

Search a new era

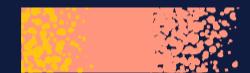
David Pilato | [@dadoonet](https://twitter.com/dadoonet)

FinistDevs The FinistDevs logo, featuring the text "FinistDevs" in a large, red, sans-serif font, followed by a red star. To the right is a small graphic of a sailboat on water with a "GDG" logo in the background.

Search a new era

David Pilato | [@dadoonet](https://twitter.com/dadoonet)

FinistDevstar



Commercial

Elasticsearch

You Know, for Search

Elasticsearch

APACHE
LUCENE™

66

These are not the droids
you are looking for.

```
GET /_analyze
{
  "char_filter": [ "html_strip" ],
  "tokenizer": "standard",
  "filter": [ "lowercase", "stop", "snowball" ],
  "text": "These are <em>not</em> the droids
          you are looking for."
}
```

```
"char_filter": "html_strip"
```

These are **not** the droids you are looking for.

These are not the droids you are looking for.

```
"tokenizer": "standard"
```

These are not the droids you are looking for.

These
are
not
the
droids
you
are
looking
for

```
"filter": "lowercase"
```

These
are
not
the
droids
you
are
looking
for

these
are
not
the
droids
you
are
looking
for

"filter": "**stop**"

These
are
not
the
droids
you
are
looking
for

these
are
not
the
droids
you
are
looking
for

droids
you
looking

"filter": "snowball"

These
are
not
the
droids
you
are
looking
for

these
are
not
the
droids
you
are
looking
for

droids

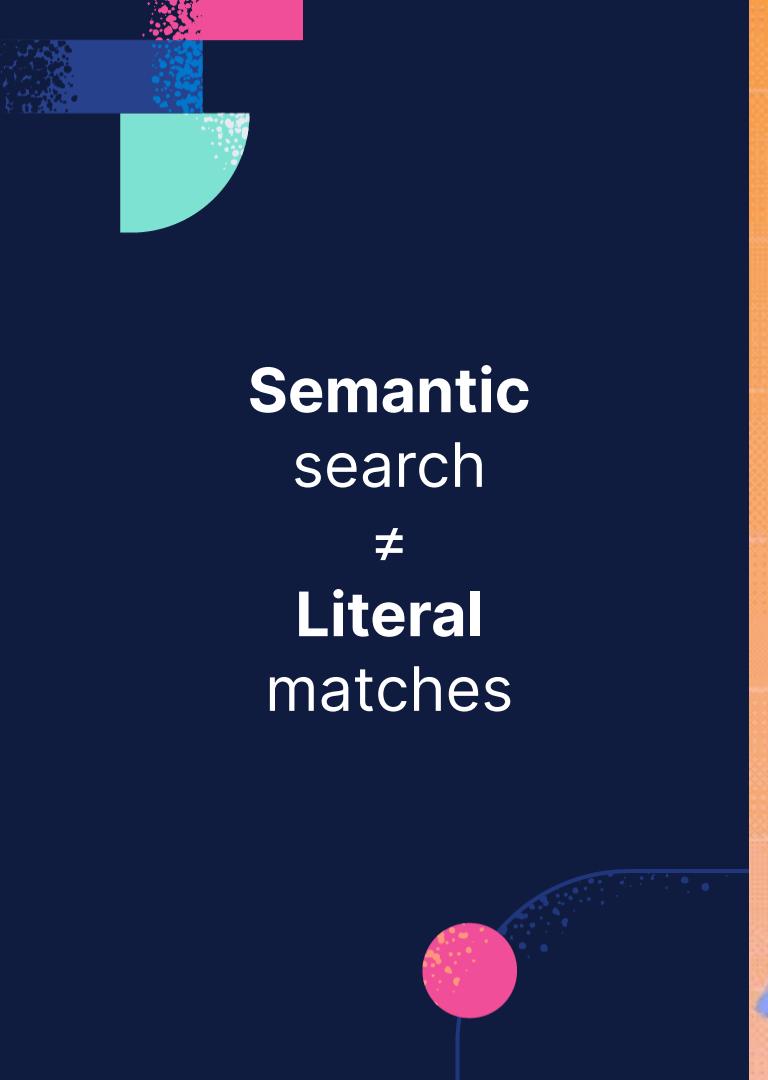
you

look**ing**

droid
you
look

These are *not* the **droids you** are **looking** for.

```
{ "tokens": [ {  
    "token": "droid",  
    "start_offset": 27, "end_offset": 33,  
    "type": "<ALPHANUM>", "position": 4  
} , {  
    "token": "you",  
    "start_offset": 34, "end_offset": 37,  
    "type": "<ALPHANUM>", "position": 5  
} , {  
    "token": "look",  
    "start_offset": 42, "end_offset": 49,  
    "type": "<ALPHANUM>", "position": 7  
} ] }
```



Semantic
search
≠
Literal
matches

similarweb

YOU'RE COMPARING APPLES TO NECTARINES

Elasticsearch

You Know, for Search

Elasticsearch

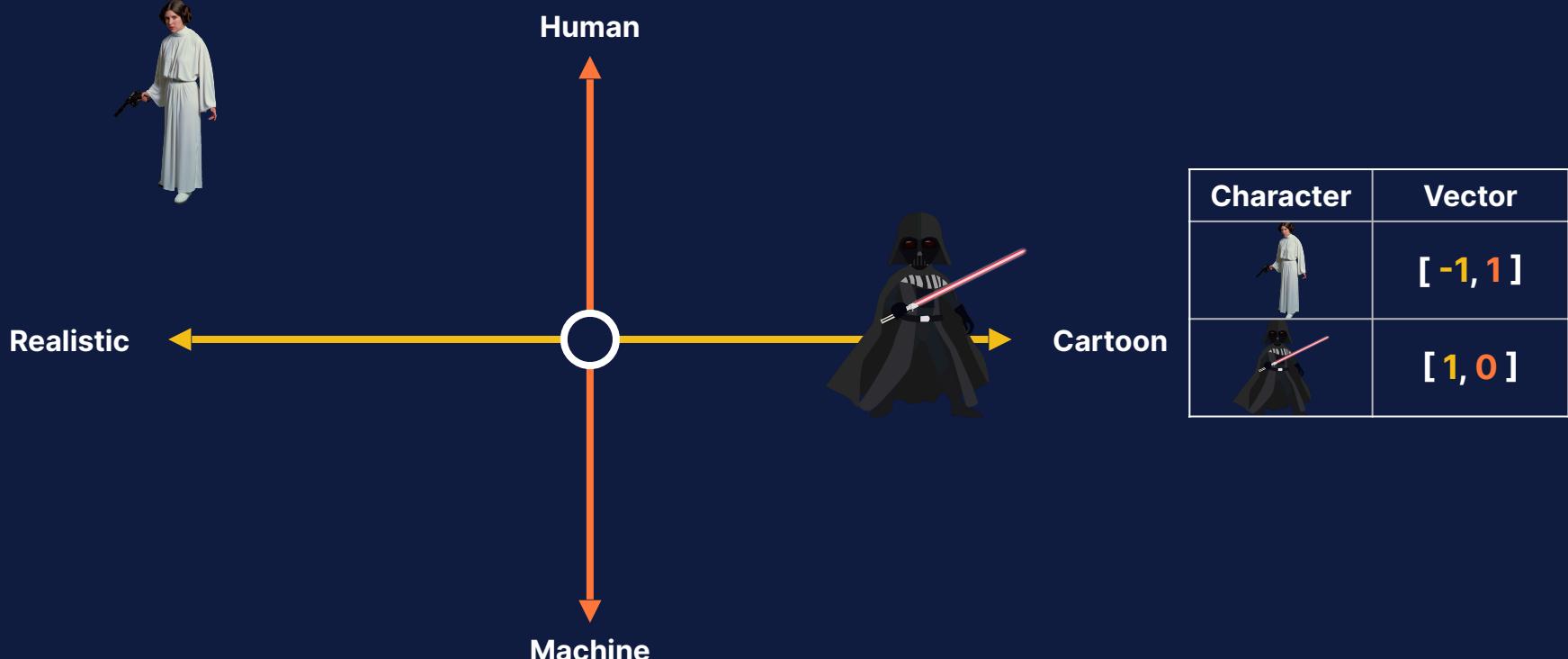
You Know, for **Vector** Search

What is a **Vector** ?

