           0 :                                         }
     869             :                                 }
     870           1 :                                 continue
     871             :                         }
     872           1 :                         if err := addItersForLevel(&c.inputs[i], manifest.Level(c.inputs[i].level)); err != nil {
     873           0 :                                 return nil, nil, nil, err
     874           0 :                         }
     875             :                 }
     876             :         }
     877             : 
     878             :         // If there's only one constituent point iterator, we can avoid the overhead
     879             :         // of a *mergingIter. This is possible, for example, when performing a flush
     880             :         // of a single memtable. Otherwise, combine all the iterators into a merging
     881             :         // iter.
     882           1 :         pointIter = iters[0]
     883           1 :         if len(iters) > 1 {
     884           1 :                 pointIter = newMergingIter(c.logger, &c.stats, c.cmp, nil, iters...)
     885           1 :         }
     886             : 
     887             :         // In normal operation, levelIter iterates over the point operations in a
     888             :         // level, and initializes a rangeDelIter pointer for the range deletions in
     889             :         // each table. During compaction, we want to iterate over the merged view of
     890             :         // point operations and range deletions. In order to do this we create one
     891             :         // levelIter per level to iterate over the point operations, and collect up
     892             :         // all the range deletion files.
     893             :         //
     894             :         // The range deletion levels are combined with a keyspanimpl.MergingIter. The
     895             :         // resulting merged rangedel iterator is then included using an
     896             :         // InterleavingIter.
     897             :         // TODO(jackson): Consider using a defragmenting iterator to stitch together
     898             :         // logical range deletions that were fragmented due to previous file
     899             :         // boundaries.
     900           1 :         if len(rangeDelIters) > 0 {
     901           1 :                 mi := &keyspanimpl.MergingIter{}
     902           1 :                 mi.Init(c.comparer, keyspan.NoopTransform, new(keyspanimpl.MergingBuffers), rangeDelIters...)
     903           1 :                 rangeDelIter = mi
     904           1 :         }
     905             : 
     906             :         // If there are range key iterators, we need to combine them using
     907             :         // keyspanimpl.MergingIter, and then interleave them among the points.
     908           1 :         if len(rangeKeyIters) > 0 {
     909           1 :                 mi := &keyspanimpl.MergingIter{}
     910           1 :                 mi.Init(c.comparer, keyspan.NoopTransform, new(keyspanimpl.MergingBuffers), rangeKeyIters...)
     911           1 :                 // TODO(radu): why do we have a defragmenter here but not above?
     912           1 :                 di := &keyspan.DefragmentingIter{}
     913           1 :                 di.Init(c.comparer, mi, keyspan.DefragmentInternal, keyspan.StaticDefragmentReducer, new(keyspan.DefragmentingBuffers))
     914           1 :                 rangeKeyIter = di
     915           1 :         }
     916           1 :         return pointIter, rangeDelIter, rangeKeyIter, nil
     917             : }
     918             : 
     919             : func (c *compaction) newRangeDelIter(
     920             :         newIters tableNewIters, f manifest.LevelFile, opts IterOptions, l manifest.Layer,
     921           1 : ) (*noCloseIter, error) {
     922           1 :         opts.layer = l
     923           1 :         iterSet, err := newIters(context.Background(), f.FileMetadata, &opts,
     924           1 :                 internalIterOpts{
     925           1 :                         compaction: true,
     926           1 :                         bufferPool: &c.bufferPool,
     927           1 :                 }, iterRangeDeletions)
     928           1 :         if err != nil {
     929           0 :                 return nil, err
     930           1 :         } else if iterSet.rangeDeletion == nil {
     931           1 :                 // The file doesn't contain any range deletions.
     932           1 :                 return nil, nil
     933           1 :         }
     934             :         // Ensure that rangeDelIter is not closed until the compaction is
     935             :         // finished. This is necessary because range tombstone processing
     936             :         // requires the range tombstones to be held in memory for up to the
     937             :         // lifetime of the compaction.
     938           1 :         return &noCloseIter{iterSet.rangeDeletion}, nil
     939             : }
     940             : 
     941           1 : func (c *compaction) String() string {
     942           1 :         if len(c.flushing) != 0 {
     943           0 :                 return "flush\n"
     944           0 :         }
     945             : 
     946           1 :         var buf bytes.Buffer
     947           1 :         for level := c.startLevel.level; level <= c.outputLevel.level; level++ {
     948           1 :                 i := level - c.startLevel.level
     949           1 :                 fmt.Fprintf(&buf, "%d:", level)
     950           1 :                 iter := c.inputs[i].files.Iter()
     951           1 :                 for f := iter.First(); f != nil; f = iter.Next() {
     952           1 :                         fmt.Fprintf(&buf, " %s:%s-%s", f.FileNum, f.Smallest, f.Largest)
     953           1 :                 }
     954           1 :                 fmt.Fprintf(&buf, "\n")
     955             :         }
     956           1 :         return buf.String()
     957             : }
     958             : 
     959             : type manualCompaction struct {
     960             :         // Count of the retries either due to too many concurrent compactions, or a
     961             :         // concurrent compaction to overlapping levels.
     962             :         retries     int
     963             :         level       int
     964             :         outputLevel int
     965             :         done        chan error
     966             :         start       []byte
     967             :         end         []byte
     968             :         split       bool
     969             : }
     970             : 
     971             : type readCompaction struct {
     972             :         level int
     973             :         // [start, end] key ranges are used for de-duping.
     974             :         start []byte
     975             :         end   []byte
     976             : 
     977             :         // The file associated with the compaction.
     978             :         // If the file no longer belongs in the same
     979             :         // level, then we skip the compaction.
     980             :         fileNum base.FileNum
     981             : }
     982             : 
     983           1 : func (d *DB) addInProgressCompaction(c *compaction) {
     984           1 :         d.mu.compact.inProgress[c] = struct{}{}
     985           1 :         var isBase, isIntraL0 bool
     986           1 :         for _, cl := range c.inputs {
     987           1 :                 iter := cl.files.Iter()
     988           1 :                 for f := iter.First(); f != nil; f = iter.Next() {
     989           1 :                         if f.IsCompacting() {
     990           0 :                                 d.opts.Logger.Fatalf("L%d->L%d: %s already being compacted", c.startLevel.level, c.outputLevel.level, f.FileNum)
     991           0 :                         }
     992           1 :                         f.SetCompactionState(manifest.CompactionStateCompacting)
     993           1 :                         if c.startLevel != nil && c.outputLevel != nil && c.startLevel.level == 0 {
     994           1 :                                 if c.outputLevel.level == 0 {
     995           1 :                                         f.IsIntraL0Compacting = true
     996           1 :                                         isIntraL0 = true
     997           1 :                                 } else {
     998           1 :                                         isBase = true
     999           1 :                                 }
    1000             :                         }
    1001             :                 }
    1002             :         }
    1003             : 
    1004           1 :         if (isIntraL0 || isBase) && c.version.L0Sublevels != nil {
    1005           1 :                 l0Inputs := []manifest.LevelSlice{c.startLevel.files}
    1006           1 :                 if isIntraL0 {
    1007           1 :                         l0Inputs = append(l0Inputs, c.outputLevel.files)
    1008           1 :                 }
    1009           1 :                 if err := c.version.L0Sublevels.UpdateStateForStartedCompaction(l0Inputs, isBase); err != nil {
    1010           0 :                         d.opts.Logger.Fatalf("could not update state for compaction: %s", err)
    1011           0 :                 }
    1012             :         }
    1013             : }
    1014             : 
    1015             : // Removes compaction markers from files in a compaction. The rollback parameter
    1016             : // indicates whether the compaction state should be rolled back to its original
    1017             : // state in the case of an unsuccessful compaction.
    1018             : //
    1019             : // DB.mu must be held when calling this method, however this method can drop and
    1020             : // re-acquire that mutex. All writes to the manifest for this compaction should
    1021             : // have completed by this point.
    1022           1 : func (d *DB) clearCompactingState(c *compaction, rollback bool) {
    1023           1 :         c.versionEditApplied = true
    1024           1 :         for _, cl := range c.inputs {
    1025           1 :                 iter := cl.files.Iter()
    1026           1 :                 for f := iter.First(); f != nil; f = iter.Next() {
    1027           1 :                         if !f.IsCompacting() {
    1028           0 :                                 d.opts.Logger.Fatalf("L%d->L%d: %s not being compacted", c.startLevel.level, c.outputLevel.level, f.FileNum)
    1029           0 :                         }
    1030           1 :                         if !rollback {
    1031           1 :                                 // On success all compactions other than move and delete-only compactions
    1032           1 :                                 // transition the file into the Compacted state. Move-compacted files
    1033           1 :                                 // become eligible for compaction again and transition back to NotCompacting.
    1034           1 :                                 // Delete-only compactions could, on rare occasion, leave files untouched
    1035           1 :                                 // (eg. if files have a loose bound), so we revert them all to NotCompacting
    1036           1 :                                 // just in case they need to be compacted again.
    1037           1 :                                 if c.kind != compactionKindMove && c.kind != compactionKindDeleteOnly {
    1038           1 :                                         f.SetCompactionState(manifest.CompactionStateCompacted)
    1039           1 :                                 } else {
    1040           1 :                                         f.SetCompactionState(manifest.CompactionStateNotCompacting)
    1041           1 :                                 }
    1042           1 :                         } else {
    1043           1 :                                 // Else, on rollback, all input files unconditionally transition back to
    1044           1 :                                 // NotCompacting.
    1045           1 :                                 f.SetCompactionState(manifest.CompactionStateNotCompacting)
    1046           1 :                         }
    1047           1 :                         f.IsIntraL0Compacting = false
    1048             :                 }
    1049             :         }
    1050           1 :         l0InProgress := inProgressL0Compactions(d.getInProgressCompactionInfoLocked(c))
    1051           1 :         func() {
    1052           1 :                 // InitCompactingFileInfo requires that no other manifest writes be
    1053           1 :                 // happening in parallel with it, i.e. we're not in the midst of installing
    1054           1 :                 // another version. Otherwise, it's possible that we've created another
    1055           1 :                 // L0Sublevels instance, but not added it to the versions list, causing
    1056           1 :                 // all the indices in FileMetadata to be inaccurate. To ensure this,
    1057           1 :                 // grab the manifest lock.
    1058           1 :                 d.mu.versions.logLock()
    1059           1 :                 defer d.mu.versions.logUnlock()
    1060           1 :                 d.mu.versions.currentVersion().L0Sublevels.InitCompactingFileInfo(l0InProgress)
    1061           1 :         }()
    1062             : }
    1063             : 
    1064           1 : func (d *DB) calculateDiskAvailableBytes() uint64 {
    1065           1 :         if space, err := d.opts.FS.GetDiskUsage(d.dirname); err == nil {
    1066           1 :                 d.diskAvailBytes.Store(space.AvailBytes)
    1067           1 :                 return space.AvailBytes
    1068           1 :         } else if !errors.Is(err, vfs.ErrUnsupported) {
    1069           1 :                 d.opts.EventListener.BackgroundError(err)
    1070           1 :         }
    1071           1 :         return d.diskAvailBytes.Load()
    1072             : }
    1073             : 
    1074             : // maybeScheduleFlush schedules a flush if necessary.
    1075             : //
    1076             : // d.mu must be held when calling this.
    1077           1 : func (d *DB) maybeScheduleFlush() {
    1078           1 :         if d.mu.compact.flushing || d.closed.Load() != nil || d.opts.ReadOnly {
    1079           1 :                 return
    1080           1 :         }
    1081           1 :         if len(d.mu.mem.queue) <= 1 {
    1082           1 :                 return
    1083           1 :         }
    1084             : 
    1085           1 :         if !d.passedFlushThreshold() {
    1086           1 :                 return
    1087           1 :         }
    1088             : 
    1089           1 :         d.mu.compact.flushing = true
    1090           1 :         go d.flush()
    1091             : }
    1092             : 
    1093           1 : func (d *DB) passedFlushThreshold() bool {
    1094           1 :         var n int
    1095           1 :         var size uint64
    1096           1 :         for ; n < len(d.mu.mem.queue)-1; n++ {
    1097           1 :                 if !d.mu.mem.queue[n].readyForFlush() {
    1098           1 :                         break
    1099             :                 }
    1100           1 :                 if d.mu.mem.queue[n].flushForced {
    1101           1 :                         // A flush was forced. Pretend the memtable size is the configured
    1102           1 :                         // size. See minFlushSize below.
    1103           1 :                         size += d.opts.MemTableSize
    1104           1 :                 } else {
    1105           1 :                         size += d.mu.mem.queue[n].totalBytes()
    1106           1 :                 }
    1107             :         }
    1108           1 :         if n == 0 {
    1109           1 :                 // None of the immutable memtables are ready for flushing.
    1110           1 :                 return false
    1111           1 :         }
    1112             : 
    1113             :         // Only flush once the sum of the queued memtable sizes exceeds half the
    1114             :         // configured memtable size. This prevents flushing of memtables at startup
    1115             :         // while we're undergoing the ramp period on the memtable size. See
    1116             :         // DB.newMemTable().
    1117           1 :         minFlushSize := d.opts.MemTableSize / 2
    1118           1 :         return size >= minFlushSize
    1119             : }
    1120             : 
    1121           1 : func (d *DB) maybeScheduleDelayedFlush(tbl *memTable, dur time.Duration) {
    1122           1 :         var mem *flushableEntry
    1123           1 :         for _, m := range d.mu.mem.queue {
    1124           1 :                 if m.flushable == tbl {
    1125           1 :                         mem = m
    1126           1 :                         break
    1127             :                 }
    1128             :         }
    1129           1 :         if mem == nil || mem.flushForced {
    1130           1 :                 return
    1131           1 :         }
    1132           1 :         deadline := d.timeNow().Add(dur)
    1133           1 :         if !mem.delayedFlushForcedAt.IsZero() && deadline.After(mem.delayedFlushForcedAt) {
    1134           1 :                 // Already scheduled to flush sooner than within `dur`.
    1135           1 :                 return
    1136           1 :         }
    1137           1 :         mem.delayedFlushForcedAt = deadline
    1138           1 :         go func() {
    1139           1 :                 timer := time.NewTimer(dur)
    1140           1 :                 defer timer.Stop()
    1141           1 : 
    1142           1 :                 select {
    1143           1 :                 case <-d.closedCh:
    1144           1 :                         return
    1145           1 :                 case <-mem.flushed:
    1146           1 :                         return
    1147           1 :                 case <-timer.C:
    1148           1 :                         d.commit.mu.Lock()
    1149           1 :                         defer d.commit.mu.Unlock()
    1150           1 :                         d.mu.Lock()
    1151           1 :                         defer d.mu.Unlock()
    1152           1 : 
    1153           1 :                         // NB: The timer may fire concurrently with a call to Close.  If a
    1154           1 :                         // Close call beat us to acquiring d.mu, d.closed holds ErrClosed,
    1155           1 :                         // and it's too late to flush anything. Otherwise, the Close call
    1156           1 :                         // will block on locking d.mu until we've finished scheduling the
    1157           1 :                         // flush and set `d.mu.compact.flushing` to true. Close will wait
    1158           1 :                         // for the current flush to complete.
    1159           1 :                         if d.closed.Load() != nil {
    1160           1 :                                 return
    1161           1 :                         }
    1162             : 
    1163           1 :                         if d.mu.mem.mutable == tbl {
    1164           1 :                                 d.makeRoomForWrite(nil)
    1165           1 :                         } else {
    1166           1 :                                 mem.flushForced = true
    1167           1 :                         }
    1168           1 :                         d.maybeScheduleFlush()
    1169             :                 }
    1170             :         }()
    1171             : }
    1172             : 
    1173           1 : func (d *DB) flush() {
    1174           1 :         pprof.Do(context.Background(), flushLabels, func(context.Context) {
    1175           1 :                 flushingWorkStart := crtime.NowMono()
    1176           1 :                 d.mu.Lock()
    1177           1 :                 defer d.mu.Unlock()
    1178           1 :                 idleDuration := flushingWorkStart.Sub(d.mu.compact.noOngoingFlushStartTime)
    1179           1 :                 var bytesFlushed uint64
    1180           1 :                 var err error
    1181           1 :                 if bytesFlushed, err = d.flush1(); err != nil {
    1182           1 :                         // TODO(peter): count consecutive flush errors and backoff.
