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1 INTRODUCTION AND BACKGROUND 
1.1 Introduction 

This Statistical Analysis Plan (SAP) is being submitted as an attachment to our application 
for the Biostatistics Research Center (BRC) that is being submitted in response to RFA-DK-16-
511. The overarching goal of this application is to continue and complete the GRADE study. 

The SAP describes general statistical considerations and strategies that will be used to 
address specific objectives and aims, the statistical methods to be employed in specific types of 
analyses, the statistical analyses to be employed to assess each specific study outcome, and 
finally other statistically related activities of the BRC. 

This document supersedes and provides additional details beyond those specified in the 
original protocol and may specify new or improved methods for specific analyses based on the 
latest developments in statistical methodology. For example, the closed testing procedure of 
Marcus, et al. (1976) will be employed in lieu of the Holm (1989) procedure specified in the 
original protocol owing to simulation studies that we have conducted showing that the former 
has greater power. The primary and secondary outcomes and analyses are stated in the 
protocol synopsis.  

This document will be refined as analysis plans for the major study papers are developed by 
writing committees to be designated by the study leadership. The analysis plan will be formally 
“locked” prior to data lock. 

1.2 Study Population 
The objective of GRADE is to assess the long-term beneficial and adverse effects of four 

commonly used treatments for Type 2 Diabetes Mellitus (T2DM) in a cohort of up to 5000 
subjects who are generally representative of the general US population, including African 
Americans, Hispanic Americans and other minorities. A total of 36 sites (some with sub-sites) 
were selected to recruit subjects from their local populations. Table 1 presents the baseline 
characteristics of the 4001 patients randomized into GRADE as of November 13, 2016. These 
baseline characteristics reflect the eligibility criteria for enrollment and the natural history of 
diabetes. The mean age is 57 and 40% are at least 60 years of age. Sixty-three % are men (the 
relatively large fraction of men reflects the recruitment from 10 VA clinical sites). The majority 
(65%) are white with 20% African-American and 18% Hispanic/Latino. The mean diabetes 
duration is 4 years. At the time of randomization, after the titration of metformin during the run-in 
period, the mean metformin dose is 1947 mg/day. The mean weight is 100 kg with 
systolic/diastolic blood pressures of 128/77 mmHg. The mean HbA1c is 7.5% with 85% being at 
least 7%.  

 

1.3 Study Performance 
Table 2 presents metrics to describe the performance of the study including the 

completeness of data collection, compliance with specific study assessments, and study follow-
up through October 31, 2016. Of the 9520 who attended an initial screening visit 3957 (41.6%) 
were randomized, not including participants who have entered the screening process but whose 
randomization is pending. Over an average of 16 months of follow-up, 20 patients withdrew from 
continued follow-up in the study (i.e. withdrew consent) and 15 died.  
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Table 1. Baseline Characteristics of the GRADE Cohort 

Recruited as of November 13, 2016. 
Data are mean ± SD or n (%) Total 

N 4001 
Age (years) 56.9 ± 9.9 

>= 60 yr 1618 (40.4%) 
Gender (% males) 2520 (63.0%) 
Race  

American Indian / Alaska Native 116 (2.9%) 
Asian 139 (3.5%) 
Native Hawaiian or Other Pacific Islander 22 (0.5%) 
Black or African-American 811 (20.3%) 
White 2609 (65.2%) 
More than one race/other 250 (6.2%) 
Unknown or not reported 54 (1.3%) 

Ethnicity (%)  
Hispanic/Latino 733 (18.3%) 
Not Hispanic/Latino 3238 (80.9%) 
Unknown 30 (0.7%) 

Age at diagnosis (yr) 52.8 ± 9.6 
Duration of diabetes (yr) 4.0 ± 2.7 
Current Metformin dose mg/day) 1947.4 ± 197.9 
Weight (kg) 100.1 ± 22.5 
Diastolic BP (mmHg) 77.2 ± 9.8 
Systolic BP (mmHg) 128.1 ± 14.7 
HbA1c (%) 7.5 ± 0.5 

>= 7% 3404 (85.1%) 
Laboratory Tests  

Serum Creatinine (mg/dL) 0.8 ± 0.2 
Cholesterol (mg/dL) 163.7 ± 37.3 
Triglycerides (mg/dL) 154.5 ± 125.0 
High Density Lipoprotein (HDL, mg/dL) 43.3 ± 12.2 
Low Density Lipoprotein (LDL, mg/dL) 90.5 ± 31.0 
Urine albumin:creatinine ratio (ACR) 
(mg/g) 

6.6 (3.2, 17.4) 

eGFR (ml/min/1.73m²) 95.4 ± 17.0 
Data are mean ± SD, median (IQR), or n (%) 
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Of all the visits expected, 95% of quarterly and 97% of annual visits were conducted. For all 
other items, the number of procedures, collections or measurements exceeds 90% of the 
number expected had there been complete (100%) compliance with the protocol, e.g. the 
number obtained relative to the number expected among those surviving. 

 
Table 2. Study Performance Metrics as of October 31, 2016 

N and % of the number expected 
(where available) Total 

Number of Participants Screened 9520 
Number of Participants Randomized 3957 
Average Duration of Participant Follow-up 

(months) 
16.5 

Number of Participants Withdrawn from 
Study 

20 

Study Visits Completed  
Number of Quarterly Visits: 15561 (95.2%) 
Number of Annual Visits (1-3): 3447 (97.0%) 

Year 1 2393 (97.0%) 
Year 2 962 (96.9%) 
Year 3 92 (100.0%) 

Number of Assessments Completed  
ECG 4842 (97.8%) 
Neuropathy (MNSI) 7238 (96.4%) 
Neurocognitive 3939 (99.5%) 
Oral glucose tolerance test (OGTT) 6323  
Physical Assessments  

Blood Pressure 7237 (95.6%) 
Weight 7228 (95.4%) 

Quality of Life  
QWB-SA 7242 (96.4%) 
SF-36 7245 (96.5%) 

Laboratory Tests  
HbA1c  23024 (95.4%) 
Urine albumin:creatinine ratio (ACR) 8434 (92.6%) 
Serum creatinine/eGFR 7396 (97.7%) 
Fasting Lipids 7211 (95.2%) 

Number of DNA Collections 3688 (93.2%) 
Number of Stored Sample Collections 6902 (93.4%) 
Number of SAEs Reported 640 
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2 STATISTICAL CONSIDERATIONS 
2.1 Analysis Data Sets (Intention-to-Treat, Per Protocol) 

GRADE has been designed, and is being implemented, under an intent-to-treat design 
whereby all subjects randomized are included in the study for the study duration, and asked to 
continue follow-up and outcome assessments, regardless of other outcomes such as 
compliance with the assigned medications, termination of treatment for adverse effects or 
missed visits. Thus, unless specified otherwise, analyses will first be conducted using the 
intent-to-treat data set that includes all subjects randomized into the study, including those 
who did not receive a dose of the assigned study medication, and all observed data from each 
subject regardless of compliance and adherence with the assigned treatment regimen or with 
the follow-up schedule. Where specified, additional analyses may also be based on the 
modified intent-to-treat data set, excluding patients who did not receive the assigned study 
drug, for whatever reason.  

 

2.2 Treatment Group Comparisons and Adjustment for Multiple Tests.  
The original protocol specified that multiple tests among groups would employ the Holm 

improved Bonferroni procedure (Holm, 1989) to adjust the levels of significance required to 
protect against inflation in the type I (false positive) error probability in the set of 6 pair-wise 
comparisons among the four study groups. However, by simulation we have shown that the 
closed testing procedure (Marcus et al, 1976, Chi, 1998) is more powerful than the Holm 
procedure.  

Under the closed testing approach, a sequence of tests is conducted. First the set of four 
treatment groups will be compared with an omnibus T2-like test for any difference among the 4 
groups. If that test is significant at the specified significance level (α=0.05), then under the 
closed testing procedure, each of the additional 3 group sub-hypotheses are then tested at the 
same level α. Then if any two of these sub-hypotheses are rejected at level α, the common two 
group components can be tested also at level α. For example, if the 3 group test of equality of 
groups 1, 2, 3 and 1, 2, 4 are both significant at level α, then equality of groups 1 and 2 can be 
tested at that level α. Note that all tests are conducted using an uncorrected α=0.05. 

The primary interest in the above analyses is the comparison of each pair of groups so as to 
determine which treatments are better in relation to a specific alternate treatment. An additional 
question of interest is whether a given treatment is on average superior to the other treatments 
in combination. This would entail 4 tests, each using the full cohort, group 1 versus 2, 3, 4; 
group 2 versus 1, 3, 5, group 3 versus 1, 2, 4 and group 4 versus 1, 2, 3. Again, rather than 
impose an alpha penalty of 0.05/4 for multiple tests, these analyses can be conducted under the 
closed testing principle starting with the overall test of the difference between the 4 treatment 
groups. 

These analysis strategies will be employed to compare the treatment groups for all study 
outcomes.  

2.3 Prevalence Analyses (Binary Outcomes)  
Examples of such a binary outcome include the presence or absence of macroalbuminuria 

at each year of follow-up. Such analyses of a binary variable typically describe the prevalence of 
an outcome at a specific point in time. Logistic regression models (Lachin, 2011) will be 
employed to examine the effects of factors (e.g. treatment group) on the odds of the binary 
outcome at that time (the odds ratio). The analysis can also use other covariates in the model to 
adjust for the effects of the covariates on the outcome, and can use an interaction between the 
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main factor and the covariates to assess the homogeneity of the factor effect over levels of the 
covariate(s).  

In these models, likelihood ratio tests of effects will be employed and the strength of the 
effect measured by a partial entropy R2 for each covariate (Lachin, 2011). Value-added plots 
(Pregibon, 1981) will be employed to explore whether transformations or polynomial covariate 
effects are warranted rather than a simple linear effect. Goodness of fit will be assessed by the 
Hosmer-Lemeshow test and over-dispersion using the tolerance limits on the ratio of the 
Pearson Chi-square to its df (Lachin, 2011).  If the model assumptions are violated, the robust 
estimate of the covariance matrix of the estimates will be employed as the basis for confidence 
intervals and tests of significance (Lachin, 2011).  

Generalized estimating equations (Diggle et al, 2002) with a logit link will be employed to 
assess the effects of covariates on the odds of an outcome over repeated points in time, 
allowing for the correlation among the repeated measures. Partial Wald or score tests will be 
used to test covariate effects and Madalla’s R2 (Lachin, 2011) used to describe the strength of 
effect for each covariate. 

