
‹#›

Le hasard fait bien les tests

David Pilato
Developer | Evangelist
@dadoonet

Idéalement avant d'écrire le code

2

Vous écrivez des
tests ?

Vous vérifiez ?

3

Couverture des
tests

En continu ?

4

Infinitest

Vous exécutez les tests
régulièrement ?

5

CI

6

Java

7

public static int generateInteger(int min, int max) {
 return ThreadLocalRandom.current().nextInt(min, max);
}

@Test
public void testInteger() {
 int input = generateInteger(
 Integer.MIN_VALUE,
 Integer.MAX_VALUE);
 int output = Math.abs(input);
 
 assertThat(output, greaterThanOrEqualTo(0));
}

8

Java
WTF?

9

public static int generateInteger(int min, int max) {
 return ThreadLocalRandom.current().nextInt(min, max);
}

@Test
public void testInteger() {
 int input = generateInteger(
 Integer.MIN_VALUE,
 Integer.MAX_VALUE);
 int output = Math.abs(input);
 
 assertThat(output, greaterThanOrEqualTo(0));
}

10

11

‹#›

https://github.com/randomizedtesting/

carrotsearch
randomized testing

Ajouter la dépendance au projet
pom.xml

13

<dependency>
 <groupId>com.carrotsearch.randomizedtesting</groupId>
 <artifactId>randomizedtesting-runner</artifactId>
 <version>2.3.3</version>
 <scope>test</scope>
</dependency>

Désactiver surefire
pom.xml

14

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.19</version>
 <executions>
 <execution>
 <id>default-test</id>
 <phase>none</phase>
 </execution>
 </executions>
</plugin>

Activer randomizedtesting
pom.xml

15

<plugin>
 <groupId>com.carrotsearch.randomizedtesting</groupId>
 <artifactId>junit4-maven-plugin</artifactId>
 <version>2.3.3</version>

 ...

</plugin>

Configurer randomizedtesting
pom.xml

16

 ...
 <configuration>
 <heartbeat>10</heartbeat>
 <jvmOutputAction>pipe,ignore</jvmOutputAction>
 <leaveTemporary>true</leaveTemporary>
 <ifNoTests>warn</ifNoTests>
 <listeners>
 <report-text showThrowable="true" showStackTraces="true" showOutput="always"
 showStatusOk="true" showStatusError="true"
 showStatusFailure="true" showStatusIgnored="true"
 showSuiteSummary="true" />
 </listeners>

 <systemProperties combine.children="append">
 <arg.common>arg.common</arg.common>
 </systemProperties>
 </configuration>
 ...

Configurer randomizedtesting pour unit tests
pom.xml

17

 ...
 <executions>
 <execution>
 <id>unit-tests</id>
 <phase>test</phase>
 <goals>
 <goal>junit4</goal>
 </goals>
 </execution>
 </executions>

Run
mvn test

18

[INFO] --- junit4-maven-plugin:2.3.3:junit4 (unit-tests) @ demo-test-framework ---
[INFO] <JUnit4> says ¡Hola! Master seed: AEF86C96467D2F4F
Executing 2 suites with 1 JVM.

Started J0 PID(20619@MacBook-Pro-4.local).
Suite: fr.pilato.demo.testframework.IntegerTest
OK 0.01s | IntegerTest.testInteger
Completed [1/2] in 0.02s, 1 test

Suite: fr.pilato.demo.testframework.RandomTest
FAILURE 0.01s | RandomTest.testFail <<<
 > Throwable #1: java.lang.AssertionError: fail the test
 > at __randomizedtesting.SeedInfo.seed([AEF86C96467D2F4F:235BBDF496C25F4E]:0)
 > at org.junit.Assert.fail(Assert.java:88)
 > at fr.pilato.demo.testframework.RandomTest.testFail(RandomTest.java:31)

...

