LearnAF Dataset

Last updated: 11/02/2020

Overview

Data is captured using a custom rig (shown below) that captures images of a scene using 5 phone cameras simultaneously. Each camera captures a 49 image focal sweep, in which the focus distance of each image is changed. We share the RGB images from all 5 cameras, their computed pose, the dual-pixel data and the depth maps.

Organization

Data is split into "test" and "train" folders. There are 351 focal sweeps in "train" and 47 focal sweeps in "test". Each of these has the following subdirectories:

- scaled_images/<capture_name>/<focal_slice_idx>/result_scaled_image_{center|left|right |top|bottom}.jpg: Five RGB images from the 5 phones scaled down to 378x504 resolution.
- scaled_camera_pose/<capture_name>/<focal_slice_idx>/result_scaled_camera_pose_*.t
 xt: Camera poses corresponding to the 5 images above. See <u>Camera Pose Description</u>
 for details.
- raw_left_pd/<capture_name>/<focal_slice_idx>/result_pd_left_*.png: 16 bit PNG images corresponding to the raw left PD data captured from the sensor of size 756 x 2016. This data has a white level of 1023, so all pixels will be in the range [0, 1023]. This also corresponds to the data captured by our app, but in the app the raw pixels have been multiplied by 65535 / 1023, so that they use the entire range of 16 bit values.
- raw_up_left_pd/<capture_name>/<focal_slice_idx>/result_up_pd_left*.png: Left dual-pixel image of size 1512x2016 resized to have the same aspect ratio as the RGB image.
- raw_right_pd/<capture_name>/<focal_slice_idx>/result_pd_right_*.png: 16 bit PNG images corresponding to the raw right PD data captured from the sensor.

- raw_up_right_pd/<capture_name>/<focal_slice_idx>/result_up_pd_right*.png: Right dual-pixel image of size 1512x2016 resized to have the same aspect ratio as the RGB image.
- *merged_depth/<capture_name>/result_merged_depth_*.png*: Depth map corresponding to the five images. See <u>Depth Map Description</u> to understand how the depth is stored.
- *merged_conf/<capture_name>/result_merged_conf_*.exr* : Confidence of the depth maps above in the range [0, 1]. The test dataset also contains these as binary numpy arrays.

Camera Pose Description

Camera Model

A camera transforms a homogeneous 3D point X into a point x on its image plane. The mapping can be divided into the following 3 steps:

1. Transform the 3D point **X** into a ray **u** in the local coordinate system

u = R * (X - c)

2. Project *u* to *v* in the normalized image coordinate system.

v = u / u[2]

3. Map *v* to *x* in the pixel coordinate system.

```
r = v[0]^2 + v[1]^2
```

distortion factor = 1 + k1 * r + k2 * r * r + k3 * r * r * r;

xd = v[0] * distortion_factor yd = v[1] * distortion_factor

x = [f * xd + s * yd + px; f * a * yd + py]

where

- X : Homogeneous point.
- *c* : Position of the camera.
- *R* : Orientation of the camera.
- f : Focal length.
- s : Skew.
- *a* : Pixel aspect ratio (a = scale_factor_y / scale_factor_x).

px, py : Principal point.

k1, k2, k3 : Radial distortion coefficients.

x : Image of X.

Camera File

A typical provided camera pose file is as follows:

```
position: -0.034968384543875804
position: 0.00015154158334801444
position: 0.010699204117784251
orientation: 0.0033926260744923686
orientation: 0.0075903968782610378
orientation: -0.012258027817996359
focal length: 860.3425758403057
pixel aspect ratio: 1
principal point: 378.94709474340851
principal point: 505.62880599068296
radial distortion: 0.026503988319729721
radial distortion: 0.0079358472962738225
radial distortion: 0
skew: 0
size x: 756
size y: 1008
projection type: PERSPECTIVE
```

where:

position: Position of the camera (*c*) orientation: Orientation (*R*) of the camera expressed in Angle-Axis notation. focal_length: Focal length (*f*) in pixels . pixel_aspect_ratio: Pixel aspect ratio (*a*). Always 1. principal_point : Principal point location (*px*, *py*) in pixels. radial_distortion: Parameters for radial distortion (*k1*, *k2*, *k3*). skew: Skew (s). Always 0. size_x: Image width. size_y: Image height. projection_type: Type of camera model. Always PERSPECTIVE.

Depth Map Description

Depth maps are obtained by inverse perspective sampling of depth in the range [0.2, 100] meters.

To convert a given depth map to inverse perspective depth in the range [0, 1]:

depth_map = depth_map / 255.0

To further convert to depth in meters:

(max * min) / (max - (max - min) * depth_map)

where max = 100.0 and min = 0.2

Even though the depth can be converted into meters, it's not guaranteed to be metric correct since the absolute scale of the reconstruction is unknown.

Slice Index	Focus Distance (mm)	Slice Index	Focus Distance (mm)	Slice Index	Focus Distance (mm)
slice_00	3910.92	slice_17	274.13	slice_34	142.35
slice_01	2289.27	slice_18	261.53	slice_35	138.98
slice_02	1508.71	slice_19	247.35	slice_36	134.99
slice_03	1185.83	slice_20	237.08	slice_37	131.23
slice_04	935.91	slice_21	225.41	slice_38	127.69
slice_05	801.09	slice_22	216.88	slice_39	124.99
slice_06	700.37	slice_23	207.10	slice_40	121.77
slice_07	605.39	slice_24	198.18	slice_41	118.73
slice_08	546.23	slice_25	191.60	slice_42	116.40
slice_09	486.87	slice_26	183.96	slice_43	113.63
slice_10	447.99	slice_27	178.29	slice_44	110.99
slice_11	407.40	slice_28	171.69	slice_45	108.47
slice_12	379.91	slice_29	165.57	slice_46	106.54

Focus Distances

slice_13	350.41	slice_30	160.99	slice_47	104.23
slice_14	329.95	slice_31	155.61	slice_48	102.01
slice_15	307.54	slice_32	150.59		
slice_16	291.72	slice_33	146.81		