LCOV - code coverage report
Current view: top level - pebble - batch.go (source / functions) Coverage Total Hit
Test: 2025-04-04 08:17Z c0b18bc8 - tests only.lcov Lines: 86.2 % 1401 1207
Test Date: 2025-04-04 08:18:29 Functions: - 0 0

            Line data    Source code
       1              : // Copyright 2012 The LevelDB-Go and Pebble Authors. All rights reserved. Use
       2              : // of this source code is governed by a BSD-style license that can be found in
       3              : // the LICENSE file.
       4              : 
       5              : package pebble
       6              : 
       7              : import (
       8              :         "bytes"
       9              :         "context"
      10              :         "encoding/binary"
      11              :         "fmt"
      12              :         "io"
      13              :         "math"
      14              :         "sort"
      15              :         "sync"
      16              :         "sync/atomic"
      17              :         "time"
      18              :         "unsafe"
      19              : 
      20              :         "github.com/cockroachdb/crlib/crtime"
      21              :         "github.com/cockroachdb/errors"
      22              :         "github.com/cockroachdb/pebble/batchrepr"
      23              :         "github.com/cockroachdb/pebble/internal/base"
      24              :         "github.com/cockroachdb/pebble/internal/batchskl"
      25              :         "github.com/cockroachdb/pebble/internal/humanize"
      26              :         "github.com/cockroachdb/pebble/internal/invariants"
      27              :         "github.com/cockroachdb/pebble/internal/keyspan"
      28              :         "github.com/cockroachdb/pebble/internal/private"
      29              :         "github.com/cockroachdb/pebble/internal/rangedel"
      30              :         "github.com/cockroachdb/pebble/internal/rangekey"
      31              :         "github.com/cockroachdb/pebble/internal/rawalloc"
      32              :         "github.com/cockroachdb/pebble/internal/treeprinter"
      33              : )
      34              : 
      35              : const (
      36              :         invalidBatchCount = 1<<32 - 1
      37              :         maxVarintLen32    = 5
      38              : 
      39              :         defaultBatchInitialSize     = 1 << 10 // 1 KB
      40              :         defaultBatchMaxRetainedSize = 1 << 20 // 1 MB
      41              : )
      42              : 
      43              : // ErrNotIndexed means that a read operation on a batch failed because the
      44              : // batch is not indexed and thus doesn't support reads.
      45              : var ErrNotIndexed = errors.New("pebble: batch not indexed")
      46              : 
      47              : // ErrInvalidBatch indicates that a batch is invalid or otherwise corrupted.
      48              : var ErrInvalidBatch = batchrepr.ErrInvalidBatch
      49              : 
      50              : // ErrBatchTooLarge indicates that a batch is invalid or otherwise corrupted.
      51              : var ErrBatchTooLarge = base.MarkCorruptionError(errors.Newf("pebble: batch too large: >= %s", humanize.Bytes.Uint64(maxBatchSize)))
      52              : 
      53              : // DeferredBatchOp represents a batch operation (eg. set, merge, delete) that is
      54              : // being inserted into the batch. Indexing is not performed on the specified key
      55              : // until Finish is called, hence the name deferred. This struct lets the caller
      56              : // copy or encode keys/values directly into the batch representation instead of
      57              : // copying into an intermediary buffer then having pebble.Batch copy off of it.
      58              : type DeferredBatchOp struct {
      59              :         index *batchskl.Skiplist
      60              : 
      61              :         // Key and Value point to parts of the binary batch representation where
      62              :         // keys and values should be encoded/copied into. len(Key) and len(Value)
      63              :         // bytes must be copied into these slices respectively before calling
      64              :         // Finish(). Changing where these slices point to is not allowed.
      65              :         Key, Value []byte
      66              :         offset     uint32
      67              : }
      68              : 
      69              : // Finish completes the addition of this batch operation, and adds it to the
      70              : // index if necessary. Must be called once (and exactly once) keys/values
      71              : // have been filled into Key and Value. Not calling Finish or not
      72              : // copying/encoding keys will result in an incomplete index, and calling Finish
      73              : // twice may result in a panic.
      74            1 : func (d DeferredBatchOp) Finish() error {
      75            1 :         if d.index != nil {
      76            0 :                 if err := d.index.Add(d.offset); err != nil {
      77            0 :                         return err
      78            0 :                 }
      79              :         }
      80            1 :         return nil
      81              : }
      82              : 
      83              : // A Batch is a sequence of Sets, Merges, Deletes, DeleteRanges, RangeKeySets,
      84              : // RangeKeyUnsets, and/or RangeKeyDeletes that are applied atomically. Batch
      85              : // implements the Reader interface, but only an indexed batch supports reading
      86              : // (without error) via Get or NewIter. A non-indexed batch will return
      87              : // ErrNotIndexed when read from. A batch is not safe for concurrent use, and
      88              : // consumers should use a batch per goroutine or provide their own
      89              : // synchronization.
      90              : //
      91              : // # Indexing
      92              : //
      93              : // Batches can be optionally indexed (see DB.NewIndexedBatch). An indexed batch
      94              : // allows iteration via an Iterator (see Batch.NewIter). The iterator provides
      95              : // a merged view of the operations in the batch and the underlying
      96              : // database. This is implemented by treating the batch as an additional layer
      97              : // in the LSM where every entry in the batch is considered newer than any entry
      98              : // in the underlying database (batch entries have the InternalKeySeqNumBatch
      99              : // bit set). By treating the batch as an additional layer in the LSM, iteration
     100              : // supports all batch operations (i.e. Set, Merge, Delete, DeleteRange,
     101              : // RangeKeySet, RangeKeyUnset, RangeKeyDelete) with minimal effort.
     102              : //
     103              : // The same key can be operated on multiple times in a batch, though only the
     104              : // latest operation will be visible. For example, Put("a", "b"), Delete("a")
     105              : // will cause the key "a" to not be visible in the batch. Put("a", "b"),
     106              : // Put("a", "c") will cause a read of "a" to return the value "c".
     107              : //
     108              : // The batch index is implemented via an skiplist (internal/batchskl). While
     109              : // the skiplist implementation is very fast, inserting into an indexed batch is
     110              : // significantly slower than inserting into a non-indexed batch. Only use an
     111              : // indexed batch if you require reading from it.
     112              : //
     113              : // # Atomic commit
     114              : //
     115              : // The operations in a batch are persisted by calling Batch.Commit which is
     116              : // equivalent to calling DB.Apply(batch). A batch is committed atomically by
     117              : // writing the internal batch representation to the WAL, adding all of the
     118              : // batch operations to the memtable associated with the WAL, and then
     119              : // incrementing the visible sequence number so that subsequent reads can see
     120              : // the effects of the batch operations. If WriteOptions.Sync is true, a call to
     121              : // Batch.Commit will guarantee that the batch is persisted to disk before
     122              : // returning. See commitPipeline for more on the implementation details.
     123              : //
     124              : // # Large batches
     125              : //
     126              : // The size of a batch is limited only by available memory (be aware that
     127              : // indexed batches require considerably additional memory for the skiplist
     128              : // structure). A given WAL file has a single memtable associated with it (this
     129              : // restriction could be removed, but doing so is onerous and complex). And a
     130              : // memtable has a fixed size due to the underlying fixed size arena. Note that
     131              : // this differs from RocksDB where a memtable can grow arbitrarily large using
     132              : // a list of arena chunks. In RocksDB this is accomplished by storing pointers
     133              : // in the arena memory, but that isn't possible in Go.
     134              : //
     135              : // During Batch.Commit, a batch which is larger than a threshold (>
     136              : // MemTableSize/2) is wrapped in a flushableBatch and inserted into the queue
     137              : // of memtables. A flushableBatch forces WAL to be rotated, but that happens
     138              : // anyways when the memtable becomes full so this does not cause significant
     139              : // WAL churn. Because the flushableBatch is readable as another layer in the
     140              : // LSM, Batch.Commit returns as soon as the flushableBatch has been added to
     141              : // the queue of memtables.
     142              : //
     143              : // Internally, a flushableBatch provides Iterator support by sorting the batch
     144              : // contents (the batch is sorted once, when it is added to the memtable
     145              : // queue). Sorting the batch contents and insertion of the contents into a
     146              : // memtable have the same big-O time, but the constant factor dominates
     147              : // here. Sorting is significantly faster and uses significantly less memory.
     148              : //
     149              : // # Internal representation
     150              : //
     151              : // The internal batch representation is a contiguous byte buffer with a fixed
     152              : // 12-byte header, followed by a series of records.
     153              : //
     154              : //      +-------------+------------+--- ... ---+
     155              : //      | SeqNum (8B) | Count (4B) |  Entries  |
     156              : //      +-------------+------------+--- ... ---+
     157              : //
     158              : // Each record has a 1-byte kind tag prefix, followed by 1 or 2 length prefixed
     159              : // strings (varstring):
     160              : //
     161              : //      +-----------+-----------------+-------------------+
     162              : //      | Kind (1B) | Key (varstring) | Value (varstring) |
     163              : //      +-----------+-----------------+-------------------+
     164              : //
     165              : // A varstring is a varint32 followed by N bytes of data. The Kind tags are
     166              : // exactly those specified by InternalKeyKind. The following table shows the
     167              : // format for records of each kind:
     168              : //
     169              : //      InternalKeyKindDelete         varstring
     170              : //      InternalKeyKindLogData        varstring
     171              : //      InternalKeyKindIngestSST      varstring
     172              : //      InternalKeyKindSet            varstring varstring
     173              : //      InternalKeyKindMerge          varstring varstring
     174              : //      InternalKeyKindRangeDelete    varstring varstring
     175              : //      InternalKeyKindRangeKeySet    varstring varstring
     176              : //      InternalKeyKindRangeKeyUnset  varstring varstring
     177              : //      InternalKeyKindRangeKeyDelete varstring varstring
     178              : //
     179              : // The intuitive understanding here are that the arguments to Delete, Set,
     180              : // Merge, DeleteRange and RangeKeyDelete are encoded into the batch. The
     181              : // RangeKeySet and RangeKeyUnset operations are slightly more complicated,
     182              : // encoding their end key, suffix and value [in the case of RangeKeySet] within
     183              : // the Value varstring. For more information on the value encoding for
     184              : // RangeKeySet and RangeKeyUnset, see the internal/rangekey package.
     185              : //
     186              : // The internal batch representation is the on disk format for a batch in the
     187              : // WAL, and thus stable. New record kinds may be added, but the existing ones
     188              : // will not be modified.
     189              : type Batch struct {
     190              :         batchInternal
     191              :         applied atomic.Bool
     192              :         // lifecycle is used to negotiate the lifecycle of a Batch. A Batch and its
     193              :         // underlying batchInternal.data byte slice may be reused. There are two
     194              :         // mechanisms for reuse:
     195              :         //
     196              :         // 1. The caller may explicitly call [Batch.Reset] to reset the batch to be
     197              :         //    empty (while retaining the underlying repr's buffer).
     198              :         // 2. The caller may call [Batch.Close], passing ownership off to Pebble,
     199              :         //    which may reuse the batch's memory to service new callers to
     200              :         //    [DB.NewBatch].
     201              :         //
     202              :         // There's a complication to reuse: When WAL failover is configured, the
     203              :         // Pebble commit pipeline may retain a pointer to the batch.data beyond the
     204              :         // return of [Batch.Commit]. The user of the Batch may commit their batch
     205              :         // and call Close or Reset before the commit pipeline is finished reading
     206              :         // the data slice. Recycling immediately would cause a data race.
     207              :         //
     208              :         // To resolve this data race, this [lifecycle] atomic is used to determine
     209              :         // safety and responsibility of reusing a batch. The low bits of the atomic
     210              :         // are used as a reference count (really just the lowest bit—in practice
     211              :         // there's only 1 code path that references). The [Batch] is passed into
     212              :         // [wal.Writer]'s WriteRecord method as a [RefCount] implementation. The
     213              :         // wal.Writer guarantees that if it will read [Batch.data] after the call to
     214              :         // WriteRecord returns, it will increment the reference count. When it's
     215              :         // complete, it'll unreference through invoking [Batch.Unref].
     216              :         //
     217              :         // When the committer of a batch indicates intent to recycle a Batch through
     218              :         // calling [Batch.Reset] or [Batch.Close], the lifecycle atomic is read. If
     219              :         // an outstanding reference remains, it's unsafe to reuse Batch.data yet. In
     220              :         // [Batch.Reset] the caller wants to reuse the [Batch] immediately, so we
     221              :         // discard b.data to recycle the struct but not the underlying byte slice.
     222              :         // In [Batch.Close], we set a special high bit [batchClosedBit] on lifecycle
     223              :         // that indicates that the user will not use [Batch] again and we're free to
     224              :         // recycle it when safe. When the commit pipeline eventually calls
     225              :         // [Batch.Unref], the [batchClosedBit] is noticed and the batch is
     226              :         // recycled.
     227              :         lifecycle atomic.Int32
     228              : }
     229              : 
     230              : // batchClosedBit is a bit stored on Batch.lifecycle to indicate that the user
     231              : // called [Batch.Close] to release a Batch, but an open reference count
     232              : // prevented immediate recycling.
     233              : const batchClosedBit = 1 << 30
     234              : 
     235              : // TODO(jackson): Hide the wal.RefCount implementation from the public Batch interface.
     236              : 
     237              : // Ref implements wal.RefCount. If the WAL writer may need to read b.data after
     238              : // it returns, it invokes Ref to increment the lifecycle's reference count. When
     239              : // it's finished, it invokes Unref.
     240            1 : func (b *Batch) Ref() {
     241            1 :         b.lifecycle.Add(+1)
     242            1 : }
     243              : 
     244              : // Unref implemets wal.RefCount.
     245            1 : func (b *Batch) Unref() {
     246            1 :         if v := b.lifecycle.Add(-1); (v ^ batchClosedBit) == 0 {
     247            1 :                 // The [batchClosedBit] high bit is set, and there are no outstanding
     248            1 :                 // references. The user of the Batch called [Batch.Close], expecting the
     249            1 :                 // batch to be recycled. However, our outstanding reference count
     250            1 :                 // prevented recycling. As the last to dereference, we're now
     251            1 :                 // responsible for releasing the batch.
     252            1 :                 b.lifecycle.Store(0)
     253            1 :                 b.release()
     254            1 :         }
     255              : }
     256              : 
     257              : // batchInternal contains the set of fields within Batch that are non-atomic and
     258              : // capable of being reset using a *b = batchInternal{} struct copy.
     259              : type batchInternal struct {
     260              :         // Data is the wire format of a batch's log entry:
     261              :         //   - 8 bytes for a sequence number of the first batch element,
     262              :         //     or zeroes if the batch has not yet been applied,
     263              :         //   - 4 bytes for the count: the number of elements in the batch,
     264              :         //     or "\xff\xff\xff\xff" if the batch is invalid,
     265              :         //   - count elements, being:
     266              :         //     - one byte for the kind
     267              :         //     - the varint-string user key,
     268              :         //     - the varint-string value (if kind != delete).
     269              :         // The sequence number and count are stored in little-endian order.
     270              :         //
     271              :         // The data field can be (but is not guaranteed to be) nil for new
     272              :         // batches. Large batches will set the data field to nil when committed as
     273              :         // the data has been moved to a flushableBatch and inserted into the queue of
     274              :         // memtables.
     275              :         data     []byte
     276              :         comparer *base.Comparer
     277              :         opts     batchOptions
     278              : 
     279              :         // An upper bound on required space to add this batch to a memtable.
     280              :         // Note that although batches are limited to 4 GiB in size, that limit
     281              :         // applies to len(data), not the memtable size. The upper bound on the
     282              :         // size of a memtable node is larger than the overhead of the batch's log
     283              :         // encoding, so memTableSize is larger than len(data) and may overflow a
     284              :         // uint32.
     285              :         memTableSize uint64
     286              : 
     287              :         // The db to which the batch will be committed. Do not change this field
     288              :         // after the batch has been created as it might invalidate internal state.
     289              :         // Batch.memTableSize is only refreshed if Batch.db is set. Setting db to
     290              :         // nil once it has been set implies that the Batch has encountered an error.
     291              :         db *DB
     292              : 
     293              :         // The count of records in the batch. This count will be stored in the batch
     294              :         // data whenever Repr() is called.
     295              :         count uint64
     296              : 
     297              :         // The count of range deletions in the batch. Updated every time a range
     298              :         // deletion is added.