19

Random ?
seed

20

@Test
public void testSeed() {
 Random generator = new Random();
 int num = generator.nextInt();
 assertThat(num, is(1553932502));
}

Random ?
seed

21

@Test
public void testSeed() {
 Random generator = new Random(12345L);
 int num = generator.nextInt();
 assertThat(num, is(1553932502));
}

22

Random test parameters

23

@Test

public void testInteger() {
 int num = Math.abs(randomInt());
 assertThat(num, greaterThanOrEqualTo(0));
}

Suite: fr.pilato.demo.testframework.RandomTest
FAILURE 0.01s | RandomTest.testFail <<<
 > Throwable #1: java.lang.AssertionError:
 > Expected: a value equal to or greater than <0>
 > but: <-2147483648> was less than <0>
 > at __randomizedtesting.SeedInfo.seed([AEF86C96467D2F4F:235BBDF496C25F4E]:0)
 > at org.junit.Assert.fail(Assert.java:88)
 > at fr.pilato.demo.testframework.RandomTest.testInteger(RandomTest.java:52)

On peut reproduire le test
en utilisant la seed

24

@Test
@Seed("AEF86C96467D2F4F")
public void testIntegerWithSeed() {
 int num = Math.abs(randomInt());
 assertThat(num, greaterThanOrEqualTo(0));
}

Rendre seed configurable
pom.xml

25

 ...
 <configuration>
 <heartbeat>10</heartbeat>
 <jvmOutputAction>pipe,ignore</jvmOutputAction>
 <leaveTemporary>true</leaveTemporary>
 <ifNoTests>warn</ifNoTests>
 <listeners>
 <report-text showThrowable="true" showStackTraces="true" showOutput="always"
 showStatusOk="true" showStatusError="true"
 showStatusFailure="true" showStatusIgnored="true"
 showSuiteSummary="true" />
 </listeners>
 <seed>${tests.seed}</seed>
 <systemProperties combine.children="append">
 <arg.common>arg.common</arg.common>
 </systemProperties>
 </configuration>
 ...

On peut reproduire le test depuis le CLI
en utilisant la seed

26

mvn test -Dtests.seed=AEF86C96467D2F4F

27

Changing the test context

• Input data

• Numbers : randomInt(), randomDouble(), between(1, 10), atLeast(5),
atMost(10000)…

• Booleans : randomBoolean()

• Strings : randomAsciiOfLengthBetween(5, 30)

• TimeZones: randomTimeZone()

• Environnement

• Locale

• Charset

28

Playing with Locale
pom.xml

29

<properties>
 <tests.locale>random</tests.locale>
</properties>

 <configuration>
 ...
 <systemProperties combine.children="append">
 <arg.common>arg.common</arg.common>
 <tests.locale>${tests.locale}</tests.locale>
 </systemProperties>
 </configuration>

Playing with Locale
setup

30

private static final Locale savedLocale = Locale.getDefault();

@BeforeClass
public static void setLocale() {
 String testLocale = System.getProperty("tests.locale", "random");
 Locale locale = testLocale.equals("random") ? randomLocale() :
 new Locale.Builder().setLanguageTag(testLocale).build();
 Locale.setDefault(locale);
}

@AfterClass
public static void resetLocale() {
 Locale.setDefault(savedLocale);
}

Playing with Locale
launch tests

31

@Test
public void withLocale() {
 DateTimeFormatter dateTimeFormatter =
 DateTimeFormatter.ofLocalizedDate(FormatStyle.FULL);
 String format = dateTimeFormatter.format(LocalDate.now());
 System.out.println("locale = " + Locale.getDefault().toLanguageTag());
 System.out.println("format = " + format);
}

RUN 1

locale = es-PR
format = miércoles 9 de marzo de 2016

RUN 2

locale = tr-TR
format = 09 Mart 2016 Çarşamba

Playing with Locale
launch tests with a given Locale

32

mvn test -Dtests.locale=fr-FR

 1> locale = fr-FR
 1> format = mercredi 9 mars 2016

33

‹#›34
AEF86C96467D2F4F:235BBDF496C25F4E

2 seeds ?