    1183           1 :                         d.opts.EventListener.BackgroundError(err)
    1184           1 :                 }
    1185           1 :                 d.mu.compact.flushing = false
    1186           1 :                 d.mu.compact.noOngoingFlushStartTime = crtime.NowMono()
    1187           1 :                 workDuration := d.mu.compact.noOngoingFlushStartTime.Sub(flushingWorkStart)
    1188           1 :                 d.mu.compact.flushWriteThroughput.Bytes += int64(bytesFlushed)
    1189           1 :                 d.mu.compact.flushWriteThroughput.WorkDuration += workDuration
    1190           1 :                 d.mu.compact.flushWriteThroughput.IdleDuration += idleDuration
    1191           1 :                 // More flush work may have arrived while we were flushing, so schedule
    1192           1 :                 // another flush if needed.
    1193           1 :                 d.maybeScheduleFlush()
    1194           1 :                 // The flush may have produced too many files in a level, so schedule a
    1195           1 :                 // compaction if needed.
    1196           1 :                 d.maybeScheduleCompaction()
    1197           1 :                 d.mu.compact.cond.Broadcast()
    1198             :         })
    1199             : }
    1200             : 
    1201             : // runIngestFlush is used to generate a flush version edit for sstables which
    1202             : // were ingested as flushables. Both DB.mu and the manifest lock must be held
    1203             : // while runIngestFlush is called.
    1204           1 : func (d *DB) runIngestFlush(c *compaction) (*manifest.VersionEdit, error) {
    1205           1 :         if len(c.flushing) != 1 {
    1206           0 :                 panic("pebble: ingestedFlushable must be flushed one at a time.")
    1207             :         }
    1208             : 
    1209             :         // Construct the VersionEdit, levelMetrics etc.
    1210           1 :         c.metrics = make(map[int]*LevelMetrics, numLevels)
    1211           1 :         // Finding the target level for ingestion must use the latest version
    1212           1 :         // after the logLock has been acquired.
    1213           1 :         c.version = d.mu.versions.currentVersion()
    1214           1 : 
    1215           1 :         baseLevel := d.mu.versions.picker.getBaseLevel()
    1216           1 :         ve := &versionEdit{}
    1217           1 :         var ingestSplitFiles []ingestSplitFile
    1218           1 :         ingestFlushable := c.flushing[0].flushable.(*ingestedFlushable)
    1219           1 : 
    1220           1 :         updateLevelMetricsOnExcise := func(m *fileMetadata, level int, added []newFileEntry) {
    1221           1 :                 levelMetrics := c.metrics[level]
    1222           1 :                 if levelMetrics == nil {
    1223           1 :                         levelMetrics = &LevelMetrics{}
    1224           1 :                         c.metrics[level] = levelMetrics
    1225           1 :                 }
    1226           1 :                 levelMetrics.NumFiles--
    1227           1 :                 levelMetrics.Size -= int64(m.Size)
    1228           1 :                 for i := range added {
    1229           1 :                         levelMetrics.NumFiles++
    1230           1 :                         levelMetrics.Size += int64(added[i].Meta.Size)
    1231           1 :                 }
    1232             :         }
    1233             : 
    1234           1 :         suggestSplit := d.opts.Experimental.IngestSplit != nil && d.opts.Experimental.IngestSplit() &&
    1235           1 :                 d.FormatMajorVersion() >= FormatVirtualSSTables
    1236           1 : 
    1237           1 :         if suggestSplit || ingestFlushable.exciseSpan.Valid() {
    1238           1 :                 // We could add deleted files to ve.
    1239           1 :                 ve.DeletedFiles = make(map[manifest.DeletedFileEntry]*manifest.FileMetadata)
    1240           1 :         }
    1241             : 
    1242           1 :         ctx := context.Background()
    1243           1 :         overlapChecker := &overlapChecker{
    1244           1 :                 comparer: d.opts.Comparer,
    1245           1 :                 newIters: d.newIters,
    1246           1 :                 opts: IterOptions{
    1247           1 :                         logger:   d.opts.Logger,
    1248           1 :                         Category: categoryIngest,
    1249           1 :                 },
    1250           1 :                 v: c.version,
    1251           1 :         }
    1252           1 :         replacedFiles := make(map[base.FileNum][]newFileEntry)
    1253           1 :         for _, file := range ingestFlushable.files {
    1254           1 :                 var fileToSplit *fileMetadata
    1255           1 :                 var level int
    1256           1 : 
    1257           1 :                 // This file fits perfectly within the excise span, so we can slot it at L6.
    1258           1 :                 if ingestFlushable.exciseSpan.Valid() &&
    1259           1 :                         ingestFlushable.exciseSpan.Contains(d.cmp, file.FileMetadata.Smallest) &&
    1260           1 :                         ingestFlushable.exciseSpan.Contains(d.cmp, file.FileMetadata.Largest) {
    1261           1 :                         level = 6
    1262           1 :                 } else {
    1263           1 :                         // TODO(radu): this can perform I/O; we should not do this while holding DB.mu.
    1264           1 :                         lsmOverlap, err := overlapChecker.DetermineLSMOverlap(ctx, file.UserKeyBounds())
    1265           1 :                         if err != nil {
    1266           0 :                                 return nil, err
    1267           0 :                         }
    1268           1 :                         level, fileToSplit, err = ingestTargetLevel(
    1269           1 :                                 ctx, d.cmp, lsmOverlap, baseLevel, d.mu.compact.inProgress, file.FileMetadata, suggestSplit,
    1270           1 :                         )
    1271           1 :                         if err != nil {
    1272           0 :                                 return nil, err
    1273           0 :                         }
    1274             :                 }
    1275             : 
    1276             :                 // Add the current flushableIngest file to the version.
    1277           1 :                 ve.NewFiles = append(ve.NewFiles, newFileEntry{Level: level, Meta: file.FileMetadata})
    1278           1 :                 if fileToSplit != nil {
    1279           0 :                         ingestSplitFiles = append(ingestSplitFiles, ingestSplitFile{
    1280           0 :                                 ingestFile: file.FileMetadata,
    1281           0 :                                 splitFile:  fileToSplit,
    1282           0 :                                 level:      level,
    1283           0 :                         })
    1284           0 :                 }
    1285           1 :                 levelMetrics := c.metrics[level]
    1286           1 :                 if levelMetrics == nil {
    1287           1 :                         levelMetrics = &LevelMetrics{}
    1288           1 :                         c.metrics[level] = levelMetrics
    1289           1 :                 }
    1290           1 :                 levelMetrics.BytesIngested += file.Size
    1291           1 :                 levelMetrics.TablesIngested++
    1292             :         }
    1293           1 :         if ingestFlushable.exciseSpan.Valid() {
    1294           1 :                 // Iterate through all levels and find files that intersect with exciseSpan.
    1295           1 :                 for l := range c.version.Levels {
    1296           1 :                         overlaps := c.version.Overlaps(l, base.UserKeyBoundsEndExclusive(ingestFlushable.exciseSpan.Start, ingestFlushable.exciseSpan.End))
    1297           1 :                         iter := overlaps.Iter()
    1298           1 : 
    1299           1 :                         for m := iter.First(); m != nil; m = iter.Next() {
    1300           1 :                                 newFiles, err := d.excise(context.TODO(), ingestFlushable.exciseSpan.UserKeyBounds(), m, ve, l)
    1301           1 :                                 if err != nil {
    1302           0 :                                         return nil, err
    1303           0 :                                 }
    1304             : 
    1305           1 :                                 if _, ok := ve.DeletedFiles[deletedFileEntry{
    1306           1 :                                         Level:   l,
    1307           1 :                                         FileNum: m.FileNum,
    1308           1 :                                 }]; !ok {
    1309           1 :                                         // We did not excise this file.
    1310           1 :                                         continue
    1311             :                                 }
    1312           1 :                                 replacedFiles[m.FileNum] = newFiles
    1313           1 :                                 updateLevelMetricsOnExcise(m, l, newFiles)
    1314             :                         }
    1315             :                 }
    1316             :         }
    1317             : 
    1318           1 :         if len(ingestSplitFiles) > 0 {
    1319           0 :                 if err := d.ingestSplit(context.TODO(), ve, updateLevelMetricsOnExcise, ingestSplitFiles, replacedFiles); err != nil {
    1320           0 :                         return nil, err
    1321           0 :                 }
    1322             :         }
    1323             : 
    1324           1 :         return ve, nil
    1325             : }
    1326             : 
    1327             : // flush runs a compaction that copies the immutable memtables from memory to
    1328             : // disk.
    1329             : //
    1330             : // d.mu must be held when calling this, but the mutex may be dropped and
    1331             : // re-acquired during the course of this method.
    1332           1 : func (d *DB) flush1() (bytesFlushed uint64, err error) {
    1333           1 :         // NB: The flushable queue can contain flushables of type ingestedFlushable.
    1334           1 :         // The sstables in ingestedFlushable.files must be placed into the appropriate
    1335           1 :         // level in the lsm. Let's say the flushable queue contains a prefix of
    1336           1 :         // regular immutable memtables, then an ingestedFlushable, and then the
    1337           1 :         // mutable memtable. When the flush of the ingestedFlushable is performed,
    1338           1 :         // it needs an updated view of the lsm. That is, the prefix of immutable
    1339           1 :         // memtables must have already been flushed. Similarly, if there are two
    1340           1 :         // contiguous ingestedFlushables in the queue, then the first flushable must
    1341           1 :         // be flushed, so that the second flushable can see an updated view of the
    1342           1 :         // lsm.
    1343           1 :         //
    1344           1 :         // Given the above, we restrict flushes to either some prefix of regular
    1345           1 :         // memtables, or a single flushable of type ingestedFlushable. The DB.flush
    1346           1 :         // function will call DB.maybeScheduleFlush again, so a new flush to finish
    1347           1 :         // the remaining flush work should be scheduled right away.
    1348           1 :         //
    1349           1 :         // NB: Large batches placed in the flushable queue share the WAL with the
    1350           1 :         // previous memtable in the queue. We must ensure the property that both the
    1351           1 :         // large batch and the memtable with which it shares a WAL are flushed
    1352           1 :         // together. The property ensures that the minimum unflushed log number
    1353           1 :         // isn't incremented incorrectly. Since a flushableBatch.readyToFlush always
    1354           1 :         // returns true, and since the large batch will always be placed right after
    1355           1 :         // the memtable with which it shares a WAL, the property is naturally
    1356           1 :         // ensured. The large batch will always be placed after the memtable with
    1357           1 :         // which it shares a WAL because we ensure it in DB.commitWrite by holding
    1358           1 :         // the commitPipeline.mu and then holding DB.mu. As an extra defensive
    1359           1 :         // measure, if we try to flush the memtable without also flushing the
    1360           1 :         // flushable batch in the same flush, since the memtable and flushableBatch
    1361           1 :         // have the same logNum, the logNum invariant check below will trigger.
    1362           1 :         var n, inputs int
    1363           1 :         var inputBytes uint64
    1364           1 :         var ingest bool
    1365           1 :         for ; n < len(d.mu.mem.queue)-1; n++ {
    1366           1 :                 if f, ok := d.mu.mem.queue[n].flushable.(*ingestedFlushable); ok {
    1367           1 :                         if n == 0 {
    1368           1 :                                 // The first flushable is of type ingestedFlushable. Since these
    1369           1 :                                 // must be flushed individually, we perform a flush for just
    1370           1 :                                 // this.
    1371           1 :                                 if !f.readyForFlush() {
    1372           0 :                                         // This check is almost unnecessary, but we guard against it
    1373           0 :                                         // just in case this invariant changes in the future.
    1374           0 :                                         panic("pebble: ingestedFlushable should always be ready to flush.")
    1375             :                                 }
    1376             :                                 // By setting n = 1, we ensure that the first flushable(n == 0)
    1377             :                                 // is scheduled for a flush. The number of tables added is equal to the
    1378             :                                 // number of files in the ingest operation.
    1379           1 :                                 n = 1
    1380           1 :                                 inputs = len(f.files)
    1381           1 :                                 ingest = true
    1382           1 :                                 break
    1383           1 :                         } else {
    1384           1 :                                 // There was some prefix of flushables which weren't of type
    1385           1 :                                 // ingestedFlushable. So, perform a flush for those.
    1386           1 :                                 break
    1387             :                         }
    1388             :                 }
    1389           1 :                 if !d.mu.mem.queue[n].readyForFlush() {
    1390           0 :                         break
    1391             :                 }
    1392           1 :                 inputBytes += d.mu.mem.queue[n].inuseBytes()
    1393             :         }
    1394           1 :         if n == 0 {
    1395           0 :                 // None of the immutable memtables are ready for flushing.
    1396           0 :                 return 0, nil
    1397           0 :         }
    1398           1 :         if !ingest {
    1399           1 :                 // Flushes of memtables add the prefix of n memtables from the flushable
    1400           1 :                 // queue.
    1401           1 :                 inputs = n
    1402           1 :         }
    1403             : 
    1404             :         // Require that every memtable being flushed has a log number less than the
    1405             :         // new minimum unflushed log number.
    1406           1 :         minUnflushedLogNum := d.mu.mem.queue[n].logNum
    1407           1 :         if !d.opts.DisableWAL {
    1408           1 :                 for i := 0; i < n; i++ {
    1409           1 :                         if logNum := d.mu.mem.queue[i].logNum; logNum >= minUnflushedLogNum {
    1410           0 :                                 panic(errors.AssertionFailedf("logNum invariant violated: flushing %d items; %d:type=%T,logNum=%d; %d:type=%T,logNum=%d",
    1411           0 :                                         n,
    1412           0 :                                         i, d.mu.mem.queue[i].flushable, logNum,
    1413           0 :                                         n, d.mu.mem.queue[n].flushable, minUnflushedLogNum))
    1414             :                         }
    1415             :                 }
    1416             :         }
    1417             : 
    1418           1 :         c, err := newFlush(d.opts, d.mu.versions.currentVersion(),
    1419           1 :                 d.mu.versions.picker.getBaseLevel(), d.mu.mem.queue[:n], d.timeNow())
    1420           1 :         if err != nil {
    1421           0 :                 return 0, err
    1422           0 :         }
    1423           1 :         d.addInProgressCompaction(c)
    1424           1 : 
    1425           1 :         jobID := d.newJobIDLocked()
    1426           1 :         d.opts.EventListener.FlushBegin(FlushInfo{
    1427           1 :                 JobID:      int(jobID),
    1428           1 :                 Input:      inputs,
    1429           1 :                 InputBytes: inputBytes,
    1430           1 :                 Ingest:     ingest,
    1431           1 :         })
    1432           1 :         startTime := d.timeNow()
    1433           1 : 
    1434           1 :         var ve *manifest.VersionEdit
    1435           1 :         var stats compact.Stats
    1436           1 :         // To determine the target level of the files in the ingestedFlushable, we
    1437           1 :         // need to acquire the logLock, and not release it for that duration. Since,
    1438           1 :         // we need to acquire the logLock below to perform the logAndApply step
    1439           1 :         // anyway, we create the VersionEdit for ingestedFlushable outside of
    1440           1 :         // runCompaction. For all other flush cases, we construct the VersionEdit
    1441           1 :         // inside runCompaction.
    1442           1 :         if c.kind != compactionKindIngestedFlushable {
    1443           1 :                 ve, stats, err = d.runCompaction(jobID, c)
    1444           1 :         }
    1445             : 
    1446             :         // Acquire logLock. This will be released either on an error, by way of
    1447             :         // logUnlock, or through a call to logAndApply if there is no error.
