Worksheet Header

Enter Password to Begin

Incorrect password. Please try again.

CTJan27 Online Year 8 Mathamatical Reasoning Test

Math Worksheet

Multiple Choice

  1. Which of the following numbers is an irrational number?

  2. Which statement about rational and irrational numbers is true?

  3. Simplify $\displaystyle \frac{(2x^3y^2)^3 \cdot (3x^2y^4)}{12x^5y^7}$.

  4. Assume $a,b\neq0$. Simplify $\displaystyle \left(\frac{a^5b^3}{ab^2}\right)^3\cdot (a^2b)^0$.

  5. Earth has mass $5.97\times10^{24}$ kg, Sun has mass $1.99\times10^{30}$ kg. How many times more massive is the Sun?

  6. A virus is $2.5\times10^{-7}$ m; a bacterium is $4.0\times10^{-6}$ m. What is the combined length of 5 viruses and 2 bacteria (scientific notation)?

  7. Solve $3(2x-5)+7=4x-2(x+1)$.

  8. Solve $\displaystyle \frac{2x}{3}-\frac{x-1}{2}=5$.

  9. Which scenario does \emph{not} represent a function?

  10. Function $F$ has $(-3,11),(-1,7),(0,5),(2,1)$. Function $H$ is the line through $(-2,9),(2,-7)$. Compare intercepts.

  11. A plant grows linearly: day $5$ height $18$ cm; day $12$ height $32$ cm. Find height on day $2$.

  12. Line $f(x)=mx+b$ has slope $-3$ and passes through $(2,-5)$. Which statement is true?

  13. Solve $3(x-4)-2x>5x+8$.

  14. Solve $5-2(3x+1)\ge 4x-13$.

  15. A laptop was \$900 after a $25\%$ discount from the original price, then increased by $20\%$. Final price vs original?

  16. Population $+10\%$ in 2022, then $-10\%$ in 2023. End of 2023 population $=9900$. Find population at start of 2022.

  17. Boys:Girls $=3:5$. After $12$ boys leave and $4$ girls join, ratio becomes $1:2$. Initial total?

  18. Ratios: French:Italian $=3:4$, Italian:German $=2:5$. If German exceeds French by $42$, how many Italian?

  19. Boys:Girls $=3:4$, Girls:Teachers $=8:1$. If there are $140$ students, how many teachers?

  20. A bag has red:blue $=5:3$. After adding $10$ red, ratio becomes $15:7$. Total marbles before addition?

  21. $U=\{1,2,\dots,50\}$; $P=$ multiples of $3$; $Q=$ multiples of $5$. How many in $U$ are neither multiples of $3$ nor $5$?

  22. $U=\{1\le x\le 10\}$; $P=\{1,2,3,4,5\}$, $Q=\{4,5,6,7,8\}$, $R=\{2,3,5,7,9\}$. Find $(P\cap Q)'\cup R$ (complement relative to $U$).

  23. For what $x$ is $x^2=9x$ true?

  24. Auditorium rows: $12,15,18,\dots$ seats. Expression for $n$th row?

  25. Sequence $2,9,22,41,\dots$. Find the $7$th term.

  26. $a_n=2a_{n-1}-a_{n-2}$ with $a_1=3,a_2=5$. Find $a_5$.

  27. Sequence $\tfrac12,\tfrac14,\tfrac18,\tfrac1{16},\dots$. Which term equals $\tfrac1{512}$?

  28. Sequence $3,8,15,24,\dots$. Next term?

  29. Given the sequence $a_n=\dfrac{n^2+n}{2}$. What is the sum of the first $4$ terms?

  30. Evaluate $\left(1\frac{1}{2}-\frac{3}{4}\right)\div\left(\frac{5}{6}+\frac{1}{3}\right)\times 2$.

  31. Compute $\displaystyle \frac{2}{3} \div \left(\frac{1}{2}+\frac{1}{3}\right)\times\left(\frac{3}{4}-\frac{1}{5}\right)+\frac{1}{4}$.

  32. Simplify $\left(\frac12\right)^2 + 3\frac{1}{3} \div \left(1\frac{1}{4}-\frac12\right)$.

  33. Simplify $\displaystyle \frac{8^3\cdot(2^{-2})^4}{4^{-5}}$.

  34. Simplify $(\tfrac{1}{5})^{-3}\cdot(5^2)^{-1}\cdot 5^0$.

  35. If $9^x\cdot (3^2)^5=\dfrac{1}{27^{-2}}$, find $x$.