Worksheet Header

Enter Password to Begin

Incorrect password. Please try again.

CTJan27 Online Year 7 - Applying Properties of Exponents

CTJan27 Online Year 7 - Applying Properties of Exponents

Complete all the Questions

Multiple Choice

  1. Simplify the expression $3^2 \times 3^4$.

  2. Simplify the expression $x^7 \cdot x^2$.

  3. Simplify the expression $\frac{5^7}{5^3}$.

  4. Simplify the expression $\frac{y^{10}}{y^3}$ for $y \neq 0$.

  5. Simplify the expression $(2^3)^4$.

  6. Simplify the expression $(a^5)^2$.

  7. Simplify the expression $(2x)^3$.

  8. Simplify the expression $(3ab)^2$.

  9. Simplify the expression $\left(\frac{m}{n}\right)^5$ for $n \neq 0$.

  10. What is the value of $7^0$?

  11. What is the value of $(x+y)^0$ for any non-zero values of $x$ and $y$?

  12. Express $4^{-2}$ as a fraction.

  13. Rewrite $p^{-3}$ using a positive exponent.

  14. Express $\left(\frac{2}{3}\right)^{-1}$ as a simplified fraction.

  15. Simplify the expression $\frac{4^5 \times 4^2}{4^3}$.

  16. Simplify the expression $(x^3)^2 \cdot x^4$.

  17. Simplify $m^5 \cdot m^{-2}$.

  18. Simplify $\frac{k^4}{k^{-1}}$ for $k \neq 0$.

  19. Simplify $y^0 \cdot y^6$.

  20. Simplify the expression $\left(\frac{a^3b^{-2}}{ab^0}\right)^2$ for $a \neq 0, b \neq 0$.

  21. Simplify $\frac{(2^3)^2 \cdot 2^{-4}}{2^0}$.

  22. Simplify the expression $\frac{10x^5}{2x^{-2}}$ for $x \neq 0$.

  23. Simplify $\left(\frac{r^{-3}}{r^{-1}}\right)^2$ for $r \neq 0$.

  24. Simplify $(3x^2y^3)(2x^{-1}y^4)$.

  25. Evaluate the expression $\frac{(5^2)^3 \cdot 5^{-1}}{5^4}$.

  26. Simplify the expression $\frac{(x^3 y^2)^2 \cdot x^5}{y^4 \cdot x^0}$ where $x \ne 0$ and $y \ne 0$.

  27. Evaluate the expression $(2^{-2} \cdot 4^2)^{-1} \cdot 8^3$.

  28. Simplify the expression $\left(\frac{3a^2 b^{-3}}{9a^{-1} b^2}\right)^{-2}$. Assume $a \ne 0$ and $b \ne 0$.

  29. Simplify the expression $\frac{(5x^{-2}y^3)^0 \cdot (x^2y^{-1})^3}{x^{-4}y^2}$. Assume $x \ne 0$ and $y \ne 0$.

  30. What is the value of $\left(\left(\frac{1}{3}\right)^{-2}\right)^{-1}$?

  31. Simplify $\frac{(2a^3b^{-2})^3}{4a^5b^{-7}}$. Assume $a \ne 0$ and $b \ne 0$.

  32. Evaluate $(-2)^3 + 3^{-2} - (-4)^0$.

  33. If $2^{3x-1} = 16^2$, what is the value of $x$?

  34. Simplify $\left(\left(\frac{m^2}{n^{-3}}\right)^{-1}\right)^2 \cdot m^5 n^{-2}$. Assume $m \ne 0$ and $n \ne 0$.

  35. Evaluate $\left(\frac{3^{-1} + 2^{-1}}{(6^{-1})^0}\right)^{-1}$.

  36. Simplify $\frac{5^2 \cdot 10^{-3}}{ (2 \cdot 5)^3 \cdot 5^{-5}}$.

  37. Simplify $\frac{x^{2a} \cdot x^{b}}{x^{a-b}}$ where $x \ne 0$.

  38. Simplify $( (-3x^{-2})^2 )^{-1}$. Assume $x \ne 0$.

  39. Simplify $\left(\frac{4m^3 n^{-1}}{2m^2 n^0}\right)^3 \cdot m^{-5} n^4$. Assume $m \ne 0$ and $n \ne 0$.

  40. Evaluate $\left(\frac{(-1)^5 \cdot 2^3}{4^{-1}}\right)^0 + (-3)^{-2}$.

  41. Simplify $\frac{(ab^2)^{-3} \cdot (a^{-2}b)^2}{(a^3b^{-1})^{-1}}$. Assume $a \ne 0$ and $b \ne 0$.

  42. What is the equivalent expression for $(2x^a y^b)^c \cdot (x^2 y^{-1})^{-2}$?

  43. Evaluate $\left(-\frac{1}{2}\right)^3 \cdot (2^{-2})^{-1} \cdot 4^2$.

  44. Simplify $\frac{12a^0 b^{-5} (a^2b^3)^2}{(2a^{-1}b)^3}$. Assume $a \ne 0$ and $b \ne 0$.

  45. Evaluate $(0.25)^{-2} \cdot 8^0 \cdot \frac{2^5}{4^{-1}}$.