    1448           1 :         d.mu.versions.logLock()
    1449           1 : 
    1450           1 :         if c.kind == compactionKindIngestedFlushable {
    1451           1 :                 ve, err = d.runIngestFlush(c)
    1452           1 :         }
    1453             : 
    1454           1 :         info := FlushInfo{
    1455           1 :                 JobID:      int(jobID),
    1456           1 :                 Input:      inputs,
    1457           1 :                 InputBytes: inputBytes,
    1458           1 :                 Duration:   d.timeNow().Sub(startTime),
    1459           1 :                 Done:       true,
    1460           1 :                 Ingest:     ingest,
    1461           1 :                 Err:        err,
    1462           1 :         }
    1463           1 :         if err == nil {
    1464           1 :                 validateVersionEdit(ve, d.opts.Experimental.KeyValidationFunc, d.opts.Comparer.FormatKey, d.opts.Logger)
    1465           1 :                 for i := range ve.NewFiles {
    1466           1 :                         e := &ve.NewFiles[i]
    1467           1 :                         info.Output = append(info.Output, e.Meta.TableInfo())
    1468           1 :                         // Ingested tables are not necessarily flushed to L0. Record the level of
    1469           1 :                         // each ingested file explicitly.
    1470           1 :                         if ingest {
    1471           1 :                                 info.IngestLevels = append(info.IngestLevels, e.Level)
    1472           1 :                         }
    1473             :                 }
    1474           1 :                 if len(ve.NewFiles) == 0 {
    1475           1 :                         info.Err = errEmptyTable
    1476           1 :                 }
    1477             : 
    1478             :                 // The flush succeeded or it produced an empty sstable. In either case we
    1479             :                 // want to bump the minimum unflushed log number to the log number of the
    1480             :                 // oldest unflushed memtable.
    1481           1 :                 ve.MinUnflushedLogNum = minUnflushedLogNum
    1482           1 :                 if c.kind != compactionKindIngestedFlushable {
    1483           1 :                         metrics := c.metrics[0]
    1484           1 :                         if d.opts.DisableWAL {
    1485           1 :                                 // If the WAL is disabled, every flushable has a zero [logSize],
    1486           1 :                                 // resulting in zero bytes in. Instead, use the number of bytes we
    1487           1 :                                 // flushed as the BytesIn. This ensures we get a reasonable w-amp
    1488           1 :                                 // calculation even when the WAL is disabled.
    1489           1 :                                 metrics.BytesIn = metrics.BytesFlushed
    1490           1 :                         } else {
    1491           1 :                                 for i := 0; i < n; i++ {
    1492           1 :                                         metrics.BytesIn += d.mu.mem.queue[i].logSize
    1493           1 :                                 }
    1494             :                         }
    1495           1 :                 } else {
    1496           1 :                         // c.kind == compactionKindIngestedFlushable && we could have deleted files due
    1497           1 :                         // to ingest-time splits or excises.
    1498           1 :                         ingestFlushable := c.flushing[0].flushable.(*ingestedFlushable)
    1499           1 :                         for c2 := range d.mu.compact.inProgress {
    1500           1 :                                 // Check if this compaction overlaps with the excise span. Note that just
    1501           1 :                                 // checking if the inputs individually overlap with the excise span
    1502           1 :                                 // isn't sufficient; for instance, a compaction could have [a,b] and [e,f]
    1503           1 :                                 // as inputs and write it all out as [a,b,e,f] in one sstable. If we're
    1504           1 :                                 // doing a [c,d) excise at the same time as this compaction, we will have
    1505           1 :                                 // to error out the whole compaction as we can't guarantee it hasn't/won't
    1506           1 :                                 // write a file overlapping with the excise span.
    1507           1 :                                 if ingestFlushable.exciseSpan.OverlapsInternalKeyRange(d.cmp, c2.smallest, c2.largest) {
    1508           1 :                                         c2.cancel.Store(true)
    1509           1 :                                         continue
    1510             :                                 }
    1511             :                         }
    1512             : 
    1513           1 :                         if len(ve.DeletedFiles) > 0 {
    1514           1 :                                 // Iterate through all other compactions, and check if their inputs have
    1515           1 :                                 // been replaced due to an ingest-time split or excise. In that case,
    1516           1 :                                 // cancel the compaction.
    1517           1 :                                 for c2 := range d.mu.compact.inProgress {
    1518           1 :                                         for i := range c2.inputs {
    1519           1 :                                                 iter := c2.inputs[i].files.Iter()
    1520           1 :                                                 for f := iter.First(); f != nil; f = iter.Next() {
    1521           1 :                                                         if _, ok := ve.DeletedFiles[deletedFileEntry{FileNum: f.FileNum, Level: c2.inputs[i].level}]; ok {
    1522           1 :                                                                 c2.cancel.Store(true)
    1523           1 :                                                                 break
    1524             :                                                         }
    1525             :                                                 }
    1526             :                                         }
    1527             :                                 }
    1528             :                         }
    1529             :                 }
    1530           1 :                 err = d.mu.versions.logAndApply(jobID, ve, c.metrics, false, /* forceRotation */
    1531           1 :                         func() []compactionInfo { return d.getInProgressCompactionInfoLocked(c) })
    1532           1 :                 if err != nil {
    1533           1 :                         info.Err = err
    1534           1 :                 }
    1535           1 :         } else {
    1536           1 :                 // We won't be performing the logAndApply step because of the error,
    1537           1 :                 // so logUnlock.
    1538           1 :                 d.mu.versions.logUnlock()
    1539           1 :         }
    1540             : 
    1541             :         // If err != nil, then the flush will be retried, and we will recalculate
    1542             :         // these metrics.
    1543           1 :         if err == nil {
    1544           1 :                 d.mu.snapshots.cumulativePinnedCount += stats.CumulativePinnedKeys
    1545           1 :                 d.mu.snapshots.cumulativePinnedSize += stats.CumulativePinnedSize
    1546           1 :                 d.mu.versions.metrics.Keys.MissizedTombstonesCount += stats.CountMissizedDels
    1547           1 :         }
    1548             : 
    1549           1 :         d.clearCompactingState(c, err != nil)
    1550           1 :         delete(d.mu.compact.inProgress, c)
    1551           1 :         d.mu.versions.incrementCompactions(c.kind, c.extraLevels, c.pickerMetrics)
    1552           1 : 
    1553           1 :         var flushed flushableList
    1554           1 :         if err == nil {
    1555           1 :                 flushed = d.mu.mem.queue[:n]
    1556           1 :                 d.mu.mem.queue = d.mu.mem.queue[n:]
    1557           1 :                 d.updateReadStateLocked(d.opts.DebugCheck)
    1558           1 :                 d.updateTableStatsLocked(ve.NewFiles)
    1559           1 :                 if ingest {
    1560           1 :                         d.mu.versions.metrics.Flush.AsIngestCount++
    1561           1 :                         for _, l := range c.metrics {
    1562           1 :                                 d.mu.versions.metrics.Flush.AsIngestBytes += l.BytesIngested
    1563           1 :                                 d.mu.versions.metrics.Flush.AsIngestTableCount += l.TablesIngested
    1564           1 :                         }
    1565             :                 }
    1566           1 :                 d.maybeTransitionSnapshotsToFileOnlyLocked()
    1567             : 
    1568             :         }
    1569             :         // Signal FlushEnd after installing the new readState. This helps for unit
    1570             :         // tests that use the callback to trigger a read using an iterator with
    1571             :         // IterOptions.OnlyReadGuaranteedDurable.
    1572           1 :         info.TotalDuration = d.timeNow().Sub(startTime)
    1573           1 :         d.opts.EventListener.FlushEnd(info)
    1574           1 : 
    1575           1 :         // The order of these operations matters here for ease of testing.
    1576           1 :         // Removing the reader reference first allows tests to be guaranteed that
    1577           1 :         // the memtable reservation has been released by the time a synchronous
    1578           1 :         // flush returns. readerUnrefLocked may also produce obsolete files so the
    1579           1 :         // call to deleteObsoleteFiles must happen after it.
    1580           1 :         for i := range flushed {
    1581           1 :                 flushed[i].readerUnrefLocked(true)
    1582           1 :         }
    1583             : 
    1584           1 :         d.deleteObsoleteFiles(jobID)
    1585           1 : 
    1586           1 :         // Mark all the memtables we flushed as flushed.
    1587           1 :         for i := range flushed {
    1588           1 :                 close(flushed[i].flushed)
    1589           1 :         }
    1590             : 
    1591           1 :         return inputBytes, err
    1592             : }
    1593             : 
    1594             : // maybeTransitionSnapshotsToFileOnlyLocked transitions any "eventually
    1595             : // file-only" snapshots to be file-only if all their visible state has been
    1596             : // flushed to sstables.
    1597             : //
    1598             : // REQUIRES: d.mu.
    1599           1 : func (d *DB) maybeTransitionSnapshotsToFileOnlyLocked() {
    1600           1 :         earliestUnflushedSeqNum := d.getEarliestUnflushedSeqNumLocked()
    1601           1 :         currentVersion := d.mu.versions.currentVersion()
    1602           1 :         for s := d.mu.snapshots.root.next; s != &d.mu.snapshots.root; {
    1603           1 :                 if s.efos == nil {
    1604           1 :                         s = s.next
    1605           1 :                         continue
    1606             :                 }
    1607           1 :                 overlapsFlushable := false
    1608           1 :                 if base.Visible(earliestUnflushedSeqNum, s.efos.seqNum, base.SeqNumMax) {
    1609           1 :                         // There are some unflushed keys that are still visible to the EFOS.
    1610           1 :                         // Check if any memtables older than the EFOS contain keys within a
    1611           1 :                         // protected range of the EFOS. If no, we can transition.
    1612           1 :                         protectedRanges := make([]bounded, len(s.efos.protectedRanges))
    1613           1 :                         for i := range s.efos.protectedRanges {
    1614           1 :                                 protectedRanges[i] = s.efos.protectedRanges[i]
    1615           1 :                         }
    1616           1 :                         for i := range d.mu.mem.queue {
    1617           1 :                                 if !base.Visible(d.mu.mem.queue[i].logSeqNum, s.efos.seqNum, base.SeqNumMax) {
    1618           1 :                                         // All keys in this memtable are newer than the EFOS. Skip this
    1619           1 :                                         // memtable.
    1620           1 :                                         continue
    1621             :                                 }
    1622             :                                 // NB: computePossibleOverlaps could have false positives, such as if
    1623             :                                 // the flushable is a flushable ingest and not a memtable. In that
    1624             :                                 // case we don't open the sstables to check; we just pessimistically
    1625             :                                 // assume an overlap.
    1626           1 :                                 d.mu.mem.queue[i].computePossibleOverlaps(func(b bounded) shouldContinue {
    1627           1 :                                         overlapsFlushable = true
    1628           1 :                                         return stopIteration
    1629           1 :                                 }, protectedRanges...)
    1630           1 :                                 if overlapsFlushable {
    1631           1 :                                         break
    1632             :                                 }
    1633             :                         }
    1634             :                 }
    1635           1 :                 if overlapsFlushable {
    1636           1 :                         s = s.next
    1637           1 :                         continue
    1638             :                 }
    1639           1 :                 currentVersion.Ref()
    1640           1 : 
    1641           1 :                 // NB: s.efos.transitionToFileOnlySnapshot could close s, in which
    1642           1 :                 // case s.next would be nil. Save it before calling it.
    1643           1 :                 next := s.next
    1644           1 :                 _ = s.efos.transitionToFileOnlySnapshot(currentVersion)
    1645           1 :                 s = next
    1646             :         }
    1647             : }
    1648             : 
    1649             : // maybeScheduleCompactionAsync should be used when
    1650             : // we want to possibly schedule a compaction, but don't
    1651             : // want to eat the cost of running maybeScheduleCompaction.
    1652             : // This method should be launched in a separate goroutine.
    1653             : // d.mu must not be held when this is called.
    1654           0 : func (d *DB) maybeScheduleCompactionAsync() {
    1655           0 :         defer d.compactionSchedulers.Done()
    1656           0 : 
    1657           0 :         d.mu.Lock()
    1658           0 :         d.maybeScheduleCompaction()
    1659           0 :         d.mu.Unlock()
    1660           0 : }
    1661             : 
    1662             : // maybeScheduleCompaction schedules a compaction if necessary.
    1663             : //
    1664             : // d.mu must be held when calling this.
    1665           1 : func (d *DB) maybeScheduleCompaction() {
    1666           1 :         d.maybeScheduleCompactionPicker(pickAuto)
    1667           1 : }
    1668             : 
    1669           1 : func pickAuto(picker compactionPicker, env compactionEnv) *pickedCompaction {
    1670           1 :         return picker.pickAuto(env)
    1671           1 : }
    1672             : 
    1673           1 : func pickElisionOnly(picker compactionPicker, env compactionEnv) *pickedCompaction {
    1674           1 :         return picker.pickElisionOnlyCompaction(env)
    1675           1 : }
    1676             : 
    1677             : // tryScheduleDownloadCompaction tries to start a download compaction.
    1678             : //
    1679             : // Returns true if we started a download compaction (or completed it
    1680             : // immediately because it is a no-op or we hit an error).
    1681             : //
    1682             : // Requires d.mu to be held. Updates d.mu.compact.downloads.
    1683           1 : func (d *DB) tryScheduleDownloadCompaction(env compactionEnv, maxConcurrentDownloads int) bool {
    1684           1 :         vers := d.mu.versions.currentVersion()
    1685           1 :         for i := 0; i < len(d.mu.compact.downloads); {
    1686           1 :                 download := d.mu.compact.downloads[i]
    1687           1 :                 switch d.tryLaunchDownloadCompaction(download, vers, env, maxConcurrentDownloads) {
    1688           1 :                 case launchedCompaction:
    1689           1 :                         return true
    1690           0 :                 case didNotLaunchCompaction:
    1691           0 :                         // See if we can launch a compaction for another download task.
    1692           0 :                         i++
    1693           1 :                 case downloadTaskCompleted:
    1694           1 :                         // Task is completed and must be removed.
    1695           1 :                         d.mu.compact.downloads = slices.Delete(d.mu.compact.downloads, i, i+1)
    1696             :                 }
    1697             :         }
    1698           1 :         return false
    1699             : }
    1700             : 
    1701             : // maybeScheduleCompactionPicker schedules a compaction if necessary,
    1702             : // calling `pickFunc` to pick automatic compactions.
    1703             : //
    1704             : // Requires d.mu to be held.
    1705             : func (d *DB) maybeScheduleCompactionPicker(
    1706             :         pickFunc func(compactionPicker, compactionEnv) *pickedCompaction,
    1707           1 : ) {
    1708           1 :         if d.closed.Load() != nil || d.opts.ReadOnly {
    1709           1 :                 return
    1710           1 :         }
    1711           1 :         maxCompactions := d.opts.MaxConcurrentCompactions()
    1712           1 :         maxDownloads := d.opts.MaxConcurrentDownloads()
    1713           1 : 
    1714           1 :         if d.mu.compact.compactingCount >= maxCompactions &&
    1715           1 :                 (len(d.mu.compact.downloads) == 0 || d.mu.compact.downloadingCount >= maxDownloads) {
    1716           1 :                 if len(d.mu.compact.manual) > 0 {
    1717           1 :                         // Inability to run head blocks later manual compactions.
    1718           1 :                         d.mu.compact.manual[0].retries++
    1719           1 :                 }
    1720           1 :                 return
    1721             :         }
    1722             : 
    1723             :         // Compaction picking needs a coherent view of a Version. In particular, we
    1724             :         // need to exclude concurrent ingestions from making a decision on which level
    1725             :         // to ingest into that conflicts with our compaction
    1726             :         // decision. versionSet.logLock provides the necessary mutual exclusion.
    1727           1 :         d.mu.versions.logLock()
    1728           1 :         defer d.mu.versions.logUnlock()
    1729           1 : 
    1730           1 :         // Check for the closed flag again, in case the DB was closed while we were
    1731           1 :         // waiting for logLock().
    1732           1 :         if d.closed.Load() != nil {
    1733           1 :                 return
    1734           1 :         }
    1735             : 
    1736           1 :         env := compactionEnv{
    1737           1 :                 diskAvailBytes:          d.diskAvailBytes.Load(),
    1738           1 :                 earliestSnapshotSeqNum:  d.mu.snapshots.earliest(),
    1739           1 :                 earliestUnflushedSeqNum: d.getEarliestUnflushedSeqNumLocked(),
    1740           1 :         }
    1741           1 : 
    1742           1 :         if d.mu.compact.compactingCount < maxCompactions {
    1743           1 :                 // Check for delete-only compactions first, because they're expected to be
    1744           1 :                 // cheap and reduce future compaction work.
