Line data Source code
1 : // Copyright 2012 The LevelDB-Go and Pebble Authors. All rights reserved. Use
2 : // of this source code is governed by a BSD-style license that can be found in
3 : // the LICENSE file.
4 :
5 : // Package pebble provides an ordered key/value store.
6 : package pebble // import "github.com/cockroachdb/pebble"
7 :
8 : import (
9 : "context"
10 : "fmt"
11 : "io"
12 : "slices"
13 : "sync"
14 : "sync/atomic"
15 : "time"
16 : "unsafe"
17 :
18 : "github.com/cockroachdb/crlib/crtime"
19 : "github.com/cockroachdb/errors"
20 : "github.com/cockroachdb/pebble/internal/arenaskl"
21 : "github.com/cockroachdb/pebble/internal/base"
22 : "github.com/cockroachdb/pebble/internal/cache"
23 : "github.com/cockroachdb/pebble/internal/invalidating"
24 : "github.com/cockroachdb/pebble/internal/invariants"
25 : "github.com/cockroachdb/pebble/internal/keyspan"
26 : "github.com/cockroachdb/pebble/internal/keyspan/keyspanimpl"
27 : "github.com/cockroachdb/pebble/internal/manifest"
28 : "github.com/cockroachdb/pebble/internal/manual"
29 : "github.com/cockroachdb/pebble/internal/problemspans"
30 : "github.com/cockroachdb/pebble/objstorage"
31 : "github.com/cockroachdb/pebble/objstorage/remote"
32 : "github.com/cockroachdb/pebble/rangekey"
33 : "github.com/cockroachdb/pebble/record"
34 : "github.com/cockroachdb/pebble/sstable"
35 : "github.com/cockroachdb/pebble/sstable/block"
36 : "github.com/cockroachdb/pebble/vfs"
37 : "github.com/cockroachdb/pebble/vfs/atomicfs"
38 : "github.com/cockroachdb/pebble/wal"
39 : "github.com/cockroachdb/tokenbucket"
40 : "github.com/prometheus/client_golang/prometheus"
41 : )
42 :
43 : const (
44 : // minFileCacheSize is the minimum size of the file cache, for a single db.
45 : minFileCacheSize = 64
46 :
47 : // numNonFileCacheFiles is an approximation for the number of files
48 : // that we don't account for in the file cache, for a given db.
49 : numNonFileCacheFiles = 10
50 : )
51 :
52 : var (
53 : // ErrNotFound is returned when a get operation does not find the requested
54 : // key.
55 : ErrNotFound = base.ErrNotFound
56 : // ErrClosed is panicked when an operation is performed on a closed snapshot or
57 : // DB. Use errors.Is(err, ErrClosed) to check for this error.
58 : ErrClosed = errors.New("pebble: closed")
59 : // ErrReadOnly is returned when a write operation is performed on a read-only
60 : // database.
61 : ErrReadOnly = errors.New("pebble: read-only")
62 : // errNoSplit indicates that the user is trying to perform a range key
63 : // operation but the configured Comparer does not provide a Split
64 : // implementation.
65 : errNoSplit = errors.New("pebble: Comparer.Split required for range key operations")
66 : )
67 :
68 : // Reader is a readable key/value store.
69 : //
70 : // It is safe to call Get and NewIter from concurrent goroutines.
71 : type Reader interface {
72 : // Get gets the value for the given key. It returns ErrNotFound if the DB
73 : // does not contain the key.
74 : //
75 : // The caller should not modify the contents of the returned slice, but it is
76 : // safe to modify the contents of the argument after Get returns. The
77 : // returned slice will remain valid until the returned Closer is closed. On
78 : // success, the caller MUST call closer.Close() or a memory leak will occur.
79 : Get(key []byte) (value []byte, closer io.Closer, err error)
80 :
81 : // NewIter returns an iterator that is unpositioned (Iterator.Valid() will
82 : // return false). The iterator can be positioned via a call to SeekGE,
83 : // SeekLT, First or Last.
84 : NewIter(o *IterOptions) (*Iterator, error)
85 :
86 : // NewIterWithContext is like NewIter, and additionally accepts a context
87 : // for tracing.
88 : NewIterWithContext(ctx context.Context, o *IterOptions) (*Iterator, error)
89 :
90 : // Close closes the Reader. It may or may not close any underlying io.Reader
91 : // or io.Writer, depending on how the DB was created.
92 : //
93 : // It is not safe to close a DB until all outstanding iterators are closed.
94 : // It is valid to call Close multiple times. Other methods should not be
95 : // called after the DB has been closed.
96 : Close() error
97 : }
98 :
99 : // Writer is a writable key/value store.
100 : //
101 : // Goroutine safety is dependent on the specific implementation.
102 : type Writer interface {
103 : // Apply the operations contained in the batch to the DB.
104 : //
105 : // It is safe to modify the contents of the arguments after Apply returns.
106 : Apply(batch *Batch, o *WriteOptions) error
107 :
108 : // Delete deletes the value for the given key. Deletes are blind all will
109 : // succeed even if the given key does not exist.
110 : //
111 : // It is safe to modify the contents of the arguments after Delete returns.
112 : Delete(key []byte, o *WriteOptions) error
113 :
114 : // DeleteSized behaves identically to Delete, but takes an additional
115 : // argument indicating the size of the value being deleted. DeleteSized
116 : // should be preferred when the caller has the expectation that there exists
117 : // a single internal KV pair for the key (eg, the key has not been
118 : // overwritten recently), and the caller knows the size of its value.
119 : //
120 : // DeleteSized will record the value size within the tombstone and use it to
121 : // inform compaction-picking heuristics which strive to reduce space
122 : // amplification in the LSM. This "calling your shot" mechanic allows the
123 : // storage engine to more accurately estimate and reduce space
124 : // amplification.
125 : //
126 : // It is safe to modify the contents of the arguments after DeleteSized
127 : // returns.
128 : DeleteSized(key []byte, valueSize uint32, _ *WriteOptions) error
129 :
130 : // SingleDelete is similar to Delete in that it deletes the value for the given key. Like Delete,
131 : // it is a blind operation that will succeed even if the given key does not exist.
132 : //
133 : // WARNING: Undefined (non-deterministic) behavior will result if a key is overwritten and
134 : // then deleted using SingleDelete. The record may appear deleted immediately, but be
135 : // resurrected at a later time after compactions have been performed. Or the record may
136 : // be deleted permanently. A Delete operation lays down a "tombstone" which shadows all
137 : // previous versions of a key. The SingleDelete operation is akin to "anti-matter" and will
138 : // only delete the most recently written version for a key. These different semantics allow
139 : // the DB to avoid propagating a SingleDelete operation during a compaction as soon as the
140 : // corresponding Set operation is encountered. These semantics require extreme care to handle
141 : // properly. Only use if you have a workload where the performance gain is critical and you
142 : // can guarantee that a record is written once and then deleted once.
143 : //
144 : // Note that SINGLEDEL, SET, SINGLEDEL, SET, DEL/RANGEDEL, ... from most
145 : // recent to older will work as intended since there is a single SET
146 : // sandwiched between SINGLEDEL/DEL/RANGEDEL.
147 : //
148 : // IMPLEMENTATION WARNING: By offering SingleDelete, Pebble must guarantee
149 : // that there is no duplication of writes inside Pebble. That is, idempotent
150 : // application of writes is insufficient. For example, if a SET operation
151 : // gets duplicated inside Pebble, resulting in say SET#20 and SET#17, the
152 : // caller may issue a SINGLEDEL#25 and it will not have the desired effect.
153 : // A duplication where a SET#20 is duplicated across two sstables will have
154 : // the same correctness problem, since the SINGLEDEL may meet one of the
155 : // SETs. This guarantee is partially achieved by ensuring that a WAL and a
156 : // flushable are usually in one-to-one correspondence, and atomically
157 : // updating the MANIFEST when the flushable is flushed (which ensures the
158 : // WAL will never be replayed). There is one exception: a flushableBatch (a
159 : // batch too large to fit in a memtable) is written to the end of the WAL
160 : // that it shares with the preceding memtable. This is safe because the
161 : // memtable and the flushableBatch are part of the same flush (see DB.flush1
162 : // where this invariant is maintained). If the memtable were to be flushed
163 : // without the flushableBatch, the WAL cannot yet be deleted and if a crash
164 : // happened, the WAL would be replayed despite the memtable already being
165 : // flushed.
166 : //
167 : // It is safe to modify the contents of the arguments after SingleDelete returns.
168 : SingleDelete(key []byte, o *WriteOptions) error
169 :
170 : // DeleteRange deletes all of the point keys (and values) in the range
171 : // [start,end) (inclusive on start, exclusive on end). DeleteRange does NOT
172 : // delete overlapping range keys (eg, keys set via RangeKeySet).
173 : //
174 : // It is safe to modify the contents of the arguments after DeleteRange
175 : // returns.
176 : DeleteRange(start, end []byte, o *WriteOptions) error
177 :
178 : // LogData adds the specified to the batch. The data will be written to the
179 : // WAL, but not added to memtables or sstables. Log data is never indexed,
180 : // which makes it useful for testing WAL performance.
181 : //
182 : // It is safe to modify the contents of the argument after LogData returns.
183 : LogData(data []byte, opts *WriteOptions) error
184 :
185 : // Merge merges the value for the given key. The details of the merge are
186 : // dependent upon the configured merge operation.
187 : //
188 : // It is safe to modify the contents of the arguments after Merge returns.
189 : Merge(key, value []byte, o *WriteOptions) error
190 :
191 : // Set sets the value for the given key. It overwrites any previous value
192 : // for that key; a DB is not a multi-map.
193 : //
194 : // It is safe to modify the contents of the arguments after Set returns.
195 : Set(key, value []byte, o *WriteOptions) error
196 :
197 : // RangeKeySet sets a range key mapping the key range [start, end) at the MVCC
198 : // timestamp suffix to value. The suffix is optional. If any portion of the key
199 : // range [start, end) is already set by a range key with the same suffix value,
200 : // RangeKeySet overrides it.
201 : //
202 : // It is safe to modify the contents of the arguments after RangeKeySet returns.
203 : RangeKeySet(start, end, suffix, value []byte, opts *WriteOptions) error
204 :
205 : // RangeKeyUnset removes a range key mapping the key range [start, end) at the
206 : // MVCC timestamp suffix. The suffix may be omitted to remove an unsuffixed
207 : // range key. RangeKeyUnset only removes portions of range keys that fall within
208 : // the [start, end) key span, and only range keys with suffixes that exactly
209 : // match the unset suffix.
210 : //
211 : // It is safe to modify the contents of the arguments after RangeKeyUnset
212 : // returns.
213 : RangeKeyUnset(start, end, suffix []byte, opts *WriteOptions) error
214 :
215 : // RangeKeyDelete deletes all of the range keys in the range [start,end)
216 : // (inclusive on start, exclusive on end). It does not delete point keys (for
217 : // that use DeleteRange). RangeKeyDelete removes all range keys within the
218 : // bounds, including those with or without suffixes.
219 : //
220 : // It is safe to modify the contents of the arguments after RangeKeyDelete
221 : // returns.
222 : RangeKeyDelete(start, end []byte, opts *WriteOptions) error
223 : }
224 :
225 : // DB provides a concurrent, persistent ordered key/value store.
226 : //
227 : // A DB's basic operations (Get, Set, Delete) should be self-explanatory. Get
228 : // and Delete will return ErrNotFound if the requested key is not in the store.
229 : // Callers are free to ignore this error.
230 : //
231 : // A DB also allows for iterating over the key/value pairs in key order. If d
232 : // is a DB, the code below prints all key/value pairs whose keys are 'greater
233 : // than or equal to' k:
234 : //
235 : // iter := d.NewIter(readOptions)
236 : // for iter.SeekGE(k); iter.Valid(); iter.Next() {
237 : // fmt.Printf("key=%q value=%q\n", iter.Key(), iter.Value())
238 : // }
239 : // return iter.Close()
240 : //
241 : // The Options struct holds the optional parameters for the DB, including a
242 : // Comparer to define a 'less than' relationship over keys. It is always valid
243 : // to pass a nil *Options, which means to use the default parameter values. Any
244 : // zero field of a non-nil *Options also means to use the default value for
245 : // that parameter. Thus, the code below uses a custom Comparer, but the default
246 : // values for every other parameter:
247 : //
248 : // db := pebble.Open(&Options{
249 : // Comparer: myComparer,
250 : // })
251 : type DB struct {
252 : // The count and size of referenced memtables. This includes memtables
253 : // present in DB.mu.mem.queue, as well as memtables that have been flushed
254 : // but are still referenced by an inuse readState, as well as up to one
255 : // memTable waiting to be reused and stored in d.memTableRecycle.
256 : memTableCount atomic.Int64
257 : memTableReserved atomic.Int64 // number of bytes reserved in the cache for memtables
258 : // memTableRecycle holds a pointer to an obsolete memtable. The next
259 : // memtable allocation will reuse this memtable if it has not already been
260 : // recycled.
261 : memTableRecycle atomic.Pointer[memTable]
262 :
263 : // The logical size of the current WAL.
264 : logSize atomic.Uint64
265 : // The number of input bytes to the log. This is the raw size of the
266 : // batches written to the WAL, without the overhead of the record
267 : // envelopes.
268 : logBytesIn atomic.Uint64
269 :
270 : // The number of bytes available on disk.
271 : diskAvailBytes atomic.Uint64
272 : lowDiskSpaceReporter lowDiskSpaceReporter
273 :
274 : cacheHandle *cache.Handle
275 : dirname string
276 : opts *Options
277 : cmp Compare
278 : equal Equal
279 : merge Merge
280 : split Split
281 : abbreviatedKey AbbreviatedKey
282 : // The threshold for determining when a batch is "large" and will skip being
283 : // inserted into a memtable.
284 : largeBatchThreshold uint64
285 : // The current OPTIONS file number.
286 : optionsFileNum base.DiskFileNum
287 : // The on-disk size of the current OPTIONS file.
288 : optionsFileSize uint64
289 :
290 : // objProvider is used to access and manage SSTs.
291 : objProvider objstorage.Provider
292 :
293 : fileLock *Lock
294 : dataDir vfs.File
295 :
296 : fileCache *fileCacheHandle
297 : newIters tableNewIters
298 : tableNewRangeKeyIter keyspanimpl.TableNewSpanIter
299 :
300 : commit *commitPipeline
301 :
302 : // readState provides access to the state needed for reading without needing
303 : // to acquire DB.mu.
304 : readState struct {
305 : sync.RWMutex
306 : val *readState
307 : }
308 :
309 : closed *atomic.Value
310 : closedCh chan struct{}
311 :
312 : cleanupManager *cleanupManager
313 :
314 : // During an iterator close, we may asynchronously schedule read compactions.
315 : // We want to wait for those goroutines to finish, before closing the DB.
316 : // compactionShedulers.Wait() should not be called while the DB.mu is held.
317 : compactionSchedulers sync.WaitGroup
318 :
319 : // The main mutex protecting internal DB state. This mutex encompasses many
320 : // fields because those fields need to be accessed and updated atomically. In
321 : // particular, the current version, log.*, mem.*, and snapshot list need to
322 : // be accessed and updated atomically during compaction.
323 : //
324 : // Care is taken to avoid holding DB.mu during IO operations. Accomplishing
325 : // this sometimes requires releasing DB.mu in a method that was called with
326 : // it held. See versionSet.UpdateVersionLocked() and DB.makeRoomForWrite() for
327 : // examples. This is a common pattern, so be careful about expectations that
328 : // DB.mu will be held continuously across a set of calls.
329 : mu struct {
330 : sync.Mutex
331 :
332 : formatVers struct {
333 : // vers is the database's current format major version.
334 : // Backwards-incompatible features are gated behind new
335 : // format major versions and not enabled until a database's
336 : // version is ratcheted upwards.
337 : //
338 : // Although this is under the `mu` prefix, readers may read vers
339 : // atomically without holding d.mu. Writers must only write to this
340 : // value through finalizeFormatVersUpgrade which requires d.mu is
341 : // held.
342 : vers atomic.Uint64
343 : // marker is the atomic marker for the format major version.
344 : // When a database's version is ratcheted upwards, the
345 : // marker is moved in order to atomically record the new
346 : // version.
347 : marker *atomicfs.Marker
348 : // ratcheting when set to true indicates that the database is
349 : // currently in the process of ratcheting the format major version
350 : // to vers + 1. As a part of ratcheting the format major version,
351 : // migrations may drop and re-acquire the mutex.
352 : ratcheting bool
353 : }
354 :
355 : // The ID of the next job. Job IDs are passed to event listener
356 : // notifications and act as a mechanism for tying together the events and
357 : // log messages for a single job such as a flush, compaction, or file
358 : // ingestion. Job IDs are not serialized to disk or used for correctness.
359 : nextJobID JobID
360 :
361 : // The collection of immutable versions and state about the log and visible
362 : // sequence numbers. Use the pointer here to ensure the atomic fields in
363 : // version set are aligned properly.
364 : versions *versionSet
365 :
366 : log struct {
367 : // manager is not protected by mu, but calls to Create must be
368 : // serialized, and happen after the previous writer is closed.
369 : manager wal.Manager
370 : // The Writer is protected by commitPipeline.mu. This allows log writes
371 : // to be performed without holding DB.mu, but requires both
372 : // commitPipeline.mu and DB.mu to be held when rotating the WAL/memtable
373 : // (i.e. makeRoomForWrite). Can be nil.
374 : writer wal.Writer
375 : metrics struct {
376 : // fsyncLatency has its own internal synchronization, and is not
377 : // protected by mu.
378 : fsyncLatency prometheus.Histogram
379 : // Updated whenever a wal.Writer is closed.
380 : record.LogWriterMetrics
381 : }
382 : }
383 :
384 : mem struct {
385 : // The current mutable memTable. Readers of the pointer may hold
386 : // either DB.mu or commitPipeline.mu.
387 : //
388 : // Its internal fields are protected by commitPipeline.mu. This
389 : // allows batch commits to be performed without DB.mu as long as no
390 : // memtable rotation is required.
391 : //
392 : // Both commitPipeline.mu and DB.mu must be held when rotating the
393 : // memtable.
394 : mutable *memTable
395 : // Queue of flushables (the mutable memtable is at end). Elements are
396 : // added to the end of the slice and removed from the beginning. Once an
397 : // index is set it is never modified making a fixed slice immutable and
398 : // safe for concurrent reads.
399 : queue flushableList
400 : // nextSize is the size of the next memtable. The memtable size starts at
401 : // min(256KB,Options.MemTableSize) and doubles each time a new memtable
402 : // is allocated up to Options.MemTableSize. This reduces the memory
403 : // footprint of memtables when lots of DB instances are used concurrently
404 : // in test environments.
405 : nextSize uint64
406 : }
407 :
408 : compact struct {
409 : // Condition variable used to signal when a flush or compaction has
410 : // completed. Used by the write-stall mechanism to wait for the stall
411 : // condition to clear. See DB.makeRoomForWrite().
412 : cond sync.Cond
413 : // True when a flush is in progress.
414 : flushing bool
415 : // The number of ongoing non-download compactions.
416 : compactingCount int
417 : // The number of download compactions.
418 : downloadingCount int
419 : // The list of deletion hints, suggesting ranges for delete-only
420 : // compactions.
