
Hands On Elasticsearch
Malloum Laya / David Pilato

Qui ?

{
	"nom" : "David Pilato",
	"jobs" : [
		{ "boite" : "SRA Europe (SSII)", "mission" : "bon à tout faire", "duree" : 3 },
 		{ "boite" : "SFR", "mission" : "touche à tout", "duree" : 3 },
		{ "boite" : "e-Brands / Vivendi", "mission" : "chef de projets", "duree" : 4 },
		{ "boite" : "DGDDI (douane)", "mission" : "mouton à 5 pattes", "duree" : 8 },
	 { "boite" : "IDEO Technologies", "mission" : "directeur technique", "duree" : 0 }],
	"passions" : ["famille", "job", "deejay"],
	"blog" : "http://dev.david.pilato.fr/",
	"twitter" : ["@dadoonet", "@elasticsearchfr", "@scrutmydocs"],
	"email" : "david@pilato.fr"
}

$ curl http://localhost:9200/talk/speaker/dpilato

$ curl http://localhost:9200/talk/speaker/TheMalloum
{
	"nom" : "Malloum Laya",
	"jobs" : [
		{ "boite" : "Logica", "mission" : "développeur", "duree" : 3 },
		{ "boite" : "DGDDI (douane)", "mission" : "chef de projets", "duree" : 4 }],
	"passions" : ["famille", "informatique", "rap"],
	"blog" : "http://malloum.fr/",
	"twitter" : ["@TheMalloum", "@scrutmydocs"],
	"email" : "malloum.laya@gmail.com"
}

http://localhost:9200/talk/speaker/TheMalloum
mailto:malloum.laya@gmail.com

Agenda

Aperçu d'Elasticsearch

Atelier 1 : indexons

Atelier 2 : cherchons

Atelier 3 : analysons

Elasticsearch
Les fondamentaux

Un moteur de
recherche

un moteur d’indexation de "documents"

un moteur de recherche sur les index

Elasticsearch

Moteur de recherche pour la génération NoSQL

Basé sur le standard Apache Lucene

Masque la complexité Java/Lucene à l’aide de services
standards HTTP / RESTful / JSON

Utilisable à partir de n’importe quelle technologie

Ajoute la couche cloud manquante à Lucene avec distribution,
réplication, fail over

Très performant : distribution des calculs sur plusieurs nœuds

C’est un moteur, pas une interface graphique !

Penser document !
Changement de paradigme :

On ne pense plus SQL !

On indexe ce qu'on veut trouver !

Un document, c'est :

Un objet JSON

Des propriétés simples (String, boolean, number)

Des propriétés complexes (array, object)

Des propriétés évoluées (geoloc, binary, attachments)

Ranger ses
documents

Elasticsearch met à notre disposition

Des types de document

Des index

Le document 1 de type Tweet dans l’index Twitter :
{
 "text": "Bienvenue au Hands On Lab #elasticsearch pour #jduchess",
 "created_at": "2012-04-06T20:45:36.000Z",
 "source": "Twitter for iPad",
 "truncated": false,
 "retweet_count": 0,
 "hashtag": [{ "text": "elasticsearch", "start": 27, "end": 40 },	
 { "text": "jduchess", "start": 47, "end": 55 }],
 "user": {	"id": 51172224,	"name": "David Pilato",	
 "screen_name": "dadoonet", "location": "France",
	 "description": "Soft Architect, Project Manager, Senior Developper.\r\nAt this time, enjoying NoSQL
world : CouchDB, ElasticSearch.\r\nDeeJay 4 times a year, just for fun !" }
}

Agir avec
Elasticsearch

API REST : http://host:port/[index]/[type]/[_action/id]
Méthodes HTTP : GET, POST, PUT, DELETE

Documents

•curl -XPUT http://localhost:9200/twitter/tweet/1
•curl -XGET http://localhost:9200/twitter/tweet/1
•curl -XDELETE http://localhost:9200/twitter/tweet/1

Recherche

•curl -XPOST http://localhost:9200/twitter/tweet/_search
•curl -XPOST http://localhost:9200/twitter/_search
•curl -XPOST http://localhost:9200/_search

Meta données Elasticsearch

•curl -XGET http://localhost:9200/twitter/_status
•curl -XPOST http://localhost:9200/_shutdown

http://host
http://localhost:9200/twitter/tweet/1
http://localhost:9200/twitter/tweet/1
http://localhost:9200/twitter/tweet/1
http://localhost:9200/twitter/tweet/_search
http://localhost:9200/twitter/tweet,user/_search
http://localhost:9200/_search
http://localhost:9200/twitter/_status
http://localhost:9200/twitter/_status

Quelques notions

• Nœud (node) : Une instance d'Elasticsearch (~ machine ?)
• Cluster : Un ensemble de nœuds
• Partition (shard) : permet de découper un index en plusieurs

parties pour y distribuer les documents
• Réplication (replica) : recopie d’une partition en une ou

plusieurs copies dans l'ensemble du cluster
• Partition primaire (primary shard) : partition élue

"principale" dans l'ensemble du cluster. C'est là que se fait
l'indexation par Lucene. Il n'y en a qu'une seule par shard dans
l'ensemble du cluster.