 

2.4 Cumulative Incidence (Life-Table) Analyses 
A principal set of outcome analyses will consist of survival (life-table) analyses of time-to-event 

outcomes such as the primary metabolic outcome. 
 
2.4.1 Continuous Time Observations.  
Event times are obtained in continuous time when the day or date of an event is known, and 

the date at which the subject was last at risk (the right censoring time) is known. Examples are the 
times of death or myocardial infarction, etc. Analyses of such data will be performed using the 
standard Kaplan-Meier estimate of the survival or cumulative incidence function. The unadjusted 
log-rank test will be used to test for differences between treatment groups (Kalbfleisch, Prentice, 
2002, Fleming, Harrington, 1991, Lachin, 2011). Analyses would be conducted to compare 
treatment groups adjusting for baseline characteristics if there are concerns for confounding or 
imbalances, or to improve power. The proportional hazards regression model (Kalbfleisch, 
Prentice, 2002, Cox, 1972, Martinussen, Scheike, 1991) would be employed to adjust for a set of 
covariates, or to jointly assess the influence of a set of factors simultaneously.   

If tests of the proportional hazards assumption do not apply, inferences (confidence intervals 
and p-values) will be obtained using the robust information sandwich estimates of standard 
errors. 

In exploratory analyses, the assumption of proportionality will be tested using the test of Lin 
(1991) and using other graphical methods (Therneau, Grambsch, 2000). If non-proportionality is 
found, then either an alternate model may be employed, such as the proportional odds model 
(Bennett, 1983, Younes, Lachin, 1997) or transformations of the covariates may be employed, or 
time effects may be included in the model. Alternatively, since the coefficient estimate under non-
proportional hazards still converges to a finite constant, this could be interpreted (approximately) as 
an average log hazard ratio and the precision (SE) and significance assessed by the robust 
covariance estimate of Lin and Wei (1978), and the robust model score test will be used to 
assess group differences (Lachin, 2011). 

 
 
2.4.2 Grouped Time 
In many instances, however, the exact time of an event is not known, such as when the 

primary metabolic outcome is first observed from an HbA1c value at a quarterly visit (subsequently 
confirmed) and we only know that the "event" may have occurred any time between the current 
and last evaluation. For outcomes observed with a fixed schedule over time, since all subjects 



 

8 
 

have the same schedule of assessments (e.g. eGFR annually), a fairly standard simple procedure 
can be employed. Basically, for analysis of annual renal assessments, the time to a renal event 
(e.g., CKD3) employed in the analysis is the scheduled time of the evaluation in whole years (1, 
2,...) rather than the exact study day or fractional year of the visit. Patients who remain event-free 
will have a right censored time (period of observation) as of the day last evaluated. Since the 
outcome can only be observed when an examination is conducted, this leads to the construction of 
a modified Kaplan-Meier survival (or cumulative incidence) function (Lachin, 2011).  In a 
proportional hazards analysis, the discrete logistic model of Cox (1972) will be employed.  With 
frequent monitoring, Lachin (2013) shows that this discrete time analysis provides nearly the same 
level of power as would an analysis where the actual event is observed in continuous time.  

Poisson regression models (Lachin, 2011,McCullagh, Nelder, 1989) may also be applied to 
such discrete interval data (Laird, Oliver, 1981, Whitehead, 1980). These models have the 
advantage of modeling the absolute risk rather than the relative risk as is the case for the 
proportional hazards model. This model also readily allows use of time-dependent covariates. 
These models require that one either assume that the background hazard is constant over time or 
that it can be modeled by covariate effects in the model. The proportional hazards model, however, 
conditions on the variation in the background hazard function so that it is not explicitly estimated as 
part of the model.   

 
2.4.3 Confirmed Outcomes 
Some outcomes evaluated in grouped time will require that the event be confirmed on two 

successive measurements, such as the primary metabolic outcome that requires confirmation of 
an initial HbA1c ≥ 7% (the “triggering” value) at the next quarterly visit (the “confirmation” value), 
or sooner if the triggering value is > 9%. In this case it is possible that at the last visit of a 
subject, his/her HbA1c meets the criterion for a triggering value but there is no opportunity to 
obtain a confirmation value. In this case the primary outcome status is unknown. Therefore, two 
possible scenarios should be carefully considered to ensure that all participants’ censoring 
times are correctly defined.  

(i) The event time of participant i is considered right censored at the final quarterly visit, say 
bi, if HbA1c is <7%, and the confirmed primary outcome has not been reached 
throughout the study.  

(ii) The event time of a participant will be considered right censored if HbA1c is >7% at the 
final quarterly visit, and HbA1c is < 7% at the previous quarterly visit, say ai. In this case, 
a follow-up confirmation is not possible. The event time for subject i will be considered 
right censored at time ai,. 

Because the assessments are performed quarterly, the event time will be the discrete 
quarterly follow-up visit number at which HbA1c is >7%, subsequently confirmed. When 
examinations are performed frequently, Lachin (2013) shows the gain in efficiency is negligible 
when one considers the time to event as interval censored data. Therefore, it is reasonable to 
consider the event times as right censored observations and to ignore the time intervals 
between assessments.  

 
2.4.4 Interval Censored Observations  
However, the simple grouped time methods above would not apply to the analysis of an 

outcome with widely varying intervals between examinations, which may apply to the GRADE 
metabolic outcomes, especially the tertiary outcome (requiring initiation of an intensive basal/bolus 
insulin regimen). Such data are interval censored because only the interval of time in which an 
even occurred is known, and the intervals may differ among patients. For interval-censored event 
time data, methods are also available that take into account the exact day of each successive visit 
and the length of the exact interval in days between successive visits.  
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Turnbull (1976) described an estimator of the survival distribution (event-free distribution) for 
such interval-censored data and Finkelstein (1986) described a generalization of the proportional 
hazards regression model to such data.  However, both procedures require the estimation of a 
large number of nuisance parameters to describe the underlying background survival distribution. 
Younes and Lachin (1997) described a family of regression models that provide a regression spline 
estimate of the background hazard (and thus cumulative incidence) functions and that include the 
proportional hazards and proportional odds models as special cases. Therefore, this procedure 
also provides a generalization of the log-rank test to such data. See also Pan (1999), Boruvka and 
Cook (2015) and Wang et al. (2016). 

These methods are non-parametric in that no form of the underlying hazard function is 
assumed. However, they involve various nuisance parameters that must also be estimated to fit the 
model. Another approach is to employ a parametric model with a specific underlying hazard 
function with only one extra shape parameter, such as an accelerated failure time model using the 
SAS PROC LIFEREG to describe covariate effects on the time acceleration factor (2002). Such 
models, however, are not directly interpretable in terms of the covariate effects on the underlying 
hazard or survival functions. Rather, a parametric model, such as the Weibull model of Odell, et al. 
(1992) could be employed that yields an estimate of the covariate effects on the relative risk of 
the event over time, in the same manner as the expression of covariate effects in the Cox PH 
model. The model can be fit using a Weibull accelerated failure time model from which the 
Weibull model parameter estimates and covariance matrix can be obtained (Lachin, 2011). 
Weibull model analyses that employ fixed and/or time-dependent covariates can also be 
obtained from the models of Sparling, et al. (2006). This model was used to assess time-
dependent covariate effects on the risk of retinopathy progression during EDIC (DCCT/EDIC 
Research Group, 2015). 

 
2.4.5 Competing Risks  
The risk of some events will be curtailed due to competing risks, such as the analysis of the 

incidence of a cardiovascular event where some subjects die before such an event occurs. In 
this case, the deaths are not simply right-censored. Nevertheless, a Cox PH model analysis of 
the event time with right censoring on death still has a valid interpretation as the effect of the 
model covariates on the cause-specific hazard function for the event (Prentice et al, 1981).  

A more precise analysis would be to describe a true estimate of the cumulative incidence of 
the index event (e.g. laser therapy for retinopathy) adjusting for the incidence of the competing 
risk (mortality), such as an estimate of the sub-distribution function for the index event (Gray, 
1988, Pepe, 1991, Pepe and Mori, 1993). Fine and Gray (1999) also provide an extension of the 
Cox PH model to the analysis of covariate effects on the cumulative incidence function itself that 
accounts for covariate effects on both the cause specific hazard function for both the index and 
competing risk events. These approaches are especially useful when there are differences 
between groups in the incidence of mortality itself which must be considered in addition to the 
differences in the incidence of the outcome (e.g. CVD event).   

The methods for competing risks extend in a similar fashion to applications in which a study 
subject can move among a number of k>1 states over the course of the study, called multistate 
models (Kalbfleisch, Prentice, 2002, Andersen et al, 1993, Beyersmann et al, 2012).  

 

2.5 Incidence of Recurrent Events  
In some cases, a subject may experience the same or like events over time, such as recurrent 

hospitalizations. Most such recurrent event outcomes will be observed in calendar (continuous) 
time.  For such data, Andersen et al. (1982) describe methods for the estimation of the underlying 
incidence rate function over time and develop a generalization of the logrank and other tests of 
significance of differences between groups with respect to the incidence function over time (Lachin, 
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2011).  The incidence rate (intensity) function estimates can be smoothed using a kernel-smoothed 
estimator as described by Ramlau-Hansen (1983, 1983).  To account for the effects of covariates 
on the incidence rate, either the Poisson regression model (Lachin, 2011, McCullagh, Nelder, 
1989) or the multiplicative intensity model (Lachin, 2011,Fleming, Harrington, 1991, Andersen et al, 
1993, Andersen, Gill, 1982) will be employed.  The multiplicative intensity model is a generalization 
of the proportional hazards model which allows for recurrent events in the same subject over time. 
However, it does so using a rather unrealistic assumption that the successive event times are 
conditionally independent of those that preceded. This assumption was relaxed in the proportional 
rate model of Lin et al. (2000) that also employs the robust information sandwich estimate of the 
covariance matrix of the coefficient estimates. These models can also be employed to assess the 
association between outcomes and a time-dependent covariate. These methods can be employed 
for the assessment of the differences between treatment groups in the risk of hypoglycemia. 