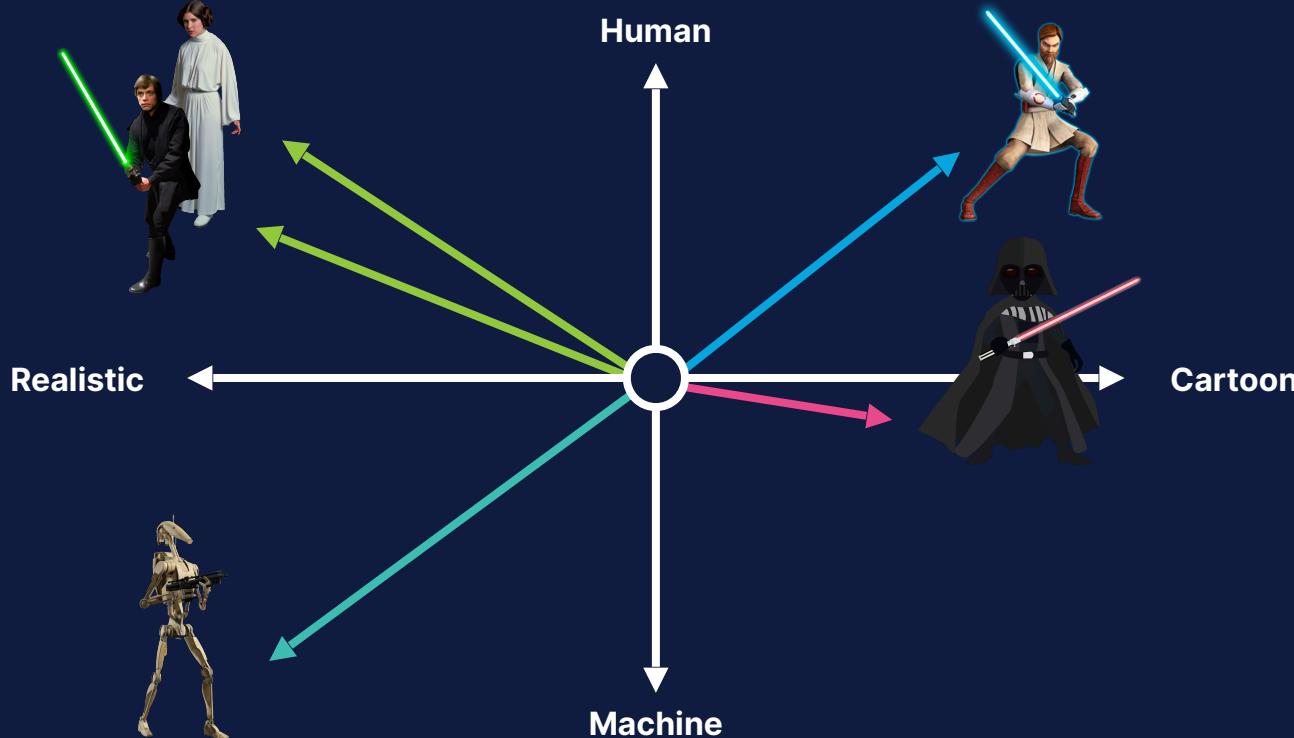
Embeddings represent your data

Example: 1-dimensional vector

Multiple dimensions represent different data aspects

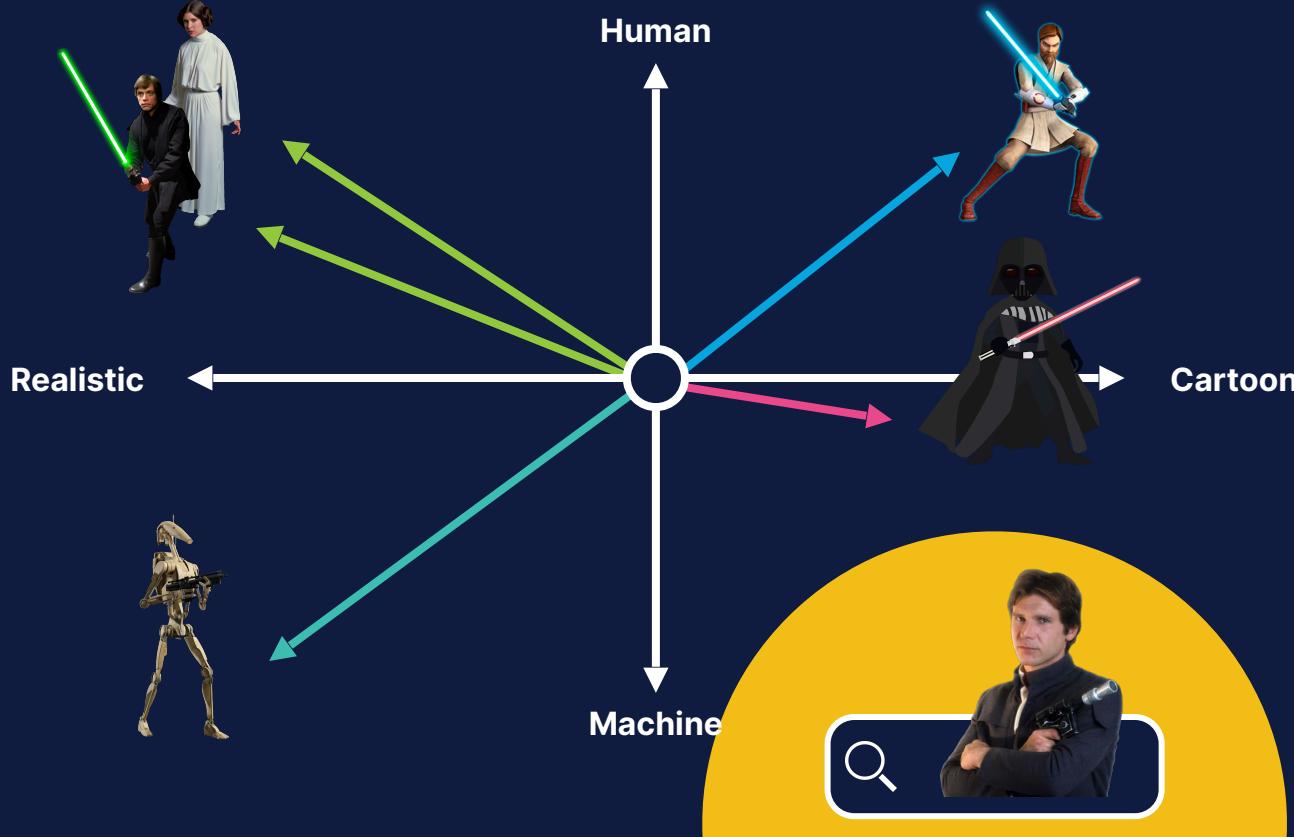


Similar data is grouped together



Character	Vector
Princess Leia	[-1.0, 1.0]
Darth Vader	[1.0, 0.0]
Obi-Wan Kenobi	[-1.0, 0.8]
Luke Skywalker	[1.0, 1.0]
BB-8	[-1.0, -1.0]