421 : deletionHints []deleteCompactionHint
422 : // The list of manual compactions. The next manual compaction to perform
423 : // is at the start of the list. New entries are added to the end.
424 : manual []*manualCompaction
425 : manualLen atomic.Int32
426 : // manualID is used to identify manualCompactions in the manual slice.
427 : manualID uint64
428 : // downloads is the list of pending download tasks. The next download to
429 : // perform is at the start of the list. New entries are added to the end.
430 : downloads []*downloadSpanTask
431 : // inProgress is the set of in-progress flushes and compactions.
432 : // It's used in the calculation of some metrics and to initialize L0
433 : // sublevels' state. Some of the compactions contained within this
434 : // map may have already committed an edit to the version but are
435 : // lingering performing cleanup, like deleting obsolete files.
436 : inProgress map[compaction]struct{}
437 :
438 : // rescheduleReadCompaction indicates to an iterator that a read compaction
439 : // should be scheduled.
440 : rescheduleReadCompaction bool
441 :
442 : // readCompactions is a readCompactionQueue which keeps track of the
443 : // compactions which we might have to perform.
444 : readCompactions readCompactionQueue
445 :
446 : // The cumulative duration of all completed compactions since Open.
447 : // Does not include flushes.
448 : duration time.Duration
449 : // Flush throughput metric.
450 : flushWriteThroughput ThroughputMetric
451 : // The idle start time for the flush "loop", i.e., when the flushing
452 : // bool above transitions to false.
453 : noOngoingFlushStartTime crtime.Mono
454 : }
455 :
456 : fileDeletions struct {
457 : // Non-zero when file cleaning is disableCount. The disableCount
458 : // count acts as a reference count to prohibit file cleaning. See
459 : // DB.{disable,enable}FileDeletions().
460 : disableCount int
461 : // queuedStats holds cumulative stats for files that have been
462 : // queued for deletion by the cleanup manager. These stats are
463 : // monotonically increasing for the *DB's lifetime.
464 : queuedStats obsoleteObjectStats
465 : }
466 :
467 : snapshots struct {
468 : // The list of active snapshots.
469 : snapshotList
470 :
471 : // The cumulative count and size of snapshot-pinned keys written to
472 : // sstables.
473 : cumulativePinnedCount uint64
474 : cumulativePinnedSize uint64
475 : }
476 :
477 : tableStats struct {
478 : // Condition variable used to signal the completion of a
479 : // job to collect table stats.
480 : cond sync.Cond
481 : // True when a stat collection operation is in progress.
482 : loading bool
483 : // True if stat collection has loaded statistics for all tables
484 : // other than those listed explicitly in pending. This flag starts
485 : // as false when a database is opened and flips to true once stat
486 : // collection has caught up.
487 : loadedInitial bool
488 : // A slice of files for which stats have not been computed.
489 : // Compactions, ingests, flushes append files to be processed. An
490 : // active stat collection goroutine clears the list and processes
491 : // them.
492 : pending []manifest.NewTableEntry
493 : }
494 :
495 : tableValidation struct {
496 : // cond is a condition variable used to signal the completion of a
497 : // job to validate one or more sstables.
498 : cond sync.Cond
499 : // pending is a slice of metadata for sstables waiting to be
500 : // validated. Only physical sstables should be added to the pending
501 : // queue.
502 : pending []manifest.NewTableEntry
503 : // validating is set to true when validation is running.
504 : validating bool
505 : }
506 :
507 : // annotators contains various instances of manifest.Annotator which
508 : // should be protected from concurrent access.
509 : annotators struct {
510 : // totalFileSize is the sum of the size of all files in the
511 : // database. This includes local, remote, and external sstables --
512 : // along with blob files.
513 : totalFileSize *manifest.Annotator[uint64]
514 : remoteSize *manifest.Annotator[uint64]
515 : externalSize *manifest.Annotator[uint64]
516 : }
517 : }
518 :
519 : // problemSpans keeps track of spans of keys within LSM levels where
520 : // compactions have failed; used to avoid retrying these compactions too
521 : // quickly.
522 : problemSpans problemspans.ByLevel
523 :
524 : // Normally equal to time.Now() but may be overridden in tests.
525 : timeNow func() time.Time
526 : // the time at database Open; may be used to compute metrics like effective
527 : // compaction concurrency
528 : openedAt time.Time
529 : }
530 :
531 : var _ Reader = (*DB)(nil)
532 : var _ Writer = (*DB)(nil)
533 :
534 : // TestOnlyWaitForCleaning MUST only be used in tests.
535 0 : func (d *DB) TestOnlyWaitForCleaning() {
536 0 : d.cleanupManager.Wait()
537 0 : }
538 :
539 : // Get gets the value for the given key. It returns ErrNotFound if the DB does
540 : // not contain the key.
541 : //
542 : // The caller should not modify the contents of the returned slice, but it is
543 : // safe to modify the contents of the argument after Get returns. The returned
544 : // slice will remain valid until the returned Closer is closed. On success, the
545 : // caller MUST call closer.Close() or a memory leak will occur.
546 1 : func (d *DB) Get(key []byte) ([]byte, io.Closer, error) {
547 1 : return d.getInternal(key, nil /* batch */, nil /* snapshot */)
548 1 : }
549 :
550 : type getIterAlloc struct {
551 : dbi Iterator
552 : keyBuf []byte
553 : get getIter
554 : }
555 :
556 : var getIterAllocPool = sync.Pool{
557 1 : New: func() interface{} {
558 1 : return &getIterAlloc{}
559 1 : },
560 : }
561 :
562 1 : func (d *DB) getInternal(key []byte, b *Batch, s *Snapshot) ([]byte, io.Closer, error) {
563 1 : if err := d.closed.Load(); err != nil {
564 0 : panic(err)
565 : }
566 :
567 : // Grab and reference the current readState. This prevents the underlying
568 : // files in the associated version from being deleted if there is a current
569 : // compaction. The readState is unref'd by Iterator.Close().
570 1 : readState := d.loadReadState()
571 1 :
572 1 : // Determine the seqnum to read at after grabbing the read state (current and
573 1 : // memtables) above.
574 1 : var seqNum base.SeqNum
575 1 : if s != nil {
576 1 : seqNum = s.seqNum
577 1 : } else {
578 1 : seqNum = d.mu.versions.visibleSeqNum.Load()
579 1 : }
580 :
581 1 : buf := getIterAllocPool.Get().(*getIterAlloc)
582 1 :
583 1 : get := &buf.get
584 1 : *get = getIter{
585 1 : comparer: d.opts.Comparer,
586 1 : newIters: d.newIters,
587 1 : snapshot: seqNum,
588 1 : iterOpts: IterOptions{
589 1 : // TODO(sumeer): replace with a parameter provided by the caller.
590 1 : Category: categoryGet,
591 1 : logger: d.opts.Logger,
592 1 : snapshotForHideObsoletePoints: seqNum,
593 1 : },
594 1 : key: key,
595 1 : // Compute the key prefix for bloom filtering.
596 1 : prefix: key[:d.opts.Comparer.Split(key)],
597 1 : batch: b,
598 1 : mem: readState.memtables,
599 1 : l0: readState.current.L0SublevelFiles,
600 1 : version: readState.current,
601 1 : }
602 1 :
603 1 : // Strip off memtables which cannot possibly contain the seqNum being read
604 1 : // at.
605 1 : for len(get.mem) > 0 {
606 1 : n := len(get.mem)
607 1 : if logSeqNum := get.mem[n-1].logSeqNum; logSeqNum < seqNum {
608 1 : break
609 : }
610 1 : get.mem = get.mem[:n-1]
611 : }
612 :
613 1 : i := &buf.dbi
614 1 : pointIter := get
615 1 : *i = Iterator{
616 1 : ctx: context.Background(),
617 1 : getIterAlloc: buf,
618 1 : iter: pointIter,
619 1 : pointIter: pointIter,
620 1 : merge: d.merge,
621 1 : comparer: *d.opts.Comparer,
622 1 : readState: readState,
623 1 : keyBuf: buf.keyBuf,
624 1 : }
625 1 : // Set up a blob value fetcher to use for retrieving values from blob files.
626 1 : i.blobValueFetcher.Init(&readState.current.BlobFiles, d.fileCache, block.NoReadEnv)
627 1 : get.iiopts.blobValueFetcher = &i.blobValueFetcher
628 1 :
629 1 : if !i.First() {
630 1 : err := i.Close()
631 1 : if err != nil {
632 0 : return nil, nil, err
633 0 : }
634 1 : return nil, nil, ErrNotFound
635 : }
636 1 : return i.Value(), i, nil
637 : }
638 :
639 : // Set sets the value for the given key. It overwrites any previous value
640 : // for that key; a DB is not a multi-map.
641 : //
642 : // It is safe to modify the contents of the arguments after Set returns.
643 1 : func (d *DB) Set(key, value []byte, opts *WriteOptions) error {
644 1 : b := newBatch(d)
645 1 : _ = b.Set(key, value, opts)
646 1 : if err := d.Apply(b, opts); err != nil {
647 0 : return err
648 0 : }
649 : // Only release the batch on success.
650 1 : return b.Close()
651 : }
652 :
653 : // Delete deletes the value for the given key. Deletes are blind all will
654 : // succeed even if the given key does not exist.
655 : //
656 : // It is safe to modify the contents of the arguments after Delete returns.
657 1 : func (d *DB) Delete(key []byte, opts *WriteOptions) error {
658 1 : b := newBatch(d)
659 1 : _ = b.Delete(key, opts)
660 1 : if err := d.Apply(b, opts); err != nil {
661 0 : return err
662 0 : }
663 : // Only release the batch on success.
664 1 : return b.Close()
665 : }
666 :
667 : // DeleteSized behaves identically to Delete, but takes an additional
668 : // argument indicating the size of the value being deleted. DeleteSized
669 : // should be preferred when the caller has the expectation that there exists
670 : // a single internal KV pair for the key (eg, the key has not been
671 : // overwritten recently), and the caller knows the size of its value.
672 : //
673 : // DeleteSized will record the value size within the tombstone and use it to
674 : // inform compaction-picking heuristics which strive to reduce space
675 : // amplification in the LSM. This "calling your shot" mechanic allows the
676 : // storage engine to more accurately estimate and reduce space amplification.
677 : //
678 : // It is safe to modify the contents of the arguments after DeleteSized
679 : // returns.
680 1 : func (d *DB) DeleteSized(key []byte, valueSize uint32, opts *WriteOptions) error {
681 1 : b := newBatch(d)
682 1 : _ = b.DeleteSized(key, valueSize, opts)
683 1 : if err := d.Apply(b, opts); err != nil {
684 0 : return err
685 0 : }
686 : // Only release the batch on success.
687 1 : return b.Close()
688 : }
689 :
690 : // SingleDelete adds an action to the batch that single deletes the entry for key.
691 : // See Writer.SingleDelete for more details on the semantics of SingleDelete.
692 : //
693 : // WARNING: See the detailed warning in Writer.SingleDelete before using this.
694 : //
695 : // It is safe to modify the contents of the arguments after SingleDelete returns.
696 1 : func (d *DB) SingleDelete(key []byte, opts *WriteOptions) error {
697 1 : b := newBatch(d)
698 1 : _ = b.SingleDelete(key, opts)
699 1 : if err := d.Apply(b, opts); err != nil {
700 0 : return err
701 0 : }
702 : // Only release the batch on success.
703 1 : return b.Close()
704 : }
705 :
706 : // DeleteRange deletes all of the keys (and values) in the range [start,end)
707 : // (inclusive on start, exclusive on end).
708 : //
709 : // It is safe to modify the contents of the arguments after DeleteRange
710 : // returns.
711 1 : func (d *DB) DeleteRange(start, end []byte, opts *WriteOptions) error {
712 1 : b := newBatch(d)
713 1 : _ = b.DeleteRange(start, end, opts)
714 1 : if err := d.Apply(b, opts); err != nil {
715 0 : return err
716 0 : }
717 : // Only release the batch on success.
718 1 : return b.Close()
719 : }
720 :
721 : // Merge adds an action to the DB that merges the value at key with the new
722 : // value. The details of the merge are dependent upon the configured merge
723 : // operator.
724 : //
725 : // It is safe to modify the contents of the arguments after Merge returns.
726 1 : func (d *DB) Merge(key, value []byte, opts *WriteOptions) error {
727 1 : b := newBatch(d)
728 1 : _ = b.Merge(key, value, opts)
729 1 : if err := d.Apply(b, opts); err != nil {
730 0 : return err
731 0 : }
732 : // Only release the batch on success.
733 1 : return b.Close()
734 : }
735 :
736 : // LogData adds the specified to the batch. The data will be written to the
737 : // WAL, but not added to memtables or sstables. Log data is never indexed,
738 : // which makes it useful for testing WAL performance.
739 : //
740 : // It is safe to modify the contents of the argument after LogData returns.
741 1 : func (d *DB) LogData(data []byte, opts *WriteOptions) error {
742 1 : b := newBatch(d)
743 1 : _ = b.LogData(data, opts)
744 1 : if err := d.Apply(b, opts); err != nil {
745 0 : return err
746 0 : }
747 : // Only release the batch on success.
748 1 : return b.Close()
749 : }
750 :
751 : // RangeKeySet sets a range key mapping the key range [start, end) at the MVCC
752 : // timestamp suffix to value. The suffix is optional. If any portion of the key
753 : // range [start, end) is already set by a range key with the same suffix value,
754 : // RangeKeySet overrides it.
755 : //
756 : // It is safe to modify the contents of the arguments after RangeKeySet returns.
757 1 : func (d *DB) RangeKeySet(start, end, suffix, value []byte, opts *WriteOptions) error {
758 1 : b := newBatch(d)
759 1 : _ = b.RangeKeySet(start, end, suffix, value, opts)
760 1 : if err := d.Apply(b, opts); err != nil {
761 0 : return err
762 0 : }
763 : // Only release the batch on success.
764 1 : return b.Close()
765 : }
766 :
767 : // RangeKeyUnset removes a range key mapping the key range [start, end) at the
768 : // MVCC timestamp suffix. The suffix may be omitted to remove an unsuffixed
769 : // range key. RangeKeyUnset only removes portions of range keys that fall within
770 : // the [start, end) key span, and only range keys with suffixes that exactly
771 : // match the unset suffix.
772 : //
773 : // It is safe to modify the contents of the arguments after RangeKeyUnset
774 : // returns.
775 1 : func (d *DB) RangeKeyUnset(start, end, suffix []byte, opts *WriteOptions) error {
776 1 : b := newBatch(d)
777 1 : _ = b.RangeKeyUnset(start, end, suffix, opts)
778 1 : if err := d.Apply(b, opts); err != nil {
779 0 : return err
780 0 : }
781 : // Only release the batch on success.
782 1 : return b.Close()
783 : }
784 :
785 : // RangeKeyDelete deletes all of the range keys in the range [start,end)
786 : // (inclusive on start, exclusive on end). It does not delete point keys (for
787 : // that use DeleteRange). RangeKeyDelete removes all range keys within the
788 : // bounds, including those with or without suffixes.
789 : //
790 : // It is safe to modify the contents of the arguments after RangeKeyDelete
791 : // returns.
792 1 : func (d *DB) RangeKeyDelete(start, end []byte, opts *WriteOptions) error {
793 1 : b := newBatch(d)
794 1 : _ = b.RangeKeyDelete(start, end, opts)
795 1 : if err := d.Apply(b, opts); err != nil {
796 0 : return err
797 0 : }
798 : // Only release the batch on success.
799 1 : return b.Close()
800 : }
801 :
802 : // Apply the operations contained in the batch to the DB. If the batch is large
803 : // the contents of the batch may be retained by the database. If that occurs
804 : // the batch contents will be cleared preventing the caller from attempting to
805 : // reuse them.
806 : //
807 : // It is safe to modify the contents of the arguments after Apply returns.
808 : //
809 : // Apply returns ErrInvalidBatch if the provided batch is invalid in any way.
810 1 : func (d *DB) Apply(batch *Batch, opts *WriteOptions) error {
811 1 : return d.applyInternal(batch, opts, false)
812 1 : }
813 :
814 : // ApplyNoSyncWait must only be used when opts.Sync is true and the caller
815 : // does not want to wait for the WAL fsync to happen. The method will return
816 : // once the mutation is applied to the memtable and is visible (note that a
817 : // mutation is visible before the WAL sync even in the wait case, so we have
818 : // not weakened the durability semantics). The caller must call Batch.SyncWait
819 : // to wait for the WAL fsync. The caller must not Close the batch without
820 : // first calling Batch.SyncWait.
821 : //
822 : // RECOMMENDATION: Prefer using Apply unless you really understand why you
823 : // need ApplyNoSyncWait.
824 : // EXPERIMENTAL: API/feature subject to change. Do not yet use outside
825 : // CockroachDB.
826 1 : func (d *DB) ApplyNoSyncWait(batch *Batch, opts *WriteOptions) error {
827 1 : if !opts.Sync {
828 0 : return errors.Errorf("cannot request asynchonous apply when WriteOptions.Sync is false")
829 0 : }
830 1 : return d.applyInternal(batch, opts, true)
831 : }
832 :
833 : // REQUIRES: noSyncWait => opts.Sync
834 1 : func (d *DB) applyInternal(batch *Batch, opts *WriteOptions, noSyncWait bool) error {
835 1 : if err := d.closed.Load(); err != nil {
836 0 : panic(err)
837 : }
838 1 : if batch.committing {
839 0 : panic("pebble: batch already committing")
840 : }
841 1 : if batch.applied.Load() {
842 0 : panic("pebble: batch already applied")
843 : }
844 1 : if d.opts.ReadOnly {
845 0 : return ErrReadOnly
846 0 : }
847 1 : if batch.db != nil && batch.db != d {
848 0 : panic(fmt.Sprintf("pebble: batch db mismatch: %p != %p", batch.db, d))
849 : }
850 :
851 1 : sync := opts.GetSync()
852 1 : if sync && d.opts.DisableWAL {
853 0 : return errors.New("pebble: WAL disabled")
854 0 : }
855 :
856 1 : if fmv := d.FormatMajorVersion(); fmv < batch.minimumFormatMajorVersion {
857 0 : panic(fmt.Sprintf(
858 0 : "pebble: batch requires at least format major version %d (current: %d)",
859 0 : batch.minimumFormatMajorVersion, fmv,
860 0 : ))
861 : }
862 :
863 1 : if batch.countRangeKeys > 0 {
864 1 : if d.split == nil {
865 0 : return errNoSplit
866 0 : }
867 : }
868 1 : batch.committing = true
869 1 :
870 1 : if batch.db == nil {
871 0 : if err := batch.refreshMemTableSize(); err != nil {
872 0 : return err
873 0 : }
874 : }
875 1 : if batch.memTableSize >= d.largeBatchThreshold {
876 1 : var err error
877 1 : batch.flushable, err = newFlushableBatch(batch, d.opts.Comparer)
878 1 : if err != nil {
879 0 : return err
880 0 : }
881 : }
882 1 : if err := d.commit.Commit(batch, sync, noSyncWait); err != nil {
883 0 : // There isn't much we can do on an error here. The commit pipeline will be
884 0 : // horked at this point.