    1745           1 :                 if !d.opts.private.disableDeleteOnlyCompactions &&
    1746           1 :                         !d.opts.DisableAutomaticCompactions &&
    1747           1 :                         len(d.mu.compact.deletionHints) > 0 {
    1748           1 :                         d.tryScheduleDeleteOnlyCompaction()
    1749           1 :                 }
    1750             : 
    1751           1 :                 for len(d.mu.compact.manual) > 0 && d.mu.compact.compactingCount < maxCompactions {
    1752           1 :                         if manual := d.mu.compact.manual[0]; !d.tryScheduleManualCompaction(env, manual) {
    1753           1 :                                 // Inability to run head blocks later manual compactions.
    1754           1 :                                 manual.retries++
    1755           1 :                                 break
    1756             :                         }
    1757           1 :                         d.mu.compact.manual = d.mu.compact.manual[1:]
    1758             :                 }
    1759             : 
    1760           1 :                 for !d.opts.DisableAutomaticCompactions && d.mu.compact.compactingCount < maxCompactions &&
    1761           1 :                         d.tryScheduleAutoCompaction(env, pickFunc) {
    1762           1 :                 }
    1763             :         }
    1764             : 
    1765           1 :         for len(d.mu.compact.downloads) > 0 && d.mu.compact.downloadingCount < maxDownloads &&
    1766           1 :                 d.tryScheduleDownloadCompaction(env, maxDownloads) {
    1767           1 :         }
    1768             : }
    1769             : 
    1770             : // tryScheduleDeleteOnlyCompaction tries to kick off a delete-only compaction
    1771             : // for all files that can be deleted as suggested by deletionHints.
    1772             : //
    1773             : // Requires d.mu to be held. Updates d.mu.compact.deletionHints.
    1774           1 : func (d *DB) tryScheduleDeleteOnlyCompaction() {
    1775           1 :         v := d.mu.versions.currentVersion()
    1776           1 :         snapshots := d.mu.snapshots.toSlice()
    1777           1 :         // We need to save the value of exciseEnabled in the compaction itself, as
    1778           1 :         // it can change dynamically between now and when the compaction runs.
    1779           1 :         exciseEnabled := d.FormatMajorVersion() >= FormatVirtualSSTables &&
    1780           1 :                 d.opts.Experimental.EnableDeleteOnlyCompactionExcises != nil && d.opts.Experimental.EnableDeleteOnlyCompactionExcises()
    1781           1 :         inputs, resolvedHints, unresolvedHints := checkDeleteCompactionHints(d.cmp, v, d.mu.compact.deletionHints, snapshots, exciseEnabled)
    1782           1 :         d.mu.compact.deletionHints = unresolvedHints
    1783           1 : 
    1784           1 :         if len(inputs) > 0 {
    1785           1 :                 c := newDeleteOnlyCompaction(d.opts, v, inputs, d.timeNow(), resolvedHints, exciseEnabled)
    1786           1 :                 d.mu.compact.compactingCount++
    1787           1 :                 d.addInProgressCompaction(c)
    1788           1 :                 go d.compact(c, nil)
    1789           1 :         }
    1790             : }
    1791             : 
    1792             : // tryScheduleManualCompaction tries to kick off the given manual compaction.
    1793             : //
    1794             : // Returns false if we are not able to run this compaction at this time.
    1795             : //
    1796             : // Requires d.mu to be held.
    1797           1 : func (d *DB) tryScheduleManualCompaction(env compactionEnv, manual *manualCompaction) bool {
    1798           1 :         v := d.mu.versions.currentVersion()
    1799           1 :         env.inProgressCompactions = d.getInProgressCompactionInfoLocked(nil)
    1800           1 :         pc, retryLater := pickManualCompaction(v, d.opts, env, d.mu.versions.picker.getBaseLevel(), manual)
    1801           1 :         if pc == nil {
    1802           1 :                 if !retryLater {
    1803           1 :                         // Manual compaction is a no-op. Signal completion and exit.
    1804           1 :                         manual.done <- nil
    1805           1 :                         return true
    1806           1 :                 }
    1807             :                 // We are not able to run this manual compaction at this time.
    1808           1 :                 return false
    1809             :         }
    1810             : 
    1811           1 :         c := newCompaction(pc, d.opts, d.timeNow(), d.ObjProvider())
    1812           1 :         d.mu.compact.compactingCount++
    1813           1 :         d.addInProgressCompaction(c)
    1814           1 :         go d.compact(c, manual.done)
    1815           1 :         return true
    1816             : }
    1817             : 
    1818             : // tryScheduleAutoCompaction tries to kick off an automatic compaction.
    1819             : //
    1820             : // Returns false if no automatic compactions are necessary or able to run at
    1821             : // this time.
    1822             : //
    1823             : // Requires d.mu to be held.
    1824             : func (d *DB) tryScheduleAutoCompaction(
    1825             :         env compactionEnv, pickFunc func(compactionPicker, compactionEnv) *pickedCompaction,
    1826           1 : ) bool {
    1827           1 :         env.inProgressCompactions = d.getInProgressCompactionInfoLocked(nil)
    1828           1 :         env.readCompactionEnv = readCompactionEnv{
    1829           1 :                 readCompactions:          &d.mu.compact.readCompactions,
    1830           1 :                 flushing:                 d.mu.compact.flushing || d.passedFlushThreshold(),
    1831           1 :                 rescheduleReadCompaction: &d.mu.compact.rescheduleReadCompaction,
    1832           1 :         }
    1833           1 :         pc := pickFunc(d.mu.versions.picker, env)
    1834           1 :         if pc == nil {
    1835           1 :                 return false
    1836           1 :         }
    1837           1 :         c := newCompaction(pc, d.opts, d.timeNow(), d.ObjProvider())
    1838           1 :         d.mu.compact.compactingCount++
    1839           1 :         d.addInProgressCompaction(c)
    1840           1 :         go d.compact(c, nil)
    1841           1 :         return true
    1842             : }
    1843             : 
    1844             : // deleteCompactionHintType indicates whether the deleteCompactionHint was
    1845             : // generated from a span containing a range del (point key only), a range key
    1846             : // delete (range key only), or both a point and range key.
    1847             : type deleteCompactionHintType uint8
    1848             : 
    1849             : const (
    1850             :         // NOTE: While these are primarily used as enumeration types, they are also
    1851             :         // used for some bitwise operations. Care should be taken when updating.
    1852             :         deleteCompactionHintTypeUnknown deleteCompactionHintType = iota
    1853             :         deleteCompactionHintTypePointKeyOnly
    1854             :         deleteCompactionHintTypeRangeKeyOnly
    1855             :         deleteCompactionHintTypePointAndRangeKey
    1856             : )
    1857             : 
    1858             : // String implements fmt.Stringer.
    1859           1 : func (h deleteCompactionHintType) String() string {
    1860           1 :         switch h {
    1861           0 :         case deleteCompactionHintTypeUnknown:
    1862           0 :                 return "unknown"
    1863           1 :         case deleteCompactionHintTypePointKeyOnly:
    1864           1 :                 return "point-key-only"
    1865           1 :         case deleteCompactionHintTypeRangeKeyOnly:
    1866           1 :                 return "range-key-only"
    1867           1 :         case deleteCompactionHintTypePointAndRangeKey:
    1868           1 :                 return "point-and-range-key"
    1869           0 :         default:
    1870           0 :                 panic(fmt.Sprintf("unknown hint type: %d", h))
    1871             :         }
    1872             : }
    1873             : 
    1874             : // compactionHintFromKeys returns a deleteCompactionHintType given a slice of
    1875             : // keyspan.Keys.
    1876           1 : func compactionHintFromKeys(keys []keyspan.Key) deleteCompactionHintType {
    1877           1 :         var hintType deleteCompactionHintType
    1878           1 :         for _, k := range keys {
    1879           1 :                 switch k.Kind() {
    1880           1 :                 case base.InternalKeyKindRangeDelete:
    1881           1 :                         hintType |= deleteCompactionHintTypePointKeyOnly
    1882           1 :                 case base.InternalKeyKindRangeKeyDelete:
    1883           1 :                         hintType |= deleteCompactionHintTypeRangeKeyOnly
    1884           0 :                 default:
    1885           0 :                         panic(fmt.Sprintf("unsupported key kind: %s", k.Kind()))
    1886             :                 }
    1887             :         }
    1888           1 :         return hintType
    1889             : }
    1890             : 
    1891             : // A deleteCompactionHint records a user key and sequence number span that has been
    1892             : // deleted by a range tombstone. A hint is recorded if at least one sstable
    1893             : // falls completely within both the user key and sequence number spans.
    1894             : // Once the tombstones and the observed completely-contained sstables fall
    1895             : // into the same snapshot stripe, a delete-only compaction may delete any
    1896             : // sstables within the range.
    1897             : type deleteCompactionHint struct {
    1898             :         // The type of key span that generated this hint (point key, range key, or
    1899             :         // both).
    1900             :         hintType deleteCompactionHintType
    1901             :         // start and end are user keys specifying a key range [start, end) of
    1902             :         // deleted keys.
    1903             :         start []byte
    1904             :         end   []byte
    1905             :         // The level of the file containing the range tombstone(s) when the hint
    1906             :         // was created. Only lower levels need to be searched for files that may
    1907             :         // be deleted.
    1908             :         tombstoneLevel int
    1909             :         // The file containing the range tombstone(s) that created the hint.
    1910             :         tombstoneFile *fileMetadata
    1911             :         // The smallest and largest sequence numbers of the abutting tombstones
    1912             :         // merged to form this hint. All of a tables' keys must be less than the
    1913             :         // tombstone smallest sequence number to be deleted. All of a tables'
    1914             :         // sequence numbers must fall into the same snapshot stripe as the
    1915             :         // tombstone largest sequence number to be deleted.
    1916             :         tombstoneLargestSeqNum  base.SeqNum
    1917             :         tombstoneSmallestSeqNum base.SeqNum
    1918             :         // The smallest sequence number of a sstable that was found to be covered
    1919             :         // by this hint. The hint cannot be resolved until this sequence number is
    1920             :         // in the same snapshot stripe as the largest tombstone sequence number.
    1921             :         // This is set when a hint is created, so the LSM may look different and
    1922             :         // notably no longer contain the sstable that contained the key at this
    1923             :         // sequence number.
    1924             :         fileSmallestSeqNum base.SeqNum
    1925             : }
    1926             : 
    1927             : type deletionHintOverlap int8
    1928             : 
    1929             : const (
    1930             :         // hintDoesNotApply indicates that the hint does not apply to the file.
    1931             :         hintDoesNotApply deletionHintOverlap = iota
    1932             :         // hintExcisesFile indicates that the hint excises a portion of the file,
    1933             :         // and the format major version of the DB supports excises.
    1934             :         hintExcisesFile
    1935             :         // hintDeletesFile indicates that the hint deletes the entirety of the file.
    1936             :         hintDeletesFile
    1937             : )
    1938             : 
    1939           1 : func (h deleteCompactionHint) String() string {
    1940           1 :         return fmt.Sprintf(
    1941           1 :                 "L%d.%s %s-%s seqnums(tombstone=%d-%d, file-smallest=%d, type=%s)",
    1942           1 :                 h.tombstoneLevel, h.tombstoneFile.FileNum, h.start, h.end,
    1943           1 :                 h.tombstoneSmallestSeqNum, h.tombstoneLargestSeqNum, h.fileSmallestSeqNum,
    1944           1 :                 h.hintType,
    1945           1 :         )
    1946           1 : }
    1947             : 
    1948             : func (h *deleteCompactionHint) canDeleteOrExcise(
    1949             :         cmp Compare, m *fileMetadata, snapshots compact.Snapshots, exciseEnabled bool,
    1950           1 : ) deletionHintOverlap {
    1951           1 :         // The file can only be deleted if all of its keys are older than the
    1952           1 :         // earliest tombstone aggregated into the hint. Note that we use
    1953           1 :         // m.LargestSeqNumAbsolute, not m.LargestSeqNum. Consider a compaction that
    1954           1 :         // zeroes sequence numbers. A compaction may zero the sequence number of a
    1955           1 :         // key with a sequence number > h.tombstoneSmallestSeqNum and set it to
    1956           1 :         // zero. If we looked at m.LargestSeqNum, the resulting output file would
    1957           1 :         // appear to not contain any keys more recent than the oldest tombstone. To
    1958           1 :         // avoid this error, the largest pre-zeroing sequence number is maintained
    1959           1 :         // in LargestSeqNumAbsolute and used here to make the determination whether
    1960           1 :         // the file's keys are older than all of the hint's tombstones.
    1961           1 :         if m.LargestSeqNumAbsolute >= h.tombstoneSmallestSeqNum || m.SmallestSeqNum < h.fileSmallestSeqNum {
    1962           1 :                 return hintDoesNotApply
    1963           1 :         }
    1964             : 
    1965             :         // The file's oldest key must  be in the same snapshot stripe as the
    1966             :         // newest tombstone. NB: We already checked the hint's sequence numbers,
    1967             :         // but this file's oldest sequence number might be lower than the hint's
    1968             :         // smallest sequence number despite the file falling within the key range
    1969             :         // if this file was constructed after the hint by a compaction.
    1970           1 :         if snapshots.Index(h.tombstoneLargestSeqNum) != snapshots.Index(m.SmallestSeqNum) {
    1971           0 :                 return hintDoesNotApply
    1972           0 :         }
    1973             : 
    1974           1 :         switch h.hintType {
    1975           1 :         case deleteCompactionHintTypePointKeyOnly:
    1976           1 :                 // A hint generated by a range del span cannot delete tables that contain
    1977           1 :                 // range keys.
    1978           1 :                 if m.HasRangeKeys {
    1979           1 :                         return hintDoesNotApply
    1980           1 :                 }
    1981           1 :         case deleteCompactionHintTypeRangeKeyOnly:
    1982           1 :                 // A hint generated by a range key del span cannot delete tables that
    1983           1 :                 // contain point keys.
    1984           1 :                 if m.HasPointKeys {
    1985           1 :                         return hintDoesNotApply
    1986           1 :                 }
    1987           1 :         case deleteCompactionHintTypePointAndRangeKey:
    1988             :                 // A hint from a span that contains both range dels *and* range keys can
    1989             :                 // only be deleted if both bounds fall within the hint. The next check takes
    1990             :                 // care of this.
    1991           0 :         default:
    1992           0 :                 panic(fmt.Sprintf("pebble: unknown delete compaction hint type: %d", h.hintType))
    1993             :         }
    1994           1 :         if cmp(h.start, m.Smallest.UserKey) <= 0 &&
    1995           1 :                 base.UserKeyExclusive(h.end).CompareUpperBounds(cmp, m.UserKeyBounds().End) >= 0 {
    1996           1 :                 return hintDeletesFile
    1997           1 :         }
    1998           1 :         if !exciseEnabled {
    1999           1 :                 // The file's keys must be completely contained within the hint range; excises
    2000           1 :                 // aren't allowed.
    2001           1 :                 return hintDoesNotApply
    2002           1 :         }
    2003             :         // Check for any overlap. In cases of partial overlap, we can excise the part of the file
    2004             :         // that overlaps with the deletion hint.
    2005           1 :         if cmp(h.end, m.Smallest.UserKey) > 0 &&
    2006           1 :                 (m.UserKeyBounds().End.CompareUpperBounds(cmp, base.UserKeyInclusive(h.start)) >= 0) {
    2007           1 :                 return hintExcisesFile
    2008           1 :         }
    2009           0 :         return hintDoesNotApply
    2010             : }
    2011             : 
    2012             : // checkDeleteCompactionHints checks the passed-in deleteCompactionHints for those that
    2013             : // can be resolved and those that cannot. A hint is considered resolved when its largest
    2014             : // tombstone sequence number and the smallest sequence number of covered files fall in
    2015             : // the same snapshot stripe. No more than maxHintsPerDeleteOnlyCompaction will be resolved
    2016             : // per method call. Resolved and unresolved hints are returned in separate return values.
    2017             : // The files that the resolved hints apply to, are returned as compactionLevels.