• AEF86C96467D2F4F : Contexte statique @BeforeClass @AfterClass

• 235BBDF496C25F4E : Contexte du test @Before @After

35

AEF86C96467D2F4F:235BBDF496C25F4E

Lancer plusieurs fois le même test
histoire d'être vraiment certain !

36

@Test @Repeat(iterations = 10)
public void repeatMe() {
 Locale locale = randomLocale();
 DateTimeFormatter dateTimeFormatter =
 DateTimeFormatter.ofLocalizedDate(FormatStyle.FULL).withLocale(locale);
 String format = dateTimeFormatter.format(LocalDate.now());
 System.out.println("date is [" + format + "] with locale [" +
 locale.toLanguageTag() + "]");
}

De temps en temps…
ou souvent…

37

@Test
public void sometimes() {
 int bulkSize = randomIntBetween(500, 1000);

 for (int i = 0; i < bulkSize; i++) {
 addDocument("english_" + i, generatePerson());
 if (frequently()) {
 addDocument("french_" + i, generatePerson());
 }

 if (rarely()) {
 // Shutdown Node 1
 shutdownNode(1);
 }
 }
}

Ne pas lancer des tests inutiles
We know it will fail!

38

@Test
public void ignoreIfUseless() {
 boolean b = randomBoolean();

 assertThat(b, is(true));
}

Ne pas lancer des tests inutiles
We know it will fail!

39

@Test
public void ignoreIfUseless() {
 boolean b = randomBoolean();

 assumeTrue(b);
 assertThat(b, is(true));
}

En faire moins le jour…

40

@Test @Nightly
public void longRunningTest() {
 int bulkSize = randomIntBetween(500, 1000);

 for (int i = 0; i < bulkSize; i++) {
 try {
 Thread.sleep(Math.abs(between(100, 10000)));
 } catch (InterruptedException e) {
 assumeNoException(e);
 }
 }
}

$ mvn test

IGNOR/A 0.00s | RandomTest.longRunningTest
 > Assumption #1: 'nightly' test group is disabled (@Nightly(value=))

Et plus la nuit !

41

<systemProperties combine.children="append">
 <arg.common>arg.common</arg.common>
 <tests.nightly>${tests.nightly}</tests.nightly>
</systemProperties>

$ mvn test -Dtests.nightly=true

Started J0 PID(26908@MacBook-Pro-4.local).
Suite: fr.pilato.demo.testframework.RandomTest
HEARTBEAT J0 PID(26908@MacBook-Pro-4.local): 2016-03-10T18:04:19, stalled for 11.5s at:
RandomTest.longRunningTest
HEARTBEAT J0 PID(26908@MacBook-Pro-4.local): 2016-03-10T18:04:29, stalled for 21.5s at:
RandomTest.longRunningTest
HEARTBEAT J0 PID(26908@MacBook-Pro-4.local): 2016-03-10T18:04:39, stalled for 31.5s at:
RandomTest.longRunningTest
HEARTBEAT J0 PID(26908@MacBook-Pro-4.local): 2016-03-10T18:04:49, stalled for 41.5s at:
RandomTest.longRunningTest
OK 50.9s | RandomTest.longRunningTest

Sans exagérer toutefois !
timeouts

42

@Test @Nightly @Timeout(millis = 10000)
public void longRunningTest() {
 // ...
}

$ mvn test -Dtests.nightly=true

ERROR 10.0s | RandomTest.longRunningTest <<<
 > Throwable #1: java.lang.Exception: Test timeout exceeded (>= 10000 msec).
 > at __randomizedtesting.SeedInfo.seed([F4FC818C113EF9C6:A3FC90C16C6643D6]:0)