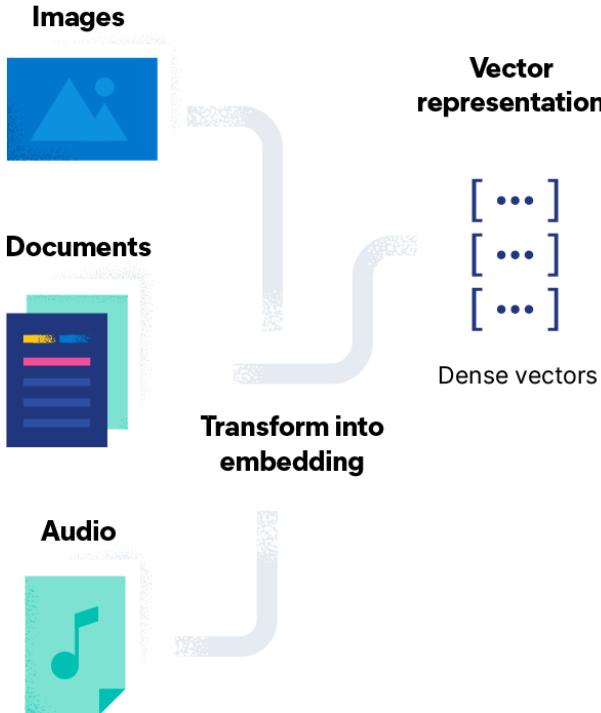
Vector search ranks objects by similarity (~relevance) to the query



Rank	Result
Query	
1	
2	
3	
4	
5	

How do you index **vectors**?

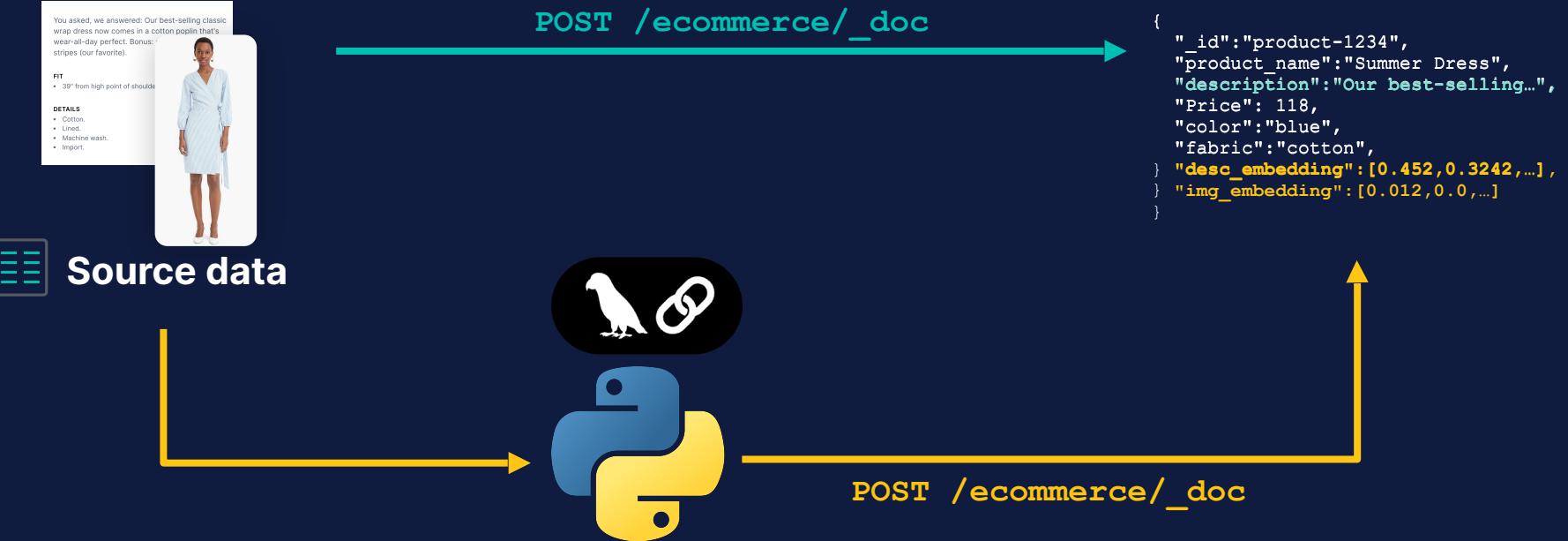
Architecture of Vector Search



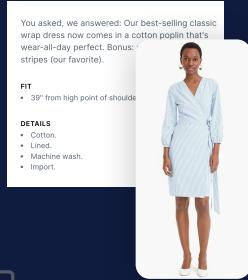
dense_vector field type

```
PUT ecommerce
{
  "mappings": {
    "properties": {
      "description": {
        "type": "text"
      },
      "desc_embedding": {
        "type": "dense_vector"
      }
    }
  }
}
```

Data Ingestion and Embedding Generation



With Elastic ML



Source data

```
{  
  "_id": "product-1234",  
  "product_name": "Summer Dress",  
  "description": "Our best-selling classic wrap dress now comes in a cotton poplin that's wear-all-day perfect. Bonus: stripes (our favorite).",  
  "Price": 118,  
  "color": "blue",  
  "fabric": "cotton",  
}
```

POST /ecommerce/_doc

ML Inference pipelines

Add inference pipeline

Inference pipelines will be run as processors from the Enterprise Search Ingest Pipeline

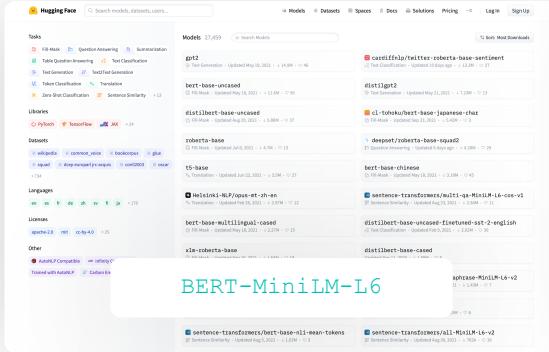
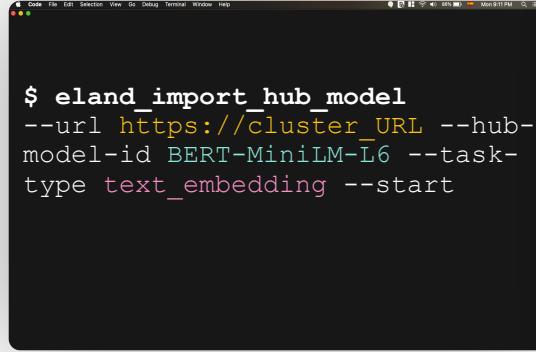
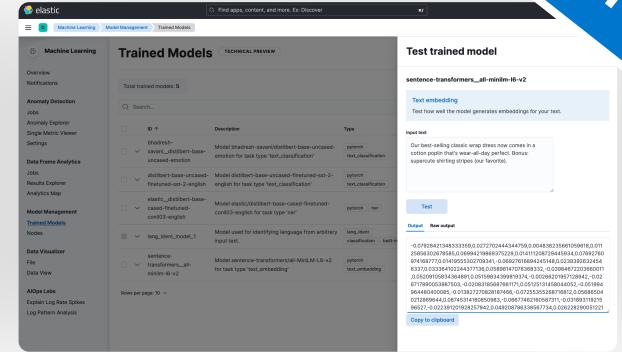
ML Inference Pipeline	Actions
ml-inference-embedding-generation	Deployed pytorch text_embedding
ml-inference-emotional-analysis	Deployed pytorch text_classification

Learn more about deploying ML models in Elastic

```
{  
  "_id": "product-1234",  
  "product_name": "Summer Dress",  
  "description": "Our best-selling classic wrap dress now comes in a cotton poplin that's wear-all-day perfect. Bonus: stripes (our favorite).",  
  "Price": 118,  
  "color": "blue",  
  "fabric": "cotton",  
  "desc_embedding": [0.452, 0.3242, ...]  
}
```