    2018             : func checkDeleteCompactionHints(
    2019             :         cmp Compare,
    2020             :         v *version,
    2021             :         hints []deleteCompactionHint,
    2022             :         snapshots compact.Snapshots,
    2023             :         exciseEnabled bool,
    2024           1 : ) (levels []compactionLevel, resolved, unresolved []deleteCompactionHint) {
    2025           1 :         var files map[*fileMetadata]bool
    2026           1 :         var byLevel [numLevels][]*fileMetadata
    2027           1 : 
    2028           1 :         // Delete-only compactions can be quadratic (O(mn)) in terms of runtime
    2029           1 :         // where m = number of files in the delete-only compaction and n = number
    2030           1 :         // of resolved hints. To prevent these from growing unbounded, we cap
    2031           1 :         // the number of hints we resolve for one delete-only compaction. This
    2032           1 :         // cap only applies if exciseEnabled == true.
    2033           1 :         const maxHintsPerDeleteOnlyCompaction = 10
    2034           1 : 
    2035           1 :         unresolvedHints := hints[:0]
    2036           1 :         // Lazily populate resolvedHints, similar to files above.
    2037           1 :         resolvedHints := make([]deleteCompactionHint, 0)
    2038           1 :         for _, h := range hints {
    2039           1 :                 // Check each compaction hint to see if it's resolvable. Resolvable
    2040           1 :                 // hints are removed and trigger a delete-only compaction if any files
    2041           1 :                 // in the current LSM still meet their criteria. Unresolvable hints
    2042           1 :                 // are saved and don't trigger a delete-only compaction.
    2043           1 :                 //
    2044           1 :                 // When a compaction hint is created, the sequence numbers of the
    2045           1 :                 // range tombstones and the covered file with the oldest key are
    2046           1 :                 // recorded. The largest tombstone sequence number and the smallest
    2047           1 :                 // file sequence number must be in the same snapshot stripe for the
    2048           1 :                 // hint to be resolved. The below graphic models a compaction hint
    2049           1 :                 // covering the keyspace [b, r). The hint completely contains two
    2050           1 :                 // files, 000002 and 000003. The file 000003 contains the lowest
    2051           1 :                 // covered sequence number at #90. The tombstone b.RANGEDEL.230:h has
    2052           1 :                 // the highest tombstone sequence number incorporated into the hint.
    2053           1 :                 // The hint may be resolved only once the snapshots at #100, #180 and
    2054           1 :                 // #210 are all closed. File 000001 is not included within the hint
    2055           1 :                 // because it extends beyond the range tombstones in user key space.
    2056           1 :                 //
    2057           1 :                 // 250
    2058           1 :                 //
    2059           1 :                 //       |-b...230:h-|
    2060           1 :                 // _____________________________________________________ snapshot #210
    2061           1 :                 // 200               |--h.RANGEDEL.200:r--|
    2062           1 :                 //
    2063           1 :                 // _____________________________________________________ snapshot #180
    2064           1 :                 //
    2065           1 :                 // 150                     +--------+
    2066           1 :                 //           +---------+   | 000003 |
    2067           1 :                 //           | 000002  |   |        |
    2068           1 :                 //           +_________+   |        |
    2069           1 :                 // 100_____________________|________|___________________ snapshot #100
    2070           1 :                 //                         +--------+
    2071           1 :                 // _____________________________________________________ snapshot #70
    2072           1 :                 //                             +---------------+
    2073           1 :                 //  50                         | 000001        |
    2074           1 :                 //                             |               |
    2075           1 :                 //                             +---------------+
    2076           1 :                 // ______________________________________________________________
    2077           1 :                 //     a b c d e f g h i j k l m n o p q r s t u v w x y z
    2078           1 : 
    2079           1 :                 if snapshots.Index(h.tombstoneLargestSeqNum) != snapshots.Index(h.fileSmallestSeqNum) ||
    2080           1 :                         (len(resolvedHints) >= maxHintsPerDeleteOnlyCompaction && exciseEnabled) {
    2081           1 :                         // Cannot resolve yet.
    2082           1 :                         unresolvedHints = append(unresolvedHints, h)
    2083           1 :                         continue
    2084             :                 }
    2085             : 
    2086             :                 // The hint h will be resolved and dropped, if it either affects no files at all
    2087             :                 // or if the number of files it creates (eg. through excision) is less than or
    2088             :                 // equal to the number of files it deletes. First, determine how many files are
    2089             :                 // affected by this hint.
    2090           1 :                 filesDeletedByCurrentHint := 0
    2091           1 :                 var filesDeletedByLevel [7][]*fileMetadata
    2092           1 :                 for l := h.tombstoneLevel + 1; l < numLevels; l++ {
    2093           1 :                         overlaps := v.Overlaps(l, base.UserKeyBoundsEndExclusive(h.start, h.end))
    2094           1 :                         iter := overlaps.Iter()
    2095           1 : 
    2096           1 :                         for m := iter.First(); m != nil; m = iter.Next() {
    2097           1 :                                 doesHintApply := h.canDeleteOrExcise(cmp, m, snapshots, exciseEnabled)
    2098           1 :                                 if m.IsCompacting() || doesHintApply == hintDoesNotApply || files[m] {
    2099           1 :                                         continue
    2100             :                                 }
    2101           1 :                                 switch doesHintApply {
    2102           1 :                                 case hintDeletesFile:
    2103           1 :                                         filesDeletedByCurrentHint++
    2104           1 :                                 case hintExcisesFile:
    2105           1 :                                         // Account for the original file being deleted.
    2106           1 :                                         filesDeletedByCurrentHint++
    2107           1 :                                         // An excise could produce up to 2 new files. If the hint
    2108           1 :                                         // leaves a fragment of the file on the left, decrement
    2109           1 :                                         // the counter once. If the hint leaves a fragment of the
    2110           1 :                                         // file on the right, decrement the counter once.
    2111           1 :                                         if cmp(h.start, m.Smallest.UserKey) > 0 {
    2112           1 :                                                 filesDeletedByCurrentHint--
    2113           1 :                                         }
    2114           1 :                                         if m.UserKeyBounds().End.IsUpperBoundFor(cmp, h.end) {
    2115           1 :                                                 filesDeletedByCurrentHint--
    2116           1 :                                         }
    2117             :                                 }
    2118           1 :                                 filesDeletedByLevel[l] = append(filesDeletedByLevel[l], m)
    2119             :                         }
    2120             :                 }
    2121           1 :                 if filesDeletedByCurrentHint < 0 {
    2122           1 :                         // This hint does not delete a sufficient number of files to warrant
    2123           1 :                         // a delete-only compaction at this stage. Drop it (ie. don't add it
    2124           1 :                         // to either resolved or unresolved hints) so it doesn't stick around
    2125           1 :                         // forever.
    2126           1 :                         continue
    2127             :                 }
    2128             :                 // This hint will be resolved and dropped.
    2129           1 :                 for l := h.tombstoneLevel + 1; l < numLevels; l++ {
    2130           1 :                         byLevel[l] = append(byLevel[l], filesDeletedByLevel[l]...)
    2131           1 :                         for _, m := range filesDeletedByLevel[l] {
    2132           1 :                                 if files == nil {
    2133           1 :                                         // Construct files lazily, assuming most calls will not
    2134           1 :                                         // produce delete-only compactions.
    2135           1 :                                         files = make(map[*fileMetadata]bool)
    2136           1 :                                 }
    2137           1 :                                 files[m] = true
    2138             :                         }
    2139             :                 }
    2140           1 :                 resolvedHints = append(resolvedHints, h)
    2141             :         }
    2142             : 
    2143           1 :         var compactLevels []compactionLevel
    2144           1 :         for l, files := range byLevel {
    2145           1 :                 if len(files) == 0 {
    2146           1 :                         continue
    2147             :                 }
    2148           1 :                 compactLevels = append(compactLevels, compactionLevel{
    2149           1 :                         level: l,
    2150           1 :                         files: manifest.NewLevelSliceKeySorted(cmp, files),
    2151           1 :                 })
    2152             :         }
    2153           1 :         return compactLevels, resolvedHints, unresolvedHints
    2154             : }
    2155             : 
    2156             : // compact runs one compaction and maybe schedules another call to compact.
    2157           1 : func (d *DB) compact(c *compaction, errChannel chan error) {
    2158           1 :         pprof.Do(context.Background(), compactLabels, func(context.Context) {
    2159           1 :                 d.mu.Lock()
    2160           1 :                 defer d.mu.Unlock()
    2161           1 :                 if err := d.compact1(c, errChannel); err != nil {
    2162           1 :                         // TODO(peter): count consecutive compaction errors and backoff.
    2163           1 :                         d.opts.EventListener.BackgroundError(err)
    2164           1 :                 }
    2165           1 :                 if c.isDownload {
    2166           1 :                         d.mu.compact.downloadingCount--
    2167           1 :                 } else {
    2168           1 :                         d.mu.compact.compactingCount--
    2169           1 :                 }
    2170           1 :                 delete(d.mu.compact.inProgress, c)
    2171           1 :                 // Add this compaction's duration to the cumulative duration. NB: This
    2172           1 :                 // must be atomic with the above removal of c from
    2173           1 :                 // d.mu.compact.InProgress to ensure Metrics.Compact.Duration does not
    2174           1 :                 // miss or double count a completing compaction's duration.
    2175           1 :                 d.mu.compact.duration += d.timeNow().Sub(c.beganAt)
    2176           1 : 
    2177           1 :                 // The previous compaction may have produced too many files in a
    2178           1 :                 // level, so reschedule another compaction if needed.
    2179           1 :                 d.maybeScheduleCompaction()
    2180           1 :                 d.mu.compact.cond.Broadcast()
    2181             :         })
    2182             : }
    2183             : 
    2184             : // cleanupVersionEdit cleans up any on-disk artifacts that were created
    2185             : // for the application of a versionEdit that is no longer going to be applied.
    2186             : //
    2187             : // d.mu must be held when calling this method.
    2188           1 : func (d *DB) cleanupVersionEdit(ve *versionEdit) {
    2189           1 :         obsoleteFiles := make([]*fileBacking, 0, len(ve.NewFiles))
    2190           1 :         deletedFiles := make(map[base.FileNum]struct{})
    2191           1 :         for key := range ve.DeletedFiles {
    2192           1 :                 deletedFiles[key.FileNum] = struct{}{}
    2193           1 :         }
    2194           1 :         for i := range ve.NewFiles {
    2195           1 :                 if ve.NewFiles[i].Meta.Virtual {
    2196           0 :                         // We handle backing files separately.
    2197           0 :                         continue
    2198             :                 }
    2199           1 :                 if _, ok := deletedFiles[ve.NewFiles[i].Meta.FileNum]; ok {
    2200           0 :                         // This file is being moved in this ve to a different level.
    2201           0 :                         // Don't mark it as obsolete.
    2202           0 :                         continue
    2203             :                 }
    2204           1 :                 obsoleteFiles = append(obsoleteFiles, ve.NewFiles[i].Meta.PhysicalMeta().FileBacking)
    2205             :         }
    2206           1 :         for i := range ve.CreatedBackingTables {
    2207           0 :                 if ve.CreatedBackingTables[i].IsUnused() {
    2208           0 :                         obsoleteFiles = append(obsoleteFiles, ve.CreatedBackingTables[i])
    2209           0 :                 }
    2210             :         }
    2211           1 :         for i := range obsoleteFiles {
    2212           1 :                 // Add this file to zombie tables as well, as the versionSet
    2213           1 :                 // asserts on whether every obsolete file was at one point
    2214           1 :                 // marked zombie.
    2215           1 :                 d.mu.versions.zombieTables[obsoleteFiles[i].DiskFileNum] = tableInfo{
    2216           1 :                         fileInfo: fileInfo{
    2217           1 :                                 FileNum:  obsoleteFiles[i].DiskFileNum,
    2218           1 :                                 FileSize: obsoleteFiles[i].Size,
    2219           1 :                         },
    2220           1 :                         // TODO(bilal): This is harmless if it's wrong, as it only causes
    2221           1 :                         // incorrect accounting for the size of it in metrics. Currently
    2222           1 :                         // all compactions only write to local files anyway except with
    2223           1 :                         // disaggregated storage; if this becomes the norm, we should do
    2224           1 :                         // an objprovider lookup here.
    2225           1 :                         isLocal: true,
    2226           1 :                 }
    2227           1 :         }
    2228           1 :         d.mu.versions.addObsoleteLocked(obsoleteFiles)
    2229             : }
    2230             : 
    2231             : // compact1 runs one compaction.
    2232             : //
    2233             : // d.mu must be held when calling this, but the mutex may be dropped and
    2234             : // re-acquired during the course of this method.
    2235           1 : func (d *DB) compact1(c *compaction, errChannel chan error) (err error) {
    2236           1 :         if errChannel != nil {
    2237           1 :                 defer func() {
    2238           1 :                         errChannel <- err
    2239           1 :                 }()
    2240             :         }
    2241             : 
    2242           1 :         jobID := d.newJobIDLocked()
    2243           1 :         info := c.makeInfo(jobID)
    2244           1 :         d.opts.EventListener.CompactionBegin(info)
    2245           1 :         startTime := d.timeNow()
    2246           1 : 
    2247           1 :         ve, stats, err := d.runCompaction(jobID, c)
    2248           1 : 
    2249           1 :         info.Duration = d.timeNow().Sub(startTime)
    2250           1 :         if err == nil {
    2251           1 :                 validateVersionEdit(ve, d.opts.Experimental.KeyValidationFunc, d.opts.Comparer.FormatKey, d.opts.Logger)
    2252           1 :                 err = func() error {
    2253           1 :                         var err error
    2254           1 :                         d.mu.versions.logLock()
    2255           1 :                         // Check if this compaction had a conflicting operation (eg. a d.excise())
    2256           1 :                         // that necessitates it restarting from scratch. Note that since we hold
    2257           1 :                         // the manifest lock, we don't expect this bool to change its value
    2258           1 :                         // as only the holder of the manifest lock will ever write to it.
    2259           1 :                         if c.cancel.Load() {
    2260           1 :                                 d.mu.versions.metrics.Compact.CancelledCount++
    2261           1 :                                 d.mu.versions.metrics.Compact.CancelledBytes += c.bytesWritten
    2262           1 : 
    2263           1 :                                 err = firstError(err, ErrCancelledCompaction)
    2264           1 :                                 // This is the first time we've seen a cancellation during the
    2265           1 :                                 // life of this compaction (or the original condition on err == nil
    2266           1 :                                 // would not have been true). We should delete any tables already
    2267           1 :                                 // created, as d.runCompaction did not do that.
    2268           1 :                                 d.cleanupVersionEdit(ve)
    2269           1 :                                 // logAndApply calls logUnlock. If we didn't call it, we need to call
    2270           1 :                                 // logUnlock ourselves.
    2271           1 :                                 d.mu.versions.logUnlock()
    2272           1 :                                 return err
    2273           1 :                         }
    2274           1 :                         return d.mu.versions.logAndApply(jobID, ve, c.metrics, false /* forceRotation */, func() []compactionInfo {
    2275           1 :                                 return d.getInProgressCompactionInfoLocked(c)
    2276           1 :                         })
    2277             :                 }()
    2278             :         }
    2279             : 
    2280           1 :         info.Done = true
    2281           1 :         info.Err = err
    2282           1 :         if err == nil {
    2283           1 :                 for i := range ve.NewFiles {
    2284           1 :                         e := &ve.NewFiles[i]
    2285           1 :                         info.Output.Tables = append(info.Output.Tables, e.Meta.TableInfo())
    2286           1 :                 }
    2287           1 :                 d.mu.snapshots.cumulativePinnedCount += stats.CumulativePinnedKeys
    2288           1 :                 d.mu.snapshots.cumulativePinnedSize += stats.CumulativePinnedSize
    2289           1 :                 d.mu.versions.metrics.Keys.MissizedTombstonesCount += stats.CountMissizedDels
    2290             :         }
    2291             : 
    2292             :         // NB: clearing compacting state must occur before updating the read state;
    2293             :         // L0Sublevels initialization depends on it.