885 0 : d.opts.Logger.Fatalf("pebble: fatal commit error: %v", err)
886 0 : }
887 : // If this is a large batch, we need to clear the batch contents as the
888 : // flushable batch may still be present in the flushables queue.
889 : //
890 : // TODO(peter): Currently large batches are written to the WAL. We could
891 : // skip the WAL write and instead wait for the large batch to be flushed to
892 : // an sstable. For a 100 MB batch, this might actually be faster. For a 1
893 : // GB batch this is almost certainly faster.
894 1 : if batch.flushable != nil {
895 1 : batch.data = nil
896 1 : }
897 1 : return nil
898 : }
899 :
900 1 : func (d *DB) commitApply(b *Batch, mem *memTable) error {
901 1 : if b.flushable != nil {
902 1 : // This is a large batch which was already added to the immutable queue.
903 1 : return nil
904 1 : }
905 1 : err := mem.apply(b, b.SeqNum())
906 1 : if err != nil {
907 0 : return err
908 0 : }
909 :
910 : // If the batch contains range tombstones and the database is configured
911 : // to flush range deletions, schedule a delayed flush so that disk space
912 : // may be reclaimed without additional writes or an explicit flush.
913 1 : if b.countRangeDels > 0 && d.opts.FlushDelayDeleteRange > 0 {
914 1 : d.mu.Lock()
915 1 : d.maybeScheduleDelayedFlush(mem, d.opts.FlushDelayDeleteRange)
916 1 : d.mu.Unlock()
917 1 : }
918 :
919 : // If the batch contains range keys and the database is configured to flush
920 : // range keys, schedule a delayed flush so that the range keys are cleared
921 : // from the memtable.
922 1 : if b.countRangeKeys > 0 && d.opts.FlushDelayRangeKey > 0 {
923 1 : d.mu.Lock()
924 1 : d.maybeScheduleDelayedFlush(mem, d.opts.FlushDelayRangeKey)
925 1 : d.mu.Unlock()
926 1 : }
927 :
928 1 : if mem.writerUnref() {
929 1 : d.mu.Lock()
930 1 : d.maybeScheduleFlush()
931 1 : d.mu.Unlock()
932 1 : }
933 1 : return nil
934 : }
935 :
936 1 : func (d *DB) commitWrite(b *Batch, syncWG *sync.WaitGroup, syncErr *error) (*memTable, error) {
937 1 : var size int64
938 1 : repr := b.Repr()
939 1 :
940 1 : if b.flushable != nil {
941 1 : // We have a large batch. Such batches are special in that they don't get
942 1 : // added to the memtable, and are instead inserted into the queue of
943 1 : // memtables. The call to makeRoomForWrite with this batch will force the
944 1 : // current memtable to be flushed. We want the large batch to be part of
945 1 : // the same log, so we add it to the WAL here, rather than after the call
946 1 : // to makeRoomForWrite().
947 1 : //
948 1 : // Set the sequence number since it was not set to the correct value earlier
949 1 : // (see comment in newFlushableBatch()).
950 1 : b.flushable.setSeqNum(b.SeqNum())
951 1 : if !d.opts.DisableWAL {
952 1 : var err error
953 1 : size, err = d.mu.log.writer.WriteRecord(repr, wal.SyncOptions{Done: syncWG, Err: syncErr}, b)
954 1 : if err != nil {
955 0 : panic(err)
956 : }
957 : }
958 : }
959 :
960 1 : var err error
961 1 : // Grab a reference to the memtable. We don't hold DB.mu, but we do hold
962 1 : // d.commit.mu. It's okay for readers of d.mu.mem.mutable to only hold one of
963 1 : // d.commit.mu or d.mu, because memtable rotations require holding both.
964 1 : mem := d.mu.mem.mutable
965 1 : // Batches which contain keys of kind InternalKeyKindIngestSST will
966 1 : // never be applied to the memtable, so we don't need to make room for
967 1 : // write.
968 1 : if !b.ingestedSSTBatch {
969 1 : // Flushable batches will require a rotation of the memtable regardless,
970 1 : // so only attempt an optimistic reservation of space in the current
971 1 : // memtable if this batch is not a large flushable batch.
972 1 : if b.flushable == nil {
973 1 : err = d.mu.mem.mutable.prepare(b)
974 1 : }
975 1 : if b.flushable != nil || err == arenaskl.ErrArenaFull {
976 1 : // Slow path.
977 1 : // We need to acquire DB.mu and rotate the memtable.
978 1 : func() {
979 1 : d.mu.Lock()
980 1 : defer d.mu.Unlock()
981 1 : err = d.makeRoomForWrite(b)
982 1 : mem = d.mu.mem.mutable
983 1 : }()
984 : }
985 : }
986 1 : if err != nil {
987 0 : return nil, err
988 0 : }
989 1 : if d.opts.DisableWAL {
990 1 : return mem, nil
991 1 : }
992 1 : d.logBytesIn.Add(uint64(len(repr)))
993 1 :
994 1 : if b.flushable == nil {
995 1 : size, err = d.mu.log.writer.WriteRecord(repr, wal.SyncOptions{Done: syncWG, Err: syncErr}, b)
996 1 : if err != nil {
997 0 : panic(err)
998 : }
999 : }
1000 :
1001 1 : d.logSize.Store(uint64(size))
1002 1 : return mem, err
1003 : }
1004 :
1005 : type iterAlloc struct {
1006 : dbi Iterator
1007 : keyBuf []byte
1008 : boundsBuf [2][]byte
1009 : prefixOrFullSeekKey []byte
1010 : merging mergingIter
1011 : mlevels [3 + numLevels]mergingIterLevel
1012 : levels [3 + numLevels]levelIter
1013 : levelsPositioned [3 + numLevels]bool
1014 : }
1015 :
1016 : var iterAllocPool = sync.Pool{
1017 1 : New: func() interface{} {
1018 1 : return &iterAlloc{}
1019 1 : },
1020 : }
1021 :
1022 : // snapshotIterOpts denotes snapshot-related iterator options when calling
1023 : // newIter. These are the possible cases for a snapshotIterOpts:
1024 : // - No snapshot: All fields are zero values.
1025 : // - Classic snapshot: Only `seqNum` is set. The latest readState will be used
1026 : // and the specified seqNum will be used as the snapshot seqNum.
1027 : // - EventuallyFileOnlySnapshot (EFOS) behaving as a classic snapshot. Only
1028 : // the `seqNum` is set. The latest readState will be used
1029 : // and the specified seqNum will be used as the snapshot seqNum.
1030 : // - EFOS in file-only state: Only `seqNum` and `vers` are set. All the
1031 : // relevant SSTs are referenced by the *version.
1032 : // - EFOS that has been excised but is in alwaysCreateIters mode (tests only).
1033 : // Only `seqNum` and `readState` are set.
1034 : type snapshotIterOpts struct {
1035 : seqNum base.SeqNum
1036 : vers *manifest.Version
1037 : readState *readState
1038 : }
1039 :
1040 : type batchIterOpts struct {
1041 : batchOnly bool
1042 : }
1043 : type newIterOpts struct {
1044 : snapshot snapshotIterOpts
1045 : batch batchIterOpts
1046 : }
1047 :
1048 : // newIter constructs a new iterator, merging in batch iterators as an extra
1049 : // level.
1050 : func (d *DB) newIter(
1051 : ctx context.Context, batch *Batch, newIterOpts newIterOpts, o *IterOptions,
1052 1 : ) *Iterator {
1053 1 : if newIterOpts.batch.batchOnly {
1054 0 : if batch == nil {
1055 0 : panic("batchOnly is true, but batch is nil")
1056 : }
1057 0 : if newIterOpts.snapshot.vers != nil {
1058 0 : panic("batchOnly is true, but snapshotIterOpts is initialized")
1059 : }
1060 : }
1061 1 : if err := d.closed.Load(); err != nil {
1062 0 : panic(err)
1063 : }
1064 1 : seqNum := newIterOpts.snapshot.seqNum
1065 1 : if o != nil && o.RangeKeyMasking.Suffix != nil && o.KeyTypes != IterKeyTypePointsAndRanges {
1066 0 : panic("pebble: range key masking requires IterKeyTypePointsAndRanges")
1067 : }
1068 1 : if (batch != nil || seqNum != 0) && (o != nil && o.OnlyReadGuaranteedDurable) {
1069 0 : // We could add support for OnlyReadGuaranteedDurable on snapshots if
1070 0 : // there was a need: this would require checking that the sequence number
1071 0 : // of the snapshot has been flushed, by comparing with
1072 0 : // DB.mem.queue[0].logSeqNum.
1073 0 : panic("OnlyReadGuaranteedDurable is not supported for batches or snapshots")
1074 : }
1075 1 : var readState *readState
1076 1 : var newIters tableNewIters
1077 1 : var newIterRangeKey keyspanimpl.TableNewSpanIter
1078 1 : if !newIterOpts.batch.batchOnly {
1079 1 : // Grab and reference the current readState. This prevents the underlying
1080 1 : // files in the associated version from being deleted if there is a current
1081 1 : // compaction. The readState is unref'd by Iterator.Close().
1082 1 : if newIterOpts.snapshot.vers == nil {
1083 1 : if newIterOpts.snapshot.readState != nil {
1084 0 : readState = newIterOpts.snapshot.readState
1085 0 : readState.ref()
1086 1 : } else {
1087 1 : // NB: loadReadState() calls readState.ref().
1088 1 : readState = d.loadReadState()
1089 1 : }
1090 1 : } else {
1091 1 : // vers != nil
1092 1 : newIterOpts.snapshot.vers.Ref()
1093 1 : }
1094 :
1095 : // Determine the seqnum to read at after grabbing the read state (current and
1096 : // memtables) above.
1097 1 : if seqNum == 0 {
1098 1 : seqNum = d.mu.versions.visibleSeqNum.Load()
1099 1 : }
1100 1 : newIters = d.newIters
1101 1 : newIterRangeKey = d.tableNewRangeKeyIter
1102 : }
1103 :
1104 : // Bundle various structures under a single umbrella in order to allocate
1105 : // them together.
1106 1 : buf := iterAllocPool.Get().(*iterAlloc)
1107 1 : dbi := &buf.dbi
1108 1 : *dbi = Iterator{
1109 1 : ctx: ctx,
1110 1 : alloc: buf,
1111 1 : merge: d.merge,
1112 1 : comparer: *d.opts.Comparer,
1113 1 : readState: readState,
1114 1 : version: newIterOpts.snapshot.vers,
1115 1 : keyBuf: buf.keyBuf,
1116 1 : prefixOrFullSeekKey: buf.prefixOrFullSeekKey,
1117 1 : boundsBuf: buf.boundsBuf,
1118 1 : batch: batch,
1119 1 : fc: d.fileCache,
1120 1 : newIters: newIters,
1121 1 : newIterRangeKey: newIterRangeKey,
1122 1 : seqNum: seqNum,
1123 1 : batchOnlyIter: newIterOpts.batch.batchOnly,
1124 1 : }
1125 1 : if o != nil {
1126 1 : dbi.opts = *o
1127 1 : dbi.processBounds(o.LowerBound, o.UpperBound)
1128 1 : }
1129 1 : dbi.opts.logger = d.opts.Logger
1130 1 : if d.opts.private.disableLazyCombinedIteration {
1131 1 : dbi.opts.disableLazyCombinedIteration = true
1132 1 : }
1133 1 : if batch != nil {
1134 1 : dbi.batchSeqNum = dbi.batch.nextSeqNum()
1135 1 : }
1136 1 : return finishInitializingIter(ctx, buf)
1137 : }
1138 :
1139 : // finishInitializingIter is a helper for doing the non-trivial initialization
1140 : // of an Iterator. It's invoked to perform the initial initialization of an
1141 : // Iterator during NewIter or Clone, and to perform reinitialization due to a
1142 : // change in IterOptions by a call to Iterator.SetOptions.
1143 1 : func finishInitializingIter(ctx context.Context, buf *iterAlloc) *Iterator {
1144 1 : // Short-hand.
1145 1 : dbi := &buf.dbi
1146 1 : var memtables flushableList
1147 1 : if dbi.readState != nil {
1148 1 : memtables = dbi.readState.memtables
1149 1 : }
1150 1 : if dbi.opts.OnlyReadGuaranteedDurable {
1151 0 : memtables = nil
1152 1 : } else {
1153 1 : // We only need to read from memtables which contain sequence numbers older
1154 1 : // than seqNum. Trim off newer memtables.
1155 1 : for i := len(memtables) - 1; i >= 0; i-- {
1156 1 : if logSeqNum := memtables[i].logSeqNum; logSeqNum < dbi.seqNum {
1157 1 : break
1158 : }
1159 1 : memtables = memtables[:i]
1160 : }
1161 : }
1162 :
1163 1 : if dbi.opts.pointKeys() {
1164 1 : // Construct the point iterator, initializing dbi.pointIter to point to
1165 1 : // dbi.merging. If this is called during a SetOptions call and this
1166 1 : // Iterator has already initialized dbi.merging, constructPointIter is a
1167 1 : // noop and an initialized pointIter already exists in dbi.pointIter.
1168 1 : dbi.constructPointIter(ctx, memtables, buf)
1169 1 : dbi.iter = dbi.pointIter
1170 1 : } else {
1171 1 : dbi.iter = emptyIter
1172 1 : }
1173 :
1174 1 : if dbi.opts.rangeKeys() {
1175 1 : dbi.rangeKeyMasking.init(dbi, &dbi.comparer)
1176 1 :
1177 1 : // When iterating over both point and range keys, don't create the
1178 1 : // range-key iterator stack immediately if we can avoid it. This
1179 1 : // optimization takes advantage of the expected sparseness of range
1180 1 : // keys, and configures the point-key iterator to dynamically switch to
1181 1 : // combined iteration when it observes a file containing range keys.
1182 1 : //
1183 1 : // Lazy combined iteration is not possible if a batch or a memtable
1184 1 : // contains any range keys.
1185 1 : useLazyCombinedIteration := dbi.rangeKey == nil &&
1186 1 : dbi.opts.KeyTypes == IterKeyTypePointsAndRanges &&
1187 1 : (dbi.batch == nil || dbi.batch.countRangeKeys == 0) &&
1188 1 : !dbi.opts.disableLazyCombinedIteration
1189 1 : if useLazyCombinedIteration {
1190 1 : // The user requested combined iteration, and there's no indexed
1191 1 : // batch currently containing range keys that would prevent lazy
1192 1 : // combined iteration. Check the memtables to see if they contain
1193 1 : // any range keys.
1194 1 : for i := range memtables {
1195 1 : if memtables[i].containsRangeKeys() {
1196 1 : useLazyCombinedIteration = false
1197 1 : break
1198 : }
1199 : }
1200 : }
1201 :
1202 1 : if useLazyCombinedIteration {
1203 1 : dbi.lazyCombinedIter = lazyCombinedIter{
1204 1 : parent: dbi,
1205 1 : pointIter: dbi.pointIter,
1206 1 : combinedIterState: combinedIterState{
1207 1 : initialized: false,
1208 1 : },
1209 1 : }
1210 1 : dbi.iter = &dbi.lazyCombinedIter
1211 1 : dbi.iter = invalidating.MaybeWrapIfInvariants(dbi.iter)
1212 1 : } else {
1213 1 : dbi.lazyCombinedIter.combinedIterState = combinedIterState{
1214 1 : initialized: true,
1215 1 : }
1216 1 : if dbi.rangeKey == nil {
1217 1 : dbi.rangeKey = iterRangeKeyStateAllocPool.Get().(*iteratorRangeKeyState)
1218 1 : dbi.constructRangeKeyIter()
1219 1 : } else {
1220 1 : dbi.rangeKey.iterConfig.SetBounds(dbi.opts.LowerBound, dbi.opts.UpperBound)
1221 1 : }
1222 :
1223 : // Wrap the point iterator (currently dbi.iter) with an interleaving
1224 : // iterator that interleaves range keys pulled from
1225 : // dbi.rangeKey.rangeKeyIter.
1226 : //
1227 : // NB: The interleaving iterator is always reinitialized, even if
1228 : // dbi already had an initialized range key iterator, in case the point
1229 : // iterator changed or the range key masking suffix changed.
1230 1 : dbi.rangeKey.iiter.Init(&dbi.comparer, dbi.iter, dbi.rangeKey.rangeKeyIter,
1231 1 : keyspan.InterleavingIterOpts{
1232 1 : Mask: &dbi.rangeKeyMasking,
1233 1 : LowerBound: dbi.opts.LowerBound,
1234 1 : UpperBound: dbi.opts.UpperBound,
1235 1 : })
1236 1 : dbi.iter = &dbi.rangeKey.iiter
1237 : }
1238 1 : } else {
1239 1 : // !dbi.opts.rangeKeys()
1240 1 : //
1241 1 : // Reset the combined iterator state. The initialized=true ensures the
1242 1 : // iterator doesn't unnecessarily try to switch to combined iteration.
1243 1 : dbi.lazyCombinedIter.combinedIterState = combinedIterState{initialized: true}
1244 1 : }
1245 1 : return dbi
1246 : }
1247 :
1248 : // ScanInternal scans all internal keys within the specified bounds, truncating
1249 : // any rangedels and rangekeys to those bounds if they span past them. For use
1250 : // when an external user needs to be aware of all internal keys that make up a
1251 : // key range.
1252 : //
1253 : // Keys deleted by range deletions must not be returned or exposed by this
1254 : // method, while the range deletion deleting that key must be exposed using
1255 : // visitRangeDel. Keys that would be masked by range key masking (if an
1256 : // appropriate prefix were set) should be exposed, alongside the range key
1257 : // that would have masked it. This method also collapses all point keys into
1258 : // one InternalKey; so only one internal key at most per user key is returned
1259 : // to visitPointKey.
1260 : //
1261 : // If visitSharedFile is not nil, ScanInternal iterates in skip-shared iteration
1262 : // mode. In this iteration mode, sstables in levels L5 and L6 are skipped, and
1263 : // their metadatas truncated to [lower, upper) and passed into visitSharedFile.
1264 : // ErrInvalidSkipSharedIteration is returned if visitSharedFile is not nil and an
1265 : // sstable in L5 or L6 is found that is not in shared storage according to
1266 : // provider.IsShared, or an sstable in those levels contains a newer key than the
1267 : // snapshot sequence number (only applicable for snapshot.ScanInternal). Examples
1268 : // of when this could happen could be if Pebble started writing sstables before a
1269 : // creator ID was set (as creator IDs are necessary to enable shared storage)
1270 : // resulting in some lower level SSTs being on non-shared storage. Skip-shared
1271 : // iteration is invalid in those cases.