     299              :         countRangeDels uint64
     300              : 
     301              :         // The count of range key sets, unsets and deletes in the batch. Updated
     302              :         // every time a RANGEKEYSET, RANGEKEYUNSET or RANGEKEYDEL key is added.
     303              :         countRangeKeys uint64
     304              : 
     305              :         // A deferredOp struct, stored in the Batch so that a pointer can be returned
     306              :         // from the *Deferred() methods rather than a value.
     307              :         deferredOp DeferredBatchOp
     308              : 
     309              :         // An optional skiplist keyed by offset into data of the entry.
     310              :         index         *batchskl.Skiplist
     311              :         rangeDelIndex *batchskl.Skiplist
     312              :         rangeKeyIndex *batchskl.Skiplist
     313              : 
     314              :         // Fragmented range deletion tombstones. Cached the first time a range
     315              :         // deletion iterator is requested. The cache is invalidated whenever a new
     316              :         // range deletion is added to the batch. This cache can only be used when
     317              :         // opening an iterator to read at a batch sequence number >=
     318              :         // tombstonesSeqNum. This is the case for all new iterators created over a
     319              :         // batch but it's not the case for all cloned iterators.
     320              :         tombstones       []keyspan.Span
     321              :         tombstonesSeqNum base.SeqNum
     322              : 
     323              :         // Fragmented range key spans. Cached the first time a range key iterator is
     324              :         // requested. The cache is invalidated whenever a new range key
     325              :         // (RangeKey{Set,Unset,Del}) is added to the batch. This cache can only be
     326              :         // used when opening an iterator to read at a batch sequence number >=
     327              :         // tombstonesSeqNum. This is the case for all new iterators created over a
     328              :         // batch but it's not the case for all cloned iterators.
     329              :         rangeKeys       []keyspan.Span
     330              :         rangeKeysSeqNum base.SeqNum
     331              : 
     332              :         // The flushableBatch wrapper if the batch is too large to fit in the
     333              :         // memtable.
     334              :         flushable *flushableBatch
     335              : 
     336              :         // minimumFormatMajorVersion indicates the format major version required in
     337              :         // order to commit this batch. If an operation requires a particular format
     338              :         // major version, it ratchets the batch's minimumFormatMajorVersion. When
     339              :         // the batch is committed, this is validated against the database's current
     340              :         // format major version.
     341              :         minimumFormatMajorVersion FormatMajorVersion
     342              : 
     343              :         // Synchronous Apply uses the commit WaitGroup for both publishing the
     344              :         // seqnum and waiting for the WAL fsync (if needed). Asynchronous
     345              :         // ApplyNoSyncWait, which implies WriteOptions.Sync is true, uses the commit
     346              :         // WaitGroup for publishing the seqnum and the fsyncWait WaitGroup for
     347              :         // waiting for the WAL fsync.
     348              :         //
     349              :         // TODO(sumeer): if we find that ApplyNoSyncWait in conjunction with
     350              :         // SyncWait is causing higher memory usage because of the time duration
     351              :         // between when the sync is already done, and a goroutine calls SyncWait
     352              :         // (followed by Batch.Close), we could separate out {fsyncWait, commitErr}
     353              :         // into a separate struct that is allocated separately (using another
     354              :         // sync.Pool), and only that struct needs to outlive Batch.Close (which
     355              :         // could then be called immediately after ApplyNoSyncWait). commitStats
     356              :         // will also need to be in this separate struct.
     357              :         commit    sync.WaitGroup
     358              :         fsyncWait sync.WaitGroup
     359              : 
     360              :         commitStats BatchCommitStats
     361              : 
     362              :         commitErr error
     363              : 
     364              :         // Position bools together to reduce the sizeof the struct.
     365              : 
     366              :         // ingestedSSTBatch indicates that the batch contains one or more key kinds
     367              :         // of InternalKeyKindIngestSST. If the batch contains key kinds of IngestSST
     368              :         // then it will only contain key kinds of IngestSST.
     369              :         ingestedSSTBatch bool
     370              : 
     371              :         // committing is set to true when a batch begins to commit. It's used to
     372              :         // ensure the batch is not mutated concurrently. It is not an atomic
     373              :         // deliberately, so as to avoid the overhead on batch mutations. This is
     374              :         // okay, because under correct usage this field will never be accessed
     375              :         // concurrently. It's only under incorrect usage the memory accesses of this
     376              :         // variable may violate memory safety. Since we don't use atomics here,
     377              :         // false negatives are possible.
     378              :         committing bool
     379              : }
     380              : 
     381              : // BatchCommitStats exposes stats related to committing a batch.
     382              : //
     383              : // NB: there is no Pebble internal tracing (using LoggerAndTracer) of slow
     384              : // batch commits. The caller can use these stats to do their own tracing as
     385              : // needed.
     386              : type BatchCommitStats struct {
     387              :         // TotalDuration is the time spent in DB.{Apply,ApplyNoSyncWait} or
     388              :         // Batch.Commit, plus the time waiting in Batch.SyncWait. If there is a gap
     389              :         // between calling ApplyNoSyncWait and calling SyncWait, that gap could
     390              :         // include some duration in which real work was being done for the commit
     391              :         // and will not be included here. This missing time is considered acceptable
     392              :         // since the goal of these stats is to understand user-facing latency.
     393              :         //
     394              :         // TotalDuration includes time spent in various queues both inside Pebble
     395              :         // and outside Pebble (I/O queues, goroutine scheduler queue, mutex wait
     396              :         // etc.). For some of these queues (which we consider important) the wait
     397              :         // times are included below -- these expose low-level implementation detail
     398              :         // and are meant for expert diagnosis and subject to change. There may be
     399              :         // unaccounted time after subtracting those values from TotalDuration.
     400              :         TotalDuration time.Duration
     401              :         // SemaphoreWaitDuration is the wait time for semaphores in
     402              :         // commitPipeline.Commit.
     403              :         SemaphoreWaitDuration time.Duration
     404              :         // WALQueueWaitDuration is the wait time for allocating memory blocks in the
     405              :         // LogWriter (due to the LogWriter not writing fast enough). At the moment
     406              :         // this is duration is always zero because a single WAL will allow
     407              :         // allocating memory blocks up to the entire memtable size. In the future,
     408              :         // we may pipeline WALs and bound the WAL queued blocks separately, so this
     409              :         // field is preserved for that possibility.
     410              :         WALQueueWaitDuration time.Duration
     411              :         // MemTableWriteStallDuration is the wait caused by a write stall due to too
     412              :         // many memtables (due to not flushing fast enough).
     413              :         MemTableWriteStallDuration time.Duration
     414              :         // L0ReadAmpWriteStallDuration is the wait caused by a write stall due to
     415              :         // high read amplification in L0 (due to not compacting fast enough out of
     416              :         // L0).
     417              :         L0ReadAmpWriteStallDuration time.Duration
     418              :         // WALRotationDuration is the wait time for WAL rotation, which includes
     419              :         // syncing and closing the old WAL and creating (or reusing) a new one.
     420              :         WALRotationDuration time.Duration
     421              :         // CommitWaitDuration is the wait for publishing the seqnum plus the
     422              :         // duration for the WAL sync (if requested). The former should be tiny and
     423              :         // one can assume that this is all due to the WAL sync.
     424              :         CommitWaitDuration time.Duration
     425              : }
     426              : 
     427              : var _ Reader = (*Batch)(nil)
     428              : var _ Writer = (*Batch)(nil)
     429              : 
     430              : var batchPool = sync.Pool{
     431            1 :         New: func() interface{} {
     432            1 :                 return &Batch{}
     433            1 :         },
     434              : }
     435              : 
     436              : type indexedBatch struct {
     437              :         batch Batch
     438              :         index batchskl.Skiplist
     439              : }
     440              : 
     441              : var indexedBatchPool = sync.Pool{
     442            1 :         New: func() interface{} {
     443            1 :                 return &indexedBatch{}
     444            1 :         },
     445              : }
     446              : 
     447            1 : func newBatch(db *DB, opts ...BatchOption) *Batch {
     448            1 :         b := batchPool.Get().(*Batch)
     449            1 :         b.db = db
     450            1 :         b.opts.ensureDefaults()
     451            1 :         for _, opt := range opts {
     452            1 :                 opt(&b.opts)
     453            1 :         }
     454            1 :         return b
     455              : }
     456              : 
     457            1 : func newBatchWithSize(db *DB, size int, opts ...BatchOption) *Batch {
     458            1 :         b := newBatch(db, opts...)
     459            1 :         if cap(b.data) < size {
     460            1 :                 b.data = rawalloc.New(0, size)
     461            1 :         }
     462            1 :         return b
     463              : }
     464              : 
     465            1 : func newIndexedBatch(db *DB, comparer *Comparer) *Batch {
     466            1 :         i := indexedBatchPool.Get().(*indexedBatch)
     467            1 :         i.batch.comparer = comparer
     468            1 :         i.batch.db = db
     469            1 :         i.batch.index = &i.index
     470            1 :         i.batch.index.Init(&i.batch.data, comparer.Compare, comparer.AbbreviatedKey)
     471            1 :         i.batch.opts.ensureDefaults()
     472            1 :         return &i.batch
     473            1 : }
     474              : 
     475            0 : func newIndexedBatchWithSize(db *DB, comparer *Comparer, size int) *Batch {
     476            0 :         b := newIndexedBatch(db, comparer)
     477            0 :         if cap(b.data) < size {
     478            0 :                 b.data = rawalloc.New(0, size)
     479            0 :         }
     480            0 :         return b
     481              : }
     482              : 
     483              : // nextSeqNum returns the batch "sequence number" that will be given to the next
     484              : // key written to the batch. During iteration keys within an indexed batch are
     485              : // given a sequence number consisting of their offset within the batch combined
     486              : // with the base.SeqNumBatchBit bit. These sequence numbers are only
     487              : // used during iteration, and the keys are assigned ordinary sequence numbers
     488              : // when the batch is committed.
     489            1 : func (b *Batch) nextSeqNum() base.SeqNum {
     490            1 :         return base.SeqNum(len(b.data)) | base.SeqNumBatchBit
     491            1 : }
     492              : 
     493            1 : func (b *Batch) release() {
     494            1 :         if b.db == nil {
     495            1 :                 // The batch was not created using newBatch or newIndexedBatch, or an error
     496            1 :                 // was encountered. We don't try to reuse batches that encountered an error
     497            1 :                 // because they might be stuck somewhere in the system and attempting to
     498            1 :                 // reuse such batches is a recipe for onerous debugging sessions. Instead,
     499            1 :                 // let the GC do its job.
     500            1 :                 return
     501            1 :         }
     502            1 :         b.db = nil
     503            1 : 
     504            1 :         // NB: This is ugly (it would be cleaner if we could just assign a Batch{}),
     505            1 :         // but necessary so that we can use atomic.StoreUint32 for the Batch.applied
     506            1 :         // field. Without using an atomic to clear that field the Go race detector
     507            1 :         // complains.
     508            1 :         b.reset()
     509            1 :         b.comparer = nil
     510            1 : 
     511            1 :         if b.index == nil {
     512            1 :                 batchPool.Put(b)
     513            1 :         } else {
     514            1 :                 b.index, b.rangeDelIndex, b.rangeKeyIndex = nil, nil, nil
     515            1 :                 indexedBatchPool.Put((*indexedBatch)(unsafe.Pointer(b)))
     516            1 :         }
     517              : }
     518              : 
     519            1 : func (b *Batch) refreshMemTableSize() error {
     520            1 :         b.memTableSize = 0
     521            1 :         if len(b.data) < batchrepr.HeaderLen {
     522            1 :                 return nil
     523            1 :         }
     524              : 
     525            1 :         b.countRangeDels = 0
     526            1 :         b.countRangeKeys = 0
     527            1 :         b.minimumFormatMajorVersion = 0
     528            1 :         for r := b.Reader(); ; {
     529            1 :                 kind, key, value, ok, err := r.Next()
     530            1 :                 if !ok {
     531            1 :                         if err != nil {
     532            0 :                                 return err
     533            0 :                         }
     534            1 :                         break
     535              :                 }
     536            1 :                 switch kind {
     537            1 :                 case InternalKeyKindRangeDelete:
     538            1 :                         b.countRangeDels++
     539            1 :                 case InternalKeyKindRangeKeySet, InternalKeyKindRangeKeyUnset, InternalKeyKindRangeKeyDelete:
     540            1 :                         b.countRangeKeys++
     541            1 :                 case InternalKeyKindSet, InternalKeyKindDelete, InternalKeyKindMerge, InternalKeyKindSingleDelete, InternalKeyKindSetWithDelete:
     542              :                         // fallthrough
     543            1 :                 case InternalKeyKindDeleteSized:
     544            1 :                         if b.minimumFormatMajorVersion < FormatDeleteSizedAndObsolete {
     545            1 :                                 b.minimumFormatMajorVersion = FormatDeleteSizedAndObsolete
     546            1 :                         }
     547            1 :                 case InternalKeyKindLogData:
     548            1 :                         // LogData does not contribute to memtable size.
     549            1 :                         continue
     550            1 :                 case InternalKeyKindIngestSST:
     551            1 :                         if b.minimumFormatMajorVersion < FormatFlushableIngest {
     552            1 :                                 b.minimumFormatMajorVersion = FormatFlushableIngest
     553            1 :                         }
     554              :                         // This key kind doesn't contribute to the memtable size.
     555            1 :                         continue
     556            0 :                 case InternalKeyKindExcise:
     557            0 :                         if b.minimumFormatMajorVersion < FormatFlushableIngestExcises {
     558            0 :                                 b.minimumFormatMajorVersion = FormatFlushableIngestExcises
     559            0 :                         }
     560              :                         // This key kind doesn't contribute to the memtable size.
     561            0 :                         continue
     562            0 :                 default:
     563            0 :                         // Note In some circumstances this might be temporary memory
     564            0 :                         // corruption that can be recovered by discarding the batch and
     565            0 :                         // trying again. In other cases, the batch repr might've been
     566            0 :                         // already persisted elsewhere, and we'll loop continuously trying
     567            0 :                         // to commit the same corrupted batch. The caller is responsible for
     568            0 :                         // distinguishing.
     569            0 :                         return errors.Wrapf(ErrInvalidBatch, "unrecognized kind %v", kind)
     570              :                 }
     571            1 :                 b.memTableSize += memTableEntrySize(len(key), len(value))
     572              :         }
     573            1 :         return nil
     574              : }
     575              : 
     576              : // Apply the operations contained in the batch to the receiver batch.
     577              : //
     578              : // It is safe to modify the contents of the arguments after Apply returns.
     579              : //
     580              : // Apply returns ErrInvalidBatch if the provided batch is invalid in any way.
     581            1 : func (b *Batch) Apply(batch *Batch, _ *WriteOptions) error {
     582            1 :         if b.ingestedSSTBatch {
     583            0 :                 panic("pebble: invalid batch application")
     584              :         }
     585            1 :         if len(batch.data) == 0 {
     586            0 :                 return nil
     587            0 :         }
     588            1 :         if len(batch.data) < batchrepr.HeaderLen {
     589            0 :                 return ErrInvalidBatch
     590            0 :         }
     591              : 
     592            1 :         offset := len(b.data)
     593            1 :         if offset == 0 {
     594            1 :                 b.init(offset)
     595            1 :                 offset = batchrepr.HeaderLen
     596            1 :         }
     597            1 :         b.data = append(b.data, batch.data[batchrepr.HeaderLen:]...)
     598            1 : 
     599            1 :         b.setCount(b.Count() + batch.Count())
     600            1 : 
     601            1 :         if b.db != nil || b.index != nil {
     602            1 :                 // Only iterate over the new entries if we need to track memTableSize or in
     603            1 :                 // order to update the index.
     604            1 :                 for iter := batchrepr.Reader(b.data[offset:]); len(iter) > 0; {
     605            1 :                         offset := uintptr(unsafe.Pointer(&iter[0])) - uintptr(unsafe.Pointer(&b.data[0]))
     606            1 :                         kind, key, value, ok, err := iter.Next()
     607            1 :                         if !ok {
     608            0 :                                 if err != nil {
     609            0 :                                         return err
     610            0 :                                 }
     611            0 :                                 break
     612              :                         }
     613            1 :                         switch kind {
     614            1 :                         case InternalKeyKindRangeDelete:
     615            1 :                                 b.countRangeDels++
     616            1 :                         case InternalKeyKindRangeKeySet, InternalKeyKindRangeKeyUnset, InternalKeyKindRangeKeyDelete:
     617            1 :                                 b.countRangeKeys++
     618            0 :                         case InternalKeyKindIngestSST, InternalKeyKindExcise:
     619            0 :                                 panic("pebble: invalid key kind for batch")
     620            1 :                         case InternalKeyKindLogData:
     621            1 :                                 // LogData does not contribute to memtable size.