Eland Imports PyTorch Models

Commercial



Select the appropriate model

Load it

Manage models

Elastic's range of supported NLP models

● Fill mask model

Mask some of the words in a sentence and predict words that replace masks

● Named entity recognition model

NLP method that extracts information from text

● Text embedding model

Represent individual words as numerical vectors in a predefined vector space

● Text classification model

Assign a set of predefined categories to open-ended text

● Question answering model

Model that can answer questions given some or no context

● Zero-shot text classification model

Model trained on a set of labeled examples, that is able to classify previously unseen examples

Third party fill-mask models

- BE
- Dis
- MP
- Ro

- BE
- De
- Dis

Third party text classification models

- BE
- De
- Dis
- Dis
- Fin
- Tw

Third party named entity recognition models

Third party question answering models

Third party text embedding models

Text **Third party zero-shot text classification mode**

herty

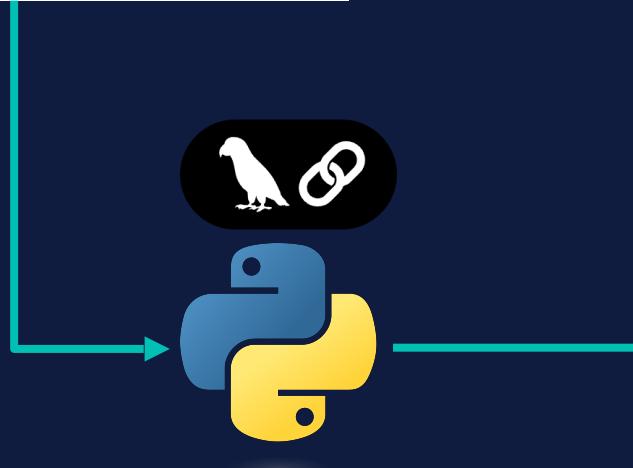
- BART large mmlu
- DistilBERT base model (uncased)
- **DistilBart MNLI**
- MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices
- NLI DistilRoBERTa base
- NLI RoBERTa base
- SqueezeBERT



How do you search **vectors**?

Architecture of Vector Search

knn query



```
GET /ecommerce/_search
{
  "query" : {
    "bool": {
      "must": [
        {
          "knn": {
            "field": "desc_embedding",
            "query_vector": [0.123, 0.244, ...]
          }
        }
      ],
      "filter": {
        "term": {
          "department": "women"
        }
      }
    },
    "size": 10
}
```

knn query (with Elastic ML)

Transformer model

```
GET /ecommerce/_search
{
  "query" : {
    "bool": {
      "must": [
        "knn": {
          "field": "desc_embedding",
          "query_vector_builder": {
            "text_embedding": {
              "model_text": "summer clothes",
              "model_id": <text-embedding-model>
            }
          }
        }
      ],
      "filter": {
        "term": {
          "department": "women"
        }
      }
    },
    "size": 10
  }
}
```

new in 8.15

semantic_text field type

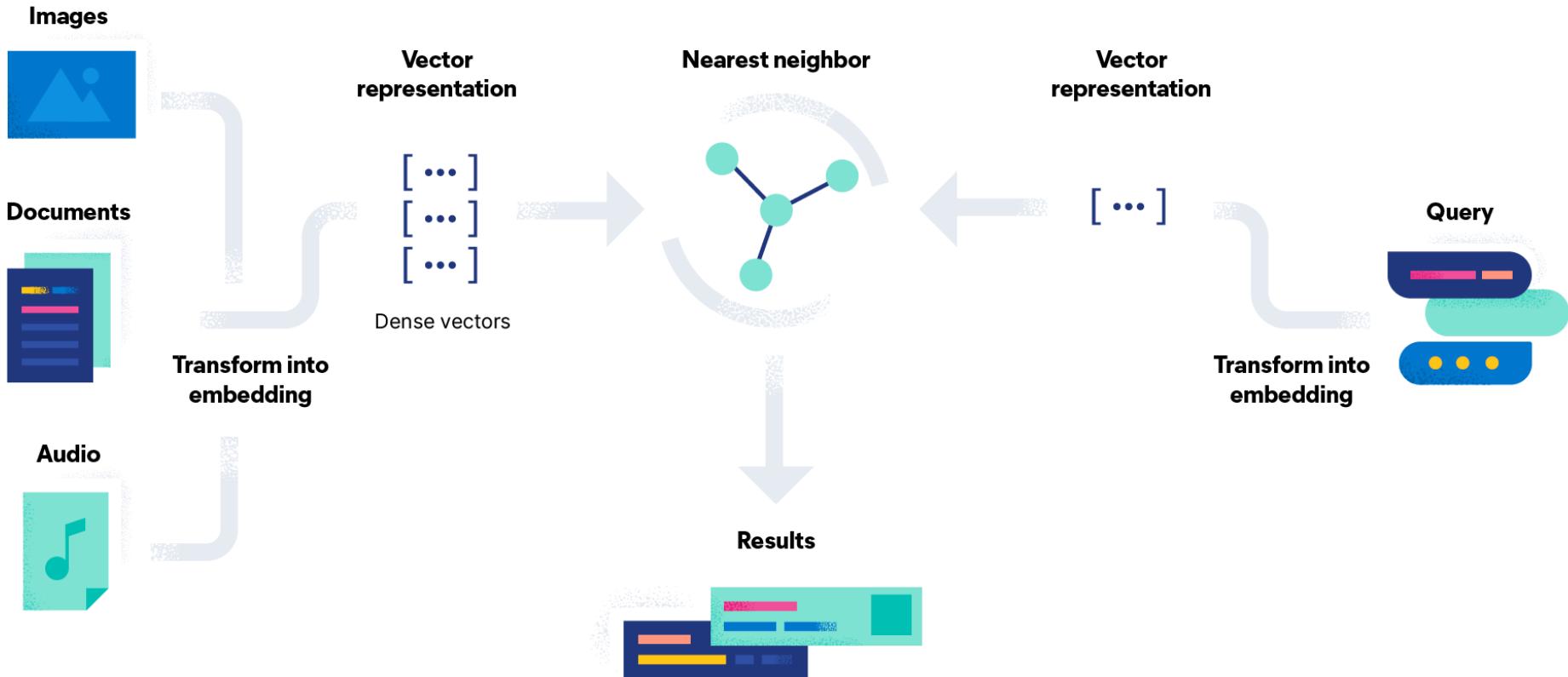
```
PUT /_inference/text_embedding/e5-small-multilingual
{
  "service": "elasticsearch",
  "service_settings": {
    "num_allocations": 1,
    "num_threads": 1,
    "model_id": ".multilingual-e5-small_linux-x86_64"
  }
}
```

```
PUT ecommerce
{
  "mappings": {
    "properties": {
      "description": {
        "type": "text",
        "copy_to": [ "desc_embedding" ]
      }
      "desc_embedding": {
        "type": "semantic_text",
        "inference_id": "e5-small-multilingual"
      }
    }
  }
}
```

```
POST ecommerce/_doc
{
  "description": "Our best-selling..."
}
```

```
GET ecommerce/_search
{
  "query": {
    "semantic": {
      "field": "desc_embedding"
      "query" : "I'm looking for a red dress for a DJ party"
    } }
}
```


