1
In the expression $5\sqrt{2x}$, what is the radicand?
$5$
$2$
$5\sqrt{2x}$
$2x$
2
Which of the following numbers is NOT a perfect square?
$81$
$54$
$144$
$121$
3
What is the largest perfect square factor of 72?
$12$
$4$
$36$
$9$
4
Simplify the radical expression $\sqrt{48}$.
$4\sqrt{3}$
$2\sqrt{12}$
$16\sqrt{3}$
$6\sqrt{8}$
5
Simplify the radical expression $\sqrt{125}$.
$10\sqrt{12.5}$
$5\sqrt{25}$
$5\sqrt{5}$
$25\sqrt{5}$
6
Simplify the mixed surd $-2\sqrt{98}$.
$-28\sqrt{7}$
$-14\sqrt{2}$
$-2\sqrt{49}$
$-49\sqrt{2}$
7
Simplify $\sqrt{x^{10}}$. (Assume $x\ge 0$)
$x^2\sqrt{x^5}$
$x^{10}$
$\sqrt{x^{10}}$
$x^5$
8
Simplify $\sqrt{y^7}$. (Assume $y\ge 0$)
$y^7$
$y^4\sqrt{y^3}$
$y^{3.5}$
$y^3\sqrt{y}$
9
Simplify $\sqrt{a^4b^3}$. (Assume $a, b\ge 0$)
$a^2b\sqrt{b}$
$a^4b\sqrt{b}$
$a^2\sqrt{b^3}$
$a^2b^2\sqrt{b}$
10
Simplify $\sqrt{75m^2}$. (Assume $m\ge 0$)
$25m\sqrt{3}$
$3m\sqrt{5}$
$5m\sqrt{3}$
$5\sqrt{3m^2}$
11
Simplify the expression $3\sqrt{20}$.
$5\sqrt{6}$
$12\sqrt{5}$
$6\sqrt{5}$
$3\sqrt{10}$
12
Simplify $\sqrt{18x^5}$. (Assume $x\ge 0$)
$3x^5\sqrt{2}$
$3x^2\sqrt{2x}$
$9x^2\sqrt{2x}$
$6x^2\sqrt{3x}$
13
Simplify $5x\sqrt{32x^3}$. (Assume $x\ge 0$)
$20x^2\sqrt{2x}$
$20x\sqrt{2x}$
$40x^2\sqrt{x}$
$4x\sqrt{8x^3}$
14
Simplify $-3y\sqrt{72y^5}$. (Assume $y\ge 0$)
$-18y^2\sqrt{2y^3}$
$-12y^2\sqrt{6y}$
$-18y^3\sqrt{2y}$
$-216y^3\sqrt{y}$
15
Simplify $2ab\sqrt{100a^6b^9}$. (Assume $a, b\ge 0$)
$20a^4b^5\sqrt{b}$
$20a^3b^4\sqrt{ab}$
$20a^7b^{10}$
$10a^4b^5\sqrt{b}$
16
Which of the following expressions is equivalent to $4k^2\sqrt{18k^5}$? (Assume $k\ge 0$)
$12k^3\sqrt{2k}$
$12k^4\sqrt{2k}$
$24k^3\sqrt{2k}$
$4k^2\sqrt{18k}$
17
Simplify the expression $-\sqrt{150}$.
$-10\sqrt{15}$
$-5\sqrt{6}$
$-6\sqrt{5}$
$-25\sqrt{6}$
18
Simplify the expression $\frac{1}{3}\sqrt{27x^8}$. (Assume $x\ge 0$)
$x^4\sqrt{3}$
$\frac{3x^4\sqrt{3}}{3}$
$3x^4\sqrt{3}$
$x^4\sqrt{9}$
19
Simplify $-x^2y\sqrt{200x^7y^6}$. (Assume $x, y\ge 0$)
$-20x^3y^4\sqrt{5x}$
$-10x^4y^4\sqrt{2x}$
$-10x^5y^3\sqrt{2x}$
$-10x^5y^4\sqrt{2x}$
20
A student simplified $2\sqrt{72}$ as $12\sqrt{6}$. What was the likely error?
The student extracted $\sqrt{12}$ instead of $\sqrt{36}$.
The student failed to simplify the radical completely.
The student multiplied the coefficient by the radicand.
The student used 36 as the factor but incorrectly identified the remaining radicand as 6 instead of 2.
21
Find the smallest integer by which $1050$ must be multiplied to result in a perfect square.
$14$
$70$
$6$
$42$
22
When simplifying the mixed surd $5x^2\sqrt{48x^7y^3}$, which action specifically corresponds to Step 1 (Numerical Factor Extraction)?
Ensuring the coefficient $5x^2$ is included in the final answer.
Identifying $16$ as the largest perfect square factor of $48$.
Multiplying the extracted $4$ by $5x^2$.
Dividing the variable exponent $7$ by $2$.
23
Mastering Step 1: Simplify the numerical radical $\sqrt{252}$.