     622            1 :                                 continue
     623              :                         case InternalKeyKindSet, InternalKeyKindDelete, InternalKeyKindMerge,
     624            1 :                                 InternalKeyKindSingleDelete, InternalKeyKindSetWithDelete, InternalKeyKindDeleteSized:
     625              :                                 // fallthrough
     626            0 :                         default:
     627            0 :                                 // Note In some circumstances this might be temporary memory
     628            0 :                                 // corruption that can be recovered by discarding the batch and
     629            0 :                                 // trying again. In other cases, the batch repr might've been
     630            0 :                                 // already persisted elsewhere, and we'll loop continuously
     631            0 :                                 // trying to commit the same corrupted batch. The caller is
     632            0 :                                 // responsible for distinguishing.
     633            0 :                                 return errors.Wrapf(ErrInvalidBatch, "unrecognized kind %v", kind)
     634              :                         }
     635            1 :                         if b.index != nil {
     636            1 :                                 var err error
     637            1 :                                 switch kind {
     638            1 :                                 case InternalKeyKindRangeDelete:
     639            1 :                                         b.tombstones = nil
     640            1 :                                         b.tombstonesSeqNum = 0
     641            1 :                                         if b.rangeDelIndex == nil {
     642            1 :                                                 b.rangeDelIndex = batchskl.NewSkiplist(&b.data, b.comparer.Compare, b.comparer.AbbreviatedKey)
     643            1 :                                         }
     644            1 :                                         err = b.rangeDelIndex.Add(uint32(offset))
     645            1 :                                 case InternalKeyKindRangeKeySet, InternalKeyKindRangeKeyUnset, InternalKeyKindRangeKeyDelete:
     646            1 :                                         b.rangeKeys = nil
     647            1 :                                         b.rangeKeysSeqNum = 0
     648            1 :                                         if b.rangeKeyIndex == nil {
     649            1 :                                                 b.rangeKeyIndex = batchskl.NewSkiplist(&b.data, b.comparer.Compare, b.comparer.AbbreviatedKey)
     650            1 :                                         }
     651            1 :                                         err = b.rangeKeyIndex.Add(uint32(offset))
     652            1 :                                 default:
     653            1 :                                         err = b.index.Add(uint32(offset))
     654              :                                 }
     655            1 :                                 if err != nil {
     656            0 :                                         return err
     657            0 :                                 }
     658              :                         }
     659            1 :                         b.memTableSize += memTableEntrySize(len(key), len(value))
     660              :                 }
     661              :         }
     662            1 :         return nil
     663              : }
     664              : 
     665              : // Get gets the value for the given key. It returns ErrNotFound if the Batch
     666              : // does not contain the key.
     667              : //
     668              : // The caller should not modify the contents of the returned slice, but it is
     669              : // safe to modify the contents of the argument after Get returns. The returned
     670              : // slice will remain valid until the returned Closer is closed. On success, the
     671              : // caller MUST call closer.Close() or a memory leak will occur.
     672            1 : func (b *Batch) Get(key []byte) ([]byte, io.Closer, error) {
     673            1 :         if b.index == nil {
     674            0 :                 return nil, nil, ErrNotIndexed
     675            0 :         }
     676            1 :         return b.db.getInternal(key, b, nil /* snapshot */)
     677              : }
     678              : 
     679            1 : func (b *Batch) prepareDeferredKeyValueRecord(keyLen, valueLen int, kind InternalKeyKind) {
     680            1 :         if b.committing {
     681            0 :                 panic("pebble: batch already committing")
     682              :         }
     683            1 :         if len(b.data) == 0 {
     684            1 :                 b.init(keyLen + valueLen + 2*binary.MaxVarintLen64 + batchrepr.HeaderLen)
     685            1 :         }
     686            1 :         b.count++
     687            1 :         b.memTableSize += memTableEntrySize(keyLen, valueLen)
     688            1 : 
     689            1 :         pos := len(b.data)
     690            1 :         b.deferredOp.offset = uint32(pos)
     691            1 :         b.grow(1 + 2*maxVarintLen32 + keyLen + valueLen)
     692            1 :         b.data[pos] = byte(kind)
     693            1 :         pos++
     694            1 : 
     695            1 :         {
     696            1 :                 // TODO(peter): Manually inlined version binary.PutUvarint(). This is 20%
     697            1 :                 // faster on BenchmarkBatchSet on go1.13. Remove if go1.14 or future
     698            1 :                 // versions show this to not be a performance win.
     699            1 :                 x := uint32(keyLen)
     700            1 :                 for x >= 0x80 {
     701            1 :                         b.data[pos] = byte(x) | 0x80
     702            1 :                         x >>= 7
     703            1 :                         pos++
     704            1 :                 }
     705            1 :                 b.data[pos] = byte(x)
     706            1 :                 pos++
     707              :         }
     708              : 
     709            1 :         b.deferredOp.Key = b.data[pos : pos+keyLen]
     710            1 :         pos += keyLen
     711            1 : 
     712            1 :         {
     713            1 :                 // TODO(peter): Manually inlined version binary.PutUvarint(). This is 20%
     714            1 :                 // faster on BenchmarkBatchSet on go1.13. Remove if go1.14 or future
     715            1 :                 // versions show this to not be a performance win.
     716            1 :                 x := uint32(valueLen)
     717            1 :                 for x >= 0x80 {
     718            1 :                         b.data[pos] = byte(x) | 0x80
     719            1 :                         x >>= 7
     720            1 :                         pos++
     721            1 :                 }
     722            1 :                 b.data[pos] = byte(x)
     723            1 :                 pos++
     724              :         }
     725              : 
     726            1 :         b.deferredOp.Value = b.data[pos : pos+valueLen]
     727            1 :         // Shrink data since varints may be shorter than the upper bound.
     728            1 :         b.data = b.data[:pos+valueLen]
     729              : }
     730              : 
     731            1 : func (b *Batch) prepareDeferredKeyRecord(keyLen int, kind InternalKeyKind) {
     732            1 :         if b.committing {
     733            0 :                 panic("pebble: batch already committing")
     734              :         }
     735            1 :         if len(b.data) == 0 {
     736            1 :                 b.init(keyLen + binary.MaxVarintLen64 + batchrepr.HeaderLen)
     737            1 :         }
     738            1 :         b.count++
     739            1 :         b.memTableSize += memTableEntrySize(keyLen, 0)
     740            1 : 
     741            1 :         pos := len(b.data)
     742            1 :         b.deferredOp.offset = uint32(pos)
     743            1 :         b.grow(1 + maxVarintLen32 + keyLen)
     744            1 :         b.data[pos] = byte(kind)
     745            1 :         pos++
     746            1 : 
     747            1 :         {
     748            1 :                 // TODO(peter): Manually inlined version binary.PutUvarint(). Remove if
     749            1 :                 // go1.13 or future versions show this to not be a performance win. See
     750            1 :                 // BenchmarkBatchSet.
     751            1 :                 x := uint32(keyLen)
     752            1 :                 for x >= 0x80 {
     753            0 :                         b.data[pos] = byte(x) | 0x80
     754            0 :                         x >>= 7
     755            0 :                         pos++
     756            0 :                 }
     757            1 :                 b.data[pos] = byte(x)
     758            1 :                 pos++
     759              :         }
     760              : 
     761            1 :         b.deferredOp.Key = b.data[pos : pos+keyLen]
     762            1 :         b.deferredOp.Value = nil
     763            1 : 
     764            1 :         // Shrink data since varint may be shorter than the upper bound.
     765            1 :         b.data = b.data[:pos+keyLen]
     766              : }
     767              : 
     768              : // AddInternalKey allows the caller to add an internal key of point key or range
     769              : // key kinds (but not RangeDelete) to a batch. Passing in an internal key of
     770              : // kind RangeDelete will result in a panic. Note that the seqnum in the internal
     771              : // key is effectively ignored, even though the Kind is preserved. This is
     772              : // because the batch format does not allow for a per-key seqnum to be specified,
     773              : // only a batch-wide one.
     774              : //
     775              : // Note that non-indexed keys (IngestKeyKind{LogData,IngestSST}) are not
     776              : // supported with this method as they require specialized logic.
     777            1 : func (b *Batch) AddInternalKey(key *base.InternalKey, value []byte, _ *WriteOptions) error {
     778            1 :         keyLen := len(key.UserKey)
     779            1 :         hasValue := false
     780            1 :         switch kind := key.Kind(); kind {
     781            0 :         case InternalKeyKindRangeDelete:
     782            0 :                 panic("unexpected range delete in AddInternalKey")
     783            1 :         case InternalKeyKindSingleDelete, InternalKeyKindDelete:
     784            1 :                 b.prepareDeferredKeyRecord(keyLen, kind)
     785            1 :                 b.deferredOp.index = b.index
     786            1 :         case InternalKeyKindRangeKeySet, InternalKeyKindRangeKeyUnset, InternalKeyKindRangeKeyDelete:
     787            1 :                 b.prepareDeferredKeyValueRecord(keyLen, len(value), kind)
     788            1 :                 hasValue = true
     789            1 :                 b.incrementRangeKeysCount()
     790            1 :         default:
     791            1 :                 b.prepareDeferredKeyValueRecord(keyLen, len(value), kind)
     792            1 :                 hasValue = true
     793            1 :                 b.deferredOp.index = b.index
     794              :         }
     795            1 :         copy(b.deferredOp.Key, key.UserKey)
     796            1 :         if hasValue {
     797            1 :                 copy(b.deferredOp.Value, value)
     798            1 :         }
     799              : 
     800              :         // TODO(peter): Manually inline DeferredBatchOp.Finish(). Mid-stack inlining
     801              :         // in go1.13 will remove the need for this.
     802            1 :         if b.index != nil {
     803            0 :                 if err := b.index.Add(b.deferredOp.offset); err != nil {
     804            0 :                         return err
     805            0 :                 }
     806              :         }
     807            1 :         return nil
     808              : }
     809              : 
     810              : // Set adds an action to the batch that sets the key to map to the value.
     811              : //
     812              : // It is safe to modify the contents of the arguments after Set returns.
     813            1 : func (b *Batch) Set(key, value []byte, _ *WriteOptions) error {
     814            1 :         deferredOp := b.SetDeferred(len(key), len(value))
     815            1 :         copy(deferredOp.Key, key)
     816            1 :         copy(deferredOp.Value, value)
     817            1 :         // TODO(peter): Manually inline DeferredBatchOp.Finish(). Mid-stack inlining
     818            1 :         // in go1.13 will remove the need for this.
     819            1 :         if b.index != nil {
     820            1 :                 if err := b.index.Add(deferredOp.offset); err != nil {
     821            0 :                         return err
     822            0 :                 }
     823              :         }
     824            1 :         return nil
     825              : }
     826              : 
     827              : // SetDeferred is similar to Set in that it adds a set operation to the batch,
     828              : // except it only takes in key/value lengths instead of complete slices,
     829              : // letting the caller encode into those objects and then call Finish() on the
     830              : // returned object.
     831            1 : func (b *Batch) SetDeferred(keyLen, valueLen int) *DeferredBatchOp {
     832            1 :         b.prepareDeferredKeyValueRecord(keyLen, valueLen, InternalKeyKindSet)
     833            1 :         b.deferredOp.index = b.index
     834            1 :         return &b.deferredOp
     835            1 : }
     836              : 
     837              : // Merge adds an action to the batch that merges the value at key with the new
     838              : // value. The details of the merge are dependent upon the configured merge
     839              : // operator.
     840              : //
     841              : // It is safe to modify the contents of the arguments after Merge returns.
     842            1 : func (b *Batch) Merge(key, value []byte, _ *WriteOptions) error {
     843            1 :         deferredOp := b.MergeDeferred(len(key), len(value))
     844            1 :         copy(deferredOp.Key, key)
     845            1 :         copy(deferredOp.Value, value)
     846            1 :         // TODO(peter): Manually inline DeferredBatchOp.Finish(). Mid-stack inlining
     847            1 :         // in go1.13 will remove the need for this.
     848            1 :         if b.index != nil {
     849            1 :                 if err := b.index.Add(deferredOp.offset); err != nil {
     850            0 :                         return err
     851            0 :                 }
     852              :         }
     853            1 :         return nil
     854              : }
     855              : 
     856              : // MergeDeferred is similar to Merge in that it adds a merge operation to the
     857              : // batch, except it only takes in key/value lengths instead of complete slices,
     858              : // letting the caller encode into those objects and then call Finish() on the
     859              : // returned object.
     860            1 : func (b *Batch) MergeDeferred(keyLen, valueLen int) *DeferredBatchOp {
     861            1 :         b.prepareDeferredKeyValueRecord(keyLen, valueLen, InternalKeyKindMerge)
     862            1 :         b.deferredOp.index = b.index
     863            1 :         return &b.deferredOp
     864            1 : }
     865              : 
     866              : // Delete adds an action to the batch that deletes the entry for key.
     867              : //
     868              : // It is safe to modify the contents of the arguments after Delete returns.
     869            1 : func (b *Batch) Delete(key []byte, _ *WriteOptions) error {
     870            1 :         deferredOp := b.DeleteDeferred(len(key))
     871            1 :         copy(deferredOp.Key, key)
     872            1 :         // TODO(peter): Manually inline DeferredBatchOp.Finish(). Mid-stack inlining
     873            1 :         // in go1.13 will remove the need for this.
     874            1 :         if b.index != nil {
     875            1 :                 if err := b.index.Add(deferredOp.offset); err != nil {
     876            0 :                         return err
     877            0 :                 }
     878              :         }
     879            1 :         return nil
     880              : }
     881              : 
     882              : // DeleteDeferred is similar to Delete in that it adds a delete operation to
     883              : // the batch, except it only takes in key/value lengths instead of complete
     884              : // slices, letting the caller encode into those objects and then call Finish()
     885              : // on the returned object.
     886            1 : func (b *Batch) DeleteDeferred(keyLen int) *DeferredBatchOp {
     887            1 :         b.prepareDeferredKeyRecord(keyLen, InternalKeyKindDelete)
     888            1 :         b.deferredOp.index = b.index
     889            1 :         return &b.deferredOp
     890            1 : }
     891              : 
     892              : // DeleteSized behaves identically to Delete, but takes an additional
     893              : // argument indicating the size of the value being deleted. DeleteSized
     894              : // should be preferred when the caller has the expectation that there exists
     895              : // a single internal KV pair for the key (eg, the key has not been
     896              : // overwritten recently), and the caller knows the size of its value.
     897              : //
     898              : // DeleteSized will record the value size within the tombstone and use it to
     899              : // inform compaction-picking heuristics which strive to reduce space
     900              : // amplification in the LSM. This "calling your shot" mechanic allows the
     901              : // storage engine to more accurately estimate and reduce space amplification.
     902              : //
     903              : // It is safe to modify the contents of the arguments after DeleteSized
     904              : // returns.
     905            1 : func (b *Batch) DeleteSized(key []byte, deletedValueSize uint32, _ *WriteOptions) error {
     906            1 :         deferredOp := b.DeleteSizedDeferred(len(key), deletedValueSize)
     907            1 :         copy(b.deferredOp.Key, key)
     908            1 :         // TODO(peter): Manually inline DeferredBatchOp.Finish(). Check if in a
     909            1 :         // later Go release this is unnecessary.
     910            1 :         if b.index != nil {
     911            1 :                 if err := b.index.Add(deferredOp.offset); err != nil {
     912            0 :                         return err
     913            0 :                 }
     914              :         }
     915            1 :         return nil
     916              : }
     917              : 
     918              : // DeleteSizedDeferred is similar to DeleteSized in that it adds a sized delete
     919              : // operation to the batch, except it only takes in key length instead of a
     920              : // complete key slice, letting the caller encode into the DeferredBatchOp.Key
     921              : // slice and then call Finish() on the returned object.
     922            1 : func (b *Batch) DeleteSizedDeferred(keyLen int, deletedValueSize uint32) *DeferredBatchOp {
     923            1 :         if b.minimumFormatMajorVersion < FormatDeleteSizedAndObsolete {
     924            1 :                 b.minimumFormatMajorVersion = FormatDeleteSizedAndObsolete
     925            1 :         }
     926              : 
     927              :         // Encode the sum of the key length and the value in the value.