 

2.6 Rates of Events  
In some cases, however, such as episodes of hypoglycemia, the exact dates of recurrent 

events may not be known. Rather, only the number of such events over an interval of time is 
reported. The incidence of such events will be summarized as a crude rate.  Such rates will be 
presented as the number of events per 100 patient-years based on the ratio of the observed 
number of events to the total patient-years of exposure.  The standard error for such rates will be 
computed allowing for "over-dispersion," i.e. assuming that the subjects have some underlying 
distribution of intensities (hazards) rather than the usual restrictive assumption that the same 
intensity applies to all subjects (Lachin, 2011). The risk ratio (relative risk) will be used to 
summarize the difference between groups, and tests will be based on the large sample estimate of 
the variance of the log relative risk. 

Poisson regression models will be employed to assess covariate effects on the rate of such 
events (Lachin, 2011), expressed as a risk ratio (relative risk), and robust methods for inference 
will be employed if the model Poisson assumptions are violated (Lachin, 2011). If a preliminary 
test of the homoscedastic Poisson assumption is significant, then either a zeros inflated Poisson 
model or alternate parametric models such as a negative binomial model will be employed 
(Lachin, 2011). With longitudinal observations, we will consider models allowing the underlying 
baseline intensity to change with time using nonparametric tests (Thall, Lachin, 1988) and 
mixed or marginal Poisson models (Lawless, Zhan, 1998, Chen et al, 2005).    

 

2.7 Ordinal Outcomes 
An ordinal outcome is a nominal assessment with multiple (>2) categories with an implied 

ordering, such as no nephropathy, microalbuminuria only, albuminuria only, or end-stage renal 
disease at a point in time. Simple proportions in each category will be used to describe the 
prevalence within each category at a given point in time, and differences between groups tested 
using the 1 df Mantel-Haenszel test of mean scores (Agresti, 1990), or using the Wilcoxon 
signed rank test with the adjustment for tied ranks (Snedecor, Cochran, 1980). A proportional 
odds model (Agresti, 1990) will be used to examine covariate effects on the prevalence within 
each ordered category. If the test of the proportional odds assumption is rejected, then that 
implies the need to model covariate effects on each category separately. In this case, the odds 
of each category versus a designated reference category (e.g. no nephropathy) at a specific 
point in time will be assessed using a multinomial logit model (Agresti, 1990).  In essence, this 
model simultaneously fits a logistic model for C-1 comparisons of each positive category versus 
the reference category. The results of these models will be summarized as above for a logistic 
regression model. For a longitudinal analysis of covariate effects on repeated ordinal 
assessments over time, a proportional odds model with generalized estimating equations (GEE) 
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will be employed (Parsons et al, 2009). Alternately, the difference between groups in the 
longitudinal ordinal assessments can be tested using the Wei and Lachin (1984) multivariate 
rank test. 

 

2.8 Analyses of Quantitative Data 
For quantitative (numerical) variables with no point of truncation, e.g. the albumin-creatinine 

ratio in mg/g, simple differences between groups will be assessed by a Wilcoxon test 
(Snedecor, Cochran, 1980).  Models adjusting for covariate effects will be conducted using 
normal errors regression models (Neter et al, 1996). Partial residual or value-added plots will be 
employed to determine whether a transformation or a polynomial best represents a covariate 
effect rather than a simple linear term. The homoscedastic normal errors assumptions will be 
tested using the Shapiro-Wilks test of normality of residuals and White’s test of 
homoscedasticity of error variances (1980). If violations are detected, then an appropriate 
transformation will be sought. If still violated, all inferences will be based on White’s robust 
estimate of the covariances of the estimates (White, 1980) that provides consistent estimates of 
the variances of the coefficient estimates.   

 

2.9 Marginal Repeated Measures Analyses 
Many assessments are repeated at intervals during GRADE for which repeated measures 

analyses will be conducted.  Most such analyses will employ multivariate methods for the analysis 
of repeated quantitative, ordinal or qualitative measures. 

The normal errors mixed model will be employed for an analysis of covariate effects on 
repeated quantitative measures over time using an “unstructured” covariance matrix for the 
repeated measures (Diggle et al, 2002, Demidenko, 2006). Such “marginal” analyses provide an 
assessment of covariate effects on the average of values over time, or at specific points in time 
when covariate by time effects are employed. For example, these models will be used to 
evaluate the interaction between treatment group and time to determine if there were persistent 
treatment group differences in eGFR levels over time. 

For variables that do not satisfy the normal errors assumption, or those that are ordinal or 
nominal in nature, alternate methods may be employed. These include the multivariate non-
parametric Mann-Whitney rank analysis for quantitative or ordinal measures (Thall, Lachin, 1988, 
Wei, Lachin, 1984, Lachin, 1992) and the multivariate analysis of qualitative observations (Lachin, 
Wei, 1988). These methods are intrinsically marginal in that the treatment group difference is 
assessed at each point in time, and an overall assessment is derived by pooling the results over 
time.  In the simplest case of a binary outcome variable, e.g. albuminuria present or absent, the 
marginal analysis consists of the comparison of the simple prevalences (proportions present) at 
each visit, which are then used to compute a risk difference (or relative risk or odds ratio) at each 
visit, which are averaged over all visits. 

In these analyses, a variety of multivariate tests of significance can be used (Lachin, 1992). A 
commonly used test is based on the minimum variance efficient weighted average of the summary 
measures of treatment group differences over time (Mann-Whitney differences, odds ratios, etc.), 
termed the test of aggregate association. This test, analogous to the Mantel-Haenszel test, is 
appropriate when a common value of the summary measure is assumed to exist. Alternately, the 
Wei-Lachin test of stochastic ordering, or multivariate one-directional test, is more general in that it 
tests the hypothesis of no difference over time against the alternative hypothesis that the summary 
measures for all visits tend to differ in the same direction over time, such as where the outcome 
values tend to be systematically higher (or lower) in one group than the other. This test is based on 
the unweighted simple average of the summary measures and has been shown to be a maximum 
efficient robust test against the family of alternatives where the groups differ in the same direction 
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over time, but not to the same degree (Frick, 1994). Lachin (2014) also shows that this simple test 
also provides an efficient method for the assessment of treatment group differences in a set of 
multiple outcomes.  

To evaluate the effects of covariates, including time-dependent covariates, on quantitative or 
qualitative outcomes over time, regression models based on the method of GEE  (Diggle et al, 
2002, Liang, Zeger, 1986, Zeger, Liang, 1986, Fitzmaurice et al, 2011) will also be employed.  This 
method can be used to estimate a common covariate effect for all visits over time, or visit specific 
effects can be estimated which can then be used in a test of stochastic ordering if desired. 

 

2.10 Random Effects "Growth Curve" Models 
For some outcomes, the longitudinal rate of change of the outcome over time will be analyzed 

based on the within-subject "slopes" of the regression of the outcome on time.  These are 
commonly known as growth curve analyses. These analyses are especially common in the 
analysis of measures of renal function and are commonly employed in the analyses of the rate of 
change in eGFR over time.   

A general family of such models has been described by Laird and Ware (1982) and Jennrich 
and Schluchter (1986), among many others.  Laird and Ware (1982) referred to the simplest form 
of these models as the "two-stage" random effects model.  These models assume a common 
"shape" to the regression of the outcome over time for each subject (e.g. linear, quadratic, log-
linear, etc.) with a corresponding within-subject component of variance, and then assume that the 
regression parameters in the population of subjects have some overall distribution with an average 
curve over time (e.g. mean intercept and slope) and between-subjects variance components.  
Usually, this "mixing" distribution is assumed to be multivariate normal.  Given the assumed shape 
of these curves and the assumed mixing distribution, estimates of the average parameters (mean 
intercept and slope) and the within- and between-subjects variance components are obtained. 

These models can incorporate the effects of subject-specific and time-specific covariates.  
Therefore, such models can be used to describe the average pattern of change in the outcome 
over time and to assess the effects of various covariates on the average values at any point in 
time, or on the pattern of change over time (Vacek et al, 1989). 

These mixed models (Demidenko, 2006) are essentially parametric in that they assume that 
the within-subject residuals are normally distributed and that patient-slopes in the population are 
also normally distributed. For some measures such as the urine albumin:creatinine ratio (ACR), 
these assumptions may not apply.  In these cases, it will be necessary to explore a transformation 
of the data, such as the log transformation, which improves the distributional assumptions of the 
model. For some measures, such as ACR, a log transformation may be more biologically 
meaningful.  When the rate of change in an individual subject is described on the log scale, it is 
implied that the percentage change over time is a constant for each subject rather than the 
absolute magnitude of the change being a constant for each subject, as is implied by a linear slope 
in the original measurements.  

 

2.11 Informatively Censored and Missing Observations 
All of the above methods assume that missing values are missing at random (Little, Rubin, 

2002), and (efficient) unbiased results can be obtained using the direct likelihood method or EM 
algorithm (Molenberghs, Kenward, 2007), multiple imputations (VanBuren, 2012, Carpenter, 
Kenward, 2013) and inverse probability weighting (Molenberghs et al, 2015). This assumption, 
however, may not be appropriate in some instances. 

For point prevalence analyses, other informative mechanisms in addition to mortality may 
apply, such as where patients who develop congestive heart failure are unable to attend the clinic 
visit for other outcome assessments. These instances are more problematic because some 
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assumptions are then required regarding the nature of the association between the reason for 
missing data (termed "missingship") and the values of the missing observations.  In the case where 
patients who have informatively missing values are assumed to have "worse" values than any 
observed non-missing values, then a rank analysis can be performed with a worst rank score 
assigned to the informatively missing observations (Lachin, 1999). For example, patients who have 
died are usually assumed to have a worse quality of life than that of those who survive and 
complete a quality of life questionnaire. 

For longitudinal growth curve analyses, various methods have been proposed (Wu, Bailey, 
1988, Wu, Bailey, 1989, Wu, Carroll, 1988, Wu et al, 1994, Schluchter, 1998). Some of these 
methods estimate the relationship between the repeated measures within subjects and the 
likelihood of informative censoring, which is then used to obtain a less biased estimate of the 
overall mean curve parameters (intercept and slope). Another approach which has been shown to 
be unbiased, but not as efficient under weaker assumptions, is to simply use an unweighted 
average of the within-patient coefficients (Wu et al, 1994). 

 

2.12 Analyses that Adjust for Missing Data  
As described in Section 1.4 above and Table 2, the level of completeness of the study data 

has thus far been outstanding. Nevertheless, by the end of the study, the fraction of missing data 
in some specific analyses may be higher than desired. In this case the amount and patterns of 
missing data, and its association with other variables, will be explored so that an appropriate 
statistical method for analysis can be employed.  