$4\sqrt{63}$
$6\sqrt{7}$
$18\sqrt{2}$
$3\sqrt{28}$
24
If the expression $\sqrt{1584}$ simplifies to $A\sqrt{B}$, where $B$ contains no perfect square factors, what is the value of the coefficient $A$?
$16$
$8$
$144$
$12$
25
Integrate Step 3 by simplifying $-3\sqrt{288}$.
$-12\sqrt{2}$
$-24\sqrt{3}$
$-72\sqrt{2}$
$-36\sqrt{2}$
26
Mastering Step 2a: Simplify $\sqrt{81a^{10}b^{12}}$, assuming $a, b \ge 0$.
$9a^5b^6$
$81a^5b^6$
$9a^8b^{10}$
$9a^{\sqrt{10}}b^{\sqrt{12}}$
27
Mastering Step 2b: Simplify $\sqrt{x^{17}}$, assuming $x \ge 0$.
$x^{16}\sqrt{x}$
$x^8\sqrt{x}$
$x^9\sqrt{x}$
$x^8$
28
Simplify $\sqrt{400x^{22}y^{15}}$, assuming $x, y \ge 0$.
$20x^{10}y^7\sqrt{xy}$
$20x^{11}y^8\sqrt{y}$
$20x^{11}y^{7.5}$
$20x^{11}y^7\sqrt{y}$
29
Apply the Unified Process to simplify $3a\sqrt{32a^3b^6}$, assuming $a, b \ge 0$.
$4a^2b^3\sqrt{8a}$
$12a^3b^6\sqrt{2a}$
$6ab^3\sqrt{8a^3}$
$12a^2b^3\sqrt{2a}$
30
Simplify $-5xy^3\sqrt{72x^{11}y^7}$, assuming $x, y \ge 0$.
$-30x^6y^6\sqrt{2xy}$
$-10x^6y^6\sqrt{18xy}$
$-30x^5y^6\sqrt{2xy}$
$-30x^6y^7\sqrt{2x}$
31
For the expression $10p\sqrt{125p^4q^{13}}$, if the simplified form is written as $A\sqrt{B}$, what term correctly represents the remaining radicand $B$?
$5q$
$q$
$p^2q^6$
$5$
32
Simplify the complex mixed surd $\frac{1}{2}m^2n\sqrt{200m^7n^9}$. (Assume $m, n \ge 0$)
$5m^5n^5\sqrt{2mn}$
$25m^5n^5\sqrt{2mn}$
$5m^4n^5\sqrt{2mn}$
$10m^5n^4\sqrt{2mn}$
33
Simplify $-4k\sqrt{98k^{100}j^{201}}$. (Assume $k, j \ge 0$)
$-56k^{51}j^{100}\sqrt{j}$
$-28k^{51}j^{101}\sqrt{2}$
$-28k^{50}j^{100}\sqrt{2kj}$
$-28k^{51}j^{100}\sqrt{2j}$
34
Given the expression $C\sqrt{R}$ is the simplified form of $2a^2b\sqrt{18a^5b^9c^2}$. What is the coefficient $C$?
$18a^4b^5c$
$6a^4b^5c$
$3a^4b^5c$
$6a^2b^4c$
35
Simplify $-2\sqrt{147x^4y^2}$. (Assume $x, y \ge 0$)
$-14x^2y\sqrt{3}$
$-7x^2y\sqrt{6}$
$-28x^2y\sqrt{3}$
$-14xy\sqrt{3x^2y}$
36
Which of the following expressions must satisfy the condition $x \ge 0$ for the expression to be defined in the real number system?
$x^2\sqrt{10}$
$\sqrt{10x}$
$\sqrt{10x^2}$
$5x\sqrt{10}$
37
Which expression is NOT written in a fully simplified surd form? (Assume variables are non-negative)
$x^2y\sqrt{x^3y}$
$5p\sqrt{2q}$
$10\sqrt{15}$
$-3a^3b^2\sqrt{7}$
38
A student simplified $6\sqrt{240}$ to $12\sqrt{60}$. Which error was made in reaching the fully simplified form?
The remaining radicand $60$ still contains the perfect square factor $4$.
The extracted coefficient $2$ was not multiplied by the existing coefficient $6$.
The numerical factor $4$ was missed in the initial extraction.
The student failed to identify the largest perfect square factor of $240$ (which is $16$).
39
Advanced Application: Simplify the expression $(48x^5y^8)^{1/2}$, assuming $x, y \ge 0$.
$16x^2y^4\sqrt{3x}$
$4x^2y^4\sqrt{3}$
$4x^{2.5}y^4$
$4x^2y^4\sqrt{3x}$
40
Simplify $7a^{-1}b^3\sqrt{243a^{15}b^6}$. (Assume $a, b > 0$)
$63a^6b^6\sqrt{3a}$
$63a^7b^6\sqrt{3a}$
$21a^6b^6\sqrt{3a}$
$9a^6b^6\sqrt{21a}$