1272 : func (d *DB) ScanInternal(
1273 : ctx context.Context,
1274 : category block.Category,
1275 : lower, upper []byte,
1276 : visitPointKey func(key *InternalKey, value LazyValue, iterInfo IteratorLevel) error,
1277 : visitRangeDel func(start, end []byte, seqNum SeqNum) error,
1278 : visitRangeKey func(start, end []byte, keys []rangekey.Key) error,
1279 : visitSharedFile func(sst *SharedSSTMeta) error,
1280 : visitExternalFile func(sst *ExternalFile) error,
1281 1 : ) error {
1282 1 : scanInternalOpts := &scanInternalOptions{
1283 1 : category: category,
1284 1 : visitPointKey: visitPointKey,
1285 1 : visitRangeDel: visitRangeDel,
1286 1 : visitRangeKey: visitRangeKey,
1287 1 : visitSharedFile: visitSharedFile,
1288 1 : visitExternalFile: visitExternalFile,
1289 1 : IterOptions: IterOptions{
1290 1 : KeyTypes: IterKeyTypePointsAndRanges,
1291 1 : LowerBound: lower,
1292 1 : UpperBound: upper,
1293 1 : },
1294 1 : }
1295 1 : iter, err := d.newInternalIter(ctx, snapshotIterOpts{} /* snapshot */, scanInternalOpts)
1296 1 : if err != nil {
1297 0 : return err
1298 0 : }
1299 1 : defer iter.close()
1300 1 : return scanInternalImpl(ctx, lower, upper, iter, scanInternalOpts)
1301 : }
1302 :
1303 : // newInternalIter constructs and returns a new scanInternalIterator on this db.
1304 : // If o.skipSharedLevels is true, levels below sharedLevelsStart are *not* added
1305 : // to the internal iterator.
1306 : //
1307 : // TODO(bilal): This method has a lot of similarities with db.newIter as well as
1308 : // finishInitializingIter. Both pairs of methods should be refactored to reduce
1309 : // this duplication.
1310 : func (d *DB) newInternalIter(
1311 : ctx context.Context, sOpts snapshotIterOpts, o *scanInternalOptions,
1312 1 : ) (*scanInternalIterator, error) {
1313 1 : if err := d.closed.Load(); err != nil {
1314 0 : panic(err)
1315 : }
1316 : // Grab and reference the current readState. This prevents the underlying
1317 : // files in the associated version from being deleted if there is a current
1318 : // compaction. The readState is unref'd by Iterator.Close().
1319 1 : var readState *readState
1320 1 : var vers *manifest.Version
1321 1 : if sOpts.vers == nil {
1322 1 : if sOpts.readState != nil {
1323 0 : readState = sOpts.readState
1324 0 : readState.ref()
1325 0 : vers = readState.current
1326 1 : } else {
1327 1 : readState = d.loadReadState()
1328 1 : vers = readState.current
1329 1 : }
1330 0 : } else {
1331 0 : vers = sOpts.vers
1332 0 : sOpts.vers.Ref()
1333 0 : }
1334 :
1335 : // Determine the seqnum to read at after grabbing the read state (current and
1336 : // memtables) above.
1337 1 : seqNum := sOpts.seqNum
1338 1 : if seqNum == 0 {
1339 1 : seqNum = d.mu.versions.visibleSeqNum.Load()
1340 1 : }
1341 :
1342 : // Bundle various structures under a single umbrella in order to allocate
1343 : // them together.
1344 1 : buf := iterAllocPool.Get().(*iterAlloc)
1345 1 : dbi := &scanInternalIterator{
1346 1 : ctx: ctx,
1347 1 : db: d,
1348 1 : comparer: d.opts.Comparer,
1349 1 : merge: d.opts.Merger.Merge,
1350 1 : readState: readState,
1351 1 : version: sOpts.vers,
1352 1 : alloc: buf,
1353 1 : newIters: d.newIters,
1354 1 : newIterRangeKey: d.tableNewRangeKeyIter,
1355 1 : seqNum: seqNum,
1356 1 : mergingIter: &buf.merging,
1357 1 : }
1358 1 : dbi.blobValueFetcher.Init(&vers.BlobFiles, d.fileCache, block.ReadEnv{})
1359 1 :
1360 1 : dbi.opts = *o
1361 1 : dbi.opts.logger = d.opts.Logger
1362 1 : if d.opts.private.disableLazyCombinedIteration {
1363 1 : dbi.opts.disableLazyCombinedIteration = true
1364 1 : }
1365 1 : return finishInitializingInternalIter(buf, dbi)
1366 : }
1367 :
1368 : type internalIterOpts struct {
1369 : // if compaction is set, sstable-level iterators will be created using
1370 : // NewCompactionIter; these iterators have a more constrained interface
1371 : // and are optimized for the sequential scan of a compaction.
1372 : compaction bool
1373 : readEnv sstable.ReadEnv
1374 : boundLimitedFilter sstable.BoundLimitedBlockPropertyFilter
1375 : // blobValueFetcher is the base.ValueFetcher to use when constructing
1376 : // internal values to represent values stored externally in blob files.
1377 : blobValueFetcher base.ValueFetcher
1378 : }
1379 :
1380 : func finishInitializingInternalIter(
1381 : buf *iterAlloc, i *scanInternalIterator,
1382 1 : ) (*scanInternalIterator, error) {
1383 1 : // Short-hand.
1384 1 : var memtables flushableList
1385 1 : if i.readState != nil {
1386 1 : memtables = i.readState.memtables
1387 1 : }
1388 : // We only need to read from memtables which contain sequence numbers older
1389 : // than seqNum. Trim off newer memtables.
1390 1 : for j := len(memtables) - 1; j >= 0; j-- {
1391 1 : if logSeqNum := memtables[j].logSeqNum; logSeqNum < i.seqNum {
1392 1 : break
1393 : }
1394 1 : memtables = memtables[:j]
1395 : }
1396 1 : i.initializeBoundBufs(i.opts.LowerBound, i.opts.UpperBound)
1397 1 :
1398 1 : if err := i.constructPointIter(i.opts.category, memtables, buf); err != nil {
1399 0 : return nil, err
1400 0 : }
1401 :
1402 : // For internal iterators, we skip the lazy combined iteration optimization
1403 : // entirely, and create the range key iterator stack directly.
1404 1 : i.rangeKey = iterRangeKeyStateAllocPool.Get().(*iteratorRangeKeyState)
1405 1 : if err := i.constructRangeKeyIter(); err != nil {
1406 0 : return nil, err
1407 0 : }
1408 :
1409 : // Wrap the point iterator (currently i.iter) with an interleaving
1410 : // iterator that interleaves range keys pulled from
1411 : // i.rangeKey.rangeKeyIter.
1412 1 : i.rangeKey.iiter.Init(i.comparer, i.iter, i.rangeKey.rangeKeyIter,
1413 1 : keyspan.InterleavingIterOpts{
1414 1 : LowerBound: i.opts.LowerBound,
1415 1 : UpperBound: i.opts.UpperBound,
1416 1 : })
1417 1 : i.iter = &i.rangeKey.iiter
1418 1 :
1419 1 : return i, nil
1420 : }
1421 :
1422 : func (i *Iterator) constructPointIter(
1423 : ctx context.Context, memtables flushableList, buf *iterAlloc,
1424 1 : ) {
1425 1 : if i.pointIter != nil {
1426 1 : // Already have one.
1427 1 : return
1428 1 : }
1429 1 : readEnv := block.ReadEnv{
1430 1 : Stats: &i.stats.InternalStats,
1431 1 : // If the file cache has a sstable stats collector, ask it for an
1432 1 : // accumulator for this iterator's configured category and QoS. All SSTable
1433 1 : // iterators created by this Iterator will accumulate their stats to it as
1434 1 : // they Close during iteration.
1435 1 : IterStats: i.fc.SSTStatsCollector().Accumulator(
1436 1 : uint64(uintptr(unsafe.Pointer(i))),
1437 1 : i.opts.Category,
1438 1 : ),
1439 1 : }
1440 1 : if i.readState != nil {
1441 1 : i.blobValueFetcher.Init(&i.readState.current.BlobFiles, i.fc, readEnv)
1442 1 : } else if i.version != nil {
1443 1 : i.blobValueFetcher.Init(&i.version.BlobFiles, i.fc, readEnv)
1444 1 : }
1445 1 : internalOpts := internalIterOpts{
1446 1 : readEnv: sstable.ReadEnv{Block: readEnv},
1447 1 : blobValueFetcher: &i.blobValueFetcher,
1448 1 : }
1449 1 : if i.opts.RangeKeyMasking.Filter != nil {
1450 1 : internalOpts.boundLimitedFilter = &i.rangeKeyMasking
1451 1 : }
1452 :
1453 : // Merging levels and levels from iterAlloc.
1454 1 : mlevels := buf.mlevels[:0]
1455 1 : levels := buf.levels[:0]
1456 1 :
1457 1 : // We compute the number of levels needed ahead of time and reallocate a slice if
1458 1 : // the array from the iterAlloc isn't large enough. Doing this allocation once
1459 1 : // should improve the performance.
1460 1 : numMergingLevels := 0
1461 1 : numLevelIters := 0
1462 1 : if i.batch != nil {
1463 1 : numMergingLevels++
1464 1 : }
1465 :
1466 1 : var current *manifest.Version
1467 1 : if !i.batchOnlyIter {
1468 1 : numMergingLevels += len(memtables)
1469 1 :
1470 1 : current = i.version
1471 1 : if current == nil {
1472 1 : current = i.readState.current
1473 1 : }
1474 1 : numMergingLevels += len(current.L0SublevelFiles)
1475 1 : numLevelIters += len(current.L0SublevelFiles)
1476 1 : for level := 1; level < len(current.Levels); level++ {
1477 1 : if current.Levels[level].Empty() {
1478 1 : continue
1479 : }
1480 1 : numMergingLevels++
1481 1 : numLevelIters++
1482 : }
1483 : }
1484 :
1485 1 : if numMergingLevels > cap(mlevels) {
1486 1 : mlevels = make([]mergingIterLevel, 0, numMergingLevels)
1487 1 : }
1488 1 : if numLevelIters > cap(levels) {
1489 1 : levels = make([]levelIter, 0, numLevelIters)
1490 1 : }
1491 :
1492 : // Top-level is the batch, if any.
1493 1 : if i.batch != nil {
1494 1 : if i.batch.index == nil {
1495 0 : // This isn't an indexed batch. We shouldn't have gotten this far.
1496 0 : panic(errors.AssertionFailedf("creating an iterator over an unindexed batch"))
1497 1 : } else {
1498 1 : i.batch.initInternalIter(&i.opts, &i.batchPointIter)
1499 1 : i.batch.initRangeDelIter(&i.opts, &i.batchRangeDelIter, i.batchSeqNum)
1500 1 : // Only include the batch's rangedel iterator if it's non-empty.
1501 1 : // This requires some subtle logic in the case a rangedel is later
1502 1 : // written to the batch and the view of the batch is refreshed
1503 1 : // during a call to SetOptions—in this case, we need to reconstruct
1504 1 : // the point iterator to add the batch rangedel iterator.
1505 1 : var rangeDelIter keyspan.FragmentIterator
1506 1 : if i.batchRangeDelIter.Count() > 0 {
1507 0 : rangeDelIter = &i.batchRangeDelIter
1508 0 : }
1509 1 : mlevels = append(mlevels, mergingIterLevel{
1510 1 : iter: &i.batchPointIter,
1511 1 : rangeDelIter: rangeDelIter,
1512 1 : })
1513 : }
1514 : }
1515 :
1516 1 : if !i.batchOnlyIter {
1517 1 : // Next are the memtables.
1518 1 : for j := len(memtables) - 1; j >= 0; j-- {
1519 1 : mem := memtables[j]
1520 1 : mlevels = append(mlevels, mergingIterLevel{
1521 1 : iter: mem.newIter(&i.opts),
1522 1 : rangeDelIter: mem.newRangeDelIter(&i.opts),
1523 1 : })
1524 1 : }
1525 :
1526 : // Next are the file levels: L0 sub-levels followed by lower levels.
1527 1 : mlevelsIndex := len(mlevels)
1528 1 : levelsIndex := len(levels)
1529 1 : mlevels = mlevels[:numMergingLevels]
1530 1 : levels = levels[:numLevelIters]
1531 1 : i.opts.snapshotForHideObsoletePoints = buf.dbi.seqNum
1532 1 : addLevelIterForFiles := func(files manifest.LevelIterator, level manifest.Layer) {
1533 1 : li := &levels[levelsIndex]
1534 1 :
1535 1 : li.init(ctx, i.opts, &i.comparer, i.newIters, files, level, internalOpts)
1536 1 : li.initRangeDel(&mlevels[mlevelsIndex])
1537 1 : li.initCombinedIterState(&i.lazyCombinedIter.combinedIterState)
1538 1 : mlevels[mlevelsIndex].levelIter = li
1539 1 : mlevels[mlevelsIndex].iter = invalidating.MaybeWrapIfInvariants(li)
1540 1 :
1541 1 : levelsIndex++
1542 1 : mlevelsIndex++
1543 1 : }
1544 :
1545 : // Add level iterators for the L0 sublevels, iterating from newest to
1546 : // oldest.
1547 1 : for i := len(current.L0SublevelFiles) - 1; i >= 0; i-- {
1548 1 : addLevelIterForFiles(current.L0SublevelFiles[i].Iter(), manifest.L0Sublevel(i))
1549 1 : }
1550 :
1551 : // Add level iterators for the non-empty non-L0 levels.
1552 1 : for level := 1; level < len(current.Levels); level++ {
1553 1 : if current.Levels[level].Empty() {
1554 1 : continue
1555 : }
1556 1 : addLevelIterForFiles(current.Levels[level].Iter(), manifest.Level(level))
1557 : }
1558 : }
1559 1 : buf.merging.init(&i.opts, &i.stats.InternalStats, i.comparer.Compare, i.comparer.Split, mlevels...)
1560 1 : if len(mlevels) <= cap(buf.levelsPositioned) {
1561 1 : buf.merging.levelsPositioned = buf.levelsPositioned[:len(mlevels)]
1562 1 : }
1563 1 : buf.merging.snapshot = i.seqNum
1564 1 : buf.merging.batchSnapshot = i.batchSeqNum
1565 1 : buf.merging.combinedIterState = &i.lazyCombinedIter.combinedIterState
1566 1 : i.pointIter = invalidating.MaybeWrapIfInvariants(&buf.merging).(topLevelIterator)
1567 1 : i.merging = &buf.merging
1568 : }
1569 :
1570 : // NewBatch returns a new empty write-only batch. Any reads on the batch will
1571 : // return an error. If the batch is committed it will be applied to the DB.
1572 1 : func (d *DB) NewBatch(opts ...BatchOption) *Batch {
1573 1 : return newBatch(d, opts...)
1574 1 : }
1575 :
1576 : // NewBatchWithSize is mostly identical to NewBatch, but it will allocate the
1577 : // the specified memory space for the internal slice in advance.
1578 0 : func (d *DB) NewBatchWithSize(size int, opts ...BatchOption) *Batch {
1579 0 : return newBatchWithSize(d, size, opts...)
1580 0 : }
1581 :
1582 : // NewIndexedBatch returns a new empty read-write batch. Any reads on the batch
1583 : // will read from both the batch and the DB. If the batch is committed it will
1584 : // be applied to the DB. An indexed batch is slower that a non-indexed batch
1585 : // for insert operations. If you do not need to perform reads on the batch, use
1586 : // NewBatch instead.
1587 1 : func (d *DB) NewIndexedBatch() *Batch {
1588 1 : return newIndexedBatch(d, d.opts.Comparer)
1589 1 : }
1590 :
1591 : // NewIndexedBatchWithSize is mostly identical to NewIndexedBatch, but it will
1592 : // allocate the specified memory space for the internal slice in advance.
1593 0 : func (d *DB) NewIndexedBatchWithSize(size int) *Batch {
1594 0 : return newIndexedBatchWithSize(d, d.opts.Comparer, size)
1595 0 : }
1596 :
1597 : // NewIter returns an iterator that is unpositioned (Iterator.Valid() will
1598 : // return false). The iterator can be positioned via a call to SeekGE, SeekLT,
1599 : // First or Last. The iterator provides a point-in-time view of the current DB
1600 : // state. This view is maintained by preventing file deletions and preventing
1601 : // memtables referenced by the iterator from being deleted. Using an iterator
1602 : // to maintain a long-lived point-in-time view of the DB state can lead to an
1603 : // apparent memory and disk usage leak. Use snapshots (see NewSnapshot) for
1604 : // point-in-time snapshots which avoids these problems.
1605 1 : func (d *DB) NewIter(o *IterOptions) (*Iterator, error) {
1606 1 : return d.NewIterWithContext(context.Background(), o)
1607 1 : }
1608 :
1609 : // NewIterWithContext is like NewIter, and additionally accepts a context for
1610 : // tracing.
1611 1 : func (d *DB) NewIterWithContext(ctx context.Context, o *IterOptions) (*Iterator, error) {
1612 1 : return d.newIter(ctx, nil /* batch */, newIterOpts{}, o), nil
1613 1 : }
1614 :
1615 : // NewSnapshot returns a point-in-time view of the current DB state. Iterators
1616 : // created with this handle will all observe a stable snapshot of the current
1617 : // DB state. The caller must call Snapshot.Close() when the snapshot is no
1618 : // longer needed. Snapshots are not persisted across DB restarts (close ->
1619 : // open). Unlike the implicit snapshot maintained by an iterator, a snapshot
1620 : // will not prevent memtables from being released or sstables from being
1621 : // deleted. Instead, a snapshot prevents deletion of sequence numbers
1622 : // referenced by the snapshot.
1623 : //
1624 : // There exists one violation of a Snapshot's point-in-time guarantee: An excise
1625 : // (see DB.Excise and DB.IngestAndExcise) that occurs after the snapshot's
1626 : // creation will be observed by iterators created from the snapshot after the
1627 : // excise. See NewEventuallyFileOnlySnapshot for a variant of NewSnapshot that
1628 : // provides a full point-in-time guarantee.
1629 1 : func (d *DB) NewSnapshot() *Snapshot {
1630 1 : // TODO(jackson): Consider removal of regular, non-eventually-file-only
1631 1 : // snapshots given they no longer provide a true point-in-time snapshot of
1632 1 : // the database due to excises. If we had a mechanism to construct a maximal
1633 1 : // key range, we could implement NewSnapshot in terms of
1634 1 : // NewEventuallyFileOnlySnapshot and provide a true point-in-time guarantee.
1635 1 : if err := d.closed.Load(); err != nil {
1636 0 : panic(err)
1637 : }
1638 1 : d.mu.Lock()
1639 1 : s := &Snapshot{
1640 1 : db: d,
1641 1 : seqNum: d.mu.versions.visibleSeqNum.Load(),
1642 1 : }
1643 1 : d.mu.snapshots.pushBack(s)
1644 1 : d.mu.Unlock()
1645 1 : return s
1646 : }
1647 :
1648 : // NewEventuallyFileOnlySnapshot returns a point-in-time view of the current DB
1649 : // state, similar to NewSnapshot, but with consistency constrained to the
1650 : // provided set of key ranges. See the comment at EventuallyFileOnlySnapshot for
1651 : // its semantics.
1652 1 : func (d *DB) NewEventuallyFileOnlySnapshot(keyRanges []KeyRange) *EventuallyFileOnlySnapshot {
1653 1 : if err := d.closed.Load(); err != nil {
1654 0 : panic(err)
1655 : }
1656 1 : for i := range keyRanges {
1657 1 : if i > 0 && d.cmp(keyRanges[i-1].End, keyRanges[i].Start) > 0 {
1658 0 : panic("pebble: key ranges for eventually-file-only-snapshot not in order")
1659 : }
1660 : }
1661 1 : return d.makeEventuallyFileOnlySnapshot(keyRanges)
1662 : }
1663 :
1664 : // Close closes the DB.
