CTJan27 Online Math Methods - Matrices Multiplication, Inverse Matrices, and Solving Simultaneous Equations
Multiple Choice
Let $A = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}$. Calculate the product $AB$.
Given $P = \begin{pmatrix} -1 & 2 \\ 0 & 3 \end{pmatrix}$ and $Q = \begin{pmatrix} 4 & -2 \\ 1 & 5 \end{pmatrix}$. Find $PQ$.
If $M = \begin{pmatrix} 3 & -1 \\ 2 & 5 \end{pmatrix}$ and $v = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$, what is $Mv$?
Given $R = \begin{pmatrix} 6 & -3 \end{pmatrix}$ and $S = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. Calculate $RS$.
Let $C = \begin{pmatrix} 1 & 0 & 2 \\ 3 & 1 & 0 \end{pmatrix}$ and $D = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 4 & 3 \end{pmatrix}$. Find $CD$.
Given $E = \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix}$ and $F = \begin{pmatrix} 3 & 0 & 1 \\ -1 & 2 & 4 \end{pmatrix}$. Compute $EF$.
What is the product of the matrix $A = \begin{pmatrix} 5 & 2 \\ -1 & 3 \end{pmatrix}$ and the identity matrix $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$?
Calculate the determinant of the matrix $M = \begin{pmatrix} 5 & 3 \\ 2 & 4 \end{pmatrix}$.
Find the determinant of $A = \begin{pmatrix} -3 & 2 \\ 4 & -5 \end{pmatrix}$.
For the matrix $P = \begin{pmatrix} 6 & -1 \\ 2 & 3 \end{pmatrix}$, find its adjoint (adjugate) matrix.
What is the inverse of the matrix $A = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$?
Find the inverse of the matrix $B = \begin{pmatrix} 4 & 5 \\ 1 & 2 \end{pmatrix}$.
Which of the following matrices is singular?
If $A = \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix}$, and $A^{-1} = \begin{pmatrix} 3 & -4 \\ -2 & 3 \end{pmatrix}$, what is $AA^{-1}$?
Which matrix equation represents the system of linear equations $\begin{cases} 3x - 2y = 7, \\ x + 4y = 5. \end{cases}$
The matrix equation $\begin{pmatrix} 5 & -1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 12 \\ 1 \end{pmatrix}$ corresponds to which system of linear equations?
A system of equations is given by $A\mathbf{x} = \mathbf{b}$, where $A = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 7 \\ 4 \end{pmatrix}$. Given that $A^{-1} = \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix}$, find the solution $\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}$.
For the system $A\mathbf{x} = \mathbf{b}$ where $A = \begin{pmatrix} 4 & -1 \\ -3 & 2 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 11 \\ -7 \end{pmatrix}$. Given $A^{-1} = \begin{pmatrix} 2/5 & 1/5 \\ 3/5 & 4/5 \end{pmatrix}$, what is the value of $x$?
Solve the following system of equations using matrix methods: $\begin{cases} 2x + y = 7, \\ x + 2y = 8. \end{cases}$
Solve for $y$ in the system $\begin{cases} 5x + 3y = 11, \\ 2x + y = 4. \end{cases}$
Let matrix $A$ be $3 \times 2$ and matrix $B$ be $2 \times 4$. What are the dimensions of the product $AB$?
Let $A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ and $B = \begin{pmatrix} 3 & 1 \\ 2 & 4 \end{pmatrix}$. Which of the following is the correct value of $AB$?
To solve for $y$ in the system $5x + 3y = 11$ and $2x + y = 4$ using matrices, which of the following expressions represents $y$?
If a $2 \times 2$ matrix $M$ has a determinant of $4$, what is the determinant of $M^{-1}$?
Let $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}$. What is the element in the first row, second column of the product $AB$?