     928            1 :         v := uint64(deletedValueSize) + uint64(keyLen)
     929            1 : 
     930            1 :         // Encode `v` as a varint.
     931            1 :         var buf [binary.MaxVarintLen64]byte
     932            1 :         n := 0
     933            1 :         {
     934            1 :                 x := v
     935            1 :                 for x >= 0x80 {
     936            1 :                         buf[n] = byte(x) | 0x80
     937            1 :                         x >>= 7
     938            1 :                         n++
     939            1 :                 }
     940            1 :                 buf[n] = byte(x)
     941            1 :                 n++
     942              :         }
     943              : 
     944              :         // NB: In batch entries and sstable entries, values are stored as
     945              :         // varstrings. Here, the value is itself a simple varint. This results in an
     946              :         // unnecessary double layer of encoding:
     947              :         //     varint(n) varint(deletedValueSize)
     948              :         // The first varint will always be 1-byte, since a varint-encoded uint64
     949              :         // will never exceed 128 bytes. This unnecessary extra byte and wrapping is
     950              :         // preserved to avoid special casing across the database, and in particular
     951              :         // in sstable block decoding which is performance sensitive.
     952            1 :         b.prepareDeferredKeyValueRecord(keyLen, n, InternalKeyKindDeleteSized)
     953            1 :         b.deferredOp.index = b.index
     954            1 :         copy(b.deferredOp.Value, buf[:n])
     955            1 :         return &b.deferredOp
     956              : }
     957              : 
     958              : // SingleDelete adds an action to the batch that single deletes the entry for key.
     959              : // WARNING: See the detailed warning in Writer.SingleDelete before using this.
     960              : //
     961              : // It is safe to modify the contents of the arguments after SingleDelete returns.
     962            1 : func (b *Batch) SingleDelete(key []byte, _ *WriteOptions) error {
     963            1 :         deferredOp := b.SingleDeleteDeferred(len(key))
     964            1 :         copy(deferredOp.Key, key)
     965            1 :         // TODO(peter): Manually inline DeferredBatchOp.Finish(). Mid-stack inlining
     966            1 :         // in go1.13 will remove the need for this.
     967            1 :         if b.index != nil {
     968            1 :                 if err := b.index.Add(deferredOp.offset); err != nil {
     969            0 :                         return err
     970            0 :                 }
     971              :         }
     972            1 :         return nil
     973              : }
     974              : 
     975              : // SingleDeleteDeferred is similar to SingleDelete in that it adds a single delete
     976              : // operation to the batch, except it only takes in key/value lengths instead of
     977              : // complete slices, letting the caller encode into those objects and then call
     978              : // Finish() on the returned object.
     979              : //
     980              : // WARNING: See the detailed warning in Writer.SingleDelete before using this.
     981            1 : func (b *Batch) SingleDeleteDeferred(keyLen int) *DeferredBatchOp {
     982            1 :         b.prepareDeferredKeyRecord(keyLen, InternalKeyKindSingleDelete)
     983            1 :         b.deferredOp.index = b.index
     984            1 :         return &b.deferredOp
     985            1 : }
     986              : 
     987              : // DeleteRange deletes all of the point keys (and values) in the range
     988              : // [start,end) (inclusive on start, exclusive on end). DeleteRange does NOT
     989              : // delete overlapping range keys (eg, keys set via RangeKeySet).
     990              : //
     991              : // It is safe to modify the contents of the arguments after DeleteRange
     992              : // returns.
     993            1 : func (b *Batch) DeleteRange(start, end []byte, _ *WriteOptions) error {
     994            1 :         deferredOp := b.DeleteRangeDeferred(len(start), len(end))
     995            1 :         copy(deferredOp.Key, start)
     996            1 :         copy(deferredOp.Value, end)
     997            1 :         // TODO(peter): Manually inline DeferredBatchOp.Finish(). Mid-stack inlining
     998            1 :         // in go1.13 will remove the need for this.
     999            1 :         if deferredOp.index != nil {
    1000            1 :                 if err := deferredOp.index.Add(deferredOp.offset); err != nil {
    1001            0 :                         return err
    1002            0 :                 }
    1003              :         }
    1004            1 :         return nil
    1005              : }
    1006              : 
    1007              : // DeleteRangeDeferred is similar to DeleteRange in that it adds a delete range
    1008              : // operation to the batch, except it only takes in key lengths instead of
    1009              : // complete slices, letting the caller encode into those objects and then call
    1010              : // Finish() on the returned object. Note that DeferredBatchOp.Key should be
    1011              : // populated with the start key, and DeferredBatchOp.Value should be populated
    1012              : // with the end key.
    1013            1 : func (b *Batch) DeleteRangeDeferred(startLen, endLen int) *DeferredBatchOp {
    1014            1 :         b.prepareDeferredKeyValueRecord(startLen, endLen, InternalKeyKindRangeDelete)
    1015            1 :         b.countRangeDels++
    1016            1 :         if b.index != nil {
    1017            1 :                 b.tombstones = nil
    1018            1 :                 b.tombstonesSeqNum = 0
    1019            1 :                 // Range deletions are rare, so we lazily allocate the index for them.
    1020            1 :                 if b.rangeDelIndex == nil {
    1021            1 :                         b.rangeDelIndex = batchskl.NewSkiplist(&b.data, b.comparer.Compare, b.comparer.AbbreviatedKey)
    1022            1 :                 }
    1023            1 :                 b.deferredOp.index = b.rangeDelIndex
    1024              :         }
    1025            1 :         return &b.deferredOp
    1026              : }
    1027              : 
    1028              : // RangeKeySet sets a range key mapping the key range [start, end) at the MVCC
    1029              : // timestamp suffix to value. The suffix is optional. If any portion of the key
    1030              : // range [start, end) is already set by a range key with the same suffix value,
    1031              : // RangeKeySet overrides it.
    1032              : //
    1033              : // It is safe to modify the contents of the arguments after RangeKeySet returns.
    1034            1 : func (b *Batch) RangeKeySet(start, end, suffix, value []byte, _ *WriteOptions) error {
    1035            1 :         if invariants.Enabled && b.db != nil {
    1036            1 :                 // RangeKeySet is only supported on prefix keys.
    1037            1 :                 if b.db.opts.Comparer.Split(start) != len(start) {
    1038            0 :                         panic("RangeKeySet called with suffixed start key")
    1039              :                 }
    1040            1 :                 if b.db.opts.Comparer.Split(end) != len(end) {
    1041            0 :                         panic("RangeKeySet called with suffixed end key")
    1042              :                 }
    1043              :         }
    1044            1 :         suffixValues := [1]rangekey.SuffixValue{{Suffix: suffix, Value: value}}
    1045            1 :         internalValueLen := rangekey.EncodedSetValueLen(end, suffixValues[:])
    1046            1 : 
    1047            1 :         deferredOp := b.rangeKeySetDeferred(len(start), internalValueLen)
    1048            1 :         copy(deferredOp.Key, start)
    1049            1 :         n := rangekey.EncodeSetValue(deferredOp.Value, end, suffixValues[:])
    1050            1 :         if n != internalValueLen {
    1051            0 :                 panic("unexpected internal value length mismatch")
    1052              :         }
    1053              : 
    1054              :         // Manually inline DeferredBatchOp.Finish().
    1055            1 :         if deferredOp.index != nil {
    1056            1 :                 if err := deferredOp.index.Add(deferredOp.offset); err != nil {
    1057            0 :                         return err
    1058            0 :                 }
    1059              :         }
    1060            1 :         return nil
    1061              : }
    1062              : 
    1063            1 : func (b *Batch) rangeKeySetDeferred(startLen, internalValueLen int) *DeferredBatchOp {
    1064            1 :         b.prepareDeferredKeyValueRecord(startLen, internalValueLen, InternalKeyKindRangeKeySet)
    1065            1 :         b.incrementRangeKeysCount()
    1066            1 :         return &b.deferredOp
    1067            1 : }
    1068              : 
    1069            1 : func (b *Batch) incrementRangeKeysCount() {
    1070            1 :         b.countRangeKeys++
    1071            1 :         if b.index != nil {
    1072            1 :                 b.rangeKeys = nil
    1073            1 :                 b.rangeKeysSeqNum = 0
    1074            1 :                 // Range keys are rare, so we lazily allocate the index for them.
    1075            1 :                 if b.rangeKeyIndex == nil {
    1076            1 :                         b.rangeKeyIndex = batchskl.NewSkiplist(&b.data, b.comparer.Compare, b.comparer.AbbreviatedKey)
    1077            1 :                 }
    1078            1 :                 b.deferredOp.index = b.rangeKeyIndex
    1079              :         }
    1080              : }
    1081              : 
    1082              : // RangeKeyUnset removes a range key mapping the key range [start, end) at the
    1083              : // MVCC timestamp suffix. The suffix may be omitted to remove an unsuffixed
    1084              : // range key. RangeKeyUnset only removes portions of range keys that fall within
    1085              : // the [start, end) key span, and only range keys with suffixes that exactly
    1086              : // match the unset suffix.
    1087              : //
    1088              : // It is safe to modify the contents of the arguments after RangeKeyUnset
    1089              : // returns.
    1090            1 : func (b *Batch) RangeKeyUnset(start, end, suffix []byte, _ *WriteOptions) error {
    1091            1 :         if invariants.Enabled && b.db != nil {
    1092            1 :                 // RangeKeyUnset is only supported on prefix keys.
    1093            1 :                 if b.db.opts.Comparer.Split(start) != len(start) {
    1094            0 :                         panic("RangeKeyUnset called with suffixed start key")
    1095              :                 }
    1096            1 :                 if b.db.opts.Comparer.Split(end) != len(end) {
    1097            0 :                         panic("RangeKeyUnset called with suffixed end key")
    1098              :                 }
    1099              :         }
    1100            1 :         suffixes := [1][]byte{suffix}
    1101            1 :         internalValueLen := rangekey.EncodedUnsetValueLen(end, suffixes[:])
    1102            1 : 
    1103            1 :         deferredOp := b.rangeKeyUnsetDeferred(len(start), internalValueLen)
    1104            1 :         copy(deferredOp.Key, start)
    1105            1 :         n := rangekey.EncodeUnsetValue(deferredOp.Value, end, suffixes[:])
    1106            1 :         if n != internalValueLen {
    1107            0 :                 panic("unexpected internal value length mismatch")
    1108              :         }
    1109              : 
    1110              :         // Manually inline DeferredBatchOp.Finish()
    1111            1 :         if deferredOp.index != nil {
    1112            1 :                 if err := deferredOp.index.Add(deferredOp.offset); err != nil {
    1113            0 :                         return err
    1114            0 :                 }
    1115              :         }
    1116            1 :         return nil
    1117              : }
    1118              : 
    1119            1 : func (b *Batch) rangeKeyUnsetDeferred(startLen, internalValueLen int) *DeferredBatchOp {
    1120            1 :         b.prepareDeferredKeyValueRecord(startLen, internalValueLen, InternalKeyKindRangeKeyUnset)
    1121            1 :         b.incrementRangeKeysCount()
    1122            1 :         return &b.deferredOp
    1123            1 : }
    1124              : 
    1125              : // RangeKeyDelete deletes all of the range keys in the range [start,end)
    1126              : // (inclusive on start, exclusive on end). It does not delete point keys (for
    1127              : // that use DeleteRange). RangeKeyDelete removes all range keys within the
    1128              : // bounds, including those with or without suffixes.
    1129              : //
    1130              : // It is safe to modify the contents of the arguments after RangeKeyDelete
    1131              : // returns.
    1132            1 : func (b *Batch) RangeKeyDelete(start, end []byte, _ *WriteOptions) error {
    1133            1 :         if invariants.Enabled && b.db != nil {
    1134            1 :                 // RangeKeyDelete is only supported on prefix keys.
    1135            1 :                 if b.db.opts.Comparer.Split(start) != len(start) {
    1136            0 :                         panic("RangeKeyDelete called with suffixed start key")
    1137              :                 }
    1138            1 :                 if b.db.opts.Comparer.Split(end) != len(end) {
    1139            0 :                         panic("RangeKeyDelete called with suffixed end key")
    1140              :                 }
    1141              :         }
    1142            1 :         deferredOp := b.RangeKeyDeleteDeferred(len(start), len(end))
    1143            1 :         copy(deferredOp.Key, start)
    1144            1 :         copy(deferredOp.Value, end)
    1145            1 :         // Manually inline DeferredBatchOp.Finish().
    1146            1 :         if deferredOp.index != nil {
    1147            1 :                 if err := deferredOp.index.Add(deferredOp.offset); err != nil {
    1148            0 :                         return err
    1149            0 :                 }
    1150              :         }
    1151            1 :         return nil
    1152              : }
    1153              : 
    1154              : // RangeKeyDeleteDeferred is similar to RangeKeyDelete in that it adds an
    1155              : // operation to delete range keys to the batch, except it only takes in key
    1156              : // lengths instead of complete slices, letting the caller encode into those
    1157              : // objects and then call Finish() on the returned object. Note that
    1158              : // DeferredBatchOp.Key should be populated with the start key, and
    1159              : // DeferredBatchOp.Value should be populated with the end key.
    1160            1 : func (b *Batch) RangeKeyDeleteDeferred(startLen, endLen int) *DeferredBatchOp {
    1161            1 :         b.prepareDeferredKeyValueRecord(startLen, endLen, InternalKeyKindRangeKeyDelete)
    1162            1 :         b.incrementRangeKeysCount()
    1163            1 :         return &b.deferredOp
    1164            1 : }
    1165              : 
    1166              : // LogData adds the specified to the batch. The data will be written to the
    1167              : // WAL, but not added to memtables or sstables. Log data is never indexed,
    1168              : // which makes it useful for testing WAL performance.
    1169              : //
    1170              : // It is safe to modify the contents of the argument after LogData returns.
    1171            1 : func (b *Batch) LogData(data []byte, _ *WriteOptions) error {
    1172            1 :         origCount, origMemTableSize := b.count, b.memTableSize
    1173            1 :         b.prepareDeferredKeyRecord(len(data), InternalKeyKindLogData)
    1174            1 :         copy(b.deferredOp.Key, data)
    1175            1 :         // Since LogData only writes to the WAL and does not affect the memtable, we
    1176            1 :         // restore b.count and b.memTableSize to their origin values. Note that
    1177            1 :         // Batch.count only refers to records that are added to the memtable.
    1178            1 :         b.count, b.memTableSize = origCount, origMemTableSize
    1179            1 :         return nil
    1180            1 : }
    1181              : 
    1182              : // IngestSST adds the FileNum for an sstable to the batch. The data will only be
    1183              : // written to the WAL (not added to memtables or sstables).
    1184            1 : func (b *Batch) ingestSST(fileNum base.FileNum) {
    1185            1 :         if b.Empty() {
    1186            1 :                 b.ingestedSSTBatch = true
    1187            1 :         } else if !b.ingestedSSTBatch {
    1188            0 :                 // Batch contains other key kinds.
    1189            0 :                 panic("pebble: invalid call to ingestSST")
    1190              :         }
    1191              : 
    1192            1 :         origMemTableSize := b.memTableSize
    1193            1 :         var buf [binary.MaxVarintLen64]byte
    1194            1 :         length := binary.PutUvarint(buf[:], uint64(fileNum))
    1195            1 :         b.prepareDeferredKeyRecord(length, InternalKeyKindIngestSST)
    1196            1 :         copy(b.deferredOp.Key, buf[:length])
    1197            1 :         // Since IngestSST writes only to the WAL and does not affect the memtable,
    1198            1 :         // we restore b.memTableSize to its original value. Note that Batch.count
    1199            1 :         // is not reset because for the InternalKeyKindIngestSST the count is the
    1200            1 :         // number of sstable paths which have been added to the batch.
    1201            1 :         b.memTableSize = origMemTableSize
    1202            1 :         b.minimumFormatMajorVersion = FormatFlushableIngest
    1203              : }
    1204              : 
    1205              : // Excise adds the excise span for a flushable ingest containing an excise. The data
    1206              : // will only be written to the WAL (not added to memtables or sstables).
    1207            1 : func (b *Batch) excise(start, end []byte) {
    1208            1 :         if b.Empty() {
    1209            1 :                 b.ingestedSSTBatch = true
    1210            1 :         } else if !b.ingestedSSTBatch {
    1211            0 :                 // Batch contains other key kinds.