43

Attention aux zombies !
Pensez à stopper vos Threads

44

@Test
public void stopYourThreads() {
 new Thread(new Runnable() {
 public void run() {
 while (true) {
 try { Thread.sleep(1000L); } catch (InterruptedException e) { } } }
 }).start();
}

com.carrotsearch.randomizedtesting.ThreadLeakError: 1 thread leaked from SUITE scope at
fr.pilato.demo.testframework.RandomTest:
 1) Thread[id=12, name=Thread-1, state=TIMED_WAITING, group=TGRP-RandomTest]
 at java.lang.Thread.sleep(Native Method)
 at fr.pilato.demo.testframework.RandomTest$1.run(RandomTest.java:180)
 at java.lang.Thread.run(Thread.java:745)

	 at __randomizedtesting.SeedInfo.seed([1CD01D6C55CD93C0]:0)

Certains zombies sont nos amis
Identifiez-les !

45

@RunWith(RandomizedRunner.class)

public class RandomTest extends RandomizedTest {
 @Test
 public void identifyYourThreads() {
 new Thread(new Runnable() {
 public void run() {
 while (true) {
 try { Thread.sleep(1000L); } catch (InterruptedException e) { } }
 } }, "friendly-zombie").start();
 }
}

Certains zombies sont nos amis
Identifiez-les !

46

@RunWith(RandomizedRunner.class)

public class RandomTest extends RandomizedTest {
 @Test
 public void identifyYourThreads() {
 new Thread(new Runnable() {
 public void run() {
 while (true) {
 try { Thread.sleep(1000L); } catch (InterruptedException e) { } }
 } }, "friendly-zombie").start();
 }
}
public class FriendlyZombieFilter implements ThreadFilter {
 public boolean reject(Thread t) {
 if ("friendly-zombie".equals(t.getName())) { return true; }
 return false;
 }
}

Certains zombies sont nos amis
Identifiez-les !

47

@RunWith(RandomizedRunner.class)
@ThreadLeakFilters(filters = { FriendlyZombieFilter.class })
public class RandomTest extends RandomizedTest {
 @Test
 public void identifyYourThreads() {
 new Thread(new Runnable() {
 public void run() {
 while (true) {
 try { Thread.sleep(1000L); } catch (InterruptedException e) { } }
 } }, "friendly-zombie").start();
 }
}
public class FriendlyZombieFilter implements ThreadFilter {
 public boolean reject(Thread t) {
 if ("friendly-zombie".equals(t.getName())) { return true; }
 return false;
 }
}

Assert with unknown inputs
Trions, c'est bon pour la planète !

48

@Test
public void checkTestResults() {
 int nbTokens = between(10, 100);
 String[] tokens = new String[nbTokens];
 for (int i = 0; i < nbTokens; i++) {
 tokens[i] = randomAsciiOfLengthBetween(5, 10);
 }
 Arrays.sort(tokens);

}

Assert with unknown inputs
Trions, c'est bon pour la planète !

49

@Test
public void checkTestResults() {
 int nbTokens = between(10, 100);
 String[] tokens = new String[nbTokens];
 for (int i = 0; i < nbTokens; i++) {
 tokens[i] = randomAsciiOfLengthBetween(5, 10);
 }
 Arrays.sort(tokens);

 for (int i = 1; i < nbTokens ; i++) {
 assertThat(tokens[i-1], lessThan(tokens[i]));
 }
}

50

Et aussi…

Et si on testait elasticsearch ?

51

Distributed
system

elasticsearch

• Moteur d'indexation, de recherche et d'analytics

• Basé sur Apache Lucene

• Distribué

• Partitionnement

• Réplication

• Scalable horizontalement (et verticalement)

52

elasticsearch node

• master eligible

• data

• master only : data = false

• client only : data = false, master = false

• data only : master = false

• all (default) : data = true, master = true

53

elasticsearch client

• use a client from a node

• use a transport client

54

elasticsearch client

• use a client from a node (deprecated from 5.0)

• use a transport client

• use an http client (coming in 5.0)

