Worksheet Header

Enter Password to Begin

Incorrect password. Please try again.

CTJan27 Online Review Year 9 - Part 01 (BIDMAS,Solving Equations and Inequalities, Exponents, Surds and Quadratics)

Math Worksheet

Multiple Choice

  1. Simplify: $12 - [4 - (6 - 9)] \div 5$

  2. Simplify: $\frac{18}{3} - \left( 5 - \frac{14}{7} \right) \times 2$

  3. Evaluate: $8 - \left[ 2 - \left( \frac{9}{3} - 5 \right) \right]$

  4. Simplify: $20 \div (4 + 1) \times (6 - 2)$

  5. Simplify: $7 - \left( \frac{15}{3} + 2^3 \right)$

  6. Simplify: $\frac{48}{12} - \Big( 6 - \frac{9}{3} \Big)^2$

  7. Evaluate: $\left( \frac{2}{5} - \frac{1}{10} \right) \times 20$

  8. Simplify: $\frac{3}{4} \div \left( \frac{5}{8} - \frac{1}{2} \right)$

  9. Solve: $5x - 7 = 2x + 8$

  10. Solve: $\frac{2x}{3} + 4 = 10$

  11. Solve: $7(x - 2) = 3(x + 4) + 2$

  12. Solve: $\frac{x - 5}{4} = \frac{2x + 1}{6}$

  13. Solve: $3x - \frac{5}{2} = \frac{x}{4} + \frac{7}{2}$

  14. Solve: $2(3x - 4) = 5(2x - 7) + 6$

  15. Solve: $\frac{5x}{2} - 7 = \frac{3x}{4} + 2$

  16. Solve: $\frac{2(x+3)}{5} - \frac{x-1}{3} = 1$

  17. What is the solution to the inequality $3x - 7 < 2x + 5$?

  18. What is the solution to the inequality $\frac{2x - 5}{3} \geq \frac{x + 7}{2}$?

  19. What is the solution to the inequality $5 - 2x \leq 3(x + 1)$?

  20. What is the solution to the inequality $\frac{x+4}{2} - \frac{x-2}{3} < 5$?

  21. What is the solution to the inequality $2(x - 3) + 5 \geq x + 12$?

  22. What is the solution to the inequality $\frac{7 - 2x}{4} > \frac{x}{2} - 1$?

  23. Simplify: $\left(\frac{3x^{-1}y^2}{2x^2 y^{-3}}\right)^4$

  24. Simplify: $\frac{2^{-3} \cdot 4^2}{8^{-1}}$

  25. Simplify: $\frac{(x^{-2}y)^3}{(x^3 y^{-2})^2}$

  26. Simplify: $\left(\frac{p^{-1}q^2}{r^{-3}}\right)^{-2}$

  27. Simplify: $\frac{(a^2b^{-3})^{-2}(a^{-1}b)^3}{a^{-4}b^{-2}}$

  28. Simplify: $\frac{(x^{-2}y^3z^{-1})^2 \cdot (x^3y^{-1}z)^4}{x^{-5}y^2z^{-3}}$

  29. Simplify: $\frac{(a^{-3}b^2c)^3 \cdot (a^2b^{-1})^{-2}}{a^{-4}b^3c^{-2}}$

  30. Simplify: $\frac{(p^2q^{-3}r)^4}{(p^{-1}q^2r^{-2})^{-3}}$

  31. Simplify: $\frac{(x^{-1}y^2z^{-3})^{-2} \cdot (x^4yz^{-1})^3}{(x^2y^{-1}z^2)^{-1}}$

  32. Simplify: $\sqrt{50}$

  33. Simplify: $\sqrt{72} - \sqrt{32}$

  34. Simplify: $\sqrt{18} \cdot \sqrt{12}$

  35. Simplify: $\frac{\sqrt{45}}{\sqrt{5}}$

  36. Rationalise: $\frac{5}{\sqrt{3}}$

  37. Rationalise: $\frac{7}{2 - \sqrt{3}}$

  38. Simplify: $\frac{\sqrt{5} + \sqrt{2}}{\sqrt{5} - \sqrt{2}}$

  39. Simplify: $\frac{1}{\sqrt{7} + \sqrt{3}}$

  40. Solve the quadratic equation $2x^2 - 5x - 12 = 0$.

  41. Solve the quadratic equation $3x^2 + 2x - 8 = 0$.

  42. Solve the quadratic equation $4x^2 - 12x + 9 = 0$.

  43. Solve the equation $\frac{1}{2}x^2-\frac{3}{2}x+1=0$.

  44. Solve the equation $5x^2 - 45 = 0$.

  45. Solve the quadratic equation $6x^2 + 5x - 6 = 0$.

  46. Solve the equation $(x+5)(x-2) = -10$.

  47. Solve the equation $(3x-2)^2-(x+1)^2=0$.

  48. Classify the roots of $2x^2 - 7x + 3 = 0$.

  49. Classify the roots of $\tfrac12 x^2 - 5x + 6 = 0$.

  50. Classify the roots of $x^2 - 4x + 8 = 0$.

  51. Find all real $k$ for which $x^2 - (k+3)x + k = 0$ has equal roots.

  52. For which $m$ does $2x^2 + (m-1)x + (m+4) = 0$ have real roots?

  53. Find $k$ so that $4x^2 + kx + 9 = 0$ has a repeated root.

  54. For which $t$ does $t x^2 - 6x + 9 = 0$ have exactly one solution as a quadratic?

  55. Determine all $p$ for which $(p+1)x^2 - 2(p-2)x + p = 0$ has no real roots.

  56. Solve $2x^2 - 3x - 5 = 0$.

  57. Solve $5x^2 + 2x + 7 = 0$.

  58. Solve $x^2 - 6x + 7 = 0$.

  59. Solve $\frac{1}{2}x^2 - 5x + 6 = 0$.

  60. Solve $4x^2 + x - 3 = 0$.

  61. Solve $7x^2 - 2x - 5 = 0$.

  62. Solve $(x+1)(x-3)=7$.

  63. Solve $\frac{3}{4}x^2-\frac{5}{2}x+1=0$.