    1212            0 :                 panic("pebble: invalid call to excise")
    1213              :         }
    1214              : 
    1215            1 :         origMemTableSize := b.memTableSize
    1216            1 :         b.prepareDeferredKeyValueRecord(len(start), len(end), InternalKeyKindExcise)
    1217            1 :         copy(b.deferredOp.Key, start)
    1218            1 :         copy(b.deferredOp.Value, end)
    1219            1 :         // Since excise writes only to the WAL and does not affect the memtable,
    1220            1 :         // we restore b.memTableSize to its original value. Note that Batch.count
    1221            1 :         // is not reset because for the InternalKeyKindIngestSST/Excise the count
    1222            1 :         // is the number of sstable paths which have been added to the batch.
    1223            1 :         b.memTableSize = origMemTableSize
    1224            1 :         b.minimumFormatMajorVersion = FormatFlushableIngestExcises
    1225              : }
    1226              : 
    1227              : // Empty returns true if the batch is empty, and false otherwise.
    1228            1 : func (b *Batch) Empty() bool {
    1229            1 :         return batchrepr.IsEmpty(b.data)
    1230            1 : }
    1231              : 
    1232              : // Len returns the current size of the batch in bytes.
    1233            1 : func (b *Batch) Len() int {
    1234            1 :         return max(batchrepr.HeaderLen, len(b.data))
    1235            1 : }
    1236              : 
    1237              : // Repr returns the underlying batch representation. It is not safe to modify
    1238              : // the contents. Reset() will not change the contents of the returned value,
    1239              : // though any other mutation operation may do so.
    1240            1 : func (b *Batch) Repr() []byte {
    1241            1 :         if len(b.data) == 0 {
    1242            1 :                 b.init(batchrepr.HeaderLen)
    1243            1 :         }
    1244            1 :         batchrepr.SetCount(b.data, b.Count())
    1245            1 :         return b.data
    1246              : }
    1247              : 
    1248              : // SetRepr sets the underlying batch representation. The batch takes ownership
    1249              : // of the supplied slice. It is not safe to modify it afterwards until the
    1250              : // Batch is no longer in use.
    1251              : //
    1252              : // SetRepr may return ErrInvalidBatch if the supplied slice fails to decode in
    1253              : // any way. It will not return an error in any other circumstance.
    1254            1 : func (b *Batch) SetRepr(data []byte) error {
    1255            1 :         h, ok := batchrepr.ReadHeader(data)
    1256            1 :         if !ok {
    1257            0 :                 return ErrInvalidBatch
    1258            0 :         }
    1259            1 :         b.data = data
    1260            1 :         b.count = uint64(h.Count)
    1261            1 :         var err error
    1262            1 :         if b.db != nil {
    1263            1 :                 // Only track memTableSize for batches that will be committed to the DB.
    1264            1 :                 err = b.refreshMemTableSize()
    1265            1 :         }
    1266            1 :         return err
    1267              : }
    1268              : 
    1269              : // NewIter returns an iterator that is unpositioned (Iterator.Valid() will
    1270              : // return false). The iterator can be positioned via a call to SeekGE,
    1271              : // SeekPrefixGE, SeekLT, First or Last. Only indexed batches support iterators.
    1272              : //
    1273              : // The returned Iterator observes all of the Batch's existing mutations, but no
    1274              : // later mutations. Its view can be refreshed via RefreshBatchSnapshot or
    1275              : // SetOptions().
    1276            1 : func (b *Batch) NewIter(o *IterOptions) (*Iterator, error) {
    1277            1 :         return b.NewIterWithContext(context.Background(), o)
    1278            1 : }
    1279              : 
    1280              : // NewIterWithContext is like NewIter, and additionally accepts a context for
    1281              : // tracing.
    1282            1 : func (b *Batch) NewIterWithContext(ctx context.Context, o *IterOptions) (*Iterator, error) {
    1283            1 :         if b.index == nil {
    1284            0 :                 return nil, ErrNotIndexed
    1285            0 :         }
    1286            1 :         return b.db.newIter(ctx, b, newIterOpts{}, o), nil
    1287              : }
    1288              : 
    1289              : // NewBatchOnlyIter constructs an iterator that only reads the contents of the
    1290              : // batch, and does not overlay the batch mutations on top of the DB state.
    1291              : //
    1292              : // The returned Iterator observes all of the Batch's existing mutations, but
    1293              : // no later mutations. Its view can be refreshed via RefreshBatchSnapshot or
    1294              : // SetOptions().
    1295            1 : func (b *Batch) NewBatchOnlyIter(ctx context.Context, o *IterOptions) (*Iterator, error) {
    1296            1 :         if b.index == nil {
    1297            0 :                 return nil, ErrNotIndexed
    1298            0 :         }
    1299            1 :         return b.db.newIter(ctx, b, newIterOpts{batch: batchIterOpts{batchOnly: true}}, o), nil
    1300              : }
    1301              : 
    1302              : // newInternalIter creates a new internalIterator that iterates over the
    1303              : // contents of the batch.
    1304            1 : func (b *Batch) newInternalIter(o *IterOptions) *batchIter {
    1305            1 :         iter := &batchIter{}
    1306            1 :         b.initInternalIter(o, iter)
    1307            1 :         return iter
    1308            1 : }
    1309              : 
    1310            1 : func (b *Batch) initInternalIter(o *IterOptions, iter *batchIter) {
    1311            1 :         *iter = batchIter{
    1312            1 :                 batch: b,
    1313            1 :                 iter:  b.index.NewIter(o.GetLowerBound(), o.GetUpperBound()),
    1314            1 :                 // NB: We explicitly do not propagate the batch snapshot to the point
    1315            1 :                 // key iterator. Filtering point keys within the batch iterator can
    1316            1 :                 // cause pathological behavior where a batch iterator advances
    1317            1 :                 // significantly farther than necessary filtering many batch keys that
    1318            1 :                 // are not visible at the batch sequence number. Instead, the merging
    1319            1 :                 // iterator enforces bounds.
    1320            1 :                 //
    1321            1 :                 // For example, consider an engine that contains the committed keys
    1322            1 :                 // 'bar' and 'bax', with no keys between them. Consider a batch
    1323            1 :                 // containing keys 1,000 keys within the range [a,z]. All of the
    1324            1 :                 // batch keys were added to the batch after the iterator was
    1325            1 :                 // constructed, so they are not visible to the iterator. A call to
    1326            1 :                 // SeekGE('bax') would seek the LSM iterators and discover the key
    1327            1 :                 // 'bax'. It would also seek the batch iterator, landing on the key
    1328            1 :                 // 'baz' but discover it that it's not visible. The batch iterator would
    1329            1 :                 // next through the rest of the batch's keys, only to discover there are
    1330            1 :                 // no visible keys greater than or equal to 'bax'.
    1331            1 :                 //
    1332            1 :                 // Filtering these batch points within the merging iterator ensures that
    1333            1 :                 // the batch iterator never needs to iterate beyond 'baz', because it
    1334            1 :                 // already found a smaller, visible key 'bax'.
    1335            1 :                 snapshot: base.SeqNumMax,
    1336            1 :         }
    1337            1 : }
    1338              : 
    1339            1 : func (b *Batch) newRangeDelIter(o *IterOptions, batchSnapshot base.SeqNum) *keyspan.Iter {
    1340            1 :         // Construct an iterator even if rangeDelIndex is nil, because it is allowed
    1341            1 :         // to refresh later, so we need the container to exist.
    1342            1 :         iter := new(keyspan.Iter)
    1343            1 :         b.initRangeDelIter(o, iter, batchSnapshot)
    1344            1 :         return iter
    1345            1 : }
    1346              : 
    1347            1 : func (b *Batch) initRangeDelIter(_ *IterOptions, iter *keyspan.Iter, batchSnapshot base.SeqNum) {
    1348            1 :         if b.rangeDelIndex == nil {
    1349            1 :                 iter.Init(b.comparer.Compare, nil)
    1350            1 :                 return
    1351            1 :         }
    1352              : 
    1353              :         // Fragment the range tombstones the first time a range deletion iterator is
    1354              :         // requested. The cached tombstones are invalidated if another range
    1355              :         // deletion tombstone is added to the batch. This cache is only guaranteed
    1356              :         // to be correct if we're opening an iterator to read at a batch sequence
    1357              :         // number at least as high as tombstonesSeqNum. The cache is guaranteed to
    1358              :         // include all tombstones up to tombstonesSeqNum, and if any additional
    1359              :         // tombstones were added after that sequence number the cache would've been
    1360              :         // cleared.
    1361            1 :         nextSeqNum := b.nextSeqNum()
    1362            1 :         if b.tombstones != nil && b.tombstonesSeqNum <= batchSnapshot {
    1363            1 :                 iter.Init(b.comparer.Compare, b.tombstones)
    1364            1 :                 return
    1365            1 :         }
    1366              : 
    1367            1 :         tombstones := make([]keyspan.Span, 0, b.countRangeDels)
    1368            1 :         frag := &keyspan.Fragmenter{
    1369            1 :                 Cmp:    b.comparer.Compare,
    1370            1 :                 Format: b.comparer.FormatKey,
    1371            1 :                 Emit: func(s keyspan.Span) {
    1372            1 :                         tombstones = append(tombstones, s)
    1373            1 :                 },
    1374              :         }
    1375            1 :         it := &batchIter{
    1376            1 :                 batch:    b,
    1377            1 :                 iter:     b.rangeDelIndex.NewIter(nil, nil),
    1378            1 :                 snapshot: batchSnapshot,
    1379            1 :         }
    1380            1 :         fragmentRangeDels(frag, it, int(b.countRangeDels))
    1381            1 :         iter.Init(b.comparer.Compare, tombstones)
    1382            1 : 
    1383            1 :         // If we just read all the tombstones in the batch (eg, batchSnapshot was
    1384            1 :         // set to b.nextSeqNum()), then cache the tombstones so that a subsequent
    1385            1 :         // call to initRangeDelIter may use them without refragmenting.
    1386            1 :         if nextSeqNum == batchSnapshot {
    1387            1 :                 b.tombstones = tombstones
    1388            1 :                 b.tombstonesSeqNum = nextSeqNum
    1389            1 :         }
    1390              : }
    1391              : 
    1392            1 : func fragmentRangeDels(frag *keyspan.Fragmenter, it internalIterator, count int) {
    1393            1 :         // The memory management here is a bit subtle. The keys and values returned
    1394            1 :         // by the iterator are slices in Batch.data. Thus the fragmented tombstones
    1395            1 :         // are slices within Batch.data. If additional entries are added to the
    1396            1 :         // Batch, Batch.data may be reallocated. The references in the fragmented
    1397            1 :         // tombstones will remain valid, pointing into the old Batch.data. GC for
    1398            1 :         // the win.
    1399            1 : 
    1400            1 :         // Use a single []keyspan.Key buffer to avoid allocating many
    1401            1 :         // individual []keyspan.Key slices with a single element each.
    1402            1 :         keyBuf := make([]keyspan.Key, 0, count)
    1403            1 :         for kv := it.First(); kv != nil; kv = it.Next() {
    1404            1 :                 s := rangedel.Decode(kv.K, kv.InPlaceValue(), keyBuf)
    1405            1 :                 keyBuf = s.Keys[len(s.Keys):]
    1406            1 : 
    1407            1 :                 // Set a fixed capacity to avoid accidental overwriting.
    1408            1 :                 s.Keys = s.Keys[:len(s.Keys):len(s.Keys)]
    1409            1 :                 frag.Add(s)
    1410            1 :         }
    1411            1 :         frag.Finish()
    1412              : }
    1413              : 
    1414            1 : func (b *Batch) newRangeKeyIter(o *IterOptions, batchSnapshot base.SeqNum) *keyspan.Iter {
    1415            1 :         // Construct an iterator even if rangeKeyIndex is nil, because it is allowed
    1416            1 :         // to refresh later, so we need the container to exist.
    1417            1 :         iter := new(keyspan.Iter)
    1418            1 :         b.initRangeKeyIter(o, iter, batchSnapshot)
    1419            1 :         return iter
    1420            1 : }
    1421              : 
    1422            1 : func (b *Batch) initRangeKeyIter(_ *IterOptions, iter *keyspan.Iter, batchSnapshot base.SeqNum) {
    1423            1 :         if b.rangeKeyIndex == nil {
    1424            1 :                 iter.Init(b.comparer.Compare, nil)
    1425            1 :                 return
    1426            1 :         }
    1427              : 
    1428              :         // Fragment the range keys the first time a range key iterator is requested.
    1429              :         // The cached spans are invalidated if another range key is added to the
    1430              :         // batch. This cache is only guaranteed to be correct if we're opening an
    1431              :         // iterator to read at a batch sequence number at least as high as
    1432              :         // rangeKeysSeqNum. The cache is guaranteed to include all range keys up to
    1433              :         // rangeKeysSeqNum, and if any additional range keys were added after that
    1434              :         // sequence number the cache would've been cleared.
    1435            1 :         nextSeqNum := b.nextSeqNum()
    1436            1 :         if b.rangeKeys != nil && b.rangeKeysSeqNum <= batchSnapshot {
    1437            1 :                 iter.Init(b.comparer.Compare, b.rangeKeys)
    1438            1 :                 return
    1439            1 :         }
    1440              : 
    1441            1 :         rangeKeys := make([]keyspan.Span, 0, b.countRangeKeys)
    1442            1 :         frag := &keyspan.Fragmenter{
    1443            1 :                 Cmp:    b.comparer.Compare,
    1444            1 :                 Format: b.comparer.FormatKey,
    1445            1 :                 Emit: func(s keyspan.Span) {
    1446            1 :                         rangeKeys = append(rangeKeys, s)
    1447            1 :                 },
    1448              :         }
    1449            1 :         it := &batchIter{
    1450            1 :                 batch:    b,
    1451            1 :                 iter:     b.rangeKeyIndex.NewIter(nil, nil),
    1452            1 :                 snapshot: batchSnapshot,
    1453            1 :         }
    1454            1 :         fragmentRangeKeys(frag, it, int(b.countRangeKeys))
    1455            1 :         iter.Init(b.comparer.Compare, rangeKeys)
    1456            1 : 
    1457            1 :         // If we just read all the range keys in the batch (eg, batchSnapshot was
    1458            1 :         // set to b.nextSeqNum()), then cache the range keys so that a subsequent
    1459            1 :         // call to initRangeKeyIter may use them without refragmenting.
    1460            1 :         if nextSeqNum == batchSnapshot {
    1461            1 :                 b.rangeKeys = rangeKeys
    1462            1 :                 b.rangeKeysSeqNum = nextSeqNum
    1463            1 :         }
    1464              : }
    1465              : 
    1466            1 : func fragmentRangeKeys(frag *keyspan.Fragmenter, it internalIterator, count int) error {
    1467            1 :         // The memory management here is a bit subtle. The keys and values
    1468            1 :         // returned by the iterator are slices in Batch.data. Thus the
    1469            1 :         // fragmented key spans are slices within Batch.data. If additional
    1470            1 :         // entries are added to the Batch, Batch.data may be reallocated. The
    1471            1 :         // references in the fragmented keys will remain valid, pointing into
    1472            1 :         // the old Batch.data. GC for the win.
    1473            1 : 
    1474            1 :         // Use a single []keyspan.Key buffer to avoid allocating many
    1475            1 :         // individual []keyspan.Key slices with a single element each.
    1476            1 :         keyBuf := make([]keyspan.Key, 0, count)
    1477            1 :         for kv := it.First(); kv != nil; kv = it.Next() {
    1478            1 :                 s, err := rangekey.Decode(kv.K, kv.InPlaceValue(), keyBuf)
    1479            1 :                 if err != nil {
    1480            0 :                         return err
    1481            0 :                 }
    1482            1 :                 keyBuf = s.Keys[len(s.Keys):]
    1483            1 : 
    1484            1 :                 // Set a fixed capacity to avoid accidental overwriting.
    1485            1 :                 s.Keys = s.Keys[:len(s.Keys):len(s.Keys)]
    1486            1 :                 frag.Add(s)
    1487              :         }
    1488            1 :         frag.Finish()
    1489            1 :         return nil
    1490              : }
    1491              : 
    1492              : // Commit applies the batch to its parent writer.
    1493            1 : func (b *Batch) Commit(o *WriteOptions) error {
    1494            1 :         return b.db.Apply(b, o)
    1495            1 : }
    1496              : 
    1497              : // Close closes the batch without committing it.
    1498            1 : func (b *Batch) Close() error {
    1499            1 :         // The storage engine commit pipeline may retain a pointer to b.data beyond
    1500            1 :         // when Commit() returns. This is possible when configured for WAL failover;
    1501            1 :         // we don't know if we might need to read the batch data again until the
    1502            1 :         // batch has been durably synced [even if the committer doesn't care to wait
    1503            1 :         // for the sync and Sync()=false].
