
‹#›

Advanced search for
your legacy application

David Pilato
Developer | Evangelist
@dadoonet

4

5

The only Elasticsearch as a Service offering
powered by the creators of the Elastic Stack

• Always runs on the latest software

• One-click to scale/upgrade with no downtime

• Free Kibana and backups every 30 minutes

• Dedicated, SLA-based support

• Easily add X-Pack features: security (Shield),
alerting (Watcher), and monitoring (Marvel)

• Pricing starts at $45 a month

Elastic Subscription Packages

6

Elastic Stack BASIC GOLD PLATINUM

Elasticsearch,Kibana, Logstash, Beats ✓ ✓ ✓

X-Pack

Marvel (Monitoring & Management) ✓ ✓
Multicluster Support

>7 days data retention

✓
Multicluster Support

>7 days data retention

Shield (Security) ✓ ✓
Field/document security

Custom realms

Watcher (Alerting) ✓ ✓

Reporting ✓ ✓

Graph Analytics & Visualization ✓

Support

Support coverage and response times provided by
Elastic Support Engineers

Business Hours
4 hour L1 response times

24/7/365
1 hour L1 response times

Emergency patches

7

our legacy platform

8

WEB APP

H
T

T
P / R

EST

JD
BC

DATABASE

SQ
L

our legacy domain / database

9

our legacy application

demo time

$ git clone https://github.com/dadoonet/legacy-search.git
$ git checkout 00-legacy
$ mvn clean install jetty:run

10

1111

Some data
CREATE TABLE user
(
 name VARCHAR(100),
 comments VARCHAR(1000)
);
INSERT INTO user VALUES ('David Pilato', 'Developer at elastic');
INSERT INTO user VALUES ('Malloum Laya', 'Worked with David at
french customs service');
INSERT INTO user VALUES ('David Gageot', 'Engineer at Docker');
INSERT INTO user VALUES ('David David', 'Who is that guy?');

12

Search on term

SELECT * FROM user WHERE name="David";
Empty set (0,00 sec)

INSERT INTO user VALUES ('David Pilato', 'Developer at elastic');
INSERT INTO user VALUES ('Malloum Laya', 'Worked with David at
french customs service');
INSERT INTO user VALUES ('David Gageot', 'Engineer at Docker');
INSERT INTO user VALUES ('David David', 'Who is that guy?');

13

Search like

SELECT * FROM user WHERE name LIKE "%David%";
+--------------+----------------------+
| name | comments |
+--------------+----------------------+
David Pilato	Developer at elastic
David Gageot	Engineer at Docker
David David	Who is that guy?
+--------------+----------------------+

INSERT INTO user VALUES ('David Pilato', 'Developer at elastic');
INSERT INTO user VALUES ('Malloum Laya', 'Worked with David at
french customs service');
INSERT INTO user VALUES ('David Gageot', 'Engineer at Docker');
INSERT INTO user VALUES ('David David', 'Who is that guy?');

14

Search like

SELECT * FROM user WHERE name LIKE "%David%Pilato%";
+--------------+----------------------+
| name | comments |
+--------------+----------------------+
| David Pilato | Developer at elastic |
+--------------+----------------------+

INSERT INTO user VALUES ('David Pilato', 'Developer at elastic');
INSERT INTO user VALUES ('Malloum Laya', 'Worked with David at
french customs service');
INSERT INTO user VALUES ('David Gageot', 'Engineer at Docker');
INSERT INTO user VALUES ('David David', 'Who is that guy?');

15

Search like with inverted terms

SELECT * FROM user WHERE name LIKE "%Pilato%David%";
Empty set (0,00 sec)

INSERT INTO user VALUES ('David Pilato', 'Developer at elastic');
INSERT INTO user VALUES ('Malloum Laya', 'Worked with David at
french customs service');
INSERT INTO user VALUES ('David Gageot', 'Engineer at Docker');
INSERT INTO user VALUES ('David David', 'Who is that guy?');

16

Search in two fields

SELECT * FROM user WHERE name LIKE "%David%" OR
 comments LIKE "%David%";
+--------------+---+
| name | comments |
+--------------+---+
David Pilato	Developer at elastic
Malloum Laya	Worked with David at french customs service
David Gageot	Engineer at Docker
David David	Who is that guy?
+--------------+---+

INSERT INTO user VALUES ('David Pilato', 'Developer at elastic');
INSERT INTO user VALUES ('Malloum Laya', 'Worked with David at
french customs service');
INSERT INTO user VALUES ('David Gageot', 'Engineer at Docker');
INSERT INTO user VALUES ('David David', 'Who is that guy?');

17

1818

1919

2020

Connecting with our app
Architecture

21

DATABASE

SQ
L

ETL

using a ETL
WEB APP

H
T

T
P / R

EST

JD
BC

ELASTICSEARCH

R
EST

 / JSO
N

22

think document!

• Change your mindset:

‒ Forget SQL!

‒ Index what you want to find

• A document

‒ A JSON object

‒ Core field types (string, numbers, booleans)

‒ Complex field types (arrays, objects)

‒ Additional field types (geo points, geo shapes)

2323

Do It Yourself
Direct Connection

24

DATABASE

SQ
L

direct connection
WEB APP

H
T

T
P / R

EST

JD
BC

ES-C
LIEN

T

ELASTICSEARCH

R
EST

 / JSO
N

25

JSON document design
PUT /person/person/1
{
 "name":"Joe Pink",
 "dateOfBirth":"1971-12-26",
 "address_id":"2",
 "marketing_id":"3"
}

PUT /person/address/2
{
 "city":"Paris",
 "country":"France"
}

PUT /person/marketing/3
{
 "cars":1000,
 "food":1500
}

26

JSON document design
PUT /person/person/1
{
 "name":"Joe Pink",
 "dateOfBirth":"1971-12-26",
 "address":{
 "city":"Paris",
 "country":"France"
 },
 "marketing":{
 "cars":1000,
 "food":1500
 }
}

27

direct connection

demo time

$ git clone https://github.com/dadoonet/legacy-search.git
$ git checkout 01-direct
$ git checkout 02-bulk
$ git checkout 03-mapping
$ git checkout 04-aggs
$ git checkout 05-compute
$ mvn clean install jetty:run
$ cat README.markdown

28

synchronous
vs asynchronous

29

DATABASE

SQ
L

using brokers
WEB APP

H
T

T
P / R

EST

JD
BC

ES-C
LIEN

T

ELASTICSEARCH

R
EST

 / JSO
N

30

ELASTICSEARCH

R
EST

 / JSO
N

using brokers
WEB APP

H
T

T
P / R

EST

JD
BC

ES-C
LIEN

T

DATABASE

SQ
L

31

ELASTICSEARCH

R
EST

 / JSO
N

using brokers
WEB APP

H
T

T
P / R

EST

JD
BC

ES-C
LIEN

T

DATABASE

SQ
L

32

33

‹#›

Thanks!
https://www.elastic.co/subscriptions

https://github.com/dadoonet/legacy-search.git

David Pilato
Developer | Evangelist
@dadoonet

