Worksheet Header

Enter Password to Begin

Incorrect password. Please try again.

CTJan27 Online Year 10 - Introduction to Matrices, Addition, Subtraction and Scaller Mutiplication

CTJan27 Online Year 10 - Introduction to Matrices, Addition, Subtraction and Scaller Mutiplication

Complete all the questions.

Multiple Choice

  1. What is the order of the matrix $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$?

  2. For the matrix $B = \begin{pmatrix} 10 & 11 & 12 \\ 13 & 14 & 15 \\ 16 & 17 & 18 \end{pmatrix}$, what is the element $b_{23}$?

  3. Given $M = \begin{pmatrix} 3x & 7 \\ 2 & y \end{pmatrix}$ and $N = \begin{pmatrix} 9 & 7 \\ 2 & -5 \end{pmatrix}$. If $M = N$, what are the values of $x$ and $y$?

  4. Let $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}$. Calculate $A+B$.

  5. Given matrices $X = \begin{pmatrix} 10 & 8 \\ 5 & 3 \end{pmatrix}$ and $Y = \begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix}$. Calculate $X-Y$.

  6. If $P = \begin{pmatrix} 2 & 4 \\ 6 & 8 \end{pmatrix}$, what is the result of $3P$?

  7. Let $C = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 3 & 4 \end{pmatrix}$ and $D = \begin{pmatrix} 5 & 2 & 1 \\ -2 & 0 & 3 \end{pmatrix}$. Find $C+D$.

  8. Given $R = \begin{pmatrix} 10 & 5 \\ 8 & 3 \\ 2 & 1 \end{pmatrix}$ and $S = \begin{pmatrix} 3 & 2 \\ 1 & 0 \\ 4 & -1 \end{pmatrix}$. Calculate $R-S$.

  9. If $T = \begin{pmatrix} 3 \\ -2 \\ 6 \end{pmatrix}$, what is the result of $-2T$?

  10. A matrix that has only one row is called a:

  11. Given $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{pmatrix}$. What is $A+B$?

  12. Let $A = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}$ and $B = \begin{pmatrix} 3 & 1 \\ 0 & 4 \end{pmatrix}$. Find $2A+B$.

  13. Given $A = \begin{pmatrix} 4 & 5 \\ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 2 \\ -1 & 0 \end{pmatrix}$. Calculate $A-3B$.

  14. Let $M = \begin{pmatrix} 2 & -1 \\ 0 & 3 \end{pmatrix}$ and $N = \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix}$. Find $2(M+N)$.

  15. If $\begin{pmatrix} 4x & 8 \\ 1 & 2y \end{pmatrix} = \begin{pmatrix} 12 & 8 \\ 1 & -10 \end{pmatrix}$, what are the values of $x$ and $y$?

  16. Given $A = \begin{pmatrix} 1 & 2 \\ x & 4 \end{pmatrix}$, $B = \begin{pmatrix} 3 & -1 \\ 2 & 5 \end{pmatrix}$, and $A+B = \begin{pmatrix} 4 & 1 \\ 7 & 9 \end{pmatrix}$. What is the value of $x$?

  17. If $4 \begin{pmatrix} 1 & 2 \\ 3 & y \end{pmatrix} = \begin{pmatrix} 4 & 8 \\ 12 & -20 \end{pmatrix}$, what is the value of $y$?

  18. Let $A = \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, and $C = \begin{pmatrix} 5 & -2 \\ 0 & 1 \end{pmatrix}$. Calculate $A+2B-C$.

  19. What is a matrix where all its elements are zero called?

  20. Given $M = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ and $N = \begin{pmatrix} 5 \\ 6 \end{pmatrix}$. What is $2M - N$?