Missing data fall into three categories (Little, Rubin, 2002): missing completely at random 
(MCAR), missing at random (MAR), or missing not at random (MNAR). The statistical 
implications differ for each category. MCAR refers to data that are missing purely by chance, i.e. 
for reasons that are totally random and unrelated to both the independent variables (e.g. 
treatment group) and the outcome variable (e.g. CVD). In this case a “complete case” analysis 
of the subjects with complete data can be unbiased. Unfortunately, there is no way to prove that 
this assumption applies, although it may be possible to show that it does not, such as when the 
characteristics of those with missing data differ significantly from those with complete data. 

Missing at random (MAR) refers to missing data that can be related to other observed data, 
such as where missing data can be more prevalent among males than females, or associated 
with the prior patterns of changes in the outcome or other covariates. If the important factors can 
be measured and used as adjusting covariates in the model then the analysis results will be 
unbiased. In these cases, multiple imputation (Rubin, 1987), likelihood-based analysis with 
computations using the expectation-maximization (EM) algorithm (Dempster et al, 1977), or 
inverse probability weighting (Seaman, White, 2013) methods might be employed. The precise 
imputation schemes and interpretation of results will depend on the characterization of the 
missing data mechanism, as best can be determined (Little, Rubin, 2002, Rubin, 1987, Schafer, 
2000).  

A simple illustration is provided by a case-control design where a biomarker is evaluated in 
relation to an outcome from which the cases are defined. The study could employ a case-cohort 
subsample consisting of predefined numbers of cases and controls who were selected at random 
(separately) from the cases and controls in the full cohort, perhaps with different sampling 
probabilities. The sampling probability for the cases is the ratio of the number of cases in the 
sample to the number of cases in the full cohort, and likewise the probability for controls. Unbiased 
results can then be obtained using weights that are the inverse of the sampling probabilities for the 
cases and controls.  

Missing not at random refers to cases where the MAR assumption does not apply. When 
appropriate, in the case of non-ignorable missing data (i.e., MNAR), sensitivity analyses will be 
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performed using pattern-mixture (Little, 1993, Little, Wang, 1996) or selection models (Hogan, 
Laird, 1997) to evaluate the robustness of our conclusions to a range of sensible conditions. 

 

2.13 Covariate Adjustments, Effect Modification and Mediation  
The term covariate is used to refer to any variable or factor that is included in statistical 

models to describe the effects of the variable or factor on an outcome, such as a model with 
treatment group and the baseline HbA1c as factors in a Cox PH regression model of the primary 
metabolic outcome. The model then provides estimates of the hazard ratios among treatment 
groups and the log hazard ratio per unit increase in HbA1c. Covariates may be included 
individually or jointly. Covariates may be fixed (e.g., gender, race-ethnicity, randomized treatment 
group, baseline value) or time-varying (e.g., HbA1c, lipids), depending upon the adjustment 
desired.  

Often baseline covariates are known to be strong risk factors for an outcome, such as age 
and sex for analyses of CVD outcomes. Adjusting for such baseline covariates in a model that 
also compares treatment groups will adjust for any baseline imbalance among groups being 
compared and will increase power.  

All analyses of post-randomization characteristics will be assessed as time-dependent 
covariates. Such analyses will provide a prospective interpretation of the effect of the time-
dependent characteristic. For example an analysis of the effects of HbA1c over time on the risk 
of developing albuminuria will describe the hazard ratio of albuminuria in the future per unit 
increase in HbA1c at any point in time during follow-up. In such analyses the time-dependent 
covariate may have an acute or instantaneous effect on the outcome, or it may have a long-term 
chronic effect. If the former the current value of the covariate might be employed whereas for 
the latter the updated mean value since baseline might be employed. For example, the current 
HbA1c value might be used in relation to the risk of hypoglycemia (an acute effect) whereas the 
updated mean HbA1c might be used in relation to the risk of albuminuria. 

Models may also test for an interaction between a baseline covariate and group to 
determine whether there is statistically significant heterogeneity (or interaction) in the group 
effect over levels of the covariate, i.e. whether the covariate is an effect modifier. In this case 
the treatment group difference is described within categories or levels of the adjusting covariate. 
If significant heterogeneity or interaction is detected among subgroups at the 0.05 level, then 
the closure principle (Marcus et al, 1976) can be employed to test the difference between 
groups. If there are only two subgroups then the group effect within each can be tested at the 
0.05 level without the need to adjust for multiple tests. 

Additional analyses may then be conducted to assess the mediating effects of time-
dependent covariates on group differences in the risk of an outcome. A mediating variable is 
one that also differs between groups and is a strong risk factor for the outcome. Ideally, a 
mediator (e.g., HbA1c) is a variable in the causal pathway between the exposure (e.g., 
treatment group) and the outcome (e.g., nephropathy), and is useful in explaining the 
mechanisms by which the exposure affects the outcome. Under Baron and Kenny’s mediation 
paradigm (1986), three regression models are employed:  

1. regressing the outcome on the exposure (e.g. treatment group);  
2. regressing the mediator on the exposure; and  
3. regressing the outcome on both the exposure and the mediator.  

A change in the estimate of the exposure effect from model 1 to model 3 is evidence of 
mediation. More specifically, the total effect of the exposure on the outcome (Exposure  
Outcome path) in model 1 can be decomposed in the direct effect (Exposure  Outcome path) 
in model 3 and the indirect effect (Exposure  Mediator  Outcome path) in model 3. 
Furthermore, the mediation proportion, defined as the proportion of the total effect explained by 
a particular mediator (i.e., the indirect effect divided by the total effect), will also be reported.  
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If the treatment group effect on the outcome is mediated (explained) by the treatment group 
effect on the time-dependent covariate, then the treatment group effect should become close to 
zero when adjusted for the time-dependent covariate, termed full mediation (Baron, Kenny, 
1986). Partial mediation occurs when adjustment for the covariate results in a reduction of the 
group effect, but not its complete elimination. Further, it is possible that a covariate can be both 
an effect modifier and a mediator (MacKinnon, 2011). The unified decomposition of effects 
attributed to the mediation or interaction (VanderWeele, 2014), will provide insight into how 
much of the randomized intervention’s effect can be attributed to mediation alone, interaction 
(effect modification) alone, or both/neither interaction and mediation.   

With time-to-event data (e.g., time to death), the proportional hazards (PH) assumption is 
not preserved under marginalization (i.e., the PH assumption cannot hold for both models 1 and 
3) (Gail et al, 1984). Instead, the Aalen additive hazards model will be used for the time-to-event 
outcome (i.e., models 1 and 3) (Martinussen, Scheike, 2010). When properly adjusted for 
confounders, the results of these mediation analyses also have causal interpretation (Lange, 
Hansen, 2001, Bebu et al, 2015, Vanderweele, 2015).  
 

2.14 Subgroup and Stratified Analyses 
Analyses will also be conducted assessing the differences in study outcomes within 

segments of the study cohort defined from characteristics assessed at baseline, such as by 
gender. For each stratification factor (e.g., gender), the treatment groups will be compared 
separately within each stratum or subgroup and then a test of homogeneity between strata (no 
stratum by group interaction) will be tested. Initially the within stratum and between strata tests 
will be conducted using a multivariate test of the equality (and homogeneity) of the differences 
among the 4 treatment groups simultaneously. If any heterogeneity is detected, then additional 
tests will be conducted separately for each of the 6 pair-wise drug group comparisons. Such 
tests can be conducted using an appropriate regression model for each outcome, such as a Cox 
proportional hazards model for the time to primary metabolic failure. For strata defined from a 
quantitative variable (e.g., age), an additional test of interaction will be conducted using the 
quantitative covariate rather than simply the discrete strata. 

In this instance we have recently shown that the successive testing of homogeneity among 
subgroups and the subsequent testing within subgroups can be conducted under the closed 
testing principal. If there are only 2 strata, such as males and females, the test of homogeneity 
among the 4 groups across strata can be conducted at level α. If significant, then the test 
between the 4 groups can be tested at the same level α separately for males and separately for 
females, with no adjustment needed for the two tests. Suppose then that the 4-group test 
among males is significant at level α. Then we can proceed to test the sets of three group 
differences, and wherever 2 of these are significant at level α, the component pairwise test can 
also be conducted at level α. 

The above also generalizes to the case where there are 3 or more strata. For the case of 3 
strata, the homogeneity among all 3 strata is tested, and if significant at level α, the 
homogeneity of the next level sets for each pair of strata is tested at level α. If any two of these 
are significant then further testing of the group differences can be tested with the common 
stratum. For example, if the test of homogeneity of strata 1, 2, and 3 is significant then the 
homogeneity of 1 and 2, 1 and 3 and 2 and 2 are each tested. If the tests of 1 and 3 and 2 and 3 
are significant, then within the third strata additional testing can be conducted comparing the 
treatment groups, starting with a test among the 4 groups, all testing at level α. 

The baseline factors to be considered include race/ethnicity, gender, age, diabetes duration, 
weight, BMI, HbA1c, and measures of insulin sensitivity, insulin secretion, and the glucose 
disposal index, all measured at baseline or prior to randomization. 
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Age will be stratified as <45, 45-59, >60 years, and other quantitative covariates will be 
stratified by tertiles. 
 

2.15 Risk Factor Modeling 
Multivariate modeling will also be conducted to determine risk factors associated with study 

outcomes such as primary metabolic failure. These models will employ a large number of fixed 
baseline covariates and also time-dependent covariates over time, some representing either the 
current (most recent) measurement, or the updated mean of all follow-up values since 
randomization, or both. Along with input from clinicians, a comprehensive analysis of collinearity 
will be conducted (Belsley, 1991) to better understand potential confounding issues.  

Given the large number of risk factors, variables will be entered into the models (e.g., a Cox 
proportional hazards model) one block at a time, starting with design factors, then demographic-
physical, etc. The variable selection/deletion process will be guided by statistical significance (p-
values), penalized likelihood (e.g., lasso) and the Akaike Information Criterion (AIC). The lasso 
achieves simultaneous estimation and variable selection by shrinking the regression coefficients 
toward zero, and setting those deemed unimportant to exactly zero (Tibshirani, 1997), while the 
AIC (Claeskens, Hjort, 2008) is a likelihood-based measure of model fit adjusted for the number 
of covariates in the model (lower is better). After adding each block, a variable will be deleted if 
not nominally significant, and yields a poor AIC value, and has a penalized likelihood estimate of 
zero. After the last block is entered, the final model is fit using the selected covariates. Two 
additional sensitivity analyses will start with the complete set of variables followed by subset 
selection based either on the AIC or the penalized likelihood (in a backwards selection fashion).  