    2294           1 :         d.clearCompactingState(c, err != nil)
    2295           1 :         if err != nil && errors.Is(err, ErrCancelledCompaction) {
    2296           1 :                 d.mu.versions.metrics.Compact.CancelledCount++
    2297           1 :                 d.mu.versions.metrics.Compact.CancelledBytes += c.bytesWritten
    2298           1 :         }
    2299           1 :         d.mu.versions.incrementCompactions(c.kind, c.extraLevels, c.pickerMetrics)
    2300           1 :         d.mu.versions.incrementCompactionBytes(-c.bytesWritten)
    2301           1 : 
    2302           1 :         info.TotalDuration = d.timeNow().Sub(c.beganAt)
    2303           1 :         d.opts.EventListener.CompactionEnd(info)
    2304           1 : 
    2305           1 :         // Update the read state before deleting obsolete files because the
    2306           1 :         // read-state update will cause the previous version to be unref'd and if
    2307           1 :         // there are no references obsolete tables will be added to the obsolete
    2308           1 :         // table list.
    2309           1 :         if err == nil {
    2310           1 :                 d.updateReadStateLocked(d.opts.DebugCheck)
    2311           1 :                 d.updateTableStatsLocked(ve.NewFiles)
    2312           1 :         }
    2313           1 :         d.deleteObsoleteFiles(jobID)
    2314           1 : 
    2315           1 :         return err
    2316             : }
    2317             : 
    2318             : // runCopyCompaction runs a copy compaction where a new FileNum is created that
    2319             : // is a byte-for-byte copy of the input file or span thereof in some cases. This
    2320             : // is used in lieu of a move compaction when a file is being moved across the
    2321             : // local/remote storage boundary. It could also be used in lieu of a rewrite
    2322             : // compaction as part of a Download() call, which allows copying only a span of
    2323             : // the external file, provided the file does not contain range keys or value
    2324             : // blocks (see sstable.CopySpan).
    2325             : //
    2326             : // d.mu must be held when calling this method. The mutex will be released when
    2327             : // doing IO.
    2328             : func (d *DB) runCopyCompaction(
    2329             :         jobID JobID, c *compaction,
    2330           1 : ) (ve *versionEdit, stats compact.Stats, _ error) {
    2331           1 :         iter := c.startLevel.files.Iter()
    2332           1 :         inputMeta := iter.First()
    2333           1 :         if iter.Next() != nil {
    2334           0 :                 return nil, compact.Stats{}, base.AssertionFailedf("got more than one file for a move compaction")
    2335           0 :         }
    2336           1 :         if c.cancel.Load() {
    2337           0 :                 return nil, compact.Stats{}, ErrCancelledCompaction
    2338           0 :         }
    2339           1 :         ve = &versionEdit{
    2340           1 :                 DeletedFiles: map[deletedFileEntry]*fileMetadata{
    2341           1 :                         {Level: c.startLevel.level, FileNum: inputMeta.FileNum}: inputMeta,
    2342           1 :                 },
    2343           1 :         }
    2344           1 : 
    2345           1 :         objMeta, err := d.objProvider.Lookup(fileTypeTable, inputMeta.FileBacking.DiskFileNum)
    2346           1 :         if err != nil {
    2347           0 :                 return nil, compact.Stats{}, err
    2348           0 :         }
    2349           1 :         if !objMeta.IsExternal() {
    2350           1 :                 if objMeta.IsRemote() || !remote.ShouldCreateShared(d.opts.Experimental.CreateOnShared, c.outputLevel.level) {
    2351           0 :                         panic("pebble: scheduled a copy compaction that is not actually moving files to shared storage")
    2352             :                 }
    2353             :                 // Note that based on logic in the compaction picker, we're guaranteed
    2354             :                 // inputMeta.Virtual is false.
    2355           1 :                 if inputMeta.Virtual {
    2356           0 :                         panic(errors.AssertionFailedf("cannot do a copy compaction of a virtual sstable across local/remote storage"))
    2357             :                 }
    2358             :         }
    2359             : 
    2360             :         // We are in the relatively more complex case where we need to copy this
    2361             :         // file to remote storage. Drop the db mutex while we do the copy
    2362             :         //
    2363             :         // To ease up cleanup of the local file and tracking of refs, we create
    2364             :         // a new FileNum. This has the potential of making the block cache less
    2365             :         // effective, however.
    2366           1 :         newMeta := &fileMetadata{
    2367           1 :                 Size:                     inputMeta.Size,
    2368           1 :                 CreationTime:             inputMeta.CreationTime,
    2369           1 :                 SmallestSeqNum:           inputMeta.SmallestSeqNum,
    2370           1 :                 LargestSeqNum:            inputMeta.LargestSeqNum,
    2371           1 :                 LargestSeqNumAbsolute:    inputMeta.LargestSeqNumAbsolute,
    2372           1 :                 Stats:                    inputMeta.Stats,
    2373           1 :                 Virtual:                  inputMeta.Virtual,
    2374           1 :                 SyntheticPrefixAndSuffix: inputMeta.SyntheticPrefixAndSuffix,
    2375           1 :         }
    2376           1 :         if inputMeta.HasPointKeys {
    2377           1 :                 newMeta.ExtendPointKeyBounds(c.cmp, inputMeta.SmallestPointKey, inputMeta.LargestPointKey)
    2378           1 :         }
    2379           1 :         if inputMeta.HasRangeKeys {
    2380           1 :                 newMeta.ExtendRangeKeyBounds(c.cmp, inputMeta.SmallestRangeKey, inputMeta.LargestRangeKey)
    2381           1 :         }
    2382           1 :         newMeta.FileNum = d.mu.versions.getNextFileNum()
    2383           1 :         if objMeta.IsExternal() {
    2384           1 :                 // external -> local/shared copy. File must be virtual.
    2385           1 :                 // We will update this size later after we produce the new backing file.
    2386           1 :                 newMeta.InitProviderBacking(base.DiskFileNum(newMeta.FileNum), inputMeta.FileBacking.Size)
    2387           1 :         } else {
    2388           1 :                 // local -> shared copy. New file is guaranteed to not be virtual.
    2389           1 :                 newMeta.InitPhysicalBacking()
    2390           1 :         }
    2391             : 
    2392             :         // Before dropping the db mutex, grab a ref to the current version. This
    2393             :         // prevents any concurrent excises from deleting files that this compaction
    2394             :         // needs to read/maintain a reference to.
    2395           1 :         vers := d.mu.versions.currentVersion()
    2396           1 :         vers.Ref()
    2397           1 :         defer vers.UnrefLocked()
    2398           1 : 
    2399           1 :         // NB: The order here is reversed, lock after unlock. This is similar to
    2400           1 :         // runCompaction.
    2401           1 :         d.mu.Unlock()
    2402           1 :         defer d.mu.Lock()
    2403           1 : 
    2404           1 :         deleteOnExit := false
    2405           1 :         defer func() {
    2406           1 :                 if deleteOnExit {
    2407           1 :                         _ = d.objProvider.Remove(fileTypeTable, newMeta.FileBacking.DiskFileNum)
    2408           1 :                 }
    2409             :         }()
    2410             : 
    2411             :         // If the src obj is external, we're doing an external to local/shared copy.
    2412           1 :         if objMeta.IsExternal() {
    2413           1 :                 ctx := context.TODO()
    2414           1 :                 src, err := d.objProvider.OpenForReading(
    2415           1 :                         ctx, fileTypeTable, inputMeta.FileBacking.DiskFileNum, objstorage.OpenOptions{},
    2416           1 :                 )
    2417           1 :                 if err != nil {
    2418           0 :                         return nil, compact.Stats{}, err
    2419           0 :                 }
    2420           1 :                 defer func() {
    2421           1 :                         if src != nil {
    2422           0 :                                 src.Close()
    2423           0 :                         }
    2424             :                 }()
    2425             : 
    2426           1 :                 w, _, err := d.objProvider.Create(
    2427           1 :                         ctx, fileTypeTable, newMeta.FileBacking.DiskFileNum,
    2428           1 :                         objstorage.CreateOptions{
    2429           1 :                                 PreferSharedStorage: remote.ShouldCreateShared(d.opts.Experimental.CreateOnShared, c.outputLevel.level),
    2430           1 :                         },
    2431           1 :                 )
    2432           1 :                 if err != nil {
    2433           0 :                         return nil, compact.Stats{}, err
    2434           0 :                 }
    2435           1 :                 deleteOnExit = true
    2436           1 : 
    2437           1 :                 start, end := newMeta.Smallest, newMeta.Largest
    2438           1 :                 if newMeta.SyntheticPrefixAndSuffix.HasPrefix() {
    2439           1 :                         syntheticPrefix := newMeta.SyntheticPrefixAndSuffix.Prefix()
    2440           1 :                         start.UserKey = syntheticPrefix.Invert(start.UserKey)
    2441           1 :                         end.UserKey = syntheticPrefix.Invert(end.UserKey)
    2442           1 :                 }
    2443           1 :                 if newMeta.SyntheticPrefixAndSuffix.HasSuffix() {
    2444           0 :                         // Extend the bounds as necessary so that the keys don't include suffixes.
    2445           0 :                         start.UserKey = start.UserKey[:c.comparer.Split(start.UserKey)]
    2446           0 :                         if n := c.comparer.Split(end.UserKey); n < len(end.UserKey) {
    2447           0 :                                 end = base.MakeRangeDeleteSentinelKey(c.comparer.ImmediateSuccessor(nil, end.UserKey[:n]))
    2448           0 :                         }
    2449             :                 }
    2450             : 
    2451             :                 // NB: external files are always virtual.
    2452           1 :                 var wrote uint64
    2453           1 :                 err = d.tableCache.withVirtualReader(inputMeta.VirtualMeta(), func(r sstable.VirtualReader) error {
    2454           1 :                         var err error
    2455           1 :                         wrote, err = sstable.CopySpan(ctx,
    2456           1 :                                 src, r.UnsafeReader(), d.opts.MakeReaderOptions(),
    2457           1 :                                 w, d.opts.MakeWriterOptions(c.outputLevel.level, d.TableFormat()),
    2458           1 :                                 start, end,
    2459           1 :                         )
    2460           1 :                         return err
    2461           1 :                 })
    2462             : 
    2463           1 :                 src = nil // We passed src to CopySpan; it's responsible for closing it.
    2464           1 :                 if err != nil {
    2465           1 :                         if errors.Is(err, sstable.ErrEmptySpan) {
    2466           1 :                                 // The virtual table was empty. Just remove the backing file.
    2467           1 :                                 // Note that deleteOnExit is true so we will delete the created object.
    2468           1 :                                 c.metrics = map[int]*LevelMetrics{
    2469           1 :                                         c.outputLevel.level: {
    2470           1 :                                                 BytesIn: inputMeta.Size,
    2471           1 :                                         },
    2472           1 :                                 }
    2473           1 :                                 return ve, compact.Stats{}, nil
    2474           1 :                         }
    2475           0 :                         return nil, compact.Stats{}, err
    2476             :                 }
    2477           1 :                 newMeta.FileBacking.Size = wrote
    2478           1 :                 newMeta.Size = wrote
    2479           1 :         } else {
    2480           1 :                 _, err := d.objProvider.LinkOrCopyFromLocal(context.TODO(), d.opts.FS,
    2481           1 :                         d.objProvider.Path(objMeta), fileTypeTable, newMeta.FileBacking.DiskFileNum,
    2482           1 :                         objstorage.CreateOptions{PreferSharedStorage: true})
    2483           1 :                 if err != nil {
    2484           0 :                         return nil, compact.Stats{}, err
    2485           0 :                 }
    2486           1 :                 deleteOnExit = true
    2487             :         }
    2488           1 :         ve.NewFiles = []newFileEntry{{
    2489           1 :                 Level: c.outputLevel.level,
    2490           1 :                 Meta:  newMeta,
    2491           1 :         }}
    2492           1 :         if newMeta.Virtual {
    2493           1 :                 ve.CreatedBackingTables = []*fileBacking{newMeta.FileBacking}
    2494           1 :         }
    2495           1 :         c.metrics = map[int]*LevelMetrics{
    2496           1 :                 c.outputLevel.level: {
    2497           1 :                         BytesIn:         inputMeta.Size,
    2498           1 :                         BytesCompacted:  newMeta.Size,
    2499           1 :                         TablesCompacted: 1,
    2500           1 :                 },
    2501           1 :         }
    2502           1 : 
    2503           1 :         if err := d.objProvider.Sync(); err != nil {
    2504           0 :                 return nil, compact.Stats{}, err
    2505           0 :         }
    2506           1 :         deleteOnExit = false
    2507           1 :         return ve, compact.Stats{}, nil
    2508             : }
    2509             : 
    2510             : // applyHintOnFile applies a deleteCompactionHint to a file, and updates the
    2511             : // versionEdit accordingly. It returns a list of new files that were created
    2512             : // if the hint was applied partially to a file (eg. through an excise as opposed
    2513             : // to an outright deletion). levelMetrics is kept up-to-date with the number
    2514             : // of tables deleted or excised.
    2515             : func (d *DB) applyHintOnFile(
    2516             :         h deleteCompactionHint,
    2517             :         f *fileMetadata,
    2518             :         level int,
    2519             :         levelMetrics *LevelMetrics,
    2520             :         ve *versionEdit,
    2521             :         hintOverlap deletionHintOverlap,
    2522           1 : ) (newFiles []manifest.NewFileEntry, err error) {
    2523           1 :         if hintOverlap == hintDoesNotApply {
    2524           0 :                 return nil, nil
    2525           0 :         }
    2526             : 
    2527             :         // The hint overlaps with at least part of the file.
    2528           1 :         if hintOverlap == hintDeletesFile {
    2529           1 :                 // The hint deletes the entirety of this file.
    2530           1 :                 ve.DeletedFiles[deletedFileEntry{
    2531           1 :                         Level:   level,
    2532           1 :                         FileNum: f.FileNum,
    2533           1 :                 }] = f
    2534           1 :                 levelMetrics.TablesDeleted++
    2535           1 :                 return nil, nil
    2536           1 :         }
    2537             :         // The hint overlaps with only a part of the file, not the entirety of it. We need
    2538             :         // to use d.excise. (hintOverlap == hintExcisesFile)
    2539           1 :         if d.FormatMajorVersion() < FormatVirtualSSTables {
    2540           0 :                 panic("pebble: delete-only compaction hint excising a file is not supported in this version")
    2541             :         }
    2542             : 
    2543           1 :         levelMetrics.TablesExcised++
    2544           1 :         newFiles, err = d.excise(context.TODO(), base.UserKeyBoundsEndExclusive(h.start, h.end), f, ve, level)
    2545           1 :         if err != nil {
    2546           0 :                 return nil, errors.Wrap(err, "error when running excise for delete-only compaction")
    2547           0 :         }
    2548           1 :         if _, ok := ve.DeletedFiles[deletedFileEntry{
    2549           1 :                 Level:   level,
    2550           1 :                 FileNum: f.FileNum,
    2551           1 :         }]; !ok {
    2552           0 :                 panic("pebble: delete-only compaction hint overlapping a file did not excise that file")
    2553             :         }
    2554           1 :         return newFiles, nil
    2555             : }
    2556             : 
    2557             : func (d *DB) runDeleteOnlyCompactionForLevel(
    2558             :         cl compactionLevel,
    2559             :         levelMetrics *LevelMetrics,
    2560             :         ve *versionEdit,
    2561             :         snapshots compact.Snapshots,
    2562             :         fragments []deleteCompactionHintFragment,
    2563             :         exciseEnabled bool,
    2564           1 : ) error {
    2565           1 :         curFragment := 0
    2566           1 :         iter := cl.files.Iter()
    2567           1 :         if cl.level == 0 {
    2568           0 :                 panic("cannot run delete-only compaction for L0")
    2569             :         }
    2570             : 
    2571             :         // Outer loop loops on files. Middle loop loops on fragments. Inner loop
    2572             :         // loops on raw fragments of hints. Number of fragments are bounded by
    2573             :         // the number of hints this compaction was created with, which is capped
    2574             :         // in the compaction picker to avoid very CPU-hot loops here.
    2575           1 :         for f := iter.First(); f != nil; f = iter.Next() {
    2576           1 :                 // curFile usually matches f, except if f got excised in which case
    2577           1 :                 // it maps to a virtual file that replaces f, or nil if f got removed
    2578           1 :                 // in its entirety.