Architecture of Vector Search



Choice of Embedding Model

Start with Off-the Shelf Models

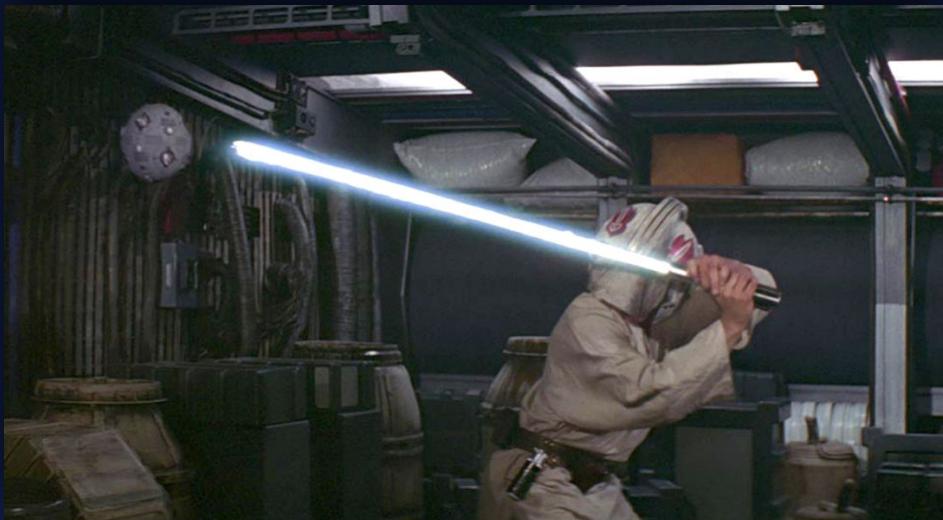
- Text data: Hugging Face (like Microsoft's E5)
- Images: OpenAI's CLIP

Extend to Higher Relevance

- Apply hybrid scoring
- Bring Your Own Model: requires expertise + labeled data

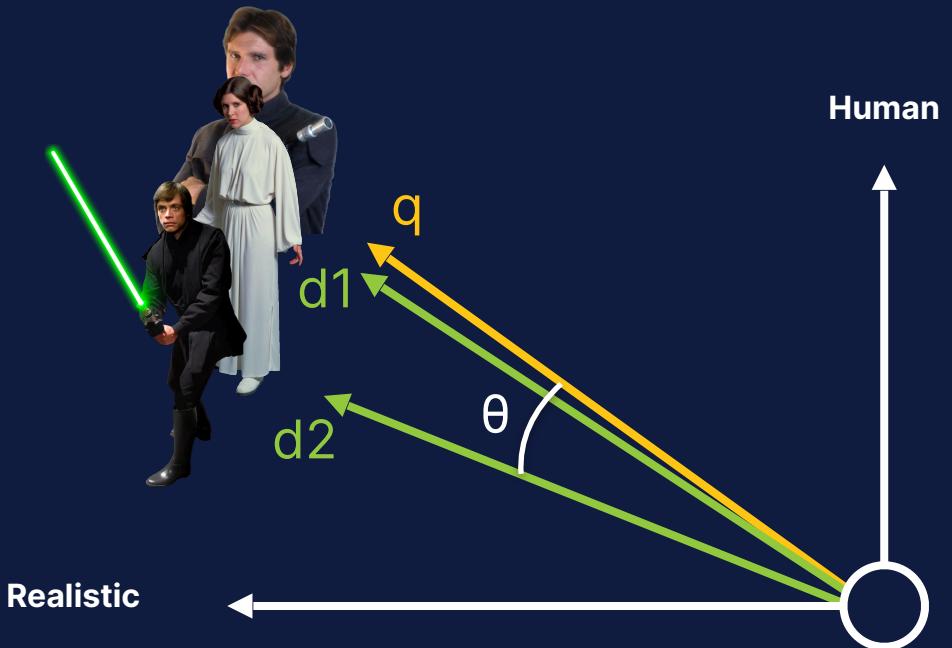
Problem

training vs actual use-case



But how does it really work?

Similarity



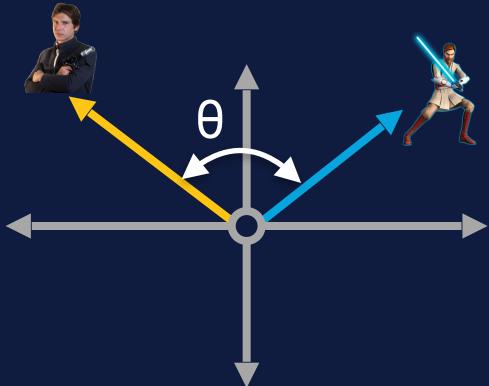
$$\cos(\theta) = \frac{\vec{q} \times \vec{d}}{|\vec{q}| \times |\vec{d}|}$$

$$-score = \frac{1 + \cos(\theta)}{2}$$

Similarity: cosine (cosine)

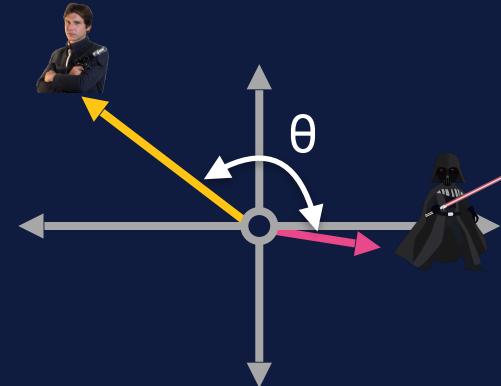
Similar vectors
 θ close to 0
 $\cos(\theta)$ close to 1

$$_score = \frac{1+1}{2} = 1$$



Orthogonal vectors
 θ close to 90°
 $\cos(\theta)$ close to 0

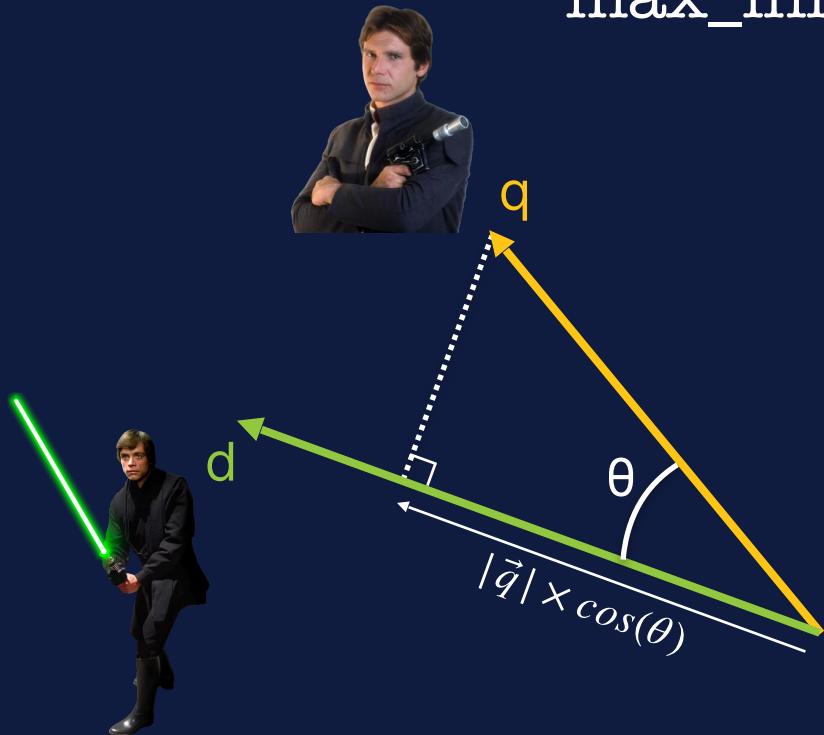
$$_score = \frac{1+0}{2} = 0.5$$



Opposite vectors
 θ close to 180°
 $\cos(\theta)$ close to -1

$$_score = \frac{1-1}{2} = 0$$

Similarity: Dot Product (dot_product or max_inner_product)