 

2.16 Composite Outcomes 
In addition to the primary and secondary clinical outcomes based on failure to maintain 

metabolic control, composite outcomes will be assessed among treatment groups that reflect 
durability of glycemic control and tolerability to the assigned medications. Each composite 
outcome will consist of multiple component outcomes that will be assessed using multivariate 
analyses.  For example, at 4 years of follow-up the differences among the treatment groups may 
be assessed in a multivariate composite outcome comprising the HbA1c level, weight, and any 
history of hypoglycemia to determine whether one treatment has a better outcome for all three 
components simultaneously than another treatment, i.e lower HbA1c, lower weight and freedom 
from hypoglycemia. This can be assessed using a multivariate one-sided (or one-directional) 
test, or a test of stochastic ordering as described in Section 2.9. One simple such test is that of 
O’Brien (Sparling et al, 2006) that is based on each subject’s mean of the rank scores for each 
component. This is suitable for an analysis of multiple quantitative (or ordinal) components at a 
single point in time, but would not apply to the above composite that includes a binary outcome 
for hypoglycemia. Alternatively, the Wei-Lachin test of stochastic ordering (Wei, Lachin, 1984, 
Lachin, 1992, Lachin, 2014) could be used to conduct a one-directional test of the multiple 
components using a separate analysis for each component, such as a test of difference 
between means for one component, test for proportions or event-times for another, or a test of 
incidence rates for another (Lachin, 2014). For the composite above, the difference in the mean 
HbA1c, the mean weight at 4 years of follow-up, and the rate of hypoglycemia per 100 patient-
years over the 4 years of follow-up, could be assessed jointly. An analysis with adjustment for 
baseline covariates can also be conducted (Lachin, 2014). 

Some composite outcomes will consist of the times to multiple events, such as the time to 
CVD death, the time to non-fatal MI and the time to non-fatal stroke, where a given subject can 
experience all three outcomes successively. The traditional method for the analysis of such a 
composite is to employ the time to the first of any of the component events in a simple survival 
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analysis such as using a Cox PH model. In cardiovascular outcome trials this is termed the 
major adverse cardiovascular event (MACE) outcome. Recently, however, we have shown 
(Lachin, Bebu, 2015) that this simple approach can be less powerful that a Wei-Lachin one-
directional test based on separate PH models for each component event, i.e. separate models 
for CV death, non-fatal MI and non-fatal stroke. The Wei-Lachin test is more powerful in part 
because it employs the times to all component events experienced by a subject, not just the 
first. The test is also based on the average log hazard ratio among the component events that 
provides a useful summary of the average treatment group difference over the set of three 
outcomes. 

In addition, the incidence or prevalence of a composite outcome will be assessed using a 
single joint outcome, such as the proportion (prevalence) of subjects at 4 years who are still 
able to maintain an HbA1c <7% without having experienced any hypoglycemia or gained any 
weight, i.e. the proportion of subjects who satisfy all three criteria simultaneously. A longitudinal 
analysis will be conducted of the proportions meeting this criterion at each visit over time, and a 
“survival” analysis will also be conducted based on the time to failure to maintain this composite 
outcome (i.e., the time to either the primary outcome or hypoglycemia or weight gain). 

3 PRIMARY METABOLIC OUTCOME ANALYSES 

3.1 Data 
Under the protocol, patients are scheduled to have quarterly clinic visits at which time a 

HbA1c is measured. From the successive HbA1c values, primary, secondary and tertiary 
metabolic outcomes are determined (described below).  

It is preferable that these HbA1c measurements be conducted in the Central Biochemistry 
Laboratory (CBL). However, there are situations where a patient is unable to attend a clinic visit. 
In this case, the clinical center can provide a kit for the patient to use to draw a capillary 
collection that is then forwarded to the CBL for assay. The CBL HbA1c assay has been shown 
to provide almost identical values when conducted using a remote capillary collection which is 
then shipped to the CBL as with a venous sample obtained in the clinical center. In addition, 
there will be instances where a patient misses a visit with no contact (no capillary collection) but 
where a HbA1c may be available from the EMR system. In such instances the clinical center 
may also add the EMR HbA1c to the study data base. 

In cases where the patient deviated from the quarterly visits and there is a question as to 
whether a metabolic outcome occurred, the history of HbA1c values, including capillary 
collections and possibly EMR values, may be considered by the Adjudication Committee to 
determine whether the outcome occurred. All such adjudicated outcomes would be included in 
the analyses of metabolic outcomes. 
 
3.2 Intent-to-treat Analysis 

The primary outcome is the time to observation of HbA1c >7% at a quarterly visit, with 
subsequent confirmation, while being treated at the maximum tolerable doses of both metformin 
(up to 2000 mg per day) and the randomly assigned medication. The initial HbA1c value >7% is 
termed the triggering value and the subsequent HbA1c value is termed the confirmation value. 
In order to ensure that all patients have adequate time for their regimen to reach the maximum 
tolerable dose, an HbA1c value >7% at the month 3 visit will not count towards the declaration 
of a primary metabolic outcome. That is, month 6 is the earliest that a triggering HbA1c value 
>7% can be observed. Since the declaration of the outcome requires two successive elevated 
HbA1c values, the assignment of a right censoring event time must account for the confirmation 
process as described previously in Section 2.4.3. 
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Using the intent-to-treat cohort, differences between groups will be tested, and relative risk 
estimates obtained from a Cox proportional hazards model for discrete time observations, 
adjusted for the baseline HbA1c with a four category class covariate to represent the four drug 
class groups (Lachin, 2011). See Section 2.4.3. A single overall omnibus Wald test at the 0.05 
significance level will be conducted comparing the 4 drug combination groups.  Significance 
tests and relative risk (hazard ratio) estimates for each of the four 3-group comparisons, and for 
the six pair-wise drug group comparisons will be obtained as contrasts among model 
coefficients from the overall 4 group Cox model. As described in Section 2.2 the closed testing 
principle will then be applied to determine statistical significance of each of the pair-wise 
comparisons. For the comparison of groups 1 vs 2 to be declared significant at level 0.05, the 4-
group test must be significant at that level, as well as the 1,2,3 and 1,2,4 three group 
comparisons and then the 1 versus 2 comparison.  

Some patients will deviate from the protocol schedule of HbA1c assessments either through 
missed visits following a triggering HbA1c, or failure to use the central laboratory for HbA1c 
measures. In such cases the site should attempt to obtain other HbA1c measures when 
available such as through an EMR system. The Adjudication Committee will review the available 
data from each such subject to determine whether a primary metabolic outcome occurred and if 
so when, either as a point in time or as an interval of time. In the latter case the midpoint of the 
interval will be employed as the event time. 

If there are a substantial number of such patients (> 100 total) where an interval of time is 
provided by the Adjudication Committee, then a Weibull regression model for interval censored 
data (Sparling et al. 2006) will be employed in lieu of the Cox PH model. 

Other patients may deviate from the protocol schedule of diabetes medications and start 
other medications than that originally assigned at randomization prior to the occurrence of the 
confirmed primary metabolic outcome. These events would be counted in the intent-to-treat 
analysis. However, a sensitivity analysis will be conducted in which the subject’s time to the 
primary outcome is right censored at the time that the deviation occurs in the above Cox or 
Weibull models. A sensitivity analysis will also then be conducted using these time to protocol 
deviations as a competing risk and the groups compared using the Fine and Gray (1999) model 
for the cumulative incidence function of the time to primary outcome in the presence of deviation 
as a competing risk (see Section 2.4.5). 

Finally, if there is a difference among groups in mortality, then further sensitivity analyses 
will be conducted using mortality as a competing risk in the evaluation of the cumulative 
incidence functions among groups. See Section 2.4.5. 

 

3.3 Secondary Analyses of the Primary Outcome 

3.3.1 Modification and Mediation 
If the primary analyses indicate that one or more treatments are superior to other treatments 

then additional analyses will be conducted to assess whether any of the fixed baseline 
covariates can be considered an effect modifier. This would be assessed by a test of a 
treatment group by covariate interaction in the Cox PH model of the primary outcome.  

Additional analyses will also attempt to identify the factor(s) that may mediate the beneficial 
effect of a given treatment. This will be assessed using time-dependent covariates that reflect 
the effects of treatment on other factors over time, principally changes in the oral disposition 
index using measures of insulin resistance and insulin secretion obtained from the oral glucose 
tolerance test (OGTT) performed at baseline and again at 1, 3 and 5 years. 

These analyses would be conducted as described in Section 2.14. 
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3.3.2 Subgroup Analyses 
Further analyses will examine treatment group differences in the primary outcome among 

subgroups defined as subsets of the total cohort that are stratified by specific baseline factors. 
The testing of treatment group differences between and within subgroups will be conducted 
using the closed testing principle as described in Section 2.15 that also specifies the minimum 
set of stratification factors to be employed. 

3.3.3 Risk Factors 
The multitude of factors measured at baseline and during follow-up, including physiologic 

and mechanistic variables, such as those from the OGTT, will be employed in additional 
analyses to identify factors that are associated with an increased risk of primary metabolic 
failure. If one or more treatments are declared superior to the others, then separate risk factor 
models will be developed within each superior treatment and the others combined. See Section 
2.16. 

Exploring these variables may provide information to help clinicians in selecting the 
medication that will work best for that individual patient. This will promote a more detailed 
understanding of the mechanisms by which the drug classes do or do not prolong the time to 
such glycemic deteriorations, and to define different metabolic phenotypes with varying risk of 
such deterioration.   

4 SECONDARY AND TERTIARY METABOLIC OUTCOMES AND ANALYSES 
4.1 Secondary and Tertiary Metabolic Failure 

The time to secondary metabolic failure (defined as HbA1c >7.5% with subsequent 
confirmation) after achieving the primary outcome and while receiving the maximally tolerated 
dose of the assigned regimen. The primary and secondary outcomes may be reached 
simultaneously if the initial value and the confirmation are both >7.5%.  