    2579           1 :                 curFile := f
    2580           1 :                 for curFragment < len(fragments) && d.cmp(fragments[curFragment].start, f.Smallest.UserKey) <= 0 {
    2581           1 :                         curFragment++
    2582           1 :                 }
    2583           1 :                 if curFragment > 0 {
    2584           1 :                         curFragment--
    2585           1 :                 }
    2586             : 
    2587           1 :                 for ; curFragment < len(fragments); curFragment++ {
    2588           1 :                         if f.UserKeyBounds().End.CompareUpperBounds(d.cmp, base.UserKeyInclusive(fragments[curFragment].start)) < 0 {
    2589           1 :                                 break
    2590             :                         }
    2591             :                         // Process all overlapping hints with this file. Note that applying
    2592             :                         // a hint twice is idempotent; curFile should have already been excised
    2593             :                         // the first time, resulting in no change the second time.
    2594           1 :                         for _, h := range fragments[curFragment].hints {
    2595           1 :                                 if h.tombstoneLevel >= cl.level {
    2596           1 :                                         // We cannot excise out the deletion tombstone itself, or anything
    2597           1 :                                         // above it.
    2598           1 :                                         continue
    2599             :                                 }
    2600           1 :                                 hintOverlap := h.canDeleteOrExcise(d.cmp, curFile, snapshots, exciseEnabled)
    2601           1 :                                 if hintOverlap == hintDoesNotApply {
    2602           1 :                                         continue
    2603             :                                 }
    2604           1 :                                 newFiles, err := d.applyHintOnFile(h, curFile, cl.level, levelMetrics, ve, hintOverlap)
    2605           1 :                                 if err != nil {
    2606           0 :                                         return err
    2607           0 :                                 }
    2608           1 :                                 if _, ok := ve.DeletedFiles[manifest.DeletedFileEntry{Level: cl.level, FileNum: curFile.FileNum}]; ok {
    2609           1 :                                         curFile = nil
    2610           1 :                                 }
    2611           1 :                                 if len(newFiles) > 0 {
    2612           1 :                                         curFile = newFiles[len(newFiles)-1].Meta
    2613           1 :                                 } else if curFile == nil {
    2614           1 :                                         // Nothing remains of the file.
    2615           1 :                                         break
    2616             :                                 }
    2617             :                         }
    2618           1 :                         if curFile == nil {
    2619           1 :                                 // Nothing remains of the file.
    2620           1 :                                 break
    2621             :                         }
    2622             :                 }
    2623           1 :                 if _, ok := ve.DeletedFiles[deletedFileEntry{
    2624           1 :                         Level:   cl.level,
    2625           1 :                         FileNum: f.FileNum,
    2626           1 :                 }]; !ok {
    2627           0 :                         panic("pebble: delete-only compaction scheduled with hints that did not delete or excise a file")
    2628             :                 }
    2629             :         }
    2630           1 :         return nil
    2631             : }
    2632             : 
    2633             : // deleteCompactionHintFragment represents a fragment of the key space and
    2634             : // contains a set of deleteCompactionHints that apply to that fragment; a
    2635             : // fragment starts at the start field and ends where the next fragment starts.
    2636             : type deleteCompactionHintFragment struct {
    2637             :         start []byte
    2638             :         hints []deleteCompactionHint
    2639             : }
    2640             : 
    2641             : // Delete compaction hints can overlap with each other, and multiple fragments
    2642             : // can apply to a single file. This function takes a list of hints and fragments
    2643             : // them, to make it easier to apply them to non-overlapping files occupying a level;
    2644             : // that way, files and hint fragments can be iterated on in lockstep, while efficiently
    2645             : // being able to apply all hints overlapping with a given file.
    2646             : func fragmentDeleteCompactionHints(
    2647             :         cmp Compare, hints []deleteCompactionHint,
    2648           1 : ) []deleteCompactionHintFragment {
    2649           1 :         fragments := make([]deleteCompactionHintFragment, 0, len(hints)*2)
    2650           1 :         for i := range hints {
    2651           1 :                 fragments = append(fragments, deleteCompactionHintFragment{start: hints[i].start},
    2652           1 :                         deleteCompactionHintFragment{start: hints[i].end})
    2653           1 :         }
    2654           1 :         slices.SortFunc(fragments, func(i, j deleteCompactionHintFragment) int {
    2655           1 :                 return cmp(i.start, j.start)
    2656           1 :         })
    2657           1 :         fragments = slices.CompactFunc(fragments, func(i, j deleteCompactionHintFragment) bool {
    2658           1 :                 return bytes.Equal(i.start, j.start)
    2659           1 :         })
    2660           1 :         for _, h := range hints {
    2661           1 :                 startIdx := sort.Search(len(fragments), func(i int) bool {
    2662           1 :                         return cmp(fragments[i].start, h.start) >= 0
    2663           1 :                 })
    2664           1 :                 endIdx := sort.Search(len(fragments), func(i int) bool {
    2665           1 :                         return cmp(fragments[i].start, h.end) >= 0
    2666           1 :                 })
    2667           1 :                 for i := startIdx; i < endIdx; i++ {
    2668           1 :                         fragments[i].hints = append(fragments[i].hints, h)
    2669           1 :                 }
    2670             :         }
    2671           1 :         return fragments
    2672             : }
    2673             : 
    2674             : // Runs a delete-only compaction.
    2675             : //
    2676             : // d.mu must *not* be held when calling this.
    2677             : func (d *DB) runDeleteOnlyCompaction(
    2678             :         jobID JobID, c *compaction, snapshots compact.Snapshots,
    2679           1 : ) (ve *versionEdit, stats compact.Stats, retErr error) {
    2680           1 :         c.metrics = make(map[int]*LevelMetrics, len(c.inputs))
    2681           1 :         fragments := fragmentDeleteCompactionHints(d.cmp, c.deletionHints)
    2682           1 :         ve = &versionEdit{
    2683           1 :                 DeletedFiles: map[deletedFileEntry]*fileMetadata{},
    2684           1 :         }
    2685           1 :         for _, cl := range c.inputs {
    2686           1 :                 levelMetrics := &LevelMetrics{}
    2687           1 :                 if err := d.runDeleteOnlyCompactionForLevel(cl, levelMetrics, ve, snapshots, fragments, c.exciseEnabled); err != nil {
    2688           0 :                         return nil, stats, err
    2689           0 :                 }
    2690           1 :                 c.metrics[cl.level] = levelMetrics
    2691             :         }
    2692             :         // Remove any files that were added and deleted in the same versionEdit.
    2693           1 :         ve.NewFiles = slices.DeleteFunc(ve.NewFiles, func(e manifest.NewFileEntry) bool {
    2694           1 :                 deletedFileEntry := manifest.DeletedFileEntry{Level: e.Level, FileNum: e.Meta.FileNum}
    2695           1 :                 if _, deleted := ve.DeletedFiles[deletedFileEntry]; deleted {
    2696           1 :                         delete(ve.DeletedFiles, deletedFileEntry)
    2697           1 :                         return true
    2698           1 :                 }
    2699           1 :                 return false
    2700             :         })
    2701             :         // Remove any entries from CreatedBackingTables that are not used in any
    2702             :         // NewFiles.
    2703           1 :         usedBackingFiles := make(map[base.DiskFileNum]struct{})
    2704           1 :         for _, e := range ve.NewFiles {
    2705           1 :                 if e.Meta.Virtual {
    2706           1 :                         usedBackingFiles[e.Meta.FileBacking.DiskFileNum] = struct{}{}
    2707           1 :                 }
    2708             :         }
    2709           1 :         ve.CreatedBackingTables = slices.DeleteFunc(ve.CreatedBackingTables, func(b *fileBacking) bool {
    2710           1 :                 _, used := usedBackingFiles[b.DiskFileNum]
    2711           1 :                 return !used
    2712           1 :         })
    2713             :         // Refresh the disk available statistic whenever a compaction/flush
    2714             :         // completes, before re-acquiring the mutex.
    2715           1 :         d.calculateDiskAvailableBytes()
    2716           1 :         return ve, stats, nil
    2717             : }
    2718             : 
    2719             : func (d *DB) runMoveCompaction(
    2720             :         jobID JobID, c *compaction,
    2721           1 : ) (ve *versionEdit, stats compact.Stats, _ error) {
    2722           1 :         iter := c.startLevel.files.Iter()
    2723           1 :         meta := iter.First()
    2724           1 :         if iter.Next() != nil {
    2725           0 :                 return nil, stats, base.AssertionFailedf("got more than one file for a move compaction")
    2726           0 :         }
    2727           1 :         if c.cancel.Load() {
    2728           0 :                 return ve, stats, ErrCancelledCompaction
    2729           0 :         }
    2730           1 :         c.metrics = map[int]*LevelMetrics{
    2731           1 :                 c.outputLevel.level: {
    2732           1 :                         BytesMoved:  meta.Size,
    2733           1 :                         TablesMoved: 1,
    2734           1 :                 },
    2735           1 :         }
    2736           1 :         ve = &versionEdit{
    2737           1 :                 DeletedFiles: map[deletedFileEntry]*fileMetadata{
    2738           1 :                         {Level: c.startLevel.level, FileNum: meta.FileNum}: meta,
    2739           1 :                 },
    2740           1 :                 NewFiles: []newFileEntry{
    2741           1 :                         {Level: c.outputLevel.level, Meta: meta},
    2742           1 :                 },
    2743           1 :         }
    2744           1 : 
    2745           1 :         return ve, stats, nil
    2746             : }
    2747             : 
    2748             : // runCompaction runs a compaction that produces new on-disk tables from
    2749             : // memtables or old on-disk tables.
    2750             : //
    2751             : // runCompaction cannot be used for compactionKindIngestedFlushable.
    2752             : //
    2753             : // d.mu must be held when calling this, but the mutex may be dropped and
    2754             : // re-acquired during the course of this method.
    2755             : func (d *DB) runCompaction(
    2756             :         jobID JobID, c *compaction,
    2757           1 : ) (ve *versionEdit, stats compact.Stats, retErr error) {
    2758           1 :         if c.cancel.Load() {
    2759           1 :                 return ve, stats, ErrCancelledCompaction
    2760           1 :         }
    2761           1 :         switch c.kind {
    2762           1 :         case compactionKindDeleteOnly:
    2763           1 :                 // Before dropping the db mutex, grab a ref to the current version. This
    2764           1 :                 // prevents any concurrent excises from deleting files that this compaction
    2765           1 :                 // needs to read/maintain a reference to.
    2766           1 :                 //
    2767           1 :                 // Note that delete-only compactions can call excise(), which needs to be able
    2768           1 :                 // to read these files.
    2769           1 :                 vers := d.mu.versions.currentVersion()
    2770           1 :                 vers.Ref()
    2771           1 :                 defer vers.UnrefLocked()
    2772           1 :                 // Release the d.mu lock while doing I/O.
    2773           1 :                 // Note the unusual order: Unlock and then Lock.
    2774           1 :                 snapshots := d.mu.snapshots.toSlice()
    2775           1 :                 d.mu.Unlock()
    2776           1 :                 defer d.mu.Lock()
    2777           1 :                 return d.runDeleteOnlyCompaction(jobID, c, snapshots)
    2778           1 :         case compactionKindMove:
    2779           1 :                 return d.runMoveCompaction(jobID, c)
    2780           1 :         case compactionKindCopy:
    2781           1 :                 return d.runCopyCompaction(jobID, c)
    2782           0 :         case compactionKindIngestedFlushable:
    2783           0 :                 panic("pebble: runCompaction cannot handle compactionKindIngestedFlushable.")
    2784             :         }
    2785             : 
    2786           1 :         snapshots := d.mu.snapshots.toSlice()
    2787           1 : 
    2788           1 :         if c.flushing == nil {
    2789           1 :                 // Before dropping the db mutex, grab a ref to the current version. This
    2790           1 :                 // prevents any concurrent excises from deleting files that this compaction
    2791           1 :                 // needs to read/maintain a reference to.
    2792           1 :                 //
    2793           1 :                 // Note that unlike user iterators, compactionIter does not maintain a ref
    2794           1 :                 // of the version or read state.
    2795           1 :                 vers := d.mu.versions.currentVersion()
    2796           1 :                 vers.Ref()
    2797           1 :                 defer vers.UnrefLocked()
    2798           1 :         }
    2799             : 
    2800             :         // The table is typically written at the maximum allowable format implied by
    2801             :         // the current format major version of the DB, but Options may define
    2802             :         // additional constraints.
    2803           1 :         tableFormat := d.TableFormat()
    2804           1 : 
    2805           1 :         // Release the d.mu lock while doing I/O.
    2806           1 :         // Note the unusual order: Unlock and then Lock.
    2807           1 :         d.mu.Unlock()
    2808           1 :         defer d.mu.Lock()
    2809           1 : 
    2810           1 :         result := d.compactAndWrite(jobID, c, snapshots, tableFormat)
    2811           1 :         if result.Err == nil {
    2812           1 :                 ve, result.Err = c.makeVersionEdit(result)
    2813           1 :         }
    2814           1 :         if result.Err != nil {
    2815           1 :                 // Delete any created tables.
    2816           1 :                 obsoleteFiles := make([]*fileBacking, 0, len(result.Tables))
    2817           1 :                 d.mu.Lock()
    2818           1 :                 for i := range result.Tables {
    2819           1 :                         backing := &fileBacking{
    2820           1 :                                 DiskFileNum: result.Tables[i].ObjMeta.DiskFileNum,
    2821           1 :                                 Size:        result.Tables[i].WriterMeta.Size,
    2822           1 :                         }
    2823           1 :                         obsoleteFiles = append(obsoleteFiles, backing)
    2824           1 :                         // Add this file to zombie tables as well, as the versionSet
    2825           1 :                         // asserts on whether every obsolete file was at one point
    2826           1 :                         // marked zombie.
    2827           1 :                         d.mu.versions.zombieTables[backing.DiskFileNum] = tableInfo{
    2828           1 :                                 fileInfo: fileInfo{
    2829           1 :                                         FileNum:  backing.DiskFileNum,
    2830           1 :                                         FileSize: backing.Size,
    2831           1 :                                 },
    2832           1 :                                 isLocal: true,
    2833           1 :                         }
    2834           1 :                 }
    2835           1 :                 d.mu.versions.addObsoleteLocked(obsoleteFiles)
    2836           1 :                 d.mu.Unlock()
    2837             :         }
    2838             :         // Refresh the disk available statistic whenever a compaction/flush
    2839             :         // completes, before re-acquiring the mutex.
    2840           1 :         d.calculateDiskAvailableBytes()
    2841           1 :         return ve, result.Stats, result.Err
    2842             : }
    2843             : 
    2844             : // compactAndWrite runs the data part of a compaction, where we set up a
    2845             : // compaction iterator and use it to write output tables.
    2846             : func (d *DB) compactAndWrite(
    2847             :         jobID JobID, c *compaction, snapshots compact.Snapshots, tableFormat sstable.TableFormat,
    2848           1 : ) (result compact.Result) {
    2849           1 :         // Compactions use a pool of buffers to read blocks, avoiding polluting the
    2850           1 :         // block cache with blocks that will not be read again. We initialize the
    2851           1 :         // buffer pool with a size 12. This initial size does not need to be
    2852           1 :         // accurate, because the pool will grow to accommodate the maximum number of
    2853           1 :         // blocks allocated at a given time over the course of the compaction. But
    2854           1 :         // choosing a size larger than that working set avoids any additional
    2855           1 :         // allocations to grow the size of the pool over the course of iteration.
    2856           1 :         //
    2857           1 :         // Justification for initial size 12: In a two-level compaction, at any
    2858           1 :         // given moment we'll have 2 index blocks in-use and 2 data blocks in-use.
    2859           1 :         // Additionally, when decoding a compressed block, we'll temporarily
    2860           1 :         // allocate 1 additional block to hold the compressed buffer. In the worst
    2861           1 :         // case that all input sstables have two-level index blocks (+2), value
    2862           1 :         // blocks (+2), range deletion blocks (+n) and range key blocks (+n), we'll
    2863           1 :         // additionally require 2n+4 blocks where n is the number of input sstables.
    2864           1 :         // Range deletion and range key blocks are relatively rare, and the cost of
    2865           1 :         // an additional allocation or two over the course of the compaction is
    2866           1 :         // considered to be okay. A larger initial size would cause the pool to hold
    2867           1 :         // on to more memory, even when it's not in-use because the pool will
    2868           1 :         // recycle buffers up to the current capacity of the pool. The memory use of
    2869           1 :         // a 12-buffer pool is expected to be within reason, even if all the buffers
    2870           1 :         // grow to the typical size of an index block (256 KiB) which would
    2871           1 :         // translate to 3 MiB per compaction.