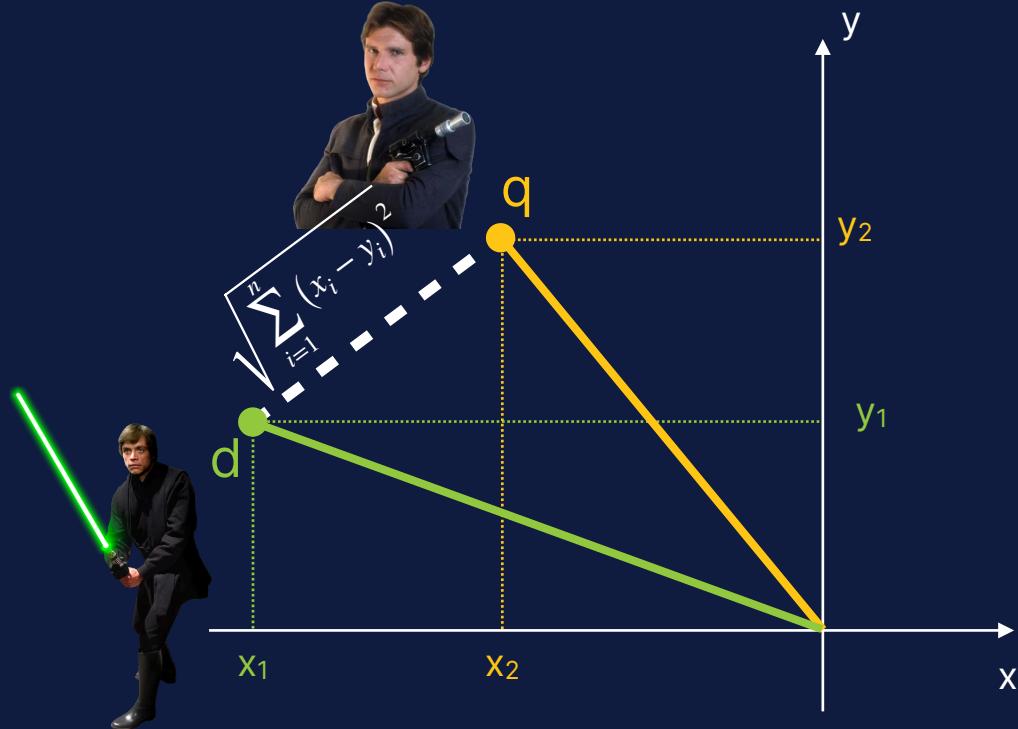


$$\vec{q} \times \vec{d} = |\vec{q}| \times \cos(\theta) \times |\vec{d}|$$

$$-score_{float} = \frac{1 + dot_product(q, d)}{2}$$

$$-score_{byte} = \frac{0.5 + dot_product(q, d)}{32768 \times dims}$$

Similarity: Euclidean distance (l2_norm)



$$l2_norm_{q,d} = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$
$$-score = \frac{1}{1 + (l2_norm_{q,d})^2}$$

Brute Force

Hierarchical Navigable Small Worlds (HNSW)

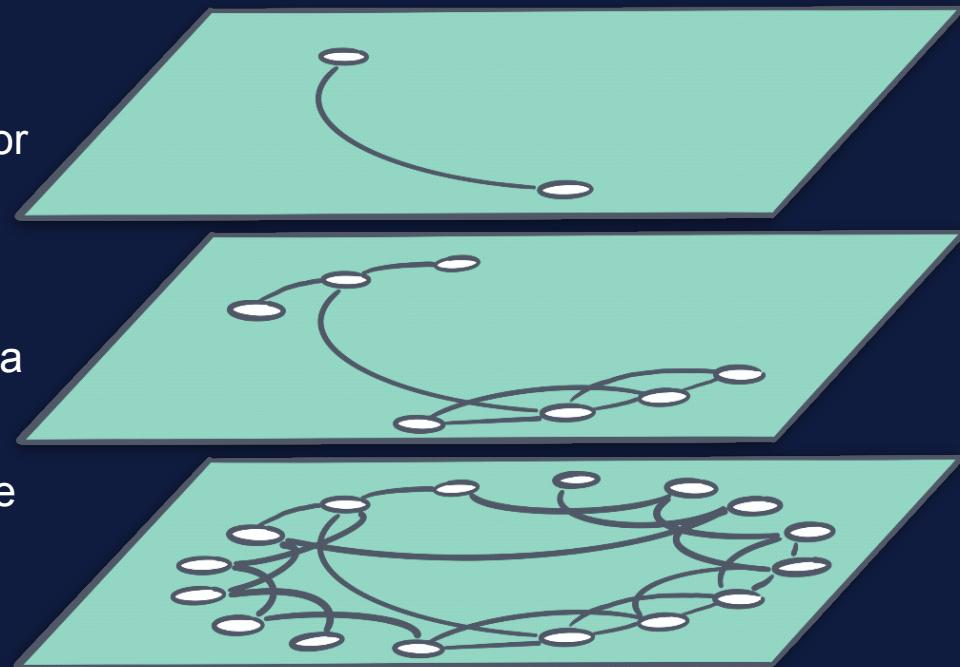
One popular approach

HNSW: a layered approach that simplifies access to the nearest neighbor

Tiered: from coarse to fine approximation over a few steps

Balance: Bartering a little accuracy for a lot of scalability

Speed: Excellent query latency on large scale indices



Scaling Vector Search

Vector search

1. Needs lots of memory
2. Indexing is slower
3. Merging is slow

* Continuous improvements in Lucene +
Elasticsearch

Best practices

1. Avoid searches during indexing
2. Exclude vectors from `_source`
3. Reduce vector dimensionality
4. Use byte rather than float

Scalar Quantization

float32

Recall: High
Precision: High
Rescore: Likely Not Needed

Full RAM Required

int8

Recall: Good
Precision: Good
Oversampling: Moderate

Rescore: Reasonable

4X RAM Savings

int4

Recall: Low
Precision: Low
Oversampling: Needed

Rescore: may be slower

8X RAM Savings

bit

Recall: Bad
Precision: Bad
Oversampling: Needed

Rescore: Expensive and Limiting

32X RAM Savings

Elasticsearch
8.14+ default

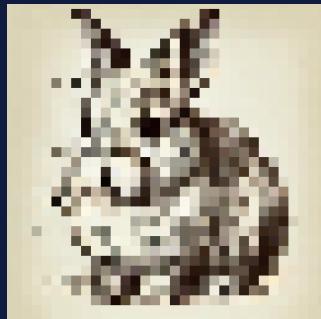
Scalar Quantization -> Better Binary Quantization