Among those randomly assigned to the three non-insulin groups (glimepiride, sitagliptin and 
liraglutide), after the secondary outcome has been confirmed the subject then begins to receive 
the addition of insulin glargine to metformin and the randomly assigned therapy. After being on 
glargine for a minimum of 60 days, the subject is then at risk of tertiary metabolic failure defined 
as an HbA1c >7.5% subsequently confirmed. If the tertiary outcome is reached and confirmed, 
the randomly assigned treatment is withdrawn and the subject is then administered an intensive 
insulin regimen using both glargine and rapid acting insulin.  

Among those randomly assigned to glargine, after the secondary outcome has been 
reached the subject continues metformin and glargine and is administered the intensive insulin 
regimen with rapid-acting insulin. 

Thus, additional time-to-event outcomes can be defined: 
a. Time from randomization to the secondary metabolic failure (triggering HbA1c 

subsequently confirmed). 
b. Time from primary failure confirmation to the secondary metabolic failure trigger. 

Those who trigger or confirm the primary outcome at the same time as the 
secondary outcome would have the event time zero. 

c. Time from randomization to the tertiary metabolic failure (triggering HbA1c 
subsequently confirmed) among those originally assigned to glimepiride, sitagliptin or 
liraglutide. 

d. Time from the secondary failure confirmation to the tertiary metabolic failure 
(triggering HbA1c subsequently confirmed) among those originally assigned to 
glimepiride, sitagliptin or liraglutide. 
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e. Time from randomization to the initiation of intensive insulin therapy in all four 
treatment groups.  

The analyses described in Section 3.2 for the primary outcome will also be applied to each 
of these outcomes.  

 

4.2  Other Metabolic Outcomes and Analyses 
a. The proportion over time of participants among treatment groups who experience the 

primary metabolic failure (HbA1c >7%).   
At each quarterly visit the hazard rate of incident primary metabolic failures 

(proportion of failures among those at risk) is computed and a smoothed hazard rate 
function estimated over the complete follow-up period. At a given visit the failures is 
the number who triggered for the primary outcome at that visit that was subsequently 
confirmed, and the number at risk is the number followed at that visit less those who 
have reached the primary outcome at a previous visit (triggered and subsequently 
confirmed).  

b. The proportion over time of participants among treatment groups who experience the 
secondary metabolic failure (HbA1c >7.5%).  

Same analyses as 4.2.a above. 
c. The proportion over time of participants among the non-insulin treatment groups who 

experience the tertiary metabolic failure (HbA1c >7.5%).  
Same analyses as 4.2.a above.  

d. The cumulative incidence of the implementation of glargine therapy (defined as basal 
insulin), while being treated at maximum tolerable doses of the assigned regimen. 

Same analyses as in Section 3.1 This event will include cases that start glargine 
insulin therapy off protocol and regardless of whether or not a secondary outcome 
has been declared. 

e. The proportion over time of participants among treatment groups who had glargine 
insulin therapy initiated.  

This event will include cases that start glargine insulin therapy off protocol and 
regardless of whether or not a secondary outcome has been declared. See Section 
4.2.a.  

f. The cumulative incidence of the implementation of intensive insulin therapy (defined 
as basal plus rapid-acting insulin), while being treated at maximum tolerable doses of 
the assigned regimen.  

Same analyses as in Section 3.2 This event will include cases that start intensive 
insulin therapy off protocol and regardless of whether or not a tertiary outcome has 
been declared. 

g. The proportion over time of participants among treatment groups who had intensive 
insulin therapy initiated.  

See Section 4.2.a.  
h. Proportional rate model of the differences between groups in the incidence of 

primary, then secondary and then tertiary failure with a plot of the successive 
cumulative incidence functions with time 0 the day of randomization. 

i. Stratified recurrence models of the differences between groups in the time from 
randomization to primary (time 0 = randomization), from primary to secondary (time 0 
= primary trigger) and from secondary to tertiary (time 0 = secondary confirmation), 
with a plot of the three cumulative incidences. See Section 2.5. 

j. Proportional rate model of the differences between groups in the incidence of 
primary outcome, then glargine, then intensive insulin therapy with a plot of the 
successive cumulative incidence functions with time 0 the day of randomization. 
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k. Stratified recurrence models of the differences between groups in the time from 
randomization to primary (time 0 = randomization), from primary to glargine (time 0 = 
primary trigger) and from glargine to intensive therapy (time 0 = date start glargine), 
with a plot of the three cumulative incidences.  

5 OTHER DIABETES-RELATED OUTCOMES AND ANALYSES 
5.1 Data 

HbA1c data are described above. Fasting plasma glucose (FPG) is measured annually at 
the CBL. 

The OGTT is measured at baseline and years 1, 3 and 5. This includes a basal (fasting) 
collection (time 0) and collections periodically up to 2 hours after drinking a liquid meal during 
which glucose, insulin and C-peptide are measured. From these measurements, indices of 
insulin resistance and insulin secretion are computed, principally the inverse insulin and 
insulinogenic index, respectively, the latter being the time 0 to 30 minute change in insulin 
divided by the like change in glucose, also called the insulin to glucose ratio (IGR). 

Severe hypoglycemia is defined as an episode in which the patient was unable to treat the 
event on his/her own and required the assistance of another individual. There are three 
additional classifications of severe hypoglycemia based on whether or not: 

• the episode was accompanied by coma and/or seizure (major hypoglycemia); 
• the episode led to injury of the patient or others; 
• the episode was accompanied by a motor vehicle accident in which the patient was 

the driver. 
The date of all such episodes is recorded.   

In addition, at every quarterly visit the patient indicates whether any (one or more) episode 
of symptoms of hypoglycemia occurred within the past 30 days prior to the visit, as well as 
characteristics of these episode(s).  

Cognitive function will be assessed at baseline and years 4 and 6 of follow-up using a 
battery of neurocognitive tests that are scored centrally. 

 

5.2 Quantitative Measurements 
The following analyses will be conducted for HbA1c, FPG, and measurements derived from 

the OGTT to assess insulin resistance and beta-cell function. 
a. For each measurement, a longitudinal repeated measures analysis of the mean 

values over the study duration along with an estimate of the average value over all 
visits (and the area under the curve), and the assessment of treatment group 
differences, adjusted for the baseline value (See Section 2.9).  

b. For each measurement, estimate the mean change in HbA1c from baseline to year 4 
in an ANCOVA model adjusted for the baseline value (2.8).  

 

5.3 Hypoglycemia 
a. Crude rates per 100 patient years of confirmed symptomatic hypoglycemia (defined 

as relieved by food and/or with BG<70 mg/dl) will be computed for each year of 
follow-up and over all years combined. Treatment group differences will be assessed 
using an appropriate model for count data (Poisson, Negative binomial, etc.). (See 
Section 2.6).  

b. Analyses as in 5.4.a will also be applied to rates of  
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• severe hypoglycemia defined as requiring third party assistance;  
• severe hypoglycemia episodes resulting in coma and/or seizure.  
• Severe episodes resulting in injury of the patient or others 
• Severe episodes accompanied by a motor vehicle accident in which the 

patient was the driver 
• severe hypoglycemia satisfying any of these three criteria. 

c. Analyses of recurrent severe hypoglycemia will be conducted using the methods of 
Section 2.5 to assess group differences within subgroups as described in Section 
3.3.3, analyses of risk factors described in Section 3.3.4 and analyses of mediation 
factors as in Section 3.3.2. 

d. Analyses of recurrent major hypoglycemia will also be conducted as in Section 5.4.c. 
 

5.4 Cognition 
a. Each element of the neurocognitive battery will be analyzed longitudinally using the 

methods described for the analysis of ordinal data in Section 2.7, and an aggregate 
or composite analysis conducted as described for the analysis of composite 
outcomes in Section 2.16. 

6 CARDIOVASCULAR EVENTS AND RISK FACTOR ASSESSMENTS 
6.1 Data 

Cardiovascular risk factors are routinely measured during follow-up, lipids annually, physical 
assessments (blood pressure and weight) quarterly, and medication use (antihypertensive, 
cardio-protective) quarterly.  

Body weight, waist circumference, hip circumference, and body mass index (BMI) are 
measured quarterly. Obesity will be defined as BMI>30 kg/m2, and major obesity as BMI>35 
kg/m2.  

Hypertension is defined as blood pressure >140 mmHg systolic, >90 mmHg diastolic, or use 
of blood pressure lowering medications for control of blood pressure. Hyperlipidemia is defined 
as LDL cholesterol levels >100 mg/dl or the use of lipid-lowering medications. 

Cardiovascular outcome events are recorded in real time and then adjudicated by the study 
Adjudication Committee that includes experts from outside the study. The primary CVD 
outcomes are the components of MACE – cardiovascular death, nonfatal MI, nonfatal stroke. 
Other events of interest are silent MI on ECG, unstable angina and revascularization. 
Congestive heart failure requiring hospitalization will also be recorded. 

An ECG will be conducted at baseline and years 2, 4 and 6 of follow-up and will be read 
centrally to report the presence or absence of any, minor and/or major abnormalities. Specific 
ECG-detected abnormalities will also be reported including silent MI, myocardial ischemia, left 
ventricular hypertrophy, arrhythmias, and conduction defect. Presence of cardiac autonomic 
dysfunction will also be reported. 

Participants satisfying the criteria for obesity, hypertension, hyperlipidemia, abnormal ECG 
and CAN at baseline will be excluded from the analyses of incidence of each respective 
outcome. 
 

6.2 Quantitative Measurements 
The analyses described in Section 5.2 above will also be applied to total cholesterol, 

triglycerides, LDL, HDL and non-HDL cholesterol; systolic and diastolic blood pressure and 
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pulse pressure; and body weight, waist circumference, hip circumference, and body mass index 
(BMI).  

These analyses will also be applied to longitudinal analyses of the estimated CVD risk 
calculated using the UKPDS, Framingham or other cardiovascular risk engine (D’Agostino et al, 
2008, Stevens et al, 2001). 
 

6.3 Obesity 
For the analysis of obesity or major obesity, participants with the condition at baseline will be 

excluded from analysis.  
a. The cumulative incidence of the time to the development of obesity (BMI>30 kg/m2) 

and related analyses will be applied as described in Section 3.2. 
b. The proportion of subjects who develop obesity at each annual visit (hazard rate) will 

be described using the analyses as in Section 4.2.a. 
c. The prevalence of obesity at each annual visit will be computed and a longitudinal 

repeated measures (GEE) analysis of the prevalence over the study duration 
performed, along with an estimate of the average prevalence over all visits, and the 
assessment of treatment group differences, adjusted for the baseline value (See 
Section 2.3). 

d. Analyses of the incidence of obesity will also be conducted within subgroups as 
described in Section 3.3.3 as will analyses of risk factors described in Section 3.3.4 
and analyses of mediation factors as in Section 3.3.2. 

e. Analyses as in 5.3.a and 5.3.b will also be applied for the assessment of major 
obesity (BMI>35 kg/m2).  