    1504            1 :         //
    1505            1 :         // We still want to recycle these batches. The b.lifecycle atomic negotiates
    1506            1 :         // the batch's lifecycle. If the commit pipeline still might read b.data,
    1507            1 :         // b.lifecycle will be nonzeroed [the low bits hold a ref count].
    1508            1 :         for {
    1509            1 :                 v := b.lifecycle.Load()
    1510            1 :                 switch {
    1511            1 :                 case v == 0:
    1512            1 :                         // A zero value indicates that the commit pipeline has no
    1513            1 :                         // outstanding references to the batch. The commit pipeline is
    1514            1 :                         // required to acquire a ref synchronously, so there is no risk that
    1515            1 :                         // the commit pipeline will grab a ref after the call to release. We
    1516            1 :                         // can simply release the batch.
    1517            1 :                         b.release()
    1518            1 :                         return nil
    1519            1 :                 case (v & batchClosedBit) != 0:
    1520            1 :                         // The batch has a batchClosedBit: This batch has already been closed.
    1521            1 :                         return ErrClosed
    1522            1 :                 default:
    1523            1 :                         // There's an outstanding reference. Set the batch released bit so
    1524            1 :                         // that the commit pipeline knows it should release the batch when
    1525            1 :                         // it unrefs.
    1526            1 :                         if b.lifecycle.CompareAndSwap(v, v|batchClosedBit) {
    1527            1 :                                 return nil
    1528            1 :                         }
    1529              :                         // CAS Failed—this indicates the outstanding reference just
    1530              :                         // decremented (or the caller illegally closed the batch twice).
    1531              :                         // Loop to reload.
    1532              :                 }
    1533              :         }
    1534              : }
    1535              : 
    1536              : // Indexed returns true if the batch is indexed (i.e. supports read
    1537              : // operations).
    1538            1 : func (b *Batch) Indexed() bool {
    1539            1 :         return b.index != nil
    1540            1 : }
    1541              : 
    1542              : // init ensures that the batch data slice is initialized to meet the
    1543              : // minimum required size and allocates space for the batch header.
    1544            1 : func (b *Batch) init(size int) {
    1545            1 :         b.opts.ensureDefaults()
    1546            1 :         n := b.opts.initialSizeBytes
    1547            1 :         for n < size {
    1548            1 :                 n *= 2
    1549            1 :         }
    1550            1 :         if cap(b.data) < n {
    1551            1 :                 b.data = rawalloc.New(batchrepr.HeaderLen, n)
    1552            1 :         }
    1553            1 :         b.data = b.data[:batchrepr.HeaderLen]
    1554            1 :         clear(b.data) // Zero the sequence number in the header
    1555              : }
    1556              : 
    1557              : // Reset resets the batch for reuse. The underlying byte slice (that is
    1558              : // returned by Repr()) may not be modified. It is only necessary to call this
    1559              : // method if a batch is explicitly being reused. Close automatically takes are
    1560              : // of releasing resources when appropriate for batches that are internally
    1561              : // being reused.
    1562            1 : func (b *Batch) Reset() {
    1563            1 :         // In some configurations (WAL failover) the commit pipeline may retain
    1564            1 :         // b.data beyond a call to commit the batch. When this happens, b.lifecycle
    1565            1 :         // is nonzero (see the comment above b.lifecycle). In this case it's unsafe
    1566            1 :         // to mutate b.data, so we discard it. Note that Reset must not be called on
    1567            1 :         // a closed batch, so v > 0 implies a non-zero ref count and not
    1568            1 :         // batchClosedBit being set.
    1569            1 :         if v := b.lifecycle.Load(); v > 0 {
    1570            1 :                 b.data = nil
    1571            1 :         }
    1572            1 :         b.reset()
    1573              : }
    1574              : 
    1575            1 : func (b *Batch) reset() {
    1576            1 :         // Zero out the struct, retaining only the fields necessary for manual
    1577            1 :         // reuse.
    1578            1 :         b.batchInternal = batchInternal{
    1579            1 :                 data:     b.data,
    1580            1 :                 comparer: b.comparer,
    1581            1 :                 opts:     b.opts,
    1582            1 :                 index:    b.index,
    1583            1 :                 db:       b.db,
    1584            1 :         }
    1585            1 :         b.applied.Store(false)
    1586            1 :         if b.data != nil {
    1587            1 :                 if cap(b.data) > b.opts.maxRetainedSizeBytes {
    1588            1 :                         // If the capacity of the buffer is larger than our maximum
    1589            1 :                         // retention size, don't re-use it. Let it be GC-ed instead.
    1590            1 :                         // This prevents the memory from an unusually large batch from
    1591            1 :                         // being held on to indefinitely.
    1592            1 :                         b.data = nil
    1593            1 :                 } else {
    1594            1 :                         // Otherwise, reset the buffer for re-use.
    1595            1 :                         b.data = b.data[:batchrepr.HeaderLen]
    1596            1 :                         clear(b.data)
    1597            1 :                 }
    1598              :         }
    1599            1 :         if b.index != nil {
    1600            1 :                 b.index.Init(&b.data, b.comparer.Compare, b.comparer.AbbreviatedKey)
    1601            1 :         }
    1602              : }
    1603              : 
    1604            1 : func (b *Batch) grow(n int) {
    1605            1 :         newSize := len(b.data) + n
    1606            1 :         if uint64(newSize) >= maxBatchSize {
    1607            1 :                 panic(ErrBatchTooLarge)
    1608              :         }
    1609            1 :         if newSize > cap(b.data) {
    1610            1 :                 newCap := 2 * cap(b.data)
    1611            1 :                 for newCap < newSize {
    1612            1 :                         newCap *= 2
    1613            1 :                 }
    1614            1 :                 newData := rawalloc.New(len(b.data), newCap)
    1615            1 :                 copy(newData, b.data)
    1616            1 :                 b.data = newData
    1617              :         }
    1618            1 :         b.data = b.data[:newSize]
    1619              : }
    1620              : 
    1621            1 : func (b *Batch) setSeqNum(seqNum base.SeqNum) {
    1622            1 :         batchrepr.SetSeqNum(b.data, seqNum)
    1623            1 : }
    1624              : 
    1625              : // SeqNum returns the batch sequence number which is applied to the first
    1626              : // record in the batch. The sequence number is incremented for each subsequent
    1627              : // record. It returns zero if the batch is empty.
    1628            1 : func (b *Batch) SeqNum() base.SeqNum {
    1629            1 :         if len(b.data) == 0 {
    1630            1 :                 b.init(batchrepr.HeaderLen)
    1631            1 :         }
    1632            1 :         return batchrepr.ReadSeqNum(b.data)
    1633              : }
    1634              : 
    1635            1 : func (b *Batch) setCount(v uint32) {
    1636            1 :         b.count = uint64(v)
    1637            1 : }
    1638              : 
    1639              : // Count returns the count of memtable-modifying operations in this batch. All
    1640              : // operations with the except of LogData increment this count. For IngestSSTs,
    1641              : // count is only used to indicate the number of SSTs ingested in the record, the
    1642              : // batch isn't applied to the memtable.
    1643            1 : func (b *Batch) Count() uint32 {
    1644            1 :         if b.count > math.MaxUint32 {
    1645            1 :                 panic(batchrepr.ErrInvalidBatch)
    1646              :         }
    1647            1 :         return uint32(b.count)
    1648              : }
    1649              : 
    1650              : // Reader returns a batchrepr.Reader for the current batch contents. If the
    1651              : // batch is mutated, the new entries will not be visible to the reader.
    1652            1 : func (b *Batch) Reader() batchrepr.Reader {
    1653            1 :         if len(b.data) == 0 {
    1654            1 :                 b.init(batchrepr.HeaderLen)
    1655            1 :         }
    1656            1 :         return batchrepr.Read(b.data)
    1657              : }
    1658              : 
    1659              : // SyncWait is to be used in conjunction with DB.ApplyNoSyncWait.
    1660            1 : func (b *Batch) SyncWait() error {
    1661            1 :         now := crtime.NowMono()
    1662            1 :         b.fsyncWait.Wait()
    1663            1 :         if b.commitErr != nil {
    1664            0 :                 b.db = nil // prevent batch reuse on error
    1665            0 :         }
    1666            1 :         waitDuration := now.Elapsed()
    1667            1 :         b.commitStats.CommitWaitDuration += waitDuration
    1668            1 :         b.commitStats.TotalDuration += waitDuration
    1669            1 :         return b.commitErr
    1670              : }
    1671              : 
    1672              : // CommitStats returns stats related to committing the batch. Should be called
    1673              : // after Batch.Commit, DB.Apply. If DB.ApplyNoSyncWait is used, should be
    1674              : // called after Batch.SyncWait.
    1675            1 : func (b *Batch) CommitStats() BatchCommitStats {
    1676            1 :         return b.commitStats
    1677            1 : }
    1678              : 
    1679              : // Note: batchIter mirrors the implementation of flushableBatchIter. Keep the
    1680              : // two in sync.
    1681              : type batchIter struct {
    1682              :         batch *Batch
    1683              :         iter  batchskl.Iterator
    1684              :         kv    base.InternalKV
    1685              :         err   error
    1686              :         // snapshot holds a batch "sequence number" at which the batch is being
    1687              :         // read. This sequence number has the InternalKeySeqNumBatch bit set, so it
    1688              :         // encodes an offset within the batch. Only batch entries earlier than the
    1689              :         // offset are visible during iteration.
    1690              :         snapshot base.SeqNum
    1691              : }
    1692              : 
    1693              : // batchIter implements the base.InternalIterator interface.
    1694              : var _ base.InternalIterator = (*batchIter)(nil)
    1695              : 
    1696            0 : func (i *batchIter) String() string {
    1697            0 :         return "batch"
    1698            0 : }
    1699              : 
    1700            1 : func (i *batchIter) SeekGE(key []byte, flags base.SeekGEFlags) *base.InternalKV {
    1701            1 :         // Ignore TrySeekUsingNext if the view of the batch changed.
    1702            1 :         if flags.TrySeekUsingNext() && flags.BatchJustRefreshed() {
    1703            1 :                 flags = flags.DisableTrySeekUsingNext()
    1704            1 :         }
    1705              : 
    1706            1 :         i.err = nil // clear cached iteration error
    1707            1 :         ikey := i.iter.SeekGE(key, flags)
    1708            1 :         for ikey != nil && ikey.SeqNum() >= i.snapshot {
    1709            0 :                 ikey = i.iter.Next()
    1710            0 :         }
    1711            1 :         if ikey == nil {
    1712            1 :                 i.kv = base.InternalKV{}
    1713            1 :                 return nil
    1714            1 :         }
    1715            1 :         i.kv.K = *ikey
    1716            1 :         i.kv.V = base.MakeInPlaceValue(i.value())
    1717            1 :         return &i.kv
    1718              : }
    1719              : 
    1720            1 : func (i *batchIter) SeekPrefixGE(prefix, key []byte, flags base.SeekGEFlags) *base.InternalKV {
    1721            1 :         kv := i.SeekGE(key, flags)
    1722            1 :         if kv == nil {
    1723            1 :                 return nil
    1724            1 :         }
    1725              :         // If the key doesn't have the sought prefix, return nil.
    1726            1 :         if !bytes.Equal(i.batch.comparer.Split.Prefix(kv.K.UserKey), prefix) {
    1727            1 :                 i.kv = base.InternalKV{}
    1728            1 :                 return nil
    1729            1 :         }
    1730            1 :         return kv
    1731              : }
    1732              : 
    1733            1 : func (i *batchIter) SeekLT(key []byte, flags base.SeekLTFlags) *base.InternalKV {
    1734            1 :         i.err = nil // clear cached iteration error
    1735            1 :         ikey := i.iter.SeekLT(key)
    1736            1 :         for ikey != nil && ikey.SeqNum() >= i.snapshot {
    1737            0 :                 ikey = i.iter.Prev()
    1738            0 :         }
    1739            1 :         if ikey == nil {
    1740            1 :                 i.kv = base.InternalKV{}
    1741            1 :                 return nil
    1742            1 :         }
    1743            1 :         i.kv.K = *ikey
    1744            1 :         i.kv.V = base.MakeInPlaceValue(i.value())
    1745            1 :         return &i.kv
    1746              : }
    1747              : 
    1748            1 : func (i *batchIter) First() *base.InternalKV {
    1749            1 :         i.err = nil // clear cached iteration error
    1750            1 :         ikey := i.iter.First()
    1751            1 :         for ikey != nil && ikey.SeqNum() >= i.snapshot {
    1752            1 :                 ikey = i.iter.Next()
    1753            1 :         }
    1754            1 :         if ikey == nil {
    1755            1 :                 i.kv = base.InternalKV{}
    1756            1 :                 return nil
    1757            1 :         }
    1758            1 :         i.kv.K = *ikey
    1759            1 :         i.kv.V = base.MakeInPlaceValue(i.value())
    1760            1 :         return &i.kv
    1761              : }
    1762              : 
    1763            1 : func (i *batchIter) Last() *base.InternalKV {
    1764            1 :         i.err = nil // clear cached iteration error
    1765            1 :         ikey := i.iter.Last()
    1766            1 :         for ikey != nil && ikey.SeqNum() >= i.snapshot {
    1767            0 :                 ikey = i.iter.Prev()
    1768            0 :         }
    1769            1 :         if ikey == nil {
    1770            0 :                 i.kv = base.InternalKV{}
    1771            0 :                 return nil
    1772            0 :         }
    1773            1 :         i.kv.K = *ikey
    1774            1 :         i.kv.V = base.MakeInPlaceValue(i.value())
    1775            1 :         return &i.kv
    1776              : }
    1777              : 
    1778            1 : func (i *batchIter) Next() *base.InternalKV {
    1779            1 :         ikey := i.iter.Next()
    1780            1 :         for ikey != nil && ikey.SeqNum() >= i.snapshot {
    1781            1 :                 ikey = i.iter.Next()
    1782            1 :         }
    1783            1 :         if ikey == nil {
    1784            1 :                 i.kv = base.InternalKV{}
    1785            1 :                 return nil
    1786            1 :         }
    1787            1 :         i.kv.K = *ikey
    1788            1 :         i.kv.V = base.MakeInPlaceValue(i.value())
    1789            1 :         return &i.kv
    1790              : }
    1791              : 
    1792            0 : func (i *batchIter) NextPrefix(succKey []byte) *base.InternalKV {
    1793            0 :         // Because NextPrefix was invoked `succKey` must be ≥ the key at i's current
    1794            0 :         // position. Seek the arena iterator using TrySeekUsingNext.
    1795            0 :         ikey := i.iter.SeekGE(succKey, base.SeekGEFlagsNone.EnableTrySeekUsingNext())
    1796            0 :         for ikey != nil && ikey.SeqNum() >= i.snapshot {
    1797            0 :                 ikey = i.iter.Next()
    1798            0 :         }
    1799            0 :         if ikey == nil {
    1800            0 :                 i.kv = base.InternalKV{}
    1801            0 :                 return nil
    1802            0 :         }
    1803            0 :         i.kv.K = *ikey
    1804            0 :         i.kv.V = base.MakeInPlaceValue(i.value())
    1805            0 :         return &i.kv
    1806              : }
    1807              : 
    1808            1 : func (i *batchIter) Prev() *base.InternalKV {
    1809            1 :         ikey := i.iter.Prev()
    1810            1 :         for ikey != nil && ikey.SeqNum() >= i.snapshot {
    1811            0 :                 ikey = i.iter.Prev()
    1812            0 :         }
    1813            1 :         if ikey == nil {
    1814            1 :                 i.kv = base.InternalKV{}
    1815            1 :                 return nil
    1816            1 :         }
    1817            1 :         i.kv.K = *ikey
    1818            1 :         i.kv.V = base.MakeInPlaceValue(i.value())
    1819            1 :         return &i.kv
    1820              : }
    1821              : 
    1822            1 : func (i *batchIter) value() []byte {
    1823            1 :         offset, _, keyEnd := i.iter.KeyInfo()
    1824            1 :         data := i.batch.data
    1825            1 :         if len(data[offset:]) == 0 {
    1826            0 :                 i.err = base.CorruptionErrorf("corrupted batch")
    1827            0 :                 return nil
    1828            0 :         }
    1829              : 
    1830            1 :         switch InternalKeyKind(data[offset]) {
    1831              :         case InternalKeyKindSet, InternalKeyKindMerge, InternalKeyKindRangeDelete,
    1832              :                 InternalKeyKindRangeKeySet, InternalKeyKindRangeKeyUnset, InternalKeyKindRangeKeyDelete,
    1833            1 :                 InternalKeyKindDeleteSized:
    1834            1 :                 _, value, ok := batchrepr.DecodeStr(data[keyEnd:])
    1835            1 :                 if !ok {
    1836            0 :                         return nil
    1837            0 :                 }
    1838            1 :                 return value
    1839            1 :         default:
    1840            1 :                 return nil
    1841              :         }
    1842              : }
    1843              : 
    1844            1 : func (i *batchIter) Error() error {
    1845            1 :         return i.err
    1846            1 : }
    1847              : 
    1848            1 : func (i *batchIter) Close() error {
    1849            1 :         _ = i.iter.Close()
    1850            1 :         return i.err
    1851            1 : }
    1852              : 
    1853            1 : func (i *batchIter) SetBounds(lower, upper []byte) {
    1854            1 :         i.iter.SetBounds(lower, upper)
    1855            1 : }
    1856              : 
    1857            0 : func (i *batchIter) SetContext(_ context.Context) {}
    1858              : 
    1859              : // DebugTree is part of the InternalIterator interface.