1665 : //
1666 : // It is not safe to close a DB until all outstanding iterators are closed
1667 : // or to call Close concurrently with any other DB method. It is not valid
1668 : // to call any of a DB's methods after the DB has been closed.
1669 1 : func (d *DB) Close() error {
1670 1 : if err := d.closed.Load(); err != nil {
1671 0 : panic(err)
1672 : }
1673 1 : d.compactionSchedulers.Wait()
1674 1 : // Compactions can be asynchronously started by the CompactionScheduler
1675 1 : // calling d.Schedule. When this Unregister returns, we know that the
1676 1 : // CompactionScheduler will never again call a method on the DB. Note that
1677 1 : // this must be called without holding d.mu.
1678 1 : d.opts.Experimental.CompactionScheduler.Unregister()
1679 1 : // Lock the commit pipeline for the duration of Close. This prevents a race
1680 1 : // with makeRoomForWrite. Rotating the WAL in makeRoomForWrite requires
1681 1 : // dropping d.mu several times for I/O. If Close only holds d.mu, an
1682 1 : // in-progress WAL rotation may re-acquire d.mu only once the database is
1683 1 : // closed.
1684 1 : //
1685 1 : // Additionally, locking the commit pipeline makes it more likely that
1686 1 : // (illegal) concurrent writes will observe d.closed.Load() != nil, creating
1687 1 : // more understable panics if the database is improperly used concurrently
1688 1 : // during Close.
1689 1 : d.commit.mu.Lock()
1690 1 : defer d.commit.mu.Unlock()
1691 1 : d.mu.Lock()
1692 1 : defer d.mu.Unlock()
1693 1 : // Check that the DB is not closed again. If there are two concurrent calls
1694 1 : // to DB.Close, the best-effort check at the top of DB.Close may not fire.
1695 1 : // But since this second check happens after mutex acquisition, the two
1696 1 : // concurrent calls will get serialized and the second one will see the
1697 1 : // effect of the d.closed.Store below.
1698 1 : if err := d.closed.Load(); err != nil {
1699 0 : panic(err)
1700 : }
1701 : // Clear the finalizer that is used to check that an unreferenced DB has been
1702 : // closed. We're closing the DB here, so the check performed by that
1703 : // finalizer isn't necessary.
1704 : //
1705 : // Note: this is a no-op if invariants are disabled or race is enabled.
1706 1 : invariants.SetFinalizer(d.closed, nil)
1707 1 :
1708 1 : d.closed.Store(errors.WithStack(ErrClosed))
1709 1 : close(d.closedCh)
1710 1 :
1711 1 : defer d.cacheHandle.Close()
1712 1 :
1713 1 : for d.mu.compact.compactingCount > 0 || d.mu.compact.downloadingCount > 0 || d.mu.compact.flushing {
1714 1 : d.mu.compact.cond.Wait()
1715 1 : }
1716 1 : for d.mu.tableStats.loading {
1717 1 : d.mu.tableStats.cond.Wait()
1718 1 : }
1719 1 : for d.mu.tableValidation.validating {
1720 1 : d.mu.tableValidation.cond.Wait()
1721 1 : }
1722 :
1723 1 : var err error
1724 1 : if n := len(d.mu.compact.inProgress); n > 0 {
1725 0 : err = errors.Errorf("pebble: %d unexpected in-progress compactions", errors.Safe(n))
1726 0 : }
1727 1 : err = firstError(err, d.mu.formatVers.marker.Close())
1728 1 : if !d.opts.ReadOnly {
1729 1 : if d.mu.log.writer != nil {
1730 1 : _, err2 := d.mu.log.writer.Close()
1731 1 : err = firstError(err, err2)
1732 1 : }
1733 0 : } else if d.mu.log.writer != nil {
1734 0 : panic("pebble: log-writer should be nil in read-only mode")
1735 : }
1736 1 : err = firstError(err, d.mu.log.manager.Close())
1737 1 : err = firstError(err, d.fileLock.Close())
1738 1 :
1739 1 : // Note that versionSet.close() only closes the MANIFEST. The versions list
1740 1 : // is still valid for the checks below.
1741 1 : err = firstError(err, d.mu.versions.close())
1742 1 :
1743 1 : err = firstError(err, d.dataDir.Close())
1744 1 :
1745 1 : d.readState.val.unrefLocked()
1746 1 :
1747 1 : current := d.mu.versions.currentVersion()
1748 1 : for v := d.mu.versions.versions.Front(); true; v = v.Next() {
1749 1 : refs := v.Refs()
1750 1 : if v == current {
1751 1 : if refs != 1 {
1752 0 : err = firstError(err, errors.Errorf("leaked iterators: current\n%s", v))
1753 0 : }
1754 1 : break
1755 : }
1756 0 : if refs != 0 {
1757 0 : err = firstError(err, errors.Errorf("leaked iterators:\n%s", v))
1758 0 : }
1759 : }
1760 :
1761 1 : for _, mem := range d.mu.mem.queue {
1762 1 : // Usually, we'd want to delete the files returned by readerUnref. But
1763 1 : // in this case, even if we're unreferencing the flushables, the
1764 1 : // flushables aren't obsolete. They will be reconstructed during WAL
1765 1 : // replay.
1766 1 : mem.readerUnrefLocked(false)
1767 1 : }
1768 : // If there's an unused, recycled memtable, we need to release its memory.
1769 1 : if obsoleteMemTable := d.memTableRecycle.Swap(nil); obsoleteMemTable != nil {
1770 1 : d.freeMemTable(obsoleteMemTable)
1771 1 : }
1772 1 : if reserved := d.memTableReserved.Load(); reserved != 0 {
1773 0 : err = firstError(err, errors.Errorf("leaked memtable reservation: %d", errors.Safe(reserved)))
1774 0 : }
1775 :
1776 : // Since we called d.readState.val.unrefLocked() above, we are expected to
1777 : // manually schedule deletion of obsolete files.
1778 1 : if len(d.mu.versions.obsoleteTables) > 0 || len(d.mu.versions.obsoleteBlobs) > 0 {
1779 1 : d.deleteObsoleteFiles(d.newJobIDLocked())
1780 1 : }
1781 :
1782 1 : d.mu.Unlock()
1783 1 :
1784 1 : // Wait for all cleaning jobs to finish.
1785 1 : d.cleanupManager.Close()
1786 1 :
1787 1 : // Sanity check metrics.
1788 1 : if invariants.Enabled {
1789 1 : m := d.Metrics()
1790 1 : if m.Compact.NumInProgress > 0 || m.Compact.InProgressBytes > 0 {
1791 0 : d.mu.Lock()
1792 0 : panic(fmt.Sprintf("invalid metrics on close:\n%s", m))
1793 : }
1794 : }
1795 :
1796 1 : d.mu.Lock()
1797 1 :
1798 1 : // As a sanity check, ensure that there are no zombie tables or blob files.
1799 1 : // A non-zero count hints at a reference count leak.
1800 1 : if ztbls := d.mu.versions.zombieTables.Count(); ztbls > 0 {
1801 0 : err = firstError(err, errors.Errorf("non-zero zombie file count: %d", ztbls))
1802 0 : }
1803 1 : if zblobs := d.mu.versions.zombieBlobs.Count(); zblobs > 0 {
1804 0 : err = firstError(err, errors.Errorf("non-zero zombie blob count: %d", zblobs))
1805 0 : }
1806 :
1807 1 : err = firstError(err, d.fileCache.Close())
1808 1 :
1809 1 : err = firstError(err, d.objProvider.Close())
1810 1 :
1811 1 : // If the options include a closer to 'close' the filesystem, close it.
1812 1 : if d.opts.private.fsCloser != nil {
1813 1 : d.opts.private.fsCloser.Close()
1814 1 : }
1815 :
1816 : // Return an error if the user failed to close all open snapshots.
1817 1 : if v := d.mu.snapshots.count(); v > 0 {
1818 0 : err = firstError(err, errors.Errorf("leaked snapshots: %d open snapshots on DB %p", v, d))
1819 0 : }
1820 :
1821 1 : return err
1822 : }
1823 :
1824 : // Compact the specified range of keys in the database.
1825 1 : func (d *DB) Compact(ctx context.Context, start, end []byte, parallelize bool) error {
1826 1 : if err := d.closed.Load(); err != nil {
1827 0 : panic(err)
1828 : }
1829 1 : if d.opts.ReadOnly {
1830 0 : return ErrReadOnly
1831 0 : }
1832 1 : if d.cmp(start, end) >= 0 {
1833 1 : return errors.Errorf("Compact start %s is not less than end %s",
1834 1 : d.opts.Comparer.FormatKey(start), d.opts.Comparer.FormatKey(end))
1835 1 : }
1836 :
1837 1 : d.mu.Lock()
1838 1 : maxLevelWithFiles := 1
1839 1 : cur := d.mu.versions.currentVersion()
1840 1 : for level := 0; level < numLevels; level++ {
1841 1 : overlaps := cur.Overlaps(level, base.UserKeyBoundsInclusive(start, end))
1842 1 : if !overlaps.Empty() {
1843 1 : maxLevelWithFiles = level + 1
1844 1 : }
1845 : }
1846 :
1847 : // Determine if any memtable overlaps with the compaction range. We wait for
1848 : // any such overlap to flush (initiating a flush if necessary).
1849 1 : mem, err := func() (*flushableEntry, error) {
1850 1 : // Check to see if any files overlap with any of the memtables. The queue
1851 1 : // is ordered from oldest to newest with the mutable memtable being the
1852 1 : // last element in the slice. We want to wait for the newest table that
1853 1 : // overlaps.
1854 1 : for i := len(d.mu.mem.queue) - 1; i >= 0; i-- {
1855 1 : mem := d.mu.mem.queue[i]
1856 1 : var anyOverlaps bool
1857 1 : mem.computePossibleOverlaps(func(b bounded) shouldContinue {
1858 1 : anyOverlaps = true
1859 1 : return stopIteration
1860 1 : }, KeyRange{Start: start, End: end})
1861 1 : if !anyOverlaps {
1862 1 : continue
1863 : }
1864 1 : var err error
1865 1 : if mem.flushable == d.mu.mem.mutable {
1866 1 : // We have to hold both commitPipeline.mu and DB.mu when calling
1867 1 : // makeRoomForWrite(). Lock order requirements elsewhere force us to
1868 1 : // unlock DB.mu in order to grab commitPipeline.mu first.
1869 1 : d.mu.Unlock()
1870 1 : d.commit.mu.Lock()
1871 1 : d.mu.Lock()
1872 1 : defer d.commit.mu.Unlock() //nolint:deferloop
1873 1 : if mem.flushable == d.mu.mem.mutable {
1874 1 : // Only flush if the active memtable is unchanged.
1875 1 : err = d.makeRoomForWrite(nil)
1876 1 : }
1877 : }
1878 1 : mem.flushForced = true
1879 1 : d.maybeScheduleFlush()
1880 1 : return mem, err
1881 : }
1882 1 : return nil, nil
1883 : }()
1884 :
1885 1 : d.mu.Unlock()
1886 1 :
1887 1 : if err != nil {
1888 0 : return err
1889 0 : }
1890 1 : if mem != nil {
1891 1 : select {
1892 1 : case <-mem.flushed:
1893 0 : case <-ctx.Done():
1894 0 : return ctx.Err()
1895 : }
1896 : }
1897 :
1898 1 : for level := 0; level < maxLevelWithFiles; {
1899 1 : for {
1900 1 : if err := d.manualCompact(
1901 1 : ctx, start, end, level, parallelize); err != nil {
1902 0 : if errors.Is(err, ErrCancelledCompaction) {
1903 0 : continue
1904 : }
1905 0 : return err
1906 : }
1907 1 : break
1908 : }
1909 1 : level++
1910 1 : if level == numLevels-1 {
1911 1 : // A manual compaction of the bottommost level occurred.
1912 1 : // There is no next level to try and compact.
1913 1 : break
1914 : }
1915 : }
1916 1 : return nil
1917 : }
1918 :
1919 : func (d *DB) manualCompact(
1920 : ctx context.Context, start, end []byte, level int, parallelize bool,
1921 1 : ) error {
1922 1 : d.mu.Lock()
1923 1 : curr := d.mu.versions.currentVersion()
1924 1 : files := curr.Overlaps(level, base.UserKeyBoundsInclusive(start, end))
1925 1 : if files.Empty() {
1926 1 : d.mu.Unlock()
1927 1 : return nil
1928 1 : }
1929 :
1930 1 : var compactions []*manualCompaction
1931 1 : if parallelize {
1932 1 : compactions = append(compactions, d.splitManualCompaction(start, end, level)...)
1933 1 : } else {
1934 1 : compactions = append(compactions, &manualCompaction{
1935 1 : level: level,
1936 1 : done: make(chan error, 1),
1937 1 : start: start,
1938 1 : end: end,
1939 1 : })
1940 1 : }
1941 1 : n := len(compactions)
1942 1 : if n == 0 {
1943 0 : d.mu.Unlock()
1944 0 : return nil
1945 0 : }
1946 1 : for i := range compactions {
1947 1 : d.mu.compact.manualID++
1948 1 : compactions[i].id = d.mu.compact.manualID
1949 1 : }
1950 : // [manualIDStart, manualIDEnd] are the compactions that have been added to
1951 : // d.mu.compact.manual.
1952 1 : manualIDStart := compactions[0].id
1953 1 : manualIDEnd := compactions[n-1].id
1954 1 : d.mu.compact.manual = append(d.mu.compact.manual, compactions...)
1955 1 : d.mu.compact.manualLen.Store(int32(len(d.mu.compact.manual)))
1956 1 : d.maybeScheduleCompaction()
1957 1 : d.mu.Unlock()
1958 1 :
1959 1 : // On context cancellation, we only cancel the compactions that have not yet
1960 1 : // started. The assumption is that it is relatively harmless to have the
1961 1 : // already started compactions run to completion. We don't wait for the
1962 1 : // ongoing compactions to finish, since the assumption is that the caller
1963 1 : // has already given up on the operation (and the cancellation error is
1964 1 : // going to be returned anyway).
1965 1 : //
1966 1 : // An alternative would be to store the context in each *manualCompaction,
1967 1 : // and have the goroutine that retrieves the *manualCompaction for running
1968 1 : // notice the cancellation and write the cancellation error to
1969 1 : // manualCompaction.done. That approach would require this method to wait
1970 1 : // for all the *manualCompactions it has enqueued to finish before returning
1971 1 : // (to not leak a context). Since there is no timeliness guarantee on when a
1972 1 : // *manualCompaction will be retrieved for running, the wait until a
1973 1 : // cancelled context causes this method to return is not bounded. Hence, we
1974 1 : // don't adopt that approach.
1975 1 : cancelPendingCompactions := func() {
1976 0 : d.mu.Lock()
1977 0 : for i := 0; i < len(d.mu.compact.manual); {
1978 0 : if d.mu.compact.manual[i].id >= manualIDStart && d.mu.compact.manual[i].id <= manualIDEnd {
1979 0 : d.mu.compact.manual = slices.Delete(d.mu.compact.manual, i, i+1)
1980 0 : d.mu.compact.manualLen.Store(int32(len(d.mu.compact.manual)))
1981 0 : } else {
1982 0 : i++
1983 0 : }
1984 : }
1985 0 : d.mu.Unlock()
1986 : }
1987 : // Each of the channels is guaranteed to be eventually sent to once. After a
1988 : // compaction is possibly picked in d.maybeScheduleCompaction(), either the
1989 : // compaction is dropped, executed after being scheduled, or retried later.
1990 : // Assuming eventual progress when a compaction is retried, all outcomes send
1991 : // a value to the done channel. Since the channels are buffered, it is not
1992 : // necessary to read from each channel, and so we can exit early in the event
1993 : // of an error.
1994 1 : for _, compaction := range compactions {
1995 1 : select {
1996 0 : case <-ctx.Done():
1997 0 : cancelPendingCompactions()
1998 0 : return ctx.Err()
1999 1 : case err := <-compaction.done:
2000 1 : if err != nil {
2001 0 : cancelPendingCompactions()
2002 0 : return err
2003 0 : }
2004 : }
2005 : }
2006 1 : return nil
2007 : }
2008 :
2009 : // splitManualCompaction splits a manual compaction over [start,end] on level
2010 : // such that the resulting compactions have no key overlap.
2011 : func (d *DB) splitManualCompaction(
2012 : start, end []byte, level int,
2013 1 : ) (splitCompactions []*manualCompaction) {
2014 1 : curr := d.mu.versions.currentVersion()
2015 1 : endLevel := level + 1
2016 1 : baseLevel := d.mu.versions.picker.getBaseLevel()
2017 1 : if level == 0 {
2018 1 : endLevel = baseLevel
2019 1 : }
2020 1 : keyRanges := curr.CalculateInuseKeyRanges(d.mu.versions.latest.l0Organizer, level, endLevel, start, end)
2021 1 : for _, keyRange := range keyRanges {
2022 1 : splitCompactions = append(splitCompactions, &manualCompaction{
2023 1 : level: level,
2024 1 : done: make(chan error, 1),
2025 1 : start: keyRange.Start,
2026 1 : end: keyRange.End.Key,
2027 1 : split: true,
2028 1 : })
2029 1 : }
2030 1 : return splitCompactions
2031 : }
2032 :
2033 : // Flush the memtable to stable storage.
2034 1 : func (d *DB) Flush() error {
2035 1 : flushDone, err := d.AsyncFlush()
2036 1 : if err != nil {
2037 0 : return err
2038 0 : }
2039 1 : <-flushDone
2040 1 : return nil
2041 : }
2042 :
2043 : // AsyncFlush asynchronously flushes the memtable to stable storage.
2044 : //
2045 : // If no error is returned, the caller can receive from the returned channel in
2046 : // order to wait for the flush to complete.
2047 1 : func (d *DB) AsyncFlush() (<-chan struct{}, error) {
2048 1 : if err := d.closed.Load(); err != nil {
2049 0 : panic(err)
2050 : }
2051 1 : if d.opts.ReadOnly {
2052 0 : return nil, ErrReadOnly
2053 0 : }
2054 :
2055 1 : d.commit.mu.Lock()
2056 1 : defer d.commit.mu.Unlock()
2057 1 : d.mu.Lock()
2058 1 : defer d.mu.Unlock()
2059 1 : flushed := d.mu.mem.queue[len(d.mu.mem.queue)-1].flushed
2060 1 : err := d.makeRoomForWrite(nil)
2061 1 : if err != nil {
2062 0 : return nil, err
2063 0 : }
2064 1 : return flushed, nil
2065 : }
2066 :
2067 : // Metrics returns metrics about the database.
2068 1 : func (d *DB) Metrics() *Metrics {
2069 1 : metrics := &Metrics{}
2070 1 : walStats := d.mu.log.manager.Stats()
2071 1 : completedObsoleteFileStats := d.cleanupManager.CompletedStats()
2072 1 :
2073 1 : d.mu.Lock()
2074 1 : vers := d.mu.versions.currentVersion()
2075 1 : *metrics = d.mu.versions.metrics
2076 1 : metrics.Compact.EstimatedDebt = d.mu.versions.picker.estimatedCompactionDebt()
2077 1 : metrics.Compact.InProgressBytes = d.mu.versions.atomicInProgressBytes.Load()
2078 1 : // TODO(radu): split this to separate the download compactions.