• Partition secondaire (secondary shard) : partitions
secondaires stockant les replicas des partitions primaires.

Atelier 0
On prépare le terrain

Agir en Java
// Création du noeud. Il s’agit d’une instance d’Elasticsearch complète !
Node node = NodeBuilder.nodeBuilder().node();

// Les opérations courantes (put, get, search, delete) se font à l’aide d’un client !
Client client = node.client();

// On peut aussi faire des opérations d’administration (état du cluster, suppression index, ...) !
AdminClient client = node.client().admin();

Atelier 0

Récupérer la distribution Elasticsearch
ES 0.19.8, elasticsearch.yml modifié, plugins : MOBZ Head, BigDesk, Paramedic
curl -OL -k https://github.com/downloads/elasticsearchfr/hands-on/
elasticsearch-0.19.9-handson.zip

Cloner la repository
git clone https://github.com/elasticsearchfr/hands-on.git

Regarder les sources du test 0
src/test/java/org/elasticsearchfr/handson/ex0/NodeTest.java

https://github.com/elasticsearchfr/hands-on.git

Atelier 1
On indexe des bières ;-)

Indexer en Java
// On peut fabriquer du json à la main
String json = "{ \"field\":\"value\" }";

// En utilisant le XContent d’Elasticsearch
XContentBuilder xcb = XContentFactory.jsonBuilder()
.startObject()
.field("field", "value")
.endObject();
String json = xcb.toString();

// Sérialiser JavaBean en JSon
// On peut utiliser Jackson : http://wiki.fasterxml.com/JacksonHome
Beer beer = new Beer("Heineken", Colour.PALE, 0.33, 3);
ObjectMapper mapper = new ObjectMapper();
String json = mapper.writeValueAsString(beer);

// On peut indexer !
client.prepareIndex("index", "type").setSource(json).execute().actionGet();
client.prepareIndex("index", "type", "id").setSource(xcb).execute().actionGet();

// Insérer en mode Bulk
BulkRequestBuilder brb = node.client().prepareBulk();

// Ajouter des actions à réaliser
brb.add(new IndexRequest("index", "type").source(json));

// Exécuter le bulk
brb.execute().actionGet();

http://wiki.fasterxml.com/JacksonHome

Récupérer en Java
// Récupérer
GetResponse gr = client.prepareGet("index", "type", "id").execute().actionGet();

// Désérialiser de JSon vers JavaBean
ObjectMapper mapper = new ObjectMapper();
Beer beer = mapper.readValue(gr.getSourceAsBytes(), Beer.class);

Effacer en Java
// Effacer
client.prepareDelete("index", "type", "id").execute().get();

Atelier 1

Regarder les sources du test 1
src/test/java/org/elasticsearchfr/handson/ex1/IndexTest.java

Atelier 2
On cherche des bières ;-)

Différentes
recherches

Type Description

Match All Recherche tout le contenu (pratique avec des filtres)

QueryString Recherche avec analyse, jokers (syntaxe Lucene possible* +, -, FROM, TO, ^)

Term Recherche d'un terme sans analyse préalable

Text Recherche d'un texte avec analyse (par défaut OR sur chaque token)

Wildcard Recherche avec joker (*, ?)

Bool Recherche multi-critères (MUST, MUST NOT, SHOULD)

Range Recherche intervalle (>, >=, <, <=)

Prefix Commence par (plus efficace que wilcard*)

Filtered Filtrage (couplage de filtres et de queries)

Fuzzy like this Permet des recherches par vraisemblance de termes

More like this Permet de trouver des documents avec un minimum de termes

http://www.elasticsearch.org/guide/reference/query-dsl/match-all-query.html
http://www.elasticsearch.org/guide/reference/query-dsl/query-string-query.html
http://www.elasticsearch.org/guide/reference/query-dsl/term-query.html
http://www.elasticsearch.org/guide/reference/query-dsl/text-query.html
http://www.elasticsearch.org/guide/reference/query-dsl/wildcard-query.html
http://www.elasticsearch.org/guide/reference/query-dsl/bool-query.html
http://www.elasticsearch.org/guide/reference/query-dsl/range-query.html
http://www.elasticsearch.org/guide/reference/query-dsl/prefix-query.html
http://www.elasticsearch.org/guide/reference/query-dsl/filtered-query.html
http://www.elasticsearch.org/guide/reference/query-dsl/flt-query.html
http://www.elasticsearch.org/guide/reference/query-dsl/mlt-query.html