    1860            0 : func (i *batchIter) DebugTree(tp treeprinter.Node) {
    1861            0 :         tp.Childf("%T(%p)", i, i)
    1862            0 : }
    1863              : 
    1864              : type flushableBatchEntry struct {
    1865              :         // offset is the byte offset of the record within the batch repr.
    1866              :         offset uint32
    1867              :         // index is the 0-based ordinal number of the record within the batch. Used
    1868              :         // to compute the seqnum for the record.
    1869              :         index uint32
    1870              :         // key{Start,End} are the start and end byte offsets of the key within the
    1871              :         // batch repr. Cached to avoid decoding the key length on every
    1872              :         // comparison. The value is stored starting at keyEnd.
    1873              :         keyStart uint32
    1874              :         keyEnd   uint32
    1875              : }
    1876              : 
    1877              : // flushableBatch wraps an existing batch and provides the interfaces needed
    1878              : // for making the batch flushable (i.e. able to mimic a memtable).
    1879              : type flushableBatch struct {
    1880              :         cmp      Compare
    1881              :         comparer *base.Comparer
    1882              :         data     []byte
    1883              : 
    1884              :         // The base sequence number for the entries in the batch. This is the same
    1885              :         // value as Batch.seqNum() and is cached here for performance.
    1886              :         seqNum base.SeqNum
    1887              : 
    1888              :         // A slice of offsets and indices for the entries in the batch. Used to
    1889              :         // implement flushableBatchIter. Unlike the indexing on a normal batch, a
    1890              :         // flushable batch is indexed such that batch entry i will be given the
    1891              :         // sequence number flushableBatch.seqNum+i.
    1892              :         //
    1893              :         // Sorted in increasing order of key and decreasing order of offset (since
    1894              :         // higher offsets correspond to higher sequence numbers).
    1895              :         //
    1896              :         // Does not include range deletion entries or range key entries.
    1897              :         offsets []flushableBatchEntry
    1898              : 
    1899              :         // Fragmented range deletion tombstones.
    1900              :         tombstones []keyspan.Span
    1901              : 
    1902              :         // Fragmented range keys.
    1903              :         rangeKeys []keyspan.Span
    1904              : }
    1905              : 
    1906              : var _ flushable = (*flushableBatch)(nil)
    1907              : 
    1908              : // newFlushableBatch creates a new batch that implements the flushable
    1909              : // interface. This allows the batch to act like a memtable and be placed in the
    1910              : // queue of flushable memtables. Note that the flushable batch takes ownership
    1911              : // of the batch data.
    1912            1 : func newFlushableBatch(batch *Batch, comparer *Comparer) (*flushableBatch, error) {
    1913            1 :         b := &flushableBatch{
    1914            1 :                 data:     batch.data,
    1915            1 :                 cmp:      comparer.Compare,
    1916            1 :                 comparer: comparer,
    1917            1 :                 offsets:  make([]flushableBatchEntry, 0, batch.Count()),
    1918            1 :         }
    1919            1 :         if b.data != nil {
    1920            1 :                 // Note that this sequence number is not correct when this batch has not
    1921            1 :                 // been applied since the sequence number has not been assigned yet. The
    1922            1 :                 // correct sequence number will be set later. But it is correct when the
    1923            1 :                 // batch is being replayed from the WAL.
    1924            1 :                 b.seqNum = batch.SeqNum()
    1925            1 :         }
    1926            1 :         var rangeDelOffsets []flushableBatchEntry
    1927            1 :         var rangeKeyOffsets []flushableBatchEntry
    1928            1 :         if len(b.data) > batchrepr.HeaderLen {
    1929            1 :                 // Non-empty batch.
    1930            1 :                 var index uint32
    1931            1 :                 for iter := batchrepr.Read(b.data); len(iter) > 0; {
    1932            1 :                         offset := uintptr(unsafe.Pointer(&iter[0])) - uintptr(unsafe.Pointer(&b.data[0]))
    1933            1 :                         kind, key, _, ok, err := iter.Next()
    1934            1 :                         if !ok {
    1935            0 :                                 if err != nil {
    1936            0 :                                         return nil, err
    1937            0 :                                 }
    1938            0 :                                 break
    1939              :                         }
    1940            1 :                         entry := flushableBatchEntry{
    1941            1 :                                 offset: uint32(offset),
    1942            1 :                                 index:  uint32(index),
    1943            1 :                         }
    1944            1 :                         if keySize := uint32(len(key)); keySize == 0 {
    1945            1 :                                 // Must add 2 to the offset. One byte encodes `kind` and the next
    1946            1 :                                 // byte encodes `0`, which is the length of the key.
    1947            1 :                                 entry.keyStart = uint32(offset) + 2
    1948            1 :                                 entry.keyEnd = entry.keyStart
    1949            1 :                         } else {
    1950            1 :                                 entry.keyStart = uint32(uintptr(unsafe.Pointer(&key[0])) -
    1951            1 :                                         uintptr(unsafe.Pointer(&b.data[0])))
    1952            1 :                                 entry.keyEnd = entry.keyStart + keySize
    1953            1 :                         }
    1954            1 :                         switch kind {
    1955            1 :                         case InternalKeyKindRangeDelete:
    1956            1 :                                 rangeDelOffsets = append(rangeDelOffsets, entry)
    1957            1 :                         case InternalKeyKindRangeKeySet, InternalKeyKindRangeKeyUnset, InternalKeyKindRangeKeyDelete:
    1958            1 :                                 rangeKeyOffsets = append(rangeKeyOffsets, entry)
    1959            1 :                         case InternalKeyKindLogData:
    1960            1 :                                 // Skip it; we never want to iterate over LogDatas.
    1961            1 :                                 continue
    1962              :                         case InternalKeyKindSet, InternalKeyKindDelete, InternalKeyKindMerge,
    1963            1 :                                 InternalKeyKindSingleDelete, InternalKeyKindSetWithDelete, InternalKeyKindDeleteSized:
    1964            1 :                                 b.offsets = append(b.offsets, entry)
    1965            0 :                         default:
    1966            0 :                                 // Note In some circumstances this might be temporary memory
    1967            0 :                                 // corruption that can be recovered by discarding the batch and
    1968            0 :                                 // trying again. In other cases, the batch repr might've been
    1969            0 :                                 // already persisted elsewhere, and we'll loop continuously trying
    1970            0 :                                 // to commit the same corrupted batch. The caller is responsible for
    1971            0 :                                 // distinguishing.
    1972            0 :                                 return nil, errors.Wrapf(ErrInvalidBatch, "unrecognized kind %v", kind)
    1973              :                         }
    1974              :                         // NB: index (used for entry.offset above) must not reach the
    1975              :                         // batch.count, because the offset is used in conjunction with the
    1976              :                         // batch's sequence number to assign sequence numbers to keys within
    1977              :                         // the batch. If we assign KV's indexes as high as batch.count,
    1978              :                         // we'll begin assigning keys sequence numbers that weren't
    1979              :                         // allocated.
    1980            1 :                         if index >= uint32(batch.count) {
    1981            0 :                                 return nil, base.AssertionFailedf("pebble: batch entry index %d ≥ batch.count %d", index, batch.count)
    1982            0 :                         }
    1983            1 :                         index++
    1984              :                 }
    1985              :         }
    1986              : 
    1987              :         // Sort all of offsets, rangeDelOffsets and rangeKeyOffsets, using *batch's
    1988              :         // sort.Interface implementation.
    1989            1 :         pointOffsets := b.offsets
    1990            1 :         sort.Sort(b)
    1991            1 :         b.offsets = rangeDelOffsets
    1992            1 :         sort.Sort(b)
    1993            1 :         b.offsets = rangeKeyOffsets
    1994            1 :         sort.Sort(b)
    1995            1 :         b.offsets = pointOffsets
    1996            1 : 
    1997            1 :         if len(rangeDelOffsets) > 0 {
    1998            1 :                 frag := &keyspan.Fragmenter{
    1999            1 :                         Cmp:    b.cmp,
    2000            1 :                         Format: b.comparer.FormatKey,
    2001            1 :                         Emit: func(s keyspan.Span) {
    2002            1 :                                 b.tombstones = append(b.tombstones, s)
    2003            1 :                         },
    2004              :                 }
    2005            1 :                 it := &flushableBatchIter{
    2006            1 :                         batch:   b,
    2007            1 :                         data:    b.data,
    2008            1 :                         offsets: rangeDelOffsets,
    2009            1 :                         cmp:     b.cmp,
    2010            1 :                         index:   -1,
    2011            1 :                 }
    2012            1 :                 fragmentRangeDels(frag, it, len(rangeDelOffsets))
    2013              :         }
    2014            1 :         if len(rangeKeyOffsets) > 0 {
    2015            1 :                 frag := &keyspan.Fragmenter{
    2016            1 :                         Cmp:    b.cmp,
    2017            1 :                         Format: b.comparer.FormatKey,
    2018            1 :                         Emit: func(s keyspan.Span) {
    2019            1 :                                 b.rangeKeys = append(b.rangeKeys, s)
    2020            1 :                         },
    2021              :                 }
    2022            1 :                 it := &flushableBatchIter{
    2023            1 :                         batch:   b,
    2024            1 :                         data:    b.data,
    2025            1 :                         offsets: rangeKeyOffsets,
    2026            1 :                         cmp:     b.cmp,
    2027            1 :                         index:   -1,
    2028            1 :                 }
    2029            1 :                 fragmentRangeKeys(frag, it, len(rangeKeyOffsets))
    2030              :         }
    2031            1 :         return b, nil
    2032              : }
    2033              : 
    2034            1 : func (b *flushableBatch) setSeqNum(seqNum base.SeqNum) {
    2035            1 :         if b.seqNum != 0 {
    2036            0 :                 panic(fmt.Sprintf("pebble: flushableBatch.seqNum already set: %d", b.seqNum))
    2037              :         }
    2038            1 :         b.seqNum = seqNum
    2039            1 :         for i := range b.tombstones {
    2040            1 :                 for j := range b.tombstones[i].Keys {
    2041            1 :                         b.tombstones[i].Keys[j].Trailer = base.MakeTrailer(
    2042            1 :                                 b.tombstones[i].Keys[j].SeqNum()+seqNum,
    2043            1 :                                 b.tombstones[i].Keys[j].Kind(),
    2044            1 :                         )
    2045            1 :                 }
    2046              :         }
    2047            1 :         for i := range b.rangeKeys {
    2048            1 :                 for j := range b.rangeKeys[i].Keys {
    2049            1 :                         b.rangeKeys[i].Keys[j].Trailer = base.MakeTrailer(
    2050            1 :                                 b.rangeKeys[i].Keys[j].SeqNum()+seqNum,
    2051            1 :                                 b.rangeKeys[i].Keys[j].Kind(),
    2052            1 :                         )
    2053            1 :                 }
    2054              :         }
    2055              : }
    2056              : 
    2057            1 : func (b *flushableBatch) Len() int {
    2058            1 :         return len(b.offsets)
    2059            1 : }
    2060              : 
    2061            1 : func (b *flushableBatch) Less(i, j int) bool {
    2062            1 :         ei := &b.offsets[i]
    2063            1 :         ej := &b.offsets[j]
    2064            1 :         ki := b.data[ei.keyStart:ei.keyEnd]
    2065            1 :         kj := b.data[ej.keyStart:ej.keyEnd]
    2066            1 :         switch c := b.cmp(ki, kj); {
    2067            1 :         case c < 0:
    2068            1 :                 return true
    2069            1 :         case c > 0:
    2070            1 :                 return false
    2071            1 :         default:
    2072            1 :                 return ei.offset > ej.offset
    2073              :         }
    2074              : }
    2075              : 
    2076            1 : func (b *flushableBatch) Swap(i, j int) {
    2077            1 :         b.offsets[i], b.offsets[j] = b.offsets[j], b.offsets[i]
    2078            1 : }
    2079              : 
    2080              : // newIter is part of the flushable interface.
    2081            1 : func (b *flushableBatch) newIter(o *IterOptions) internalIterator {
    2082            1 :         return &flushableBatchIter{
    2083            1 :                 batch:   b,
    2084            1 :                 data:    b.data,
    2085            1 :                 offsets: b.offsets,
    2086            1 :                 cmp:     b.cmp,
    2087            1 :                 index:   -1,
    2088            1 :                 lower:   o.GetLowerBound(),
    2089            1 :                 upper:   o.GetUpperBound(),
    2090            1 :         }
    2091            1 : }
    2092              : 
    2093              : // newFlushIter is part of the flushable interface.
    2094            1 : func (b *flushableBatch) newFlushIter(o *IterOptions) internalIterator {
    2095            1 :         return &flushFlushableBatchIter{
    2096            1 :                 flushableBatchIter: flushableBatchIter{
    2097            1 :                         batch:   b,
    2098            1 :                         data:    b.data,
    2099            1 :                         offsets: b.offsets,
    2100            1 :                         cmp:     b.cmp,
    2101            1 :                         index:   -1,
    2102            1 :                 },
    2103            1 :         }
    2104            1 : }
    2105              : 
    2106              : // newRangeDelIter is part of the flushable interface.
    2107            1 : func (b *flushableBatch) newRangeDelIter(o *IterOptions) keyspan.FragmentIterator {
    2108            1 :         if len(b.tombstones) == 0 {
    2109            1 :                 return nil
    2110            1 :         }
    2111            1 :         return keyspan.NewIter(b.cmp, b.tombstones)
    2112              : }
    2113              : 
    2114              : // newRangeKeyIter is part of the flushable interface.
    2115            1 : func (b *flushableBatch) newRangeKeyIter(o *IterOptions) keyspan.FragmentIterator {
    2116            1 :         if len(b.rangeKeys) == 0 {
    2117            1 :                 return nil
    2118            1 :         }
    2119            1 :         return keyspan.NewIter(b.cmp, b.rangeKeys)
    2120              : }
    2121              : 
    2122              : // containsRangeKeys is part of the flushable interface.
    2123            1 : func (b *flushableBatch) containsRangeKeys() bool { return len(b.rangeKeys) > 0 }
    2124              : 
    2125              : // inuseBytes is part of the flushable interface.
    2126            1 : func (b *flushableBatch) inuseBytes() uint64 {
    2127            1 :         return uint64(len(b.data) - batchrepr.HeaderLen)
    2128            1 : }
    2129              : 
    2130              : // totalBytes is part of the flushable interface.
    2131            1 : func (b *flushableBatch) totalBytes() uint64 {
    2132            1 :         return uint64(cap(b.data))
    2133            1 : }
    2134              : 
    2135              : // readyForFlush is part of the flushable interface.
    2136            1 : func (b *flushableBatch) readyForFlush() bool {
    2137            1 :         // A flushable batch is always ready for flush; it must be flushed together
    2138            1 :         // with the previous memtable.
    2139            1 :         return true
    2140            1 : }
    2141              : 
    2142              : // computePossibleOverlaps is part of the flushable interface.
    2143              : func (b *flushableBatch) computePossibleOverlaps(
    2144              :         fn func(bounded) shouldContinue, bounded ...bounded,
    2145            1 : ) {
    2146            1 :         computePossibleOverlapsGenericImpl[*flushableBatch](b, b.cmp, fn, bounded)
    2147            1 : }
    2148              : 
    2149              : // Note: flushableBatchIter mirrors the implementation of batchIter. Keep the
    2150              : // two in sync.