float32

int8

int4

bit

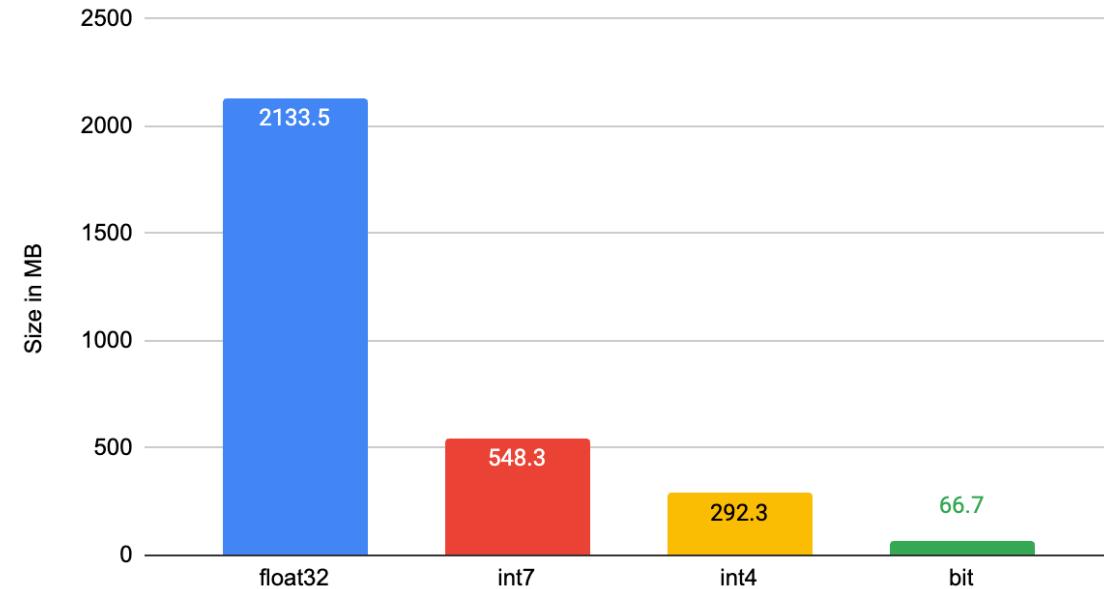


BBQ*

BBQ: 32X RAM savings.
Faster & more accurate than Product Quantization

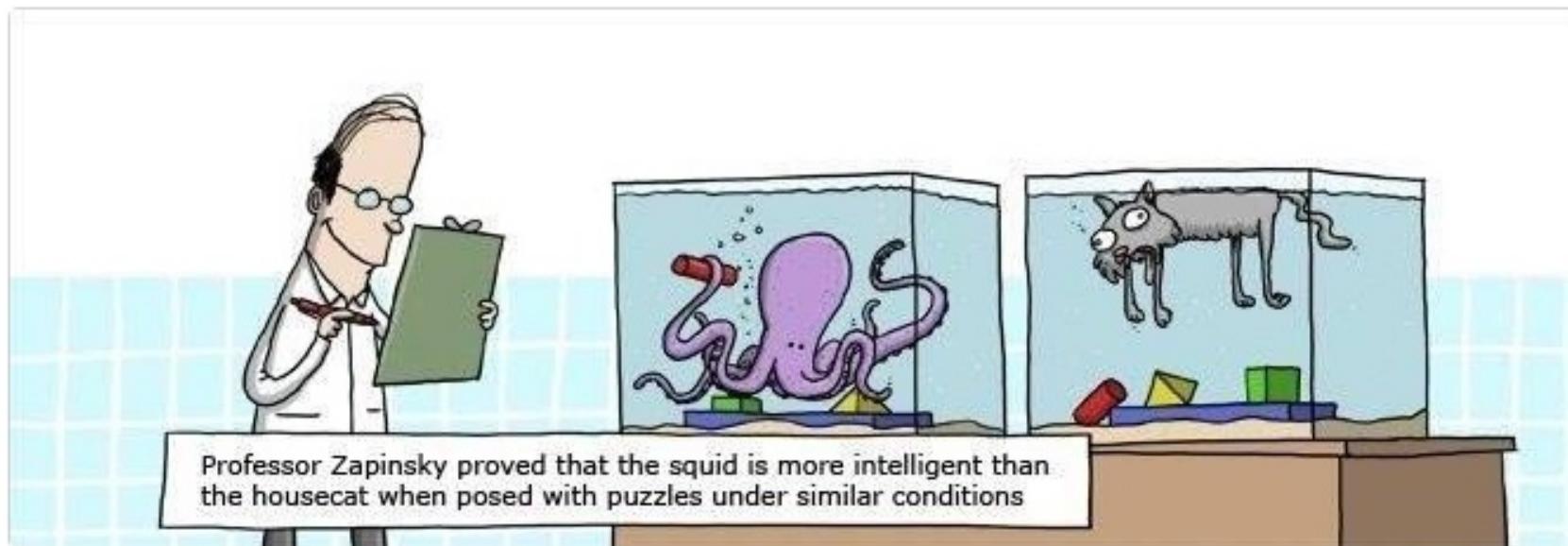
Memory required

Memory required in MB for 500k 1024 vectors

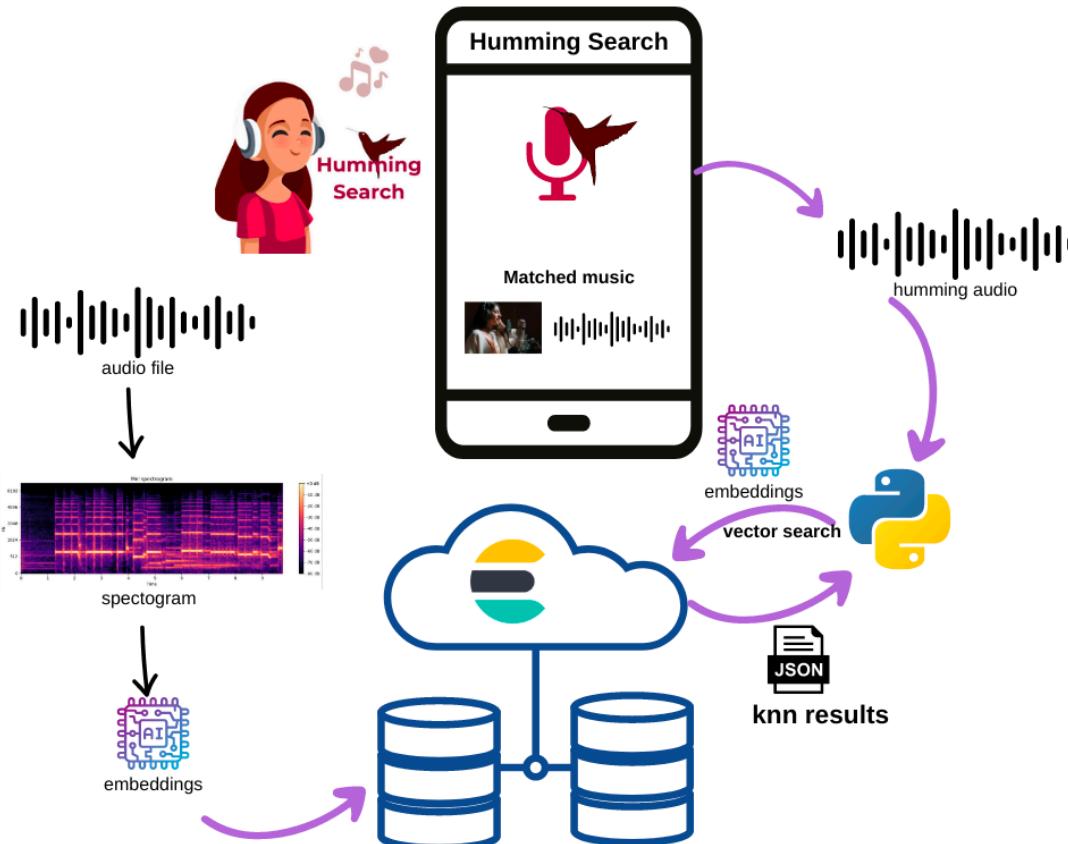


100M vectors?
Only 12GB!?! One single node.