 

6.4 Other Binary Outcomes 
The analyses described above in 6.3.a, b and c will also be conducted for: 

a. The use of blood pressure lowering agents over time. 
b. Hypertension. 
c. Emergent hypertension among those who had levels <140/90 and were free of blood 

pressure-lowering medication use at baseline. 
d. Use of drugs to treat dyslipidemia. 
e. Hyperlipidemia. Participants with hyperlipidemia at baseline will be excluded. 
f. Any ECG abnormality (minor or major), those with abnormality present at baseline 

excluded. 
g. Any major ECG abnormality, those with a major abnormality present at baseline 

excluded.  
 

6.5 Cardiovascular Events. 
a. Incidence of CV death, non-fatal MI, and non-fatal, each conducted separately (See 

Section 2.4.1) along with a joint Wei-Lachin analysis (Section 2.16) 
b. Incidence and prevalence of ECG-detected abnormalities, including silent MI, 

myocardial ischemia, left ventricular hypertrophy, arrhythmias, and conduction defect 
(Sections 2.4.2 and 2.3).  

c. Incidence and prevalence of cardiac autonomic dysfunction (Sections 2.4.2 and 2.3). 
d. Incidence and prevalence of other cardiovascular events including unstable angina 

requiring hospitalization or revascularization (Sections 2.4.1 and 2.3). 
e. Incidence and prevalence of congestive heart failure requiring hospitalization (See 

Sections 2.4.1 and 2.3). 
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7 SECONDARY MICROVASCULAR OUTCOMES 
7.1 Data 

The urinary albumin:creatinine ratio (ACR) will be measured 6-monthly. The presence of 
microalbuminuria (or worse) will be defined as a value >30 mg/g, and the presence of 
albuminuria defined as a value >300 mg/g.  

Serum creatinine is measured annually from which an estimated GFR (eGFR) will be 
computed using the EPI-CKD formula (Inker, 2012). Impaired GFR will be defined as an eGFR 
< 60 mL/min per 1.73m2. 

Peripheral neuropathy will be classified as present or absent based on the Michigan 
Neuropathy Screening Instrument administered annually. 

Cardiac Autonomic Neuropathy will be classified as present or absent based on the central 
grading of the ECG conducted at baseline and years 2, 4 and 6 of follow-up.  

A history of retinal photocoagulation and other ocular procedures will be collected quarterly.  
Participants with an outcome of interest at baseline will be excluded from the analyses of the 

incidence of that event during the study. 
 

7.2 Analyses 
a. The analyses in Section 5.2 will be applied to the longitudinal analysis of the 

albumin:creatinine ratio values over time. 
b. The incidence and prevalence of microalbuminuria among subjects who had ACR 

levels <30 mg/g at baseline will be assessed as in Sections 2.4.2 and 2.3. 
c. The incidence and prevalence of macroalbuminuria among subjects who had ACR 

levels <300 mg/g at baseline will be assessed as in Sections 2.4.2 and 2.3. 
d. The analyses in Section 5.2 will be applied to the longitudinal analysis of the eGFR 

values over time. Analyses of eGFR using random effects models as in Section 2.10 
will also be applied to the rate of decline of eGFR over time. 

e. The incidence of renal insufficiency will be assessed as in Section 2.4.2. 
f. The incidence of retinal photocoagulation for diabetic retinopathy and other 

ophthalmologic procedures by quarterly self-report will be assessed as in Sections 
2.4.2 and 2.3.  

g. The incidence of peripheral neuropathy will be assessed as in Sections 2.4.2 and 
2.3. 

h. The incidence of CAN on ECG will be assessed as in Sections 2.4.2 and 2.3. 

8 ADVERSE EFFECTS 
 
Serious adverse events and adverse events of special interest are recorded as they occur. 

The following analyses will be performed. 
a. The incidence of pancreatitis, pancreatic and medullary thyroid cancer, other cancer 

types (except non-melanoma skin cancer) will be summarized as the number of 
subjects affected, the number of events (episodes), and the rate of events using the 
methods described in Sections 2.3 and 2.6. If adequate numbers of such affected 
subjects (at minimum 50 in total), additional analyses as in Sections 2.4.1 and 2.5 
may also be conducted. 

b. Like analyses will be conducted for the incidence of severe adverse events using the 
higher level MedDRA terms/codes of the event types.  

c. Like analyses will be conducted of the incidence of hospital admission. 
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9 ADHERENCE-TOLERABILITY 
 

Adherence to, and tolerance of, the study medications over the study duration will be 
recorded. These are principally reflected by the incidence of changes in dose or withdrawal of 
medications. Treatment satisfaction will be periodically assessed by subject ratings using a 
standardized questionnaire (DTSQ). Other indices of adherence include taking non-study 
glucose-lowering medications and failure to take assigned study medications. The following 
analyses will be performed. 

a. The incidence of intolerance to medications indicated by modification of the dose of 
metformin or other agents in response to gastrointestinal symptoms will be assessed 
as in Section 8.a.  

b. The incidence of intolerance to medications indicated by modification of the dose of 
metformin or other agents in response to other symptoms will be assessed as in 
Section 8.a. 

c. The incidence of intolerance to medications indicated by modification of the dose of 
metformin or other agents specifically in response to hypoglycemia will be assessed 
as in Section 8.a. 

d. Treatment satisfaction over study duration will be examined using methods for the 
analysis of ordinal data as described in Section 2.7. 

e. Other metrics of treatment satisfaction include the numbers of subjects taking other 
(non-study) glucose-lowering medications and the numbers who failed to take the 
assigned medications, and the period of time of each. 

10 HEALTH ECONOMIC ANALYSES 
Costs related to treatment of diabetes and its morbidities will be recorded. Quality of life will 

also be assessed that will allow the computation of utilities and the data summarized as quality 
adjusted life years and other metrics such as the cost-effectiveness ratio.  

a. Quality of life over study duration will be examined using methods for the analysis of 
longitudinal ordinal data as described in Section 2.7. 

b. Incidence of all-cause mortality will be described using the survival analysis methods 
of Section 2.4.1. 

c. Incidence of diabetes related mortality, and non-diabetes related mortality, will 
likewise by assessed. 

11 SECONDARY COMPOSITE OUTCOMES 
 

A secondary composite outcome refers to analyses intended to assess whether one 
treatment produces greater benefit for a collection of outcomes. The analysis starts with an 
analysis of each component outcome separately. The results of those analyses will then be 
used with the Wei-Lachin multivariate one-directional analysis to test differences between 
groups for a preponderance of benefit over the set of outcomes in that composite as described 
in Section 2.16. This approach will be applied to the following composite outcomes. 
 

a. The mean HbA1c, the mean body weight, and the rate per year of severe 
hypoglycemia since randomization over time using an appropriate longitudinal model 
for each component outcome. 

b. The mean HbA1c, the mean body weight, and the rate per year of severe 
hypoglycemia since randomization at 4 years of follow-up. 
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c. An analysis as in 11.a will also be conducted for HbA1c and weight alone. 
d. An analysis as in 11.a will be conducted for the time to an episode of severe 

hypoglycemia and the time to the primary metabolic outcome. 
e. An analysis as in 11.a will be conducted for the time to an episode of severe 

hypoglycemia and the time to weight gain of 5% or more of baseline body weight. 
f. A longitudinal analysis of the proportion of participants that both have not yet 

reached the primary metabolic outcome without having experienced any 
hypoglycemia over time and without any weight gain over time using the methods 
described in Section 2.3. 

12 SAMPLE SIZE AND STUDY POWER 
12.1 The Primary Metabolic Outcome. 

The incidence of reaching the primary metabolic outcome will be compared among groups 
using a Mantel-logrank test under a proportional hazards model. The original protocol 
specification at the start of GRADE was to enroll 5000 patients over 3 years assuming a lagged 
(concave) recruitment pattern in which 40% are enrolled over the first 18 months and 60% 
enrolled over the final 18 months using the method of Lachin and Foulkes (1986). A total trial 
duration of 7 years would then provide 90% power to detect a 25% difference (hazard ratio of 
0.75) between any two of the four study agents in the risk of the primary metabolic outcome 
assuming a hazard rate of 0.0875 / year in the less effective group, and losses to follow-up at 
4% per year, adjusted for 6 pair-wise tests.  

A key assumption in this assessment is the projection of a hazard rate of 0.0875 per year for 
the primary outcome that was initially based on a conservative estimate obtained from the 
ADOPT study (Kahn et al., 2006) that compared metabolic control among subjects assigned to 
sulfonylurea, metformin or rosiglitazone in a population comparable to that in GRADE. If the 
actual hazard rate is higher or lower than this estimate, then the power of the study to detect a 
25% risk reduction will be greater or less than the 90% computed above. The GRADE Data and 
Safety Monitoring Board (DSMB) appointed by the NIDDK is charged with monitoring not only 
the safety of the trial but also its overall feasibility. The DSMB recommended to the NIDDK that 
the actual observed hazard rate in the study be masked to the study investigators, a 
recommendation with which the NIDDK concurred. One of the many reasons is that we would 
still like to address the long-term microvascular and macrovascular outcomes for which the full 
sample size is desired. Thus, the investigators will not reassess the design assumptions that led 
to the calculation supporting the need for 5000 patients.  

Recruitment, however, has lagged. In May, 2016 the NIDDK and the DSMB requested that 
we conduct a detailed examination of the power of the study using the above initial assumptions 
but allowing for the actual pattern of recruitment observed to date, and allowing for a 6 month 
extension of the recruitment period to 3.5 years, and a like extension of the total study duration 
from 7 to to 7.5 years, with the expectation that the study might still fall short of the goal of 5000 
patients. Over the first 1.4 years of recruitment the study enrolled 1550 patients at a rate of 
about 92 per month. Thereafter the pattern of recruitment has been strongly linear with a rate of 
about 130.4 per month. At this rate projected to the end of the 3.5 year recruitment period, 4836 
subjects would be randomized .  