55

56

Scénario M+D+C Data only Master only Client only
cluster 1 noeud 1 0 1 0

cluster 3 noeuds 3 0 0 0

cluster 10 noeuds 10 0 0 0

cluster 10 noeuds avec
master dédié

0 7 3 0

cluster 10 noeuds avec
master dédié

0 5 5 0

cluster 10 noeuds avec
master dédié et client

0 7 3 1

cluster 10 noeuds avec
master dédié et clients

0 7 3 2

cluster 20 noeuds avec
master dédié et clients

0 17 3 2

…

Mais aussi…

• cluster name

• node name

• index settings

• nb de shards

• nb de replicas

• algorithme de compression

• …

57

58

nb shards
1 à 10

Replicas ?

59

Compression ?

60

… ?

61

62

63

Créer un cluster
au hasard

64

return new InternalTestCluster(nodeMode, seed, createTempDir(),
 minNumDataNodes, maxNumDataNodes,
 InternalTestCluster.clusterName(scope.name(), seed) + "-cluster",
 nodeConfigurationSource, getNumClientNodes(),
 InternalTestCluster.DEFAULT_ENABLE_HTTP_PIPELINING, nodePrefix,
 enableMockModules);

// ... Compute cluster settings based on ^^^

logger.info("Setup cluster [{}] using [{}] data nodes and [{}] client nodes",
 clusterName, numSharedDataNodes, numSharedClientNodes);

Créer un index
au hasard aussi

65

protected int minimumNumberOfShards() { return DEFAULT_MIN_NUM_SHARDS; }
protected int maximumNumberOfShards() { return DEFAULT_MAX_NUM_SHARDS; }
protected int minimumNumberOfReplicas() { return 0; }
protected int maximumNumberOfReplicas() {
 int maxNumReplicas = Math.max(0, numDataNodes() - 1);
 return frequently() ? Math.min(1, maxNumReplicas) : maxNumReplicas;
}
protected int numberOfShards() {
 return between(minimumNumberOfShards(), maximumNumberOfShards());
}
protected int numberOfReplicas() {
 return between(minimumNumberOfReplicas(), maximumNumberOfReplicas());
}

builder.put(SETTING_NUMBER_OF_SHARDS, numberOfShards())
 .put(SETTING_NUMBER_OF_REPLICAS, numberOfReplicas());

Assigne tous les settings possibles
toujours au hasard

66

if (random.nextBoolean()) { builder.put(AUTO_THROTTLE, false); }
if (random.nextBoolean()) { builder.put(INDEX_CACHE_REQUEST_ENABLED,
 random.nextBoolean()); }
if (random.nextBoolean()) { builder.put("index.shard.check_on_startup",
 randomFrom(random, "false", "checksum", "true")); }
if (random.nextBoolean()) { builder.put(INDEX_TRANSLOG_DISABLE_FLUSH,
 random.nextBoolean()); }
if (random.nextBoolean()) { builder.put(INDEX_TRANSLOG_FLUSH_THRESHOLD_OPS,
 randomIntBetween(random, 1, 10000)); }
if (random.nextBoolean()) { builder.put(INDEX_TRANSLOG_DURABILITY,
 randomFrom(random, Translog.Durabilty.values())); }
if (random.nextBoolean()) {
 builder.put(INDEX_TRANSLOG_FS_TYPE,
 randomFrom(random, TranslogWriter.Type.values()));
 if (rarely(random)) { builder.put(INDEX_TRANSLOG_SYNC_INTERVAL, 0); }
 else { builder.put(INDEX_TRANSLOG_SYNC_INTERVAL,
 randomIntBetween(random, 100, 5000), TimeUnit.MILLISECONDS);
 }
}

67

If you build it

he will come

68

If you randomize it

it will fail.

Paramètres de JVM aléatoires

69

Plate-forme
aléatoire

70

‹#›

Thanks !

Le hasard fait bien les
tests

David Pilato
Developer | Evangelist
@dadoonet

