CTJan27 Online Year 8 - Surds Review Test
Multiple Choice
Which of the following numbers is a surd?
Which of the following statements about surds is INCORRECT?
Simplify the surd expression $\sqrt{72x^5y^8}$, where $x > 0$ and $y > 0$.
Simplify the expression $\sqrt{128a^3b^7c^2}$, where $a, b, c$ are positive variables.
Simplify the expression $3\sqrt{45x^7}$, where $x > 0$.
Simplify the expression $2\sqrt{12} + \sqrt{75} - 3\sqrt{27} + \sqrt{48} - \sqrt{3}$.
Simplify the expression $\sqrt{18} + \sqrt{50} - \sqrt{8} + \sqrt{98} - \sqrt{32}$.
Simplify the expression $3\sqrt{20} - 2\sqrt{45} + \sqrt{80} - 4\sqrt{5} + \sqrt{125}$.
Simplify the expression $5\sqrt{24} - 2\sqrt{54} + 3\sqrt{150} - \sqrt{6} + 2\sqrt{96}$.
Simplify the expression $\sqrt{108} + 2\sqrt{75} - \sqrt{243} + 3\sqrt{12} - \sqrt{300}$.
Simplify the product $(2\sqrt{3})(5\sqrt{6})$.
Expand and simplify $(3 + \sqrt{2})(4 - \sqrt{2})$.
Expand and simplify $(5\sqrt{3} - 2)(2\sqrt{3} + 1)$.
Simplify $(7 - 2\sqrt{5})(7 + 2\sqrt{5})$.
Simplify $(3\sqrt{2} + \sqrt{5})^2$.
Simplify the product $(\sqrt{8x})(\sqrt{2x^3})$, where $x > 0$.
Expand and simplify $(3\sqrt{5} - \sqrt{2})(2\sqrt{5} + 3\sqrt{2})$.
Simplify the expression $\frac{\sqrt{72}}{\sqrt{8}}$.
Rationalise the denominator of $\frac{6}{\sqrt{18}}$.
Rationalise the denominator of $\frac{3x}{\sqrt{12x^3}}$, where $x > 0$.
Rationalise the denominator of $\frac{1}{3 + \sqrt{2}}$.
Rationalise the denominator of $\frac{\sqrt{3}}{2\sqrt{3} - \sqrt{6}}$.
Rationalise the denominator and simplify $\frac{5 + \sqrt{5}}{5 - \sqrt{5}}$.
Simplify the expression $\frac{10}{\sqrt{5}} + \sqrt{20} - \frac{1}{\sqrt{5} - \sqrt{3}}$.
Simplify the expression $\frac{\sqrt{48} - \sqrt{12}}{\sqrt{3}} + \frac{1}{\sqrt{3} - 1}$.
Given $x = \frac{1}{2-\sqrt{3}}$ and $y = \frac{1}{2+\sqrt{3}}$, determine the value of $x^2 + y^2$.
If $P = (\sqrt{5} + \sqrt{3})^2$ and $Q = (\sqrt{5} - \sqrt{3})^2$, find the value of $\frac{P+Q}{P-Q}$.