Because the recruitment was strongly linear at 92 subjects/month over the first 1.4 years, 
and 130/month thereafter, rather than employ a concave recruitment pattern these updated 
power computations used a stratified calculation with 2 strata, one that enrolled 92 / month over 
1.4 years who were followed for up to 7.5 years, and another that enrolled 130.4 / month over 
2.1 years and followed for up to 6.1 years. The total of 4836 would yield 90.5% power, virtually 
identical to the original protocol computation owing to both the 6 month extension and the linear 



 

27 
 

rate of recruitment. On this basis the NIDDK, with the concurrence of the DSMB, approved the 
extension of the study recruitment and follow-up periods to 3.5 and 7.5 years, respectively. 

However, recruitment recently slacked for a couple months and it is possible that the final 
enrollment would be only 4600 subjects. In this case, the power would be reduced slightly to 
88.9%.  

Recruitment will close by May 1, 2017 at which time the final study power will be determined 
for all outcomes under the original protocol design assumptions along with the 3.5/7.5 
recruitment and follow-up periods and the final achieved sample size. 

The following sections present the original power computations from the initial study protocol 
for the other secondary outcomes and for analyses among subgroups. Those calculations 
assumed 5000 patients enrolled over 3 years and followed up to 7 years of major interest. As 
described above, the final levels of power with a final sample size of 4600 to 4800 will be close 
to these calculations from the original protocol. 

12.2 Secondary Outcomes – Microalbuminuria and Clinical Cardiovascular Disease 
The incidence of onset of microalbuminuria on a biannual measure of the urinary 

albumin/creatinine ratio will be compared among groups using a Mantel-logrank test under a 
proportional hazards model.  From other studies, the hazard rate of onset of microalbuminuria is 
projected to be about 0.04 per year in whichever group has a higher event rate (Lachin et al., 
2011).  For the 4-way comparison among the 4800-5000 subjects, the study would have 88% 
power with a hazard rate of 0.04/year, 92% with 0.045/year, to detect a 33% difference in risk 
for microalbuminuria between any pair of groups. 

In the ADOPT study (Kahn et al., 2006), the incidence of MACE was 0.76% per year and of 
MACE plus congestive heart failure was 1.14% per year.  Assuming a more conservative 
incidence rate of 1% per year and the other assumptions above, GRADE will provide 80% 
power to detect a 50% difference in the risk of CVD between any pair of drug groups, adjusted 
for 6 pair-wise comparisons.  The study also has 80% power to detect a 42% difference in risk 
in an analysis of each drug group compared to all other drug groups combined, adjusted for 4 
comparisons. 

12.3 Subgroup Analyses 
Assume that in the overall study one drug group has a hazard ratio for the primary outcome 

of 0.75 versus the other three drug groups.  Using the methods of Lachin (2013), for a test of 
homogeneity of the 4-way drug group difference within two equal sized strata (subgroups) of 
2500 subjects each, the study will provide 94% power to detect a pattern of drug group 
differences where the hazard ratio is 25% greater (HR = 0.938) within one stratum and 25% 
less (0.563) in the other.  For the case of three strata with 1667 subjects each, the study 
provides 69% power to detect heterogeneity of hazard ratios of 0.563, 0.75, and 0.938.  

13 ADDITIONAL STATISTICAL ACTIVITIES 
 
13.1 Publication Generation and Policy 

All members of the GRADE Research Group and collaborators (e.g. ancillary study 
investigators) must follow the GRADE Policy on Publications and Presentations. This is widely 
available through the GRADE website (https://grade.bsc.gwu.edu/web/GRADE/), under the tab 
for “Potential Collaborators”.  The goals of this publication policy are to ensure the production of 
high quality manuscripts representing the scientific output of the Study; preserve the scientific 
integrity of the study in publications and presentations; protect the rights and privacy of the 
subject participants; provide the opportunity for members of the Research Group to participate 

https://grade.bsc.gwu.edu/web/GRADE/
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as authors of publications and presentations; and 3) provide appropriate and equitable 
authorship to those involved in the development, analysis, and writing of manuscripts.  

Any member of the research group can propose a publication topic that is then reviewed by 
the Publication and Presentations Subcommittee (PPC). If approved, members of the Research 
Group are invited to volunteer to join the writing committee for the paper. The PPC meets 
periodically to evaluate the progress of analysis and writing of all papers. When the manuscript 
is complete it is then distributed to the members of the PPC for review. When approved by the 
PPC the paper is then distributed to the Research Group for review and approval.  

GRADE has defined four categories of publications, each with specific authorship 
guidelines. Briefly, Category 1 manuscripts report the primary findings of the study with group 
authorship by the GRADE Research Group. Category 2 manuscripts focus on lesser findings in 
which the authors are named and includes “and the GRADE Research Group” with a citation to 
the list of group members. Category 3 papers report the results of ancillary studies with 
authorship as for category 2 except that the members of the ancillary study research group may 
also be cited as “and the “NAME” Study Research Group”. Finally, Category 4 manuscripts 
represent methodological papers and are authored by the writing team with acknowledgement 
of the support of GRADE. Responsibility for the category assignment for all manuscripts rests 
with the Publications and Presentations Committee, in consultation with the Executive 
Committee. 

 

13.2 Current Publication Activity 
The following is the list of publications generated by the GRADE research group to date.  

1. Lachin JM. Sample size and power for a logrank test and Cox proportional hazards 
model with multiple groups and strata, or a quantitative covariate with multiple strata. 
Stat Med. 2013 Nov 10;32(25):4413-25. doi: 10.1002/sim.5839. PubMed PMID: 
23670965; PubMed Central PMCID: PMC3775959. 

2. Nathan DM, Buse JB, Kahn SE, Krause-Steinrauf H, Larkin ME, Staten M, Wexler D, 
Lachin JM; GRADE Study Research Group..  Rationale and design of the glycemia 
reduction approaches in diabetes: a comparative effectiveness study (GRADE). 
Diabetes Care. 2013 Aug;36(8):2254-61. doi: 10.2337/dc13-0356. PubMed PMID: 
23690531; PubMed Central PMCID: PMC3714493. 

3. Lachin JM. Applications of the Wei-Lachin multivariate one-sided test for multiple 
outcomes on possibly different scales. PLoS One. 2014 Oct 17;9(10):e108784. doi: 
10.1371/journal.pone.0108784. PubMed PMID: 25329662; PubMed Central PMCID: 
PMC4201485. 

4. Lachin JM, Bebu I. Application of the Wei-Lachin multivariate one- directional test to 
multiple event-time outcomes. Clin Trials. 2015 Dec;12(6):627-33. doi: 
10.1177/1740774515601027. PubMed PMID: 26336199; PubMed Central PMCID: 
PMC4562325. 

5. Lachin JM. Fallacies of last observation carried forward analyses. Clin Trials. 2016 
Apr;13(2):161-8. doi: 10.1177/1740774515602688. PubMed PMID: 26400875; 
PubMed Central PMCID: PMC4785044. 

Paper 2 presents the design of the study. The other 4 papers describe the development of 
statistical methods for application to GRADE. Paper 1 describes the multiple group methods to 
evaluate the sample size for the study. Papers 3 and 4 describe the application of the Wei-
Lachin multivariate one-directional analysis to multiple (composite) outcomes and to multiple 
event time analyses for application in GRADE, and paper 5 describes the fallacies of a 
commonly used method to justify its exclusion from the GRADE study analysis plan.  
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In addition, the GRADE research group is looking forward to closure of the baseline data 
base following the close of recruitment as of May 1, 2017. Seven writing groups have been 
appointed, each of which may prepare multiple manuscripts based on the baseline data in each 
of the following domains: description of the study population, prevalent complications, 
recruitment practices, metabolic assessments, metformin, neurocognition and cost-
effectiveness. These writing groups are now developing plans for specific analyses to be 
conducted when the data are closed. 

The research group is masked to all outcome data, but in anticipation of the final analyses in 
2021-22 additional writing groups will be appointed to start planning for end of study papers well 
before the data are closed.  

 

13.3 Support of Ancillary Study Collaborations 
The GRADE public website, https://grade.bsc.gwu.edu/web/GRADE/, includes links to the 

GRADE Publications and Presentations Policy, the Ancillary Studies and Sub-studies Policy and 
a description of the Ancillary Study or Sub-study Application Process. GRADE welcomes 
proposals from collaborators within or outside of the Research Group for research to address 
objectives and employ methodologies outside the scope of the core GRADE protocol. All 
applications are reviewed by the GRADE Ancillary and Sub-study Committee (ASC) in a timely 
fashion, and if approved, by the Research Group and the Data and Safety Monitoring Board. 

Ancillary and Sub-studies differ in the extent of support and involvement of the GRADE 
infrastructure, especially the Biostatistical Research Center (BRC). An Ancillary Study is 
organized and managed by the ancillary study investigators, including data collection and 
analysis by the ancillary study research team. The BRC provides some oversight and may be 
required to provide access to some phenotypic data (after completion of the study) but 
otherwise will not be involved. A Sub-study is organized and managed by the GRADE BRC and 
GRADE investigators in collaboration with the sub-study research team and jointly seek 
independent funding. 

Both ancillary and sub-studies require separate independent funding. GRADE investigators 
at all levels may collaborate closely with the ancillary and sub-study investigators to help secure 
independent funding to support the additional research. This funding includes all the procedural 
preparations to launch the study. In addition, the senior BRC statisticians assist in the design of 
the study and the specifications of the statistical considerations including the determination of 
sample size and power. The application is then submitted to the funding authority (usually NIH) 
with a budget that includes funds for the BRC to provide additional support such as data 
management, statistical analysis, and the construction of data files with phenotypic data 
required for analyses of the ancillary study data. In addition, the ancillary or sub-study funding 
will need to include support for the study coordinators, and possibly the clinical site PIs, if they 
will be required to participate in performing procedures or collecting data specifically related to 
the study.  

In some cases, the ancillary study investigator may engage local statistical resources to 
conduct the data analyses in which case the BRC statisticians will provide oversight of the 
statistical activities conducted by the collaborator’s statistician. The BRC statisticians, however, 
will provide statistical support for sub-studies. 

 

13.4 Data Reports 
The BRC generates reports describing the current state of the study for the biannual 

meetings of the Research Group and coordinators, and for the operational study committees. In 
addition, the BRC generates a report on the current state of the cohort and all study outcomes 
including tolerability and adverse events for review by the Data and Safety Monitoring Board. 

https://grade.bsc.gwu.edu/web/GRADE/
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empanelled by the NIDDK.  
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