    2872           1 :         c.bufferPool.Init(12)
    2873           1 :         defer c.bufferPool.Release()
    2874           1 : 
    2875           1 :         pointIter, rangeDelIter, rangeKeyIter, err := c.newInputIters(d.newIters, d.tableNewRangeKeyIter)
    2876           1 :         defer func() {
    2877           1 :                 for _, closer := range c.closers {
    2878           1 :                         closer.FragmentIterator.Close()
    2879           1 :                 }
    2880             :         }()
    2881           1 :         if err != nil {
    2882           0 :                 return compact.Result{Err: err}
    2883           0 :         }
    2884           1 :         c.allowedZeroSeqNum = c.allowZeroSeqNum()
    2885           1 :         cfg := compact.IterConfig{
    2886           1 :                 Comparer:                               c.comparer,
    2887           1 :                 Merge:                                  d.merge,
    2888           1 :                 TombstoneElision:                       c.delElision,
    2889           1 :                 RangeKeyElision:                        c.rangeKeyElision,
    2890           1 :                 Snapshots:                              snapshots,
    2891           1 :                 AllowZeroSeqNum:                        c.allowedZeroSeqNum,
    2892           1 :                 IneffectualSingleDeleteCallback:        d.opts.Experimental.IneffectualSingleDeleteCallback,
    2893           1 :                 SingleDeleteInvariantViolationCallback: d.opts.Experimental.SingleDeleteInvariantViolationCallback,
    2894           1 :         }
    2895           1 :         iter := compact.NewIter(cfg, pointIter, rangeDelIter, rangeKeyIter)
    2896           1 : 
    2897           1 :         runnerCfg := compact.RunnerConfig{
    2898           1 :                 CompactionBounds:           base.UserKeyBoundsFromInternal(c.smallest, c.largest),
    2899           1 :                 L0SplitKeys:                c.l0Limits,
    2900           1 :                 Grandparents:               c.grandparents,
    2901           1 :                 MaxGrandparentOverlapBytes: c.maxOverlapBytes,
    2902           1 :                 TargetOutputFileSize:       c.maxOutputFileSize,
    2903           1 :         }
    2904           1 :         runner := compact.NewRunner(runnerCfg, iter)
    2905           1 :         for runner.MoreDataToWrite() {
    2906           1 :                 if c.cancel.Load() {
    2907           1 :                         return runner.Finish().WithError(ErrCancelledCompaction)
    2908           1 :                 }
    2909             :                 // Create a new table.
    2910           1 :                 writerOpts := d.opts.MakeWriterOptions(c.outputLevel.level, tableFormat)
    2911           1 :                 objMeta, tw, cpuWorkHandle, err := d.newCompactionOutput(jobID, c, writerOpts)
    2912           1 :                 if err != nil {
    2913           1 :                         return runner.Finish().WithError(err)
    2914           1 :                 }
    2915           1 :                 runner.WriteTable(objMeta, tw)
    2916           1 :                 d.opts.Experimental.CPUWorkPermissionGranter.CPUWorkDone(cpuWorkHandle)
    2917             :         }
    2918           1 :         result = runner.Finish()
    2919           1 :         if result.Err == nil {
    2920           1 :                 result.Err = d.objProvider.Sync()
    2921           1 :         }
    2922           1 :         return result
    2923             : }
    2924             : 
    2925             : // makeVersionEdit creates the version edit for a compaction, based on the
    2926             : // tables in compact.Result.
    2927           1 : func (c *compaction) makeVersionEdit(result compact.Result) (*versionEdit, error) {
    2928           1 :         ve := &versionEdit{
    2929           1 :                 DeletedFiles: map[deletedFileEntry]*fileMetadata{},
    2930           1 :         }
    2931           1 :         for _, cl := range c.inputs {
    2932           1 :                 iter := cl.files.Iter()
    2933           1 :                 for f := iter.First(); f != nil; f = iter.Next() {
    2934           1 :                         ve.DeletedFiles[deletedFileEntry{
    2935           1 :                                 Level:   cl.level,
    2936           1 :                                 FileNum: f.FileNum,
    2937           1 :                         }] = f
    2938           1 :                 }
    2939             :         }
    2940             : 
    2941           1 :         startLevelBytes := c.startLevel.files.SizeSum()
    2942           1 :         outputMetrics := &LevelMetrics{
    2943           1 :                 BytesIn:   startLevelBytes,
    2944           1 :                 BytesRead: c.outputLevel.files.SizeSum(),
    2945           1 :         }
    2946           1 :         if len(c.extraLevels) > 0 {
    2947           1 :                 outputMetrics.BytesIn += c.extraLevels[0].files.SizeSum()
    2948           1 :         }
    2949           1 :         outputMetrics.BytesRead += outputMetrics.BytesIn
    2950           1 : 
    2951           1 :         c.metrics = map[int]*LevelMetrics{
    2952           1 :                 c.outputLevel.level: outputMetrics,
    2953           1 :         }
    2954           1 :         if len(c.flushing) == 0 && c.metrics[c.startLevel.level] == nil {
    2955           1 :                 c.metrics[c.startLevel.level] = &LevelMetrics{}
    2956           1 :         }
    2957           1 :         if len(c.extraLevels) > 0 {
    2958           1 :                 c.metrics[c.extraLevels[0].level] = &LevelMetrics{}
    2959           1 :                 outputMetrics.MultiLevel.BytesInTop = startLevelBytes
    2960           1 :                 outputMetrics.MultiLevel.BytesIn = outputMetrics.BytesIn
    2961           1 :                 outputMetrics.MultiLevel.BytesRead = outputMetrics.BytesRead
    2962           1 :         }
    2963             : 
    2964           1 :         inputLargestSeqNumAbsolute := c.inputLargestSeqNumAbsolute()
    2965           1 :         ve.NewFiles = make([]newFileEntry, len(result.Tables))
    2966           1 :         for i := range result.Tables {
    2967           1 :                 t := &result.Tables[i]
    2968           1 : 
    2969           1 :                 fileMeta := &fileMetadata{
    2970           1 :                         FileNum:        base.PhysicalTableFileNum(t.ObjMeta.DiskFileNum),
    2971           1 :                         CreationTime:   t.CreationTime.Unix(),
    2972           1 :                         Size:           t.WriterMeta.Size,
    2973           1 :                         SmallestSeqNum: t.WriterMeta.SmallestSeqNum,
    2974           1 :                         LargestSeqNum:  t.WriterMeta.LargestSeqNum,
    2975           1 :                 }
    2976           1 :                 if c.flushing == nil {
    2977           1 :                         // Set the file's LargestSeqNumAbsolute to be the maximum value of any
    2978           1 :                         // of the compaction's input sstables.
    2979           1 :                         // TODO(jackson): This could be narrowed to be the maximum of input
    2980           1 :                         // sstables that overlap the output sstable's key range.
    2981           1 :                         fileMeta.LargestSeqNumAbsolute = inputLargestSeqNumAbsolute
    2982           1 :                 } else {
    2983           1 :                         fileMeta.LargestSeqNumAbsolute = t.WriterMeta.LargestSeqNum
    2984           1 :                 }
    2985           1 :                 fileMeta.InitPhysicalBacking()
    2986           1 : 
    2987           1 :                 // If the file didn't contain any range deletions, we can fill its
    2988           1 :                 // table stats now, avoiding unnecessarily loading the table later.
    2989           1 :                 maybeSetStatsFromProperties(
    2990           1 :                         fileMeta.PhysicalMeta(), &t.WriterMeta.Properties,
    2991           1 :                 )
    2992           1 : 
    2993           1 :                 if t.WriterMeta.HasPointKeys {
    2994           1 :                         fileMeta.ExtendPointKeyBounds(c.cmp, t.WriterMeta.SmallestPoint, t.WriterMeta.LargestPoint)
    2995           1 :                 }
    2996           1 :                 if t.WriterMeta.HasRangeDelKeys {
    2997           1 :                         fileMeta.ExtendPointKeyBounds(c.cmp, t.WriterMeta.SmallestRangeDel, t.WriterMeta.LargestRangeDel)
    2998           1 :                 }
    2999           1 :                 if t.WriterMeta.HasRangeKeys {
    3000           1 :                         fileMeta.ExtendRangeKeyBounds(c.cmp, t.WriterMeta.SmallestRangeKey, t.WriterMeta.LargestRangeKey)
    3001           1 :                 }
    3002             : 
    3003           1 :                 ve.NewFiles[i] = newFileEntry{
    3004           1 :                         Level: c.outputLevel.level,
    3005           1 :                         Meta:  fileMeta,
    3006           1 :                 }
    3007           1 : 
    3008           1 :                 // Update metrics.
    3009           1 :                 if c.flushing == nil {
    3010           1 :                         outputMetrics.TablesCompacted++
    3011           1 :                         outputMetrics.BytesCompacted += fileMeta.Size
    3012           1 :                 } else {
    3013           1 :                         outputMetrics.TablesFlushed++
    3014           1 :                         outputMetrics.BytesFlushed += fileMeta.Size
    3015           1 :                 }
    3016           1 :                 outputMetrics.Size += int64(fileMeta.Size)
    3017           1 :                 outputMetrics.NumFiles++
    3018           1 :                 outputMetrics.Additional.BytesWrittenDataBlocks += t.WriterMeta.Properties.DataSize
    3019           1 :                 outputMetrics.Additional.BytesWrittenValueBlocks += t.WriterMeta.Properties.ValueBlocksSize
    3020             :         }
    3021             : 
    3022             :         // Sanity check that the tables are ordered and don't overlap.
    3023           1 :         for i := 1; i < len(ve.NewFiles); i++ {
    3024           1 :                 if ve.NewFiles[i-1].Meta.UserKeyBounds().End.IsUpperBoundFor(c.cmp, ve.NewFiles[i].Meta.Smallest.UserKey) {
    3025           0 :                         return nil, base.AssertionFailedf("pebble: compaction output tables overlap: %s and %s",
    3026           0 :                                 ve.NewFiles[i-1].Meta.DebugString(c.formatKey, true),
    3027           0 :                                 ve.NewFiles[i].Meta.DebugString(c.formatKey, true),
    3028           0 :                         )
    3029           0 :                 }
    3030             :         }
    3031             : 
    3032           1 :         return ve, nil
    3033             : }
    3034             : 
    3035             : // newCompactionOutput creates an object for a new table produced by a
    3036             : // compaction or flush.
    3037             : func (d *DB) newCompactionOutput(
    3038             :         jobID JobID, c *compaction, writerOpts sstable.WriterOptions,
    3039           1 : ) (objstorage.ObjectMetadata, sstable.RawWriter, CPUWorkHandle, error) {
    3040           1 :         diskFileNum := d.mu.versions.getNextDiskFileNum()
    3041           1 : 
    3042           1 :         var writeCategory vfs.DiskWriteCategory
    3043           1 :         if d.opts.EnableSQLRowSpillMetrics {
    3044           0 :                 // In the scenario that the Pebble engine is used for SQL row spills the
    3045           0 :                 // data written to the memtable will correspond to spills to disk and
    3046           0 :                 // should be categorized as such.
    3047           0 :                 writeCategory = "sql-row-spill"
    3048           1 :         } else if c.kind == compactionKindFlush {
    3049           1 :                 writeCategory = "pebble-memtable-flush"
    3050           1 :         } else {
    3051           1 :                 writeCategory = "pebble-compaction"
    3052           1 :         }
    3053             : 
    3054           1 :         var reason string
    3055           1 :         if c.kind == compactionKindFlush {
    3056           1 :                 reason = "flushing"
    3057           1 :         } else {
    3058           1 :                 reason = "compacting"
    3059           1 :         }
    3060             : 
    3061           1 :         ctx := context.TODO()
    3062           1 :         if objiotracing.Enabled {
    3063           0 :                 ctx = objiotracing.WithLevel(ctx, c.outputLevel.level)
    3064           0 :                 if c.kind == compactionKindFlush {
    3065           0 :                         ctx = objiotracing.WithReason(ctx, objiotracing.ForFlush)
    3066           0 :                 } else {
    3067           0 :                         ctx = objiotracing.WithReason(ctx, objiotracing.ForCompaction)
    3068           0 :                 }
    3069             :         }
    3070             : 
    3071             :         // Prefer shared storage if present.
    3072           1 :         createOpts := objstorage.CreateOptions{
    3073           1 :                 PreferSharedStorage: remote.ShouldCreateShared(d.opts.Experimental.CreateOnShared, c.outputLevel.level),
    3074           1 :                 WriteCategory:       writeCategory,
    3075           1 :         }
    3076           1 :         writable, objMeta, err := d.objProvider.Create(ctx, fileTypeTable, diskFileNum, createOpts)
    3077           1 :         if err != nil {
    3078           1 :                 return objstorage.ObjectMetadata{}, nil, nil, err
    3079           1 :         }
    3080             : 
    3081           1 :         if c.kind != compactionKindFlush {
    3082           1 :                 writable = &compactionWritable{
    3083           1 :                         Writable: writable,
    3084           1 :                         versions: d.mu.versions,
    3085           1 :                         written:  &c.bytesWritten,
    3086           1 :                 }
    3087           1 :         }
    3088           1 :         d.opts.EventListener.TableCreated(TableCreateInfo{
    3089           1 :                 JobID:   int(jobID),
    3090           1 :                 Reason:  reason,
    3091           1 :                 Path:    d.objProvider.Path(objMeta),
    3092           1 :                 FileNum: diskFileNum,
    3093           1 :         })
    3094           1 : 
    3095           1 :         writerOpts.SetInternal(sstableinternal.WriterOptions{
    3096           1 :                 CacheOpts: sstableinternal.CacheOptions{
    3097           1 :                         Cache:   d.opts.Cache,
    3098           1 :                         CacheID: d.cacheID,
    3099           1 :                         FileNum: diskFileNum,
    3100           1 :                 },
    3101           1 :         })
    3102           1 : 
    3103           1 :         const MaxFileWriteAdditionalCPUTime = time.Millisecond * 100
    3104           1 :         cpuWorkHandle := d.opts.Experimental.CPUWorkPermissionGranter.GetPermission(
    3105           1 :                 MaxFileWriteAdditionalCPUTime,
    3106           1 :         )
    3107           1 :         writerOpts.Parallelism =
    3108           1 :                 d.opts.Experimental.MaxWriterConcurrency > 0 &&
    3109           1 :                         (cpuWorkHandle.Permitted() || d.opts.Experimental.ForceWriterParallelism)
    3110           1 : 
    3111           1 :         // TODO(jackson): Make the compaction body generic over the RawWriter type,
    3112           1 :         // so that we don't need to pay the cost of dynamic dispatch?
    3113           1 :         tw := sstable.NewRawWriter(writable, writerOpts)
    3114           1 :         return objMeta, tw, cpuWorkHandle, nil
    3115             : }
    3116             : 
    3117             : // validateVersionEdit validates that start and end keys across new and deleted
    3118             : // files in a versionEdit pass the given validation function.
    3119             : func validateVersionEdit(
    3120             :         ve *versionEdit, validateFn func([]byte) error, format base.FormatKey, logger Logger,
    3121           1 : ) {
    3122           1 :         validateKey := func(f *manifest.FileMetadata, key []byte) {
    3123           1 :                 if err := validateFn(key); err != nil {
    3124           1 :                         logger.Fatalf("pebble: version edit validation failed (key=%s file=%s): %v", format(key), f, err)
    3125           1 :                 }
    3126             :         }
    3127             : 
    3128             :         // Validate both new and deleted files.
    3129           1 :         for _, f := range ve.NewFiles {
    3130           1 :                 validateKey(f.Meta, f.Meta.Smallest.UserKey)
    3131           1 :                 validateKey(f.Meta, f.Meta.Largest.UserKey)
    3132           1 :         }
    3133           1 :         for _, m := range ve.DeletedFiles {
    3134           1 :                 validateKey(m, m.Smallest.UserKey)
    3135           1 :                 validateKey(m, m.Largest.UserKey)
    3136           1 :         }
    3137             : }

Generated by: LCOV version 1.14