    2151              : type flushableBatchIter struct {
    2152              :         // Members to be initialized by creator.
    2153              :         batch *flushableBatch
    2154              :         // The bytes backing the batch. Always the same as batch.data?
    2155              :         data []byte
    2156              :         // The sorted entries. This is not always equal to batch.offsets.
    2157              :         offsets []flushableBatchEntry
    2158              :         cmp     Compare
    2159              :         // Must be initialized to -1. It is the index into offsets that represents
    2160              :         // the current iterator position.
    2161              :         index int
    2162              : 
    2163              :         // For internal use by the implementation.
    2164              :         kv  base.InternalKV
    2165              :         err error
    2166              : 
    2167              :         // Optionally initialize to bounds of iteration, if any.
    2168              :         lower []byte
    2169              :         upper []byte
    2170              : }
    2171              : 
    2172              : // flushableBatchIter implements the base.InternalIterator interface.
    2173              : var _ base.InternalIterator = (*flushableBatchIter)(nil)
    2174              : 
    2175            0 : func (i *flushableBatchIter) String() string {
    2176            0 :         return "flushable-batch"
    2177            0 : }
    2178              : 
    2179              : // SeekGE implements internalIterator.SeekGE, as documented in the pebble
    2180              : // package. Ignore flags.TrySeekUsingNext() since we don't expect this
    2181              : // optimization to provide much benefit here at the moment.
    2182            1 : func (i *flushableBatchIter) SeekGE(key []byte, flags base.SeekGEFlags) *base.InternalKV {
    2183            1 :         i.err = nil // clear cached iteration error
    2184            1 :         ikey := base.MakeSearchKey(key)
    2185            1 :         i.index = sort.Search(len(i.offsets), func(j int) bool {
    2186            1 :                 return base.InternalCompare(i.cmp, ikey, i.getKey(j)) <= 0
    2187            1 :         })
    2188            1 :         if i.index >= len(i.offsets) {
    2189            1 :                 return nil
    2190            1 :         }
    2191            1 :         kv := i.getKV(i.index)
    2192            1 :         if i.upper != nil && i.cmp(kv.K.UserKey, i.upper) >= 0 {
    2193            1 :                 i.index = len(i.offsets)
    2194            1 :                 return nil
    2195            1 :         }
    2196            1 :         return kv
    2197              : }
    2198              : 
    2199              : // SeekPrefixGE implements internalIterator.SeekPrefixGE, as documented in the
    2200              : // pebble package.
    2201              : func (i *flushableBatchIter) SeekPrefixGE(
    2202              :         prefix, key []byte, flags base.SeekGEFlags,
    2203            1 : ) *base.InternalKV {
    2204            1 :         kv := i.SeekGE(key, flags)
    2205            1 :         if kv == nil {
    2206            1 :                 return nil
    2207            1 :         }
    2208              :         // If the key doesn't have the sought prefix, return nil.
    2209            1 :         if !bytes.Equal(i.batch.comparer.Split.Prefix(kv.K.UserKey), prefix) {
    2210            1 :                 return nil
    2211            1 :         }
    2212            1 :         return kv
    2213              : }
    2214              : 
    2215              : // SeekLT implements internalIterator.SeekLT, as documented in the pebble
    2216              : // package.
    2217            1 : func (i *flushableBatchIter) SeekLT(key []byte, flags base.SeekLTFlags) *base.InternalKV {
    2218            1 :         i.err = nil // clear cached iteration error
    2219            1 :         ikey := base.MakeSearchKey(key)
    2220            1 :         i.index = sort.Search(len(i.offsets), func(j int) bool {
    2221            1 :                 return base.InternalCompare(i.cmp, ikey, i.getKey(j)) <= 0
    2222            1 :         })
    2223            1 :         i.index--
    2224            1 :         if i.index < 0 {
    2225            1 :                 return nil
    2226            1 :         }
    2227            1 :         kv := i.getKV(i.index)
    2228            1 :         if i.lower != nil && i.cmp(kv.K.UserKey, i.lower) < 0 {
    2229            1 :                 i.index = -1
    2230            1 :                 return nil
    2231            1 :         }
    2232            1 :         return kv
    2233              : }
    2234              : 
    2235              : // First implements internalIterator.First, as documented in the pebble
    2236              : // package.
    2237            1 : func (i *flushableBatchIter) First() *base.InternalKV {
    2238            1 :         i.err = nil // clear cached iteration error
    2239            1 :         if len(i.offsets) == 0 {
    2240            1 :                 return nil
    2241            1 :         }
    2242            1 :         i.index = 0
    2243            1 :         kv := i.getKV(i.index)
    2244            1 :         if i.upper != nil && i.cmp(kv.K.UserKey, i.upper) >= 0 {
    2245            1 :                 i.index = len(i.offsets)
    2246            1 :                 return nil
    2247            1 :         }
    2248            1 :         return kv
    2249              : }
    2250              : 
    2251              : // Last implements internalIterator.Last, as documented in the pebble
    2252              : // package.
    2253            1 : func (i *flushableBatchIter) Last() *base.InternalKV {
    2254            1 :         i.err = nil // clear cached iteration error
    2255            1 :         if len(i.offsets) == 0 {
    2256            0 :                 return nil
    2257            0 :         }
    2258            1 :         i.index = len(i.offsets) - 1
    2259            1 :         kv := i.getKV(i.index)
    2260            1 :         if i.lower != nil && i.cmp(kv.K.UserKey, i.lower) < 0 {
    2261            1 :                 i.index = -1
    2262            1 :                 return nil
    2263            1 :         }
    2264            1 :         return kv
    2265              : }
    2266              : 
    2267              : // Note: flushFlushableBatchIter.Next mirrors the implementation of
    2268              : // flushableBatchIter.Next due to performance. Keep the two in sync.
    2269            1 : func (i *flushableBatchIter) Next() *base.InternalKV {
    2270            1 :         if i.index == len(i.offsets) {
    2271            0 :                 return nil
    2272            0 :         }
    2273            1 :         i.index++
    2274            1 :         if i.index == len(i.offsets) {
    2275            1 :                 return nil
    2276            1 :         }
    2277            1 :         kv := i.getKV(i.index)
    2278            1 :         if i.upper != nil && i.cmp(kv.K.UserKey, i.upper) >= 0 {
    2279            1 :                 i.index = len(i.offsets)
    2280            1 :                 return nil
    2281            1 :         }
    2282            1 :         return kv
    2283              : }
    2284              : 
    2285            1 : func (i *flushableBatchIter) Prev() *base.InternalKV {
    2286            1 :         if i.index < 0 {
    2287            0 :                 return nil
    2288            0 :         }
    2289            1 :         i.index--
    2290            1 :         if i.index < 0 {
    2291            1 :                 return nil
    2292            1 :         }
    2293            1 :         kv := i.getKV(i.index)
    2294            1 :         if i.lower != nil && i.cmp(kv.K.UserKey, i.lower) < 0 {
    2295            1 :                 i.index = -1
    2296            1 :                 return nil
    2297            1 :         }
    2298            1 :         return kv
    2299              : }
    2300              : 
    2301              : // Note: flushFlushableBatchIter.NextPrefix mirrors the implementation of
    2302              : // flushableBatchIter.NextPrefix due to performance. Keep the two in sync.
    2303            0 : func (i *flushableBatchIter) NextPrefix(succKey []byte) *base.InternalKV {
    2304            0 :         return i.SeekGE(succKey, base.SeekGEFlagsNone.EnableTrySeekUsingNext())
    2305            0 : }
    2306              : 
    2307            1 : func (i *flushableBatchIter) getKey(index int) InternalKey {
    2308            1 :         e := &i.offsets[index]
    2309            1 :         kind := InternalKeyKind(i.data[e.offset])
    2310            1 :         key := i.data[e.keyStart:e.keyEnd]
    2311            1 :         return base.MakeInternalKey(key, i.batch.seqNum+base.SeqNum(e.index), kind)
    2312            1 : }
    2313              : 
    2314            1 : func (i *flushableBatchIter) getKV(index int) *base.InternalKV {
    2315            1 :         i.kv = base.InternalKV{
    2316            1 :                 K: i.getKey(index),
    2317            1 :                 V: base.MakeInPlaceValue(i.extractValue()),
    2318            1 :         }
    2319            1 :         return &i.kv
    2320            1 : }
    2321              : 
    2322            1 : func (i *flushableBatchIter) extractValue() []byte {
    2323            1 :         p := i.data[i.offsets[i.index].offset:]
    2324            1 :         if len(p) == 0 {
    2325            0 :                 i.err = base.CorruptionErrorf("corrupted batch")
    2326            0 :                 return nil
    2327            0 :         }
    2328            1 :         kind := InternalKeyKind(p[0])
    2329            1 :         if kind > InternalKeyKindMax {
    2330            0 :                 i.err = base.CorruptionErrorf("corrupted batch")
    2331            0 :                 return nil
    2332            0 :         }
    2333            1 :         var value []byte
    2334            1 :         var ok bool
    2335            1 :         switch kind {
    2336              :         case InternalKeyKindSet, InternalKeyKindMerge, InternalKeyKindRangeDelete,
    2337              :                 InternalKeyKindRangeKeySet, InternalKeyKindRangeKeyUnset, InternalKeyKindRangeKeyDelete,
    2338            1 :                 InternalKeyKindDeleteSized:
    2339            1 :                 keyEnd := i.offsets[i.index].keyEnd
    2340            1 :                 _, value, ok = batchrepr.DecodeStr(i.data[keyEnd:])
    2341            1 :                 if !ok {
    2342            0 :                         i.err = base.CorruptionErrorf("corrupted batch")
    2343            0 :                         return nil
    2344            0 :                 }
    2345              :         }
    2346            1 :         return value
    2347              : }
    2348              : 
    2349            0 : func (i *flushableBatchIter) Valid() bool {
    2350            0 :         return i.index >= 0 && i.index < len(i.offsets)
    2351            0 : }
    2352              : 
    2353            1 : func (i *flushableBatchIter) Error() error {
    2354            1 :         return i.err
    2355            1 : }
    2356              : 
    2357            1 : func (i *flushableBatchIter) Close() error {
    2358            1 :         return i.err
    2359            1 : }
    2360              : 
    2361            1 : func (i *flushableBatchIter) SetBounds(lower, upper []byte) {
    2362            1 :         i.lower = lower
    2363            1 :         i.upper = upper
    2364            1 : }
    2365              : 
    2366            0 : func (i *flushableBatchIter) SetContext(_ context.Context) {}
    2367              : 
    2368              : // DebugTree is part of the InternalIterator interface.
    2369            0 : func (i *flushableBatchIter) DebugTree(tp treeprinter.Node) {
    2370            0 :         tp.Childf("%T(%p)", i, i)
    2371            0 : }
    2372              : 
    2373              : // flushFlushableBatchIter is similar to flushableBatchIter but it keeps track
    2374              : // of number of bytes iterated.
    2375              : type flushFlushableBatchIter struct {
    2376              :         flushableBatchIter
    2377              : }
    2378              : 
    2379              : // flushFlushableBatchIter implements the base.InternalIterator interface.
    2380              : var _ base.InternalIterator = (*flushFlushableBatchIter)(nil)
    2381              : 
    2382            0 : func (i *flushFlushableBatchIter) String() string {
    2383            0 :         return "flushable-batch"
    2384            0 : }
    2385              : 
    2386            0 : func (i *flushFlushableBatchIter) SeekGE(key []byte, flags base.SeekGEFlags) *base.InternalKV {
    2387            0 :         panic("pebble: SeekGE unimplemented")
    2388              : }
    2389              : 
    2390              : func (i *flushFlushableBatchIter) SeekPrefixGE(
    2391              :         prefix, key []byte, flags base.SeekGEFlags,
    2392            0 : ) *base.InternalKV {
    2393            0 :         panic("pebble: SeekPrefixGE unimplemented")
    2394              : }
    2395              : 
    2396            0 : func (i *flushFlushableBatchIter) SeekLT(key []byte, flags base.SeekLTFlags) *base.InternalKV {
    2397            0 :         panic("pebble: SeekLT unimplemented")
    2398              : }
    2399              : 
    2400            1 : func (i *flushFlushableBatchIter) First() *base.InternalKV {
    2401            1 :         i.err = nil // clear cached iteration error
    2402            1 :         return i.flushableBatchIter.First()
    2403            1 : }
    2404              : 
    2405            0 : func (i *flushFlushableBatchIter) NextPrefix(succKey []byte) *base.InternalKV {
    2406            0 :         panic("pebble: Prev unimplemented")
    2407              : }
    2408              : 
    2409              : // Note: flushFlushableBatchIter.Next mirrors the implementation of
    2410              : // flushableBatchIter.Next due to performance. Keep the two in sync.
    2411            1 : func (i *flushFlushableBatchIter) Next() *base.InternalKV {
    2412            1 :         if i.index == len(i.offsets) {
    2413            0 :                 return nil
    2414            0 :         }
    2415            1 :         i.index++
    2416            1 :         if i.index == len(i.offsets) {
    2417            1 :                 return nil
    2418            1 :         }
    2419            1 :         return i.getKV(i.index)
    2420              : }
    2421              : 
    2422            0 : func (i flushFlushableBatchIter) Prev() *base.InternalKV {
    2423            0 :         panic("pebble: Prev unimplemented")
    2424              : }
    2425              : 
    2426              : // batchOptions holds the parameters to configure batch.
    2427              : type batchOptions struct {
    2428              :         initialSizeBytes     int
    2429              :         maxRetainedSizeBytes int
    2430              : }
    2431              : 
    2432              : // ensureDefaults creates batch options with default values.
    2433            1 : func (o *batchOptions) ensureDefaults() {
    2434            1 :         if o.initialSizeBytes <= 0 {
    2435            1 :                 o.initialSizeBytes = defaultBatchInitialSize
    2436            1 :         }
    2437            1 :         if o.maxRetainedSizeBytes <= 0 {
    2438            1 :                 o.maxRetainedSizeBytes = defaultBatchMaxRetainedSize
    2439            1 :         }
    2440              : }
    2441              : 
    2442              : // BatchOption allows customizing the batch.
    2443              : type BatchOption func(*batchOptions)
    2444              : 
    2445              : // WithInitialSizeBytes sets a custom initial size for the batch. Defaults
    2446              : // to 1KB.
    2447            1 : func WithInitialSizeBytes(s int) BatchOption {
    2448            1 :         return func(opts *batchOptions) {
    2449            1 :                 opts.initialSizeBytes = s
    2450            1 :         }
    2451              : }
    2452              : 
    2453              : // WithMaxRetainedSizeBytes sets a custom max size for the batch to be
    2454              : // re-used. Any batch which exceeds the max retained size would be GC-ed.
    2455              : // Defaults to 1MB.
    2456            1 : func WithMaxRetainedSizeBytes(s int) BatchOption {
    2457            1 :         return func(opts *batchOptions) {
    2458            1 :                 opts.maxRetainedSizeBytes = s
    2459            1 :         }
    2460              : }
    2461              : 
    2462              : // batchSort returns iterators for the sorted contents of the batch. It is
    2463              : // intended for testing use only. The batch.Sort dance is done to prevent
    2464              : // exposing this method in the public pebble interface.
    2465              : func batchSort(
    2466              :         i interface{},
    2467              : ) (
    2468              :         points internalIterator,
    2469              :         rangeDels keyspan.FragmentIterator,
    2470              :         rangeKeys keyspan.FragmentIterator,
    2471            1 : ) {
    2472            1 :         b := i.(*Batch)
    2473            1 :         if b.Indexed() {
    2474            1 :                 pointIter := b.newInternalIter(nil)
    2475            1 :                 rangeDelIter := b.newRangeDelIter(nil, math.MaxUint64)
    2476            1 :                 rangeKeyIter := b.newRangeKeyIter(nil, math.MaxUint64)
    2477            1 :                 return pointIter, rangeDelIter, rangeKeyIter
    2478            1 :         }
    2479            1 :         f, err := newFlushableBatch(b, b.db.opts.Comparer)
    2480            1 :         if err != nil {
    2481            0 :                 panic(err)
    2482              :         }
    2483            1 :         return f.newIter(nil), f.newRangeDelIter(nil), f.newRangeKeyIter(nil)
    2484              : }
    2485              : 
    2486            1 : func init() {
    2487            1 :         private.BatchSort = batchSort
    2488            1 : }
        

Generated by: LCOV version 2.0-1