Chercher en Java
// Lancer une recherche
SearchResponse sr = client.prepareSearch().setQuery(qb).execute().actionGet();

// Fabriquer un QueryBuilder (qb)
// MatchAll
QueryBuilder qb = QueryBuilders.matchAllQuery();

// TermQuery
QueryBuilder qb = QueryBuilders.termQuery("field", "value");

// TextQuery
QueryBuilder qb = QueryBuilders.textQuery("field", "you can enter a text here");

// QueryString
QueryBuilder qb = QueryBuilders.queryString("you can enter a text here");

// RangeQuery
QueryBuilder qb = QueryBuilders.rangeQuery("field").from(5).to(10);

// BoolQuery
QueryBuilder qb = QueryBuilders.boolQuery()

.must(QueryBuilders.textQuery("field1", "value"))

.mustNot(QueryBuilders.textQuery("field2", "value"))

.should(QueryBuilders.rangeQuery("field3").from(0).to(5));

Les résultats
// Lancer une recherche
SearchResponse sr = client.prepareSearch().setQuery(qb).execute().actionGet();

// Récupérer le temps d’exécution
long nbHits = sr.getTookInMillis();

// Récupérer le nombre de hits
long nbHits = sr.getHits().getTotalHits();

// Récupérer les hits
SearchHit[] hits = sr.getHits().getHits();  

// Lire un hit
SearchHit hit = hits[0];

// Récupérer les coordonnées du document
hit.getIndex();
hit.getType();
hit.getId();

// Récupérer la pertinence du document
hit.getScore();

// Récupérer le document source au format Json
hit.getSourceAsString();

Atelier 2

Regarder les sources du test 2
src/test/java/org/elasticsearchfr/handson/ex2/SearchTest.java

Atelier 3
La bière vue sous un autre angle

Les facettes

Les facettes

ID Marque Taille Prix
1 Heineken 0.25 3.50
2 Grimbergen 0.25 4.00
3 Kriek 0.25 3.80
4 Heineken 0.5 6.80
5 Grimbergen 0.5 7.80
6 Kriek 0.5 7.50
7 Heineken 1 12.00
8 Grimbergen 1 14.00
9 Kriek 1 14.00

Term Facet

ID Marque Taille Prix
1 Heineken 0.25 3.50
2 Grimbergen 0.25 4.00
3 Kriek 0.25 3.80
4 Heineken 0.5 6.80
5 Grimbergen 0.5 7.80
6 Kriek 0.5 7.50
7 Heineken 1 12.00
8 Grimbergen 1 14.00
9 Kriek 1 14.00

Marque Count
Heineken 3

Grimbergen 3
Kriek 3

TermFacet en Java
// Fabriquer une TermFacet (facet)
AbstractFacetBuilder facet = FacetBuilders.termsFacet("bybrand").field("marque");

// Avec la recherche
SearchResponse sr = client.prepareSearch().setQuery(qb).addFacet(facet).execute().actionGet();

// Facette en retour
TermsFacet bybrand = sr.getFacets().facet("bybrand");
for (TermsFacet.Entry entry : bybrand) {
String marque = entry.getTerm();
int nb = entry.count();
}

Range Facet

ID Marque Taille Prix
1 Heineken 0.25 3.50
2 Grimbergen 0.25 4.00
3 Kriek 0.25 3.80
4 Heineken 0.5 6.80
5 Grimbergen 0.5 7.80
6 Kriek 0.5 7.50
7 Heineken 1 12.00
8 Grimbergen 1 14.00
9 Kriek 1 14.00

Ranges Count Min Max Moy Total
x < 5 3 3.50 4.00 3.77 11.30

5 <= x < 10 3 6.80 7.80 7.37 22.10
10 <= x 3 12.00 14.00 13.33 40.00

RangeFacet en Java
// Fabriquer une TermFacet (facet)
AbstractFacetBuilder facet = FacetBuilders.rangeFacet("byprice")
.field("price")
.addUnboundedFrom(5)
.addRange(5, 10)
.addUnboundedTo(10);

// Avec la recherche
SearchResponse sr = client.prepareSearch().setQuery(qb).addFacet(facet).execute().actionGet();

// Facette en retour
RangeFacet byprice = sr.getFacets().facet("byprice");
for (RangeFacet.Entry entry : byprice) {
entry.to();
entry.from();
entry.min();
entry.max();
entry.mean();
entry.count();
}

Atelier 3

Regarder les sources du test 3
src/test/java/org/elasticsearchfr/handson/ex3/FacetTest.java

Mailing List ES France
elasticsearch-fr@googlegroups.com

mailto:elasticsearch-fr@googlegroups.com