2079 1 : metrics.Compact.NumInProgress = int64(d.mu.compact.compactingCount + d.mu.compact.downloadingCount)
2080 1 : metrics.Compact.MarkedFiles = vers.Stats.MarkedForCompaction
2081 1 : metrics.Compact.Duration = d.mu.compact.duration
2082 1 : for c := range d.mu.compact.inProgress {
2083 0 : if !c.IsFlush() {
2084 0 : metrics.Compact.Duration += d.timeNow().Sub(c.BeganAt())
2085 0 : }
2086 : }
2087 1 : metrics.Compact.NumProblemSpans = d.problemSpans.Len()
2088 1 :
2089 1 : for _, m := range d.mu.mem.queue {
2090 1 : metrics.MemTable.Size += m.totalBytes()
2091 1 : }
2092 1 : metrics.Snapshots.Count = d.mu.snapshots.count()
2093 1 : if metrics.Snapshots.Count > 0 {
2094 0 : metrics.Snapshots.EarliestSeqNum = d.mu.snapshots.earliest()
2095 0 : }
2096 1 : metrics.Snapshots.PinnedKeys = d.mu.snapshots.cumulativePinnedCount
2097 1 : metrics.Snapshots.PinnedSize = d.mu.snapshots.cumulativePinnedSize
2098 1 : metrics.MemTable.Count = int64(len(d.mu.mem.queue))
2099 1 : metrics.MemTable.ZombieCount = d.memTableCount.Load() - metrics.MemTable.Count
2100 1 : metrics.MemTable.ZombieSize = uint64(d.memTableReserved.Load()) - metrics.MemTable.Size
2101 1 : metrics.WAL.ObsoleteFiles = int64(walStats.ObsoleteFileCount)
2102 1 : metrics.WAL.ObsoletePhysicalSize = walStats.ObsoleteFileSize
2103 1 : metrics.WAL.Files = int64(walStats.LiveFileCount)
2104 1 : // The current WAL's size (d.logSize) is the logical size, which may be less
2105 1 : // than the WAL's physical size if it was recycled. walStats.LiveFileSize
2106 1 : // includes the physical size of all live WALs, but for the current WAL it
2107 1 : // reflects the physical size when it was opened. So it is possible that
2108 1 : // d.atomic.logSize has exceeded that physical size. We allow for this
2109 1 : // anomaly.
2110 1 : metrics.WAL.PhysicalSize = walStats.LiveFileSize
2111 1 : metrics.WAL.BytesIn = d.logBytesIn.Load()
2112 1 : metrics.WAL.Size = d.logSize.Load()
2113 1 : for i, n := 0, len(d.mu.mem.queue)-1; i < n; i++ {
2114 1 : metrics.WAL.Size += d.mu.mem.queue[i].logSize
2115 1 : }
2116 1 : metrics.WAL.BytesWritten = metrics.Levels[0].TableBytesIn + metrics.WAL.Size
2117 1 : metrics.WAL.Failover = walStats.Failover
2118 1 :
2119 1 : if p := d.mu.versions.picker; p != nil {
2120 1 : compactions := d.getInProgressCompactionInfoLocked(nil)
2121 1 : m := p.getMetrics(compactions)
2122 1 : for level, lm := range m.levels {
2123 1 : metrics.Levels[level].Score = lm.score
2124 1 : metrics.Levels[level].FillFactor = lm.fillFactor
2125 1 : metrics.Levels[level].CompensatedFillFactor = lm.compensatedFillFactor
2126 1 : }
2127 : }
2128 1 : metrics.Table.ZombieCount = int64(d.mu.versions.zombieTables.Count())
2129 1 : metrics.Table.ZombieSize = d.mu.versions.zombieTables.TotalSize()
2130 1 : metrics.Table.Local.ZombieCount, metrics.Table.Local.ZombieSize = d.mu.versions.zombieTables.LocalStats()
2131 1 :
2132 1 : // The obsolete blob/table metrics have a subtle calculation:
2133 1 : //
2134 1 : // (A) The vs.metrics.{Table,BlobFiles}.[Local.]{ObsoleteCount,ObsoleteSize}
2135 1 : // fields reflect the set of files currently sitting in
2136 1 : // vs.obsolete{Tables,Blobs} but not yet enqueued to the cleanup manager.
2137 1 : //
2138 1 : // (B) The d.mu.fileDeletions.queuedStats field holds the set of files that have
2139 1 : // been queued for deletion by the cleanup manager.
2140 1 : //
2141 1 : // (C) The cleanup manager also maintains cumulative stats for the set of
2142 1 : // files that have been deleted.
2143 1 : //
2144 1 : // The value of currently pending obsolete files is (A) + (B) - (C).
2145 1 : pendingObsoleteFileStats := d.mu.fileDeletions.queuedStats
2146 1 : pendingObsoleteFileStats.Sub(completedObsoleteFileStats)
2147 1 : metrics.Table.Local.ObsoleteCount += pendingObsoleteFileStats.tablesLocal.count
2148 1 : metrics.Table.Local.ObsoleteSize += pendingObsoleteFileStats.tablesLocal.size
2149 1 : metrics.Table.ObsoleteCount += int64(pendingObsoleteFileStats.tablesAll.count)
2150 1 : metrics.Table.ObsoleteSize += pendingObsoleteFileStats.tablesAll.size
2151 1 : metrics.BlobFiles.Local.ObsoleteCount += pendingObsoleteFileStats.blobFilesLocal.count
2152 1 : metrics.BlobFiles.Local.ObsoleteSize += pendingObsoleteFileStats.blobFilesLocal.size
2153 1 : metrics.BlobFiles.ObsoleteCount += pendingObsoleteFileStats.blobFilesAll.count
2154 1 : metrics.BlobFiles.ObsoleteSize += pendingObsoleteFileStats.blobFilesAll.size
2155 1 : metrics.private.optionsFileSize = d.optionsFileSize
2156 1 :
2157 1 : // TODO(jackson): Consider making these metrics optional.
2158 1 : metrics.Keys.RangeKeySetsCount = *rangeKeySetsAnnotator.MultiLevelAnnotation(vers.RangeKeyLevels[:])
2159 1 : metrics.Keys.TombstoneCount = *tombstonesAnnotator.MultiLevelAnnotation(vers.Levels[:])
2160 1 :
2161 1 : metrics.Table.Garbage.PointDeletionsBytesEstimate =
2162 1 : *pointDeletionsBytesEstimateAnnotator.MultiLevelAnnotation(vers.Levels[:])
2163 1 : metrics.Table.Garbage.RangeDeletionsBytesEstimate =
2164 1 : *rangeDeletionsBytesEstimateAnnotator.MultiLevelAnnotation(vers.Levels[:])
2165 1 :
2166 1 : d.mu.versions.logLock()
2167 1 : metrics.private.manifestFileSize = uint64(d.mu.versions.manifest.Size())
2168 1 : backingCount, backingTotalSize := d.mu.versions.latest.virtualBackings.Stats()
2169 1 : metrics.Table.BackingTableCount = uint64(backingCount)
2170 1 : metrics.Table.BackingTableSize = backingTotalSize
2171 1 : blobStats, _ := d.mu.versions.latest.blobFiles.Stats()
2172 1 : d.mu.versions.logUnlock()
2173 1 : metrics.BlobFiles.LiveCount = blobStats.Count
2174 1 : metrics.BlobFiles.LiveSize = blobStats.PhysicalSize
2175 1 : metrics.BlobFiles.ValueSize = blobStats.ValueSize
2176 1 : metrics.BlobFiles.ReferencedValueSize = blobStats.ReferencedValueSize
2177 1 :
2178 1 : metrics.LogWriter.FsyncLatency = d.mu.log.metrics.fsyncLatency
2179 1 : if err := metrics.LogWriter.Merge(&d.mu.log.metrics.LogWriterMetrics); err != nil {
2180 0 : d.opts.Logger.Errorf("metrics error: %s", err)
2181 0 : }
2182 1 : metrics.Flush.WriteThroughput = d.mu.compact.flushWriteThroughput
2183 1 : if d.mu.compact.flushing {
2184 0 : metrics.Flush.NumInProgress = 1
2185 0 : }
2186 1 : for i := 0; i < numLevels; i++ {
2187 1 : metrics.Levels[i].Additional.ValueBlocksSize = *valueBlockSizeAnnotator.LevelAnnotation(vers.Levels[i])
2188 1 : compressionTypes := compressionTypeAnnotator.LevelAnnotation(vers.Levels[i])
2189 1 : metrics.Table.CompressedCountUnknown += int64(compressionTypes.unknown)
2190 1 : metrics.Table.CompressedCountSnappy += int64(compressionTypes.snappy)
2191 1 : metrics.Table.CompressedCountZstd += int64(compressionTypes.zstd)
2192 1 : metrics.Table.CompressedCountMinLZ += int64(compressionTypes.minlz)
2193 1 : metrics.Table.CompressedCountNone += int64(compressionTypes.none)
2194 1 : }
2195 :
2196 1 : metrics.Table.PendingStatsCollectionCount = int64(len(d.mu.tableStats.pending))
2197 1 : metrics.Table.InitialStatsCollectionComplete = d.mu.tableStats.loadedInitial
2198 1 :
2199 1 : d.mu.Unlock()
2200 1 :
2201 1 : metrics.BlockCache = d.opts.Cache.Metrics()
2202 1 : metrics.FileCache, metrics.Filter = d.fileCache.Metrics()
2203 1 : metrics.TableIters = d.fileCache.IterCount()
2204 1 : metrics.CategoryStats = d.fileCache.SSTStatsCollector().GetStats()
2205 1 :
2206 1 : metrics.SecondaryCacheMetrics = d.objProvider.Metrics()
2207 1 :
2208 1 : metrics.Uptime = d.timeNow().Sub(d.openedAt)
2209 1 :
2210 1 : metrics.manualMemory = manual.GetMetrics()
2211 1 :
2212 1 : return metrics
2213 : }
2214 :
2215 : // sstablesOptions hold the optional parameters to retrieve TableInfo for all sstables.
2216 : type sstablesOptions struct {
2217 : // set to true will return the sstable properties in TableInfo
2218 : withProperties bool
2219 :
2220 : // if set, return sstables that overlap the key range (end-exclusive)
2221 : start []byte
2222 : end []byte
2223 :
2224 : withApproximateSpanBytes bool
2225 : }
2226 :
2227 : // SSTablesOption set optional parameter used by `DB.SSTables`.
2228 : type SSTablesOption func(*sstablesOptions)
2229 :
2230 : // WithProperties enable return sstable properties in each TableInfo.
2231 : //
2232 : // NOTE: if most of the sstable properties need to be read from disk,
2233 : // this options may make method `SSTables` quite slow.
2234 0 : func WithProperties() SSTablesOption {
2235 0 : return func(opt *sstablesOptions) {
2236 0 : opt.withProperties = true
2237 0 : }
2238 : }
2239 :
2240 : // WithKeyRangeFilter ensures returned sstables overlap start and end (end-exclusive)
2241 : // if start and end are both nil these properties have no effect.
2242 0 : func WithKeyRangeFilter(start, end []byte) SSTablesOption {
2243 0 : return func(opt *sstablesOptions) {
2244 0 : opt.end = end
2245 0 : opt.start = start
2246 0 : }
2247 : }
2248 :
2249 : // WithApproximateSpanBytes enables capturing the approximate number of bytes that
2250 : // overlap the provided key span for each sstable.
2251 : // NOTE: This option requires WithKeyRangeFilter.
2252 0 : func WithApproximateSpanBytes() SSTablesOption {
2253 0 : return func(opt *sstablesOptions) {
2254 0 : opt.withApproximateSpanBytes = true
2255 0 : }
2256 : }
2257 :
2258 : // BackingType denotes the type of storage backing a given sstable.
2259 : type BackingType int
2260 :
2261 : const (
2262 : // BackingTypeLocal denotes an sstable stored on local disk according to the
2263 : // objprovider. This file is completely owned by us.
2264 : BackingTypeLocal BackingType = iota
2265 : // BackingTypeShared denotes an sstable stored on shared storage, created
2266 : // by this Pebble instance and possibly shared by other Pebble instances.
2267 : // These types of files have lifecycle managed by Pebble.
2268 : BackingTypeShared
2269 : // BackingTypeSharedForeign denotes an sstable stored on shared storage,
2270 : // created by a Pebble instance other than this one. These types of files have
2271 : // lifecycle managed by Pebble.
2272 : BackingTypeSharedForeign
2273 : // BackingTypeExternal denotes an sstable stored on external storage,
2274 : // not owned by any Pebble instance and with no refcounting/cleanup methods
2275 : // or lifecycle management. An example of an external file is a file restored
2276 : // from a backup.
2277 : BackingTypeExternal
2278 : backingTypeCount
2279 : )
2280 :
2281 : var backingTypeToString = [backingTypeCount]string{
2282 : BackingTypeLocal: "local",
2283 : BackingTypeShared: "shared",
2284 : BackingTypeSharedForeign: "shared-foreign",
2285 : BackingTypeExternal: "external",
2286 : }
2287 :
2288 : // String implements fmt.Stringer.
2289 0 : func (b BackingType) String() string {
2290 0 : return backingTypeToString[b]
2291 0 : }
2292 :
2293 : // SSTableInfo export manifest.TableInfo with sstable.Properties alongside
2294 : // other file backing info.
2295 : type SSTableInfo struct {
2296 : manifest.TableInfo
2297 : TableStats manifest.TableStats
2298 : // Virtual indicates whether the sstable is virtual.
2299 : Virtual bool
2300 : // BackingSSTNum is the disk file number associated with the backing sstable.
2301 : // If Virtual is false, BackingSSTNum == PhysicalTableDiskFileNum(TableNum).
2302 : BackingSSTNum base.DiskFileNum
2303 : // BackingType is the type of storage backing this sstable.
2304 : BackingType BackingType
2305 : // Locator is the remote.Locator backing this sstable, if the backing type is
2306 : // not BackingTypeLocal.
2307 : Locator remote.Locator
2308 : // ApproximateSpanBytes describes the approximate number of bytes within the
2309 : // sstable that fall within a particular span. It's populated only when the
2310 : // ApproximateSpanBytes option is passed into DB.SSTables.
2311 : ApproximateSpanBytes uint64 `json:"ApproximateSpanBytes,omitempty"`
2312 :
2313 : // Properties is the sstable properties of this table. If Virtual is true,
2314 : // then the Properties are associated with the backing sst.
2315 : Properties *sstable.Properties
2316 : }
2317 :
2318 : // SSTables retrieves the current sstables. The returned slice is indexed by
2319 : // level and each level is indexed by the position of the sstable within the
2320 : // level. Note that this information may be out of date due to concurrent
2321 : // flushes and compactions.
2322 0 : func (d *DB) SSTables(opts ...SSTablesOption) ([][]SSTableInfo, error) {
2323 0 : opt := &sstablesOptions{}
2324 0 : for _, fn := range opts {
2325 0 : fn(opt)
2326 0 : }
2327 :
2328 0 : if opt.withApproximateSpanBytes && (opt.start == nil || opt.end == nil) {
2329 0 : return nil, errors.Errorf("cannot use WithApproximateSpanBytes without WithKeyRangeFilter option")
2330 0 : }
2331 :
2332 : // Grab and reference the current readState.
2333 0 : readState := d.loadReadState()
2334 0 : defer readState.unref()
2335 0 :
2336 0 : // TODO(peter): This is somewhat expensive, especially on a large
2337 0 : // database. It might be worthwhile to unify TableInfo and TableMetadata and
2338 0 : // then we could simply return current.Files. Note that RocksDB is doing
2339 0 : // something similar to the current code, so perhaps it isn't too bad.
2340 0 : srcLevels := readState.current.Levels
2341 0 : var totalTables int
2342 0 : for i := range srcLevels {
2343 0 : totalTables += srcLevels[i].Len()
2344 0 : }
2345 :
2346 0 : destTables := make([]SSTableInfo, totalTables)
2347 0 : destLevels := make([][]SSTableInfo, len(srcLevels))
2348 0 : for i := range destLevels {
2349 0 : j := 0
2350 0 : for m := range srcLevels[i].All() {
2351 0 : if opt.start != nil && opt.end != nil {
2352 0 : b := base.UserKeyBoundsEndExclusive(opt.start, opt.end)
2353 0 : if !m.Overlaps(d.opts.Comparer.Compare, &b) {
2354 0 : continue
2355 : }
2356 : }
2357 0 : var tableStats manifest.TableStats
2358 0 : if m.StatsValid() {
2359 0 : tableStats = m.Stats
2360 0 : }
2361 0 : destTables[j] = SSTableInfo{
2362 0 : TableInfo: m.TableInfo(),
2363 0 : TableStats: tableStats,
2364 0 : }
2365 0 : if opt.withProperties {
2366 0 : p, err := d.fileCache.getTableProperties(
2367 0 : m,
2368 0 : )
2369 0 : if err != nil {
2370 0 : return nil, err
2371 0 : }
2372 0 : if m.Virtual {
2373 0 : commonProps := p.GetScaledProperties(m.TableBacking.Size, m.Size)
2374 0 : p = &sstable.Properties{CommonProperties: commonProps}
2375 0 : }
2376 0 : destTables[j].Properties = p
2377 : }
2378 0 : destTables[j].Virtual = m.Virtual
2379 0 : destTables[j].BackingSSTNum = m.TableBacking.DiskFileNum
2380 0 : objMeta, err := d.objProvider.Lookup(base.FileTypeTable, m.TableBacking.DiskFileNum)
2381 0 : if err != nil {
2382 0 : return nil, err
2383 0 : }
2384 0 : if objMeta.IsRemote() {
2385 0 : if objMeta.IsShared() {
2386 0 : if d.objProvider.IsSharedForeign(objMeta) {
2387 0 : destTables[j].BackingType = BackingTypeSharedForeign
2388 0 : } else {
2389 0 : destTables[j].BackingType = BackingTypeShared
2390 0 : }
2391 0 : } else {
2392 0 : destTables[j].BackingType = BackingTypeExternal
2393 0 : }
2394 0 : destTables[j].Locator = objMeta.Remote.Locator
2395 0 : } else {
2396 0 : destTables[j].BackingType = BackingTypeLocal
2397 0 : }
2398 :
2399 0 : if opt.withApproximateSpanBytes {
2400 0 : if m.ContainedWithinSpan(d.opts.Comparer.Compare, opt.start, opt.end) {
2401 0 : destTables[j].ApproximateSpanBytes = m.Size
2402 0 : } else {
2403 0 : size, err := d.fileCache.estimateSize(m, opt.start, opt.end)
2404 0 : if err != nil {
2405 0 : return nil, err
2406 0 : }
2407 0 : destTables[j].ApproximateSpanBytes = size
2408 : }
2409 : }
2410 0 : j++
2411 : }
2412 0 : destLevels[i] = destTables[:j]
2413 0 : destTables = destTables[j:]
2414 : }
2415 :
2416 0 : return destLevels, nil
2417 : }
2418 :
2419 : // makeFileSizeAnnotator returns an annotator that computes the total
2420 : // storage size of files that meet some criteria defined by filter. When
2421 : // applicable, this includes both the sstable size and the size of any
2422 : // referenced blob files.
2423 : func (d *DB) makeFileSizeAnnotator(
2424 : filter func(f *manifest.TableMetadata) bool,
2425 1 : ) *manifest.Annotator[uint64] {
2426 1 : return &manifest.Annotator[uint64]{
2427 1 : Aggregator: manifest.SumAggregator{
2428 1 : AccumulateFunc: func(f *manifest.TableMetadata) (uint64, bool) {
2429 0 : if filter(f) {
2430 0 : return f.Size + f.EstimatedReferenceSize(), true
2431 0 : }
2432 0 : return 0, true
2433 : },
2434 0 : AccumulatePartialOverlapFunc: func(f *manifest.TableMetadata, bounds base.UserKeyBounds) uint64 {
2435 0 : if filter(f) {
2436 0 : overlappingFileSize, err := d.fileCache.estimateSize(f, bounds.Start, bounds.End.Key)
2437 0 : if err != nil {
2438 0 : return 0
2439 0 : }
2440 0 : overlapFraction := float64(overlappingFileSize) / float64(f.Size)
2441 0 : // Scale the blob reference size proportionally to the file
2442 0 : // overlap from the bounds to approximate only the blob
2443 0 : // references that overlap with the requested bounds.
2444 0 : return overlappingFileSize + uint64(float64(f.EstimatedReferenceSize())*overlapFraction)
2445 : }
2446 0 : return 0
2447 : },
2448 : },
2449 : }
2450 : }
2451 :
2452 : // EstimateDiskUsage returns the estimated filesystem space used in bytes for
2453 : // storing the range `[start, end]`. The estimation is computed as follows:
2454 : //
2455 : // - For sstables fully contained in the range the whole file size is included.
2456 : // - For sstables partially contained in the range the overlapping data block sizes
2457 : // are included. Even if a data block partially overlaps, or we cannot determine
2458 : // overlap due to abbreviated index keys, the full data block size is included in
2459 : // the estimation. Note that unlike fully contained sstables, none of the
2460 : // meta-block space is counted for partially overlapped files.
2461 : // - For virtual sstables, we use the overlap between start, end and the virtual
2462 : // sstable bounds to determine disk usage.
2463 : // - There may also exist WAL entries for unflushed keys in this range. This
2464 : // estimation currently excludes space used for the range in the WAL.
2465 0 : func (d *DB) EstimateDiskUsage(start, end []byte) (uint64, error) {
2466 0 : bytes, _, _, err := d.EstimateDiskUsageByBackingType(start, end)
2467 0 : return bytes, err
2468 0 : }
2469 :
2470 : // EstimateDiskUsageByBackingType is like EstimateDiskUsage but additionally
2471 : // returns the subsets of that size in remote ane external files.
2472 : func (d *DB) EstimateDiskUsageByBackingType(
2473 : start, end []byte,
2474 0 : ) (totalSize, remoteSize, externalSize uint64, _ error) {
2475 0 : if err := d.closed.Load(); err != nil {
2476 0 : panic(err)
2477 : }
2478 :
2479 0 : bounds := base.UserKeyBoundsInclusive(start, end)
2480 0 : if !bounds.Valid(d.cmp) {
2481 0 : return 0, 0, 0, errors.New("invalid key-range specified (start > end)")
2482 0 : }
2483 :
2484 : // Grab and reference the current readState. This prevents the underlying
2485 : // files in the associated version from being deleted if there is a concurrent
2486 : // compaction.
2487 0 : readState := d.loadReadState()
2488 0 : defer readState.unref()
2489 0 :
2490 0 : totalSize = *d.mu.annotators.totalFileSize.VersionRangeAnnotation(readState.current, bounds)
2491 0 : remoteSize = *d.mu.annotators.remoteSize.VersionRangeAnnotation(readState.current, bounds)
2492 0 : externalSize = *d.mu.annotators.externalSize.VersionRangeAnnotation(readState.current, bounds)
2493 0 :
2494 0 : return
2495 : }
2496 :
2497 1 : func (d *DB) walPreallocateSize() int {
2498 1 : // Set the WAL preallocate size to 110% of the memtable size. Note that there
2499 1 : // is a bit of apples and oranges in units here as the memtabls size
2500 1 : // corresponds to the memory usage of the memtable while the WAL size is the
2501 1 : // size of the batches (plus overhead) stored in the WAL.
2502 1 : //
2503 1 : // TODO(peter): 110% of the memtable size is quite hefty for a block
2504 1 : // size. This logic is taken from GetWalPreallocateBlockSize in
2505 1 : // RocksDB. Could a smaller preallocation block size be used?
2506 1 : size := d.opts.MemTableSize
2507 1 : size = (size / 10) + size
2508 1 : return int(size)
2509 1 : }
2510 :
2511 : func (d *DB) newMemTable(
2512 : logNum base.DiskFileNum, logSeqNum base.SeqNum, minSize uint64,
2513 1 : ) (*memTable, *flushableEntry) {
2514 1 : targetSize := minSize + uint64(memTableEmptySize)
2515 1 : // The targetSize should be less than MemTableSize, because any batch >=
2516 1 : // MemTableSize/2 should be treated as a large flushable batch.
2517 1 : if targetSize > d.opts.MemTableSize {
2518 0 : panic(errors.AssertionFailedf("attempting to allocate memtable larger than MemTableSize"))
2519 : }
2520 : // Double until the next memtable size is at least large enough to fit
2521 : // minSize.
2522 1 : for d.mu.mem.nextSize < targetSize {
2523 0 : d.mu.mem.nextSize = min(2*d.mu.mem.nextSize, d.opts.MemTableSize)
2524 0 : }
2525 1 : size := d.mu.mem.nextSize
2526 1 : // The next memtable should be double the size, up to Options.MemTableSize.
2527 1 : if d.mu.mem.nextSize < d.opts.MemTableSize {
2528 1 : d.mu.mem.nextSize = min(2*d.mu.mem.nextSize, d.opts.MemTableSize)
2529 1 : }
2530 :
2531 1 : memtblOpts := memTableOptions{
2532 1 : Options: d.opts,
2533 1 : logSeqNum: logSeqNum,
2534 1 : }
2535 1 :
2536 1 : // Before attempting to allocate a new memtable, check if there's one
2537 1 : // available for recycling in memTableRecycle. Large contiguous allocations
2538 1 : // can be costly as fragmentation makes it more difficult to find a large
2539 1 : // contiguous free space. We've observed 64MB allocations taking 10ms+.
2540 1 : //
2541 1 : // To reduce these costly allocations, up to 1 obsolete memtable is stashed
2542 1 : // in `d.memTableRecycle` to allow a future memtable rotation to reuse
2543 1 : // existing memory.
2544 1 : var mem *memTable
2545 1 : mem = d.memTableRecycle.Swap(nil)
2546 1 : if mem != nil && uint64(mem.arenaBuf.Len()) != size {
2547 1 : d.freeMemTable(mem)
2548 1 : mem = nil
2549 1 : }
2550 1 : if mem != nil {
2551 1 : // Carry through the existing buffer and memory reservation.
2552 1 : memtblOpts.arenaBuf = mem.arenaBuf
2553 1 : memtblOpts.releaseAccountingReservation = mem.releaseAccountingReservation
2554 1 : } else {
2555 1 : mem = new(memTable)
2556 1 : memtblOpts.arenaBuf = manual.New(manual.MemTable, uintptr(size))
2557 1 : memtblOpts.releaseAccountingReservation = d.opts.Cache.Reserve(int(size))
2558 1 : d.memTableCount.Add(1)
2559 1 : d.memTableReserved.Add(int64(size))
2560 1 :
2561 1 : // Note: this is a no-op if invariants are disabled or race is enabled.
2562 1 : invariants.SetFinalizer(mem, checkMemTable)
2563 1 : }
2564 1 : mem.init(memtblOpts)
2565 1 :
2566 1 : entry := d.newFlushableEntry(mem, logNum, logSeqNum)
2567 1 : entry.releaseMemAccounting = func() {
2568 1 : // If the user leaks iterators, we may be releasing the memtable after
2569 1 : // the DB is already closed. In this case, we want to just release the
2570 1 : // memory because DB.Close won't come along to free it for us.
2571 1 : if err := d.closed.Load(); err != nil {
2572 1 : d.freeMemTable(mem)
2573 1 : return
2574 1 : }
2575 :
2576 : // The next memtable allocation might be able to reuse this memtable.
2577 : // Stash it on d.memTableRecycle.
2578 1 : if unusedMem := d.memTableRecycle.Swap(mem); unusedMem != nil {
2579 1 : // There was already a memtable waiting to be recycled. We're now
2580 1 : // responsible for freeing it.
2581 1 : d.freeMemTable(unusedMem)
2582 1 : }
2583 : }
2584 1 : return mem, entry
2585 : }
2586 :
2587 1 : func (d *DB) freeMemTable(m *memTable) {
2588 1 : d.memTableCount.Add(-1)
2589 1 : d.memTableReserved.Add(-int64(m.arenaBuf.Len()))
2590 1 : m.free()
2591 1 : }
2592 :
2593 : func (d *DB) newFlushableEntry(
2594 : f flushable, logNum base.DiskFileNum, logSeqNum base.SeqNum,
2595 1 : ) *flushableEntry {
2596 1 : fe := &flushableEntry{
2597 1 : flushable: f,
2598 1 : flushed: make(chan struct{}),
2599 1 : logNum: logNum,
2600 1 : logSeqNum: logSeqNum,
2601 1 : deleteFn: d.mu.versions.addObsolete,
2602 1 : deleteFnLocked: d.mu.versions.addObsoleteLocked,
2603 1 : }
2604 1 : fe.readerRefs.Store(1)
2605 1 : return fe
2606 1 : }
2607 :
2608 : // maybeInduceWriteStall is called before performing a memtable rotation in
2609 : // makeRoomForWrite. In some conditions, we prefer to stall the user's write
2610 : // workload rather than continuing to accept writes that may result in resource
2611 : // exhaustion or prohibitively slow reads.
2612 : //
2613 : // There are a couple reasons we might wait to rotate the memtable and
2614 : // instead induce a write stall:
2615 : // 1. If too many memtables have queued, we wait for a flush to finish before
2616 : // creating another memtable.
2617 : // 2. If L0 read amplification has grown too high, we wait for compactions
2618 : // to reduce the read amplification before accepting more writes that will
2619 : // increase write pressure.
2620 : //
2621 : // maybeInduceWriteStall checks these stall conditions, and if present, waits
2622 : // for them to abate.
2623 1 : func (d *DB) maybeInduceWriteStall(b *Batch) {
2624 1 : stalled := false
2625 1 : // This function will call EventListener.WriteStallBegin at most once. If
2626 1 : // it does call it, it will call EventListener.WriteStallEnd once before
2627 1 : // returning.
2628 1 : for {
2629 1 : var size uint64
2630 1 : for i := range d.mu.mem.queue {
2631 1 : size += d.mu.mem.queue[i].totalBytes()
2632 1 : }
2633 1 : if size >= uint64(d.opts.MemTableStopWritesThreshold)*d.opts.MemTableSize &&
2634 1 : !d.mu.log.manager.ElevateWriteStallThresholdForFailover() {
2635 1 : // We have filled up the current memtable, but already queued memtables
2636 1 : // are still flushing, so we wait.
2637 1 : if !stalled {
2638 1 : stalled = true
2639 1 : d.opts.EventListener.WriteStallBegin(WriteStallBeginInfo{
2640 1 : Reason: "memtable count limit reached",
2641 1 : })
2642 1 : }
2643 1 : beforeWait := crtime.NowMono()
2644 1 : d.mu.compact.cond.Wait()
2645 1 : if b != nil {
2646 1 : b.commitStats.MemTableWriteStallDuration += beforeWait.Elapsed()
2647 1 : }
2648 1 : continue
2649 : }
2650 1 : l0ReadAmp := d.mu.versions.latest.l0Organizer.ReadAmplification()
2651 1 : if l0ReadAmp >= d.opts.L0StopWritesThreshold {
2652 1 : // There are too many level-0 files, so we wait.
2653 1 : if !stalled {
2654 1 : stalled = true
2655 1 : d.opts.EventListener.WriteStallBegin(WriteStallBeginInfo{
2656 1 : Reason: "L0 file count limit exceeded",
2657 1 : })
2658 1 : }
2659 1 : beforeWait := crtime.NowMono()
2660 1 : d.mu.compact.cond.Wait()
2661 1 : if b != nil {
2662 0 : b.commitStats.L0ReadAmpWriteStallDuration += beforeWait.Elapsed()
2663 0 : }
2664 1 : continue
2665 : }
2666 : // Not stalled.
2667 1 : if stalled {
2668 1 : d.opts.EventListener.WriteStallEnd()
2669 1 : }
2670 1 : return
2671 : }
2672 : }
2673 :
2674 : // makeRoomForWrite rotates the current mutable memtable, ensuring that the
2675 : // resulting mutable memtable has room to hold the contents of the provided
2676 : // Batch. The current memtable is rotated (marked as immutable) and a new
2677 : // mutable memtable is allocated. It reserves space in the new memtable and adds
2678 : // a reference to the memtable. The caller must later ensure that the memtable
2679 : // is unreferenced. This memtable rotation also causes a log rotation.
2680 : //
2681 : // If the current memtable is not full but the caller wishes to trigger a
2682 : // rotation regardless, the caller may pass a nil Batch, and no space in the
2683 : // resulting mutable memtable will be reserved.
2684 : //
2685 : // Both DB.mu and commitPipeline.mu must be held by the caller. Note that DB.mu
2686 : // may be released and reacquired.
2687 1 : func (d *DB) makeRoomForWrite(b *Batch) error {
2688 1 : if b != nil && b.ingestedSSTBatch {
2689 0 : panic("pebble: invalid function call")
2690 : }
2691 1 : d.maybeInduceWriteStall(b)
2692 1 :
2693 1 : var newLogNum base.DiskFileNum
2694 1 : var prevLogSize uint64
2695 1 : if !d.opts.DisableWAL {
2696 1 : beforeRotate := crtime.NowMono()
2697 1 : newLogNum, prevLogSize = d.rotateWAL()
2698 1 : if b != nil {
2699 1 : b.commitStats.WALRotationDuration += beforeRotate.Elapsed()
2700 1 : }
2701 : }
2702 1 : immMem := d.mu.mem.mutable
2703 1 : imm := d.mu.mem.queue[len(d.mu.mem.queue)-1]
2704 1 : imm.logSize = prevLogSize
2705 1 :
2706 1 : var logSeqNum base.SeqNum
2707 1 : var minSize uint64
2708 1 : if b != nil {
2709 1 : logSeqNum = b.SeqNum()
2710 1 : if b.flushable != nil {
2711 1 : logSeqNum += base.SeqNum(b.Count())
2712 1 : // The batch is too large to fit in the memtable so add it directly to
2713 1 : // the immutable queue. The flushable batch is associated with the same
2714 1 : // log as the immutable memtable, but logically occurs after it in
2715 1 : // seqnum space. We ensure while flushing that the flushable batch
2716 1 : // is flushed along with the previous memtable in the flushable
2717 1 : // queue. See the top level comment in DB.flush1 to learn how this
2718 1 : // is ensured.
2719 1 : //
2720 1 : // See DB.commitWrite for the special handling of log writes for large
2721 1 : // batches. In particular, the large batch has already written to
2722 1 : // imm.logNum.
2723 1 : entry := d.newFlushableEntry(b.flushable, imm.logNum, b.SeqNum())
2724 1 : // The large batch is by definition large. Reserve space from the cache
2725 1 : // for it until it is flushed.
2726 1 : entry.releaseMemAccounting = d.opts.Cache.Reserve(int(b.flushable.totalBytes()))
2727 1 : d.mu.mem.queue = append(d.mu.mem.queue, entry)
2728 1 : } else {
2729 1 : minSize = b.memTableSize
2730 1 : }
2731 1 : } else {
2732 1 : // b == nil
2733 1 : //
2734 1 : // This is a manual forced flush.
2735 1 : logSeqNum = base.SeqNum(d.mu.versions.logSeqNum.Load())
2736 1 : imm.flushForced = true
2737 1 : // If we are manually flushing and we used less than half of the bytes in
2738 1 : // the memtable, don't increase the size for the next memtable. This
2739 1 : // reduces memtable memory pressure when an application is frequently
2740 1 : // manually flushing.
2741 1 : if uint64(immMem.availBytes()) > immMem.totalBytes()/2 {
2742 1 : d.mu.mem.nextSize = immMem.totalBytes()
2743 1 : }
2744 : }
2745 1 : d.rotateMemtable(newLogNum, logSeqNum, immMem, minSize)
2746 1 : if b != nil && b.flushable == nil {
2747 1 : err := d.mu.mem.mutable.prepare(b)
2748 1 : // Reserving enough space for the batch after rotation must never fail.
2749 1 : // We pass in a minSize that's equal to b.memtableSize to ensure that
2750 1 : // memtable rotation allocates a memtable sufficiently large. We also
2751 1 : // held d.commit.mu for the entirety of this function, ensuring that no
2752 1 : // other committers may have reserved memory in the new memtable yet.
2753 1 : if err == arenaskl.ErrArenaFull {
2754 0 : panic(errors.AssertionFailedf("memtable still full after rotation"))
2755 : }
2756 1 : return err
2757 : }
2758 1 : return nil
2759 : }
2760 :
2761 : // Both DB.mu and commitPipeline.mu must be held by the caller.
2762 : func (d *DB) rotateMemtable(
2763 : newLogNum base.DiskFileNum, logSeqNum base.SeqNum, prev *memTable, minSize uint64,
2764 1 : ) {
2765 1 : // Create a new memtable, scheduling the previous one for flushing. We do
2766 1 : // this even if the previous memtable was empty because the DB.Flush
2767 1 : // mechanism is dependent on being able to wait for the empty memtable to
2768 1 : // flush. We can't just mark the empty memtable as flushed here because we
2769 1 : // also have to wait for all previous immutable tables to
2770 1 : // flush. Additionally, the memtable is tied to particular WAL file and we
2771 1 : // want to go through the flush path in order to recycle that WAL file.
2772 1 : //
2773 1 : // NB: newLogNum corresponds to the WAL that contains mutations that are
2774 1 : // present in the new memtable. When immutable memtables are flushed to
2775 1 : // disk, a VersionEdit will be created telling the manifest the minimum
2776 1 : // unflushed log number (which will be the next one in d.mu.mem.mutable
2777 1 : // that was not flushed).
2778 1 : //
2779 1 : // NB: prev should be the current mutable memtable.
2780 1 : var entry *flushableEntry
2781 1 : d.mu.mem.mutable, entry = d.newMemTable(newLogNum, logSeqNum, minSize)
2782 1 : d.mu.mem.queue = append(d.mu.mem.queue, entry)
2783 1 : // d.logSize tracks the log size of the WAL file corresponding to the most
2784 1 : // recent flushable. The log size of the previous mutable memtable no longer
2785 1 : // applies to the current mutable memtable.
2786 1 : //
2787 1 : // It's tempting to perform this update in rotateWAL, but that would not be
2788 1 : // atomic with the enqueue of the new flushable. A call to DB.Metrics()
2789 1 : // could acquire DB.mu after the WAL has been rotated but before the new
2790 1 : // memtable has been appended; this would result in omitting the log size of
2791 1 : // the most recent flushable.
2792 1 : d.logSize.Store(0)
2793 1 : d.updateReadStateLocked(nil)
2794 1 : if prev.writerUnref() {
2795 1 : d.maybeScheduleFlush()
2796 1 : }
2797 : }
2798 :
2799 : // rotateWAL creates a new write-ahead log, possibly recycling a previous WAL's
2800 : // files. It returns the file number assigned to the new WAL, and the size of
2801 : // the previous WAL file.
2802 : //
2803 : // Both DB.mu and commitPipeline.mu must be held by the caller. Note that DB.mu
2804 : // may be released and reacquired.
2805 1 : func (d *DB) rotateWAL() (newLogNum base.DiskFileNum, prevLogSize uint64) {
2806 1 : if d.opts.DisableWAL {
2807 0 : panic("pebble: invalid function call")
2808 : }
2809 1 : jobID := d.newJobIDLocked()
2810 1 : newLogNum = d.mu.versions.getNextDiskFileNum()
2811 1 :
2812 1 : d.mu.Unlock()
2813 1 : // Close the previous log first. This writes an EOF trailer
2814 1 : // signifying the end of the file and syncs it to disk. We must
2815 1 : // close the previous log before linking the new log file,
2816 1 : // otherwise a crash could leave both logs with unclean tails, and
2817 1 : // Open will treat the previous log as corrupt.
2818 1 : offset, err := d.mu.log.writer.Close()
2819 1 : if err != nil {
2820 0 : // What to do here? Stumbling on doesn't seem worthwhile. If we failed to
2821 0 : // close the previous log it is possible we lost a write.
2822 0 : panic(err)
2823 : }
2824 1 : prevLogSize = uint64(offset)
2825 1 : metrics := d.mu.log.writer.Metrics()
2826 1 :
2827 1 : d.mu.Lock()
2828 1 : if err := d.mu.log.metrics.LogWriterMetrics.Merge(&metrics); err != nil {
2829 0 : d.opts.Logger.Errorf("metrics error: %s", err)
2830 0 : }
2831 :
2832 1 : d.mu.Unlock()
2833 1 : writer, err := d.mu.log.manager.Create(wal.NumWAL(newLogNum), int(jobID))
2834 1 : if err != nil {
2835 0 : panic(err)
2836 : }
2837 :
2838 1 : d.mu.Lock()
2839 1 : d.mu.log.writer = writer
2840 1 : return newLogNum, prevLogSize
2841 : }
2842 :
2843 1 : func (d *DB) getEarliestUnflushedSeqNumLocked() base.SeqNum {
2844 1 : seqNum := base.SeqNumMax
2845 1 : for i := range d.mu.mem.queue {
2846 1 : logSeqNum := d.mu.mem.queue[i].logSeqNum
2847 1 : if seqNum > logSeqNum {
2848 1 : seqNum = logSeqNum
2849 1 : }
2850 : }
2851 1 : return seqNum
2852 : }
2853 :
2854 1 : func (d *DB) getInProgressCompactionInfoLocked(finishing compaction) (rv []compactionInfo) {
2855 1 : for c := range d.mu.compact.inProgress {
2856 1 : if !c.IsFlush() && (finishing == nil || c != finishing) {
2857 1 : rv = append(rv, c.Info())
2858 1 : }
2859 : }
2860 1 : return
2861 : }
2862 :
2863 1 : func inProgressL0Compactions(inProgress []compactionInfo) []manifest.L0Compaction {
2864 1 : var compactions []manifest.L0Compaction
2865 1 : for _, info := range inProgress {
2866 1 : // Skip in-progress compactions that have already committed; the L0
2867 1 : // sublevels initialization code requires the set of in-progress
2868 1 : // compactions to be consistent with the current version. Compactions
2869 1 : // with versionEditApplied=true are already applied to the current
2870 1 : // version and but are performing cleanup without the database mutex.
2871 1 : if info.versionEditApplied {
2872 1 : continue
2873 : }
2874 1 : l0 := false
2875 1 : for _, cl := range info.inputs {
2876 1 : l0 = l0 || cl.level == 0
2877 1 : }
2878 1 : if !l0 {
2879 1 : continue
2880 : }
2881 1 : compactions = append(compactions, manifest.L0Compaction{
2882 1 : Bounds: *info.bounds,
2883 1 : IsIntraL0: info.outputLevel == 0,
2884 1 : })
2885 : }
2886 1 : return compactions
2887 : }
2888 :
2889 : // firstError returns the first non-nil error of err0 and err1, or nil if both
2890 : // are nil.
2891 1 : func firstError(err0, err1 error) error {
2892 1 : if err0 != nil {
2893 1 : return err0
2894 1 : }
2895 1 : return err1
2896 : }
2897 :
2898 : // SetCreatorID sets the CreatorID which is needed in order to use shared objects.
2899 : // Remote object usage is disabled until this method is called the first time.
2900 : // Once set, the Creator ID is persisted and cannot change.
2901 : //
2902 : // Does nothing if SharedStorage was not set in the options when the DB was
2903 : // opened or if the DB is in read-only mode.
2904 0 : func (d *DB) SetCreatorID(creatorID uint64) error {
2905 0 : if d.opts.Experimental.RemoteStorage == nil || d.opts.ReadOnly {
2906 0 : return nil
2907 0 : }
2908 0 : return d.objProvider.SetCreatorID(objstorage.CreatorID(creatorID))
2909 : }
2910 :
2911 : // KeyStatistics keeps track of the number of keys that have been pinned by a
2912 : // snapshot as well as counts of the different key kinds in the lsm.
2913 : //
2914 : // One way of using the accumulated stats, when we only have sets and dels,
2915 : // and say the counts are represented as del_count, set_count,
2916 : // del_latest_count, set_latest_count, snapshot_pinned_count.
2917 : //
2918 : // - del_latest_count + set_latest_count is the set of unique user keys
2919 : // (unique).
2920 : //
2921 : // - set_latest_count is the set of live unique user keys (live_unique).
2922 : //
2923 : // - Garbage is del_count + set_count - live_unique.
2924 : //
2925 : // - If everything were in the LSM, del_count+set_count-snapshot_pinned_count
2926 : // would also be the set of unique user keys (note that
2927 : // snapshot_pinned_count is counting something different -- see comment below).
2928 : // But snapshot_pinned_count only counts keys in the LSM so the excess here
2929 : // must be keys in memtables.
2930 : type KeyStatistics struct {
2931 : // TODO(sumeer): the SnapshotPinned* are incorrect in that these older
2932 : // versions can be in a different level. Either fix the accounting or
2933 : // rename these fields.
2934 :
2935 : // SnapshotPinnedKeys represents obsolete keys that cannot be elided during
2936 : // a compaction, because they are required by an open snapshot.
2937 : SnapshotPinnedKeys int
2938 : // SnapshotPinnedKeysBytes is the total number of bytes of all snapshot
2939 : // pinned keys.
2940 : SnapshotPinnedKeysBytes uint64
2941 : // KindsCount is the count for each kind of key. It includes point keys,
2942 : // range deletes and range keys.
2943 : KindsCount [InternalKeyKindMax + 1]int
2944 : // LatestKindsCount is the count for each kind of key when it is the latest
2945 : // kind for a user key. It is only populated for point keys.
2946 : LatestKindsCount [InternalKeyKindMax + 1]int
2947 : }
2948 :
2949 : // LSMKeyStatistics is used by DB.ScanStatistics.
2950 : type LSMKeyStatistics struct {
2951 : Accumulated KeyStatistics
2952 : // Levels contains statistics only for point keys. Range deletions and range keys will
2953 : // appear in Accumulated but not Levels.
2954 : Levels [numLevels]KeyStatistics
2955 : // BytesRead represents the logical, pre-compression size of keys and values read
2956 : BytesRead uint64
2957 : }
2958 :
2959 : // ScanStatisticsOptions is used by DB.ScanStatistics.
2960 : type ScanStatisticsOptions struct {
2961 : // LimitBytesPerSecond indicates the number of bytes that are able to be read
2962 : // per second using ScanInternal.
2963 : // A value of 0 indicates that there is no limit set.
2964 : LimitBytesPerSecond int64
2965 : }
2966 :
2967 : // ScanStatistics returns the count of different key kinds within the lsm for a
2968 : // key span [lower, upper) as well as the number of snapshot keys.
2969 : func (d *DB) ScanStatistics(
2970 : ctx context.Context, lower, upper []byte, opts ScanStatisticsOptions,
2971 0 : ) (LSMKeyStatistics, error) {
2972 0 : stats := LSMKeyStatistics{}
2973 0 : var prevKey InternalKey
2974 0 : var rateLimitFunc func(key *InternalKey, val LazyValue) error
2975 0 : tb := tokenbucket.TokenBucket{}
2976 0 :
2977 0 : if opts.LimitBytesPerSecond != 0 {
2978 0 : const minBytesPerSec = 100 * 1024
2979 0 : if opts.LimitBytesPerSecond < minBytesPerSec {
2980 0 : return stats, errors.Newf("pebble: ScanStatistics read bandwidth limit %d is below minimum %d", opts.LimitBytesPerSecond, minBytesPerSec)
2981 0 : }
2982 : // Each "token" roughly corresponds to a byte that was read.
2983 0 : tb.Init(tokenbucket.TokensPerSecond(opts.LimitBytesPerSecond), tokenbucket.Tokens(1024))
2984 0 : rateLimitFunc = func(key *InternalKey, val LazyValue) error {
2985 0 : return tb.WaitCtx(ctx, tokenbucket.Tokens(key.Size()+val.Len()))
2986 0 : }
2987 : }
2988 :
2989 0 : scanInternalOpts := &scanInternalOptions{
2990 0 : visitPointKey: func(key *InternalKey, value LazyValue, iterInfo IteratorLevel) error {
2991 0 : // If the previous key is equal to the current point key, the current key was
2992 0 : // pinned by a snapshot.
2993 0 : size := uint64(key.Size())
2994 0 : kind := key.Kind()
2995 0 : sameKey := d.equal(prevKey.UserKey, key.UserKey)
2996 0 : if iterInfo.Kind == IteratorLevelLSM && sameKey {
2997 0 : stats.Levels[iterInfo.Level].SnapshotPinnedKeys++
2998 0 : stats.Levels[iterInfo.Level].SnapshotPinnedKeysBytes += size
2999 0 : stats.Accumulated.SnapshotPinnedKeys++
3000 0 : stats.Accumulated.SnapshotPinnedKeysBytes += size
3001 0 : }
3002 0 : if iterInfo.Kind == IteratorLevelLSM {
3003 0 : stats.Levels[iterInfo.Level].KindsCount[kind]++
3004 0 : }
3005 0 : if !sameKey {
3006 0 : if iterInfo.Kind == IteratorLevelLSM {
3007 0 : stats.Levels[iterInfo.Level].LatestKindsCount[kind]++
3008 0 : }
3009 0 : stats.Accumulated.LatestKindsCount[kind]++
3010 : }
3011 :
3012 0 : stats.Accumulated.KindsCount[kind]++
3013 0 : prevKey.CopyFrom(*key)
3014 0 : stats.BytesRead += uint64(key.Size() + value.Len())
3015 0 : return nil
3016 : },
3017 0 : visitRangeDel: func(start, end []byte, seqNum base.SeqNum) error {
3018 0 : stats.Accumulated.KindsCount[InternalKeyKindRangeDelete]++
3019 0 : stats.BytesRead += uint64(len(start) + len(end))
3020 0 : return nil
3021 0 : },
3022 0 : visitRangeKey: func(start, end []byte, keys []rangekey.Key) error {
3023 0 : stats.BytesRead += uint64(len(start) + len(end))
3024 0 : for _, key := range keys {
3025 0 : stats.Accumulated.KindsCount[key.Kind()]++
3026 0 : stats.BytesRead += uint64(len(key.Value) + len(key.Suffix))
3027 0 : }
3028 0 : return nil
3029 : },
3030 : includeObsoleteKeys: true,
3031 : IterOptions: IterOptions{
3032 : KeyTypes: IterKeyTypePointsAndRanges,
3033 : LowerBound: lower,
3034 : UpperBound: upper,
3035 : },
3036 : rateLimitFunc: rateLimitFunc,
3037 : }
3038 0 : iter, err := d.newInternalIter(ctx, snapshotIterOpts{}, scanInternalOpts)
3039 0 : if err != nil {
3040 0 : return LSMKeyStatistics{}, err
3041 0 : }
3042 0 : defer iter.close()
3043 0 :
3044 0 : err = scanInternalImpl(ctx, lower, upper, iter, scanInternalOpts)
3045 0 :
3046 0 : if err != nil {
3047 0 : return LSMKeyStatistics{}, err
3048 0 : }
3049 :
3050 0 : return stats, nil
3051 : }
3052 :
3053 : // ObjProvider returns the objstorage.Provider for this database. Meant to be
3054 : // used for internal purposes only.
3055 1 : func (d *DB) ObjProvider() objstorage.Provider {
3056 1 : return d.objProvider
3057 1 : }
3058 :
3059 0 : func (d *DB) checkVirtualBounds(m *manifest.TableMetadata) {
3060 0 : if !invariants.Enabled {
3061 0 : return
3062 0 : }
3063 :
3064 0 : objMeta, err := d.objProvider.Lookup(base.FileTypeTable, m.TableBacking.DiskFileNum)
3065 0 : if err != nil {
3066 0 : panic(err)
3067 : }
3068 0 : if objMeta.IsExternal() {
3069 0 : // Nothing to do; bounds are expected to be loose.
3070 0 : return
3071 0 : }
3072 :
3073 0 : iters, err := d.newIters(context.TODO(), m, nil, internalIterOpts{}, iterPointKeys|iterRangeDeletions|iterRangeKeys)
3074 0 : if err != nil {
3075 0 : panic(errors.Wrap(err, "pebble: error creating iterators"))
3076 : }
3077 0 : defer func() { _ = iters.CloseAll() }()
3078 :
3079 0 : if m.HasPointKeys {
3080 0 : pointIter := iters.Point()
3081 0 : rangeDelIter := iters.RangeDeletion()
3082 0 :
3083 0 : // Check that the lower bound is tight.
3084 0 : pointKV := pointIter.First()
3085 0 : rangeDel, err := rangeDelIter.First()
3086 0 : if err != nil {
3087 0 : panic(err)
3088 : }
3089 0 : if (rangeDel == nil || d.cmp(rangeDel.SmallestKey().UserKey, m.PointKeyBounds.Smallest().UserKey) != 0) &&
3090 0 : (pointKV == nil || d.cmp(pointKV.K.UserKey, m.PointKeyBounds.Smallest().UserKey) != 0) {
3091 0 : panic(errors.Newf("pebble: virtual sstable %s lower point key bound is not tight", m.TableNum))
3092 : }
3093 :
3094 : // Check that the upper bound is tight.
3095 0 : pointKV = pointIter.Last()
3096 0 : rangeDel, err = rangeDelIter.Last()
3097 0 : if err != nil {
3098 0 : panic(err)
3099 : }
3100 0 : if (rangeDel == nil || d.cmp(rangeDel.LargestKey().UserKey, m.PointKeyBounds.LargestUserKey()) != 0) &&
3101 0 : (pointKV == nil || d.cmp(pointKV.K.UserKey, m.PointKeyBounds.Largest().UserKey) != 0) {
3102 0 : panic(errors.Newf("pebble: virtual sstable %s upper point key bound is not tight", m.TableNum))
3103 : }
3104 :
3105 : // Check that iterator keys are within bounds.
3106 0 : for kv := pointIter.First(); kv != nil; kv = pointIter.Next() {
3107 0 : if d.cmp(kv.K.UserKey, m.PointKeyBounds.Smallest().UserKey) < 0 || d.cmp(kv.K.UserKey, m.PointKeyBounds.LargestUserKey()) > 0 {
3108 0 : panic(errors.Newf("pebble: virtual sstable %s point key %s is not within bounds", m.TableNum, kv.K.UserKey))
3109 : }
3110 : }
3111 0 : s, err := rangeDelIter.First()
3112 0 : for ; s != nil; s, err = rangeDelIter.Next() {
3113 0 : if d.cmp(s.SmallestKey().UserKey, m.PointKeyBounds.Smallest().UserKey) < 0 {
3114 0 : panic(errors.Newf("pebble: virtual sstable %s point key %s is not within bounds", m.TableNum, s.SmallestKey().UserKey))
3115 : }
3116 0 : if d.cmp(s.LargestKey().UserKey, m.PointKeyBounds.Largest().UserKey) > 0 {
3117 0 : panic(errors.Newf("pebble: virtual sstable %s point key %s is not within bounds", m.TableNum, s.LargestKey().UserKey))
3118 : }
3119 : }
3120 0 : if err != nil {
3121 0 : panic(err)
3122 : }
3123 : }
3124 :
3125 0 : if !m.HasRangeKeys {
3126 0 : return
3127 0 : }
3128 0 : rangeKeyIter := iters.RangeKey()
3129 0 :
3130 0 : // Check that the lower bound is tight.
3131 0 : if s, err := rangeKeyIter.First(); err != nil {
3132 0 : panic(err)
3133 0 : } else if m.HasRangeKeys && d.cmp(s.SmallestKey().UserKey, m.RangeKeyBounds.SmallestUserKey()) != 0 {
3134 0 : panic(errors.Newf("pebble: virtual sstable %s lower range key bound is not tight", m.TableNum))
3135 : }
3136 :
3137 : // Check that upper bound is tight.
3138 0 : if s, err := rangeKeyIter.Last(); err != nil {
3139 0 : panic(err)
3140 0 : } else if d.cmp(s.LargestKey().UserKey, m.RangeKeyBounds.LargestUserKey()) != 0 {
3141 0 : panic(errors.Newf("pebble: virtual sstable %s upper range key bound is not tight", m.TableNum))
3142 : }
3143 :
3144 0 : s, err := rangeKeyIter.First()
3145 0 : for ; s != nil; s, err = rangeKeyIter.Next() {
3146 0 : if d.cmp(s.SmallestKey().UserKey, m.RangeKeyBounds.SmallestUserKey()) < 0 {
3147 0 : panic(errors.Newf("pebble: virtual sstable %s point key %s is not within bounds", m.TableNum, s.SmallestKey().UserKey))
3148 : }
3149 0 : if d.cmp(s.LargestKey().UserKey, m.RangeKeyBounds.LargestUserKey()) > 0 {
3150 0 : panic(errors.Newf("pebble: virtual sstable %s point key %s is not within bounds", m.TableNum, s.LargestKey().UserKey))
3151 : }
3152 : }
3153 0 : if err != nil {
3154 0 : panic(err)
3155 : }
3156 : }
3157 :
3158 : // DebugString returns a debugging string describing the LSM.
3159 0 : func (d *DB) DebugString() string {
3160 0 : return d.DebugCurrentVersion().DebugString()
3161 0 : }
3162 :
3163 : // DebugCurrentVersion returns the current LSM tree metadata. Should only be
3164 : // used for testing/debugging.
3165 0 : func (d *DB) DebugCurrentVersion() *manifest.Version {
3166 0 : d.mu.Lock()
3167 0 : defer d.mu.Unlock()
3168 0 : return d.mu.versions.currentVersion()
3169 0 : }
|