Benchmarketing



<https://djdadoo.pilato.fr/>

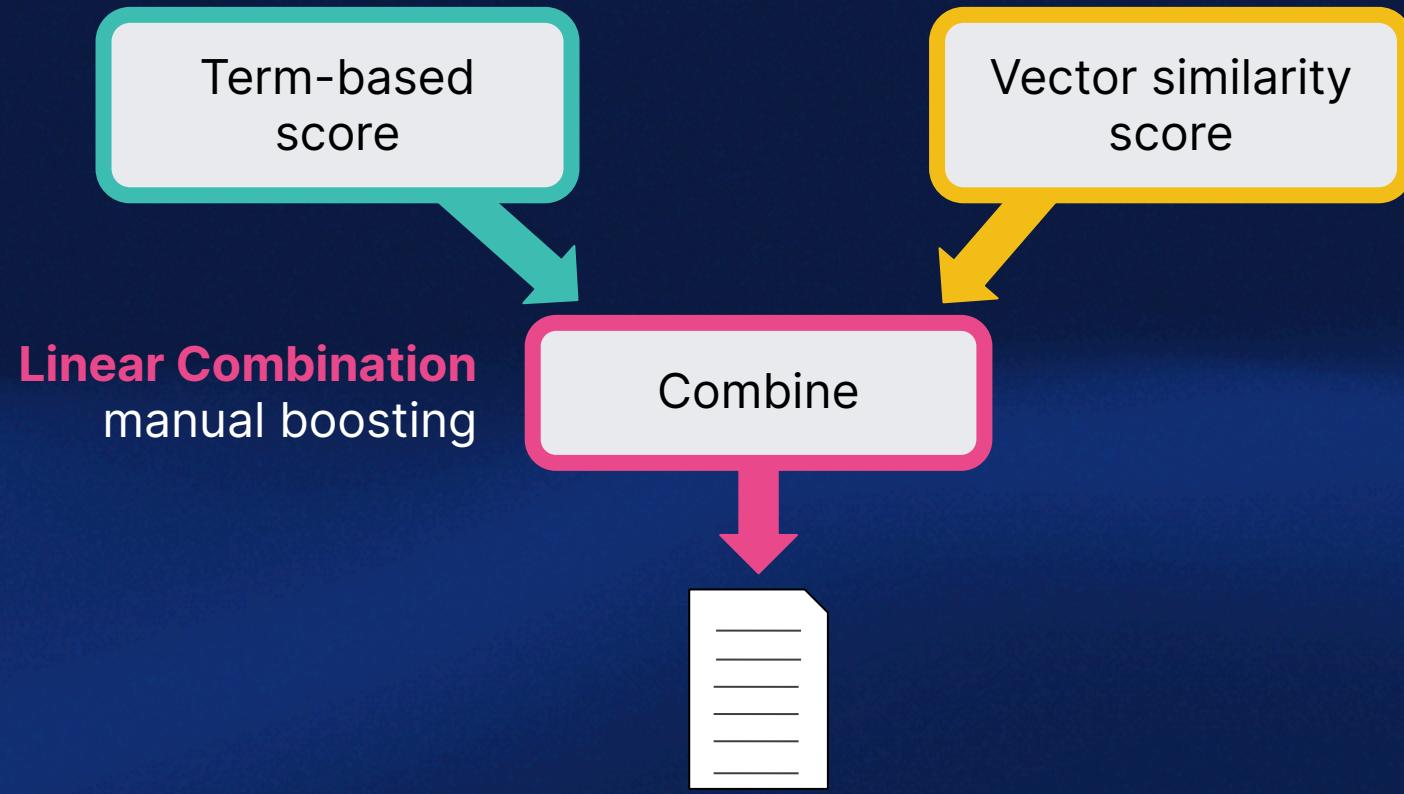


<https://github.com/dadoonet/music-search/>

Elasticsearch

You Know, for **Hybrid** Search

Hybrid scoring



```
GET ecommerce/_search
{
  "query" : {
    "bool" : {
      "must" : [ {
        "match": {
          "description": {
            "query": "summer clothes",
            "boost": 0.1
          }
        }
      }, {
        "knn": {
          "field": "desc_embedding",
          "query_vector": [0.123, 0.244, ...],
          "boost": 2.0,
          "filter": {
            "term": {
              "department": "women"
            }
          }
        }
      }]
    },
    "filter" : {
      "range" : { "price": { "lte": 30 } }
    }
  }
}
```

summer clothes

pre-filter

post-filter

```
PUT starwars
{
  "mappings": {
    "properties": {
      "text.tokens": {
        "type": "sparse_vector"
      }
    }
  }
  "These are not the droids you are looking for.",
  "Obi-Wan never told you what happened to your father."
}
```

```
GET starwars/_search
{
  "query": {
    "sparse_vector": {
      "field": "text.tokens",
      "query_vector": { "lucas": 0.50047517,
                        "ship": 0.29860738,
                        "dragon": 0.5300422,
                        "quest": 0.5974301, ... }
    }
  }
}
```


ELSER

Elastic Learned Sparse EncodER

sparse_vector

Not BM25 or (dense) vector

Sparse vector like BM25

Stored as inverted index

Commercial

Machine Learning Inference Pipelines

Inference pipelines will be run as processors from the Enterprise Search Ingest Pipeline

New

Improve your results with ELSER

x

ELSER (Elastic Learned Sparse EncodeR) is our **new trained machine learning model** designed to efficiently use context in natural language queries. This model delivers better results than BM25 without further training on your data.

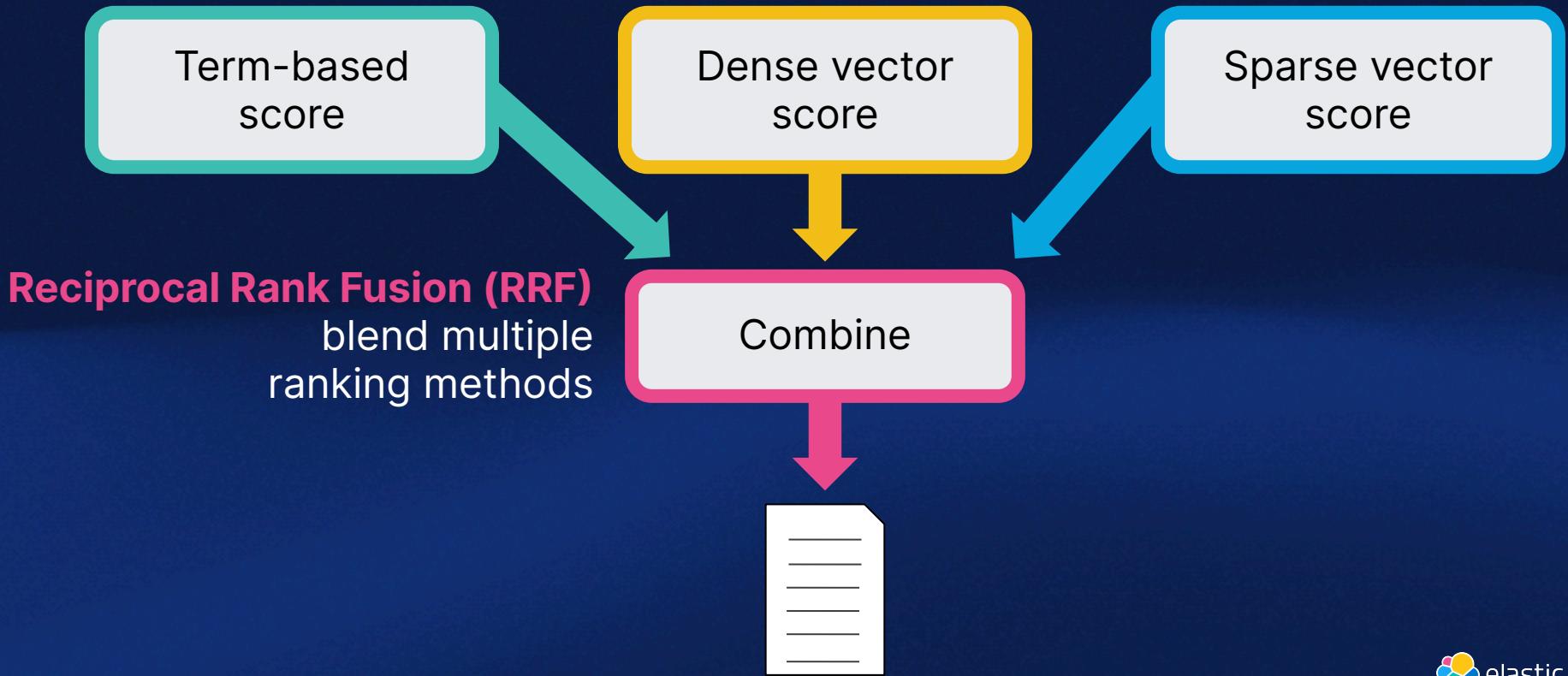
Deploy

Learn more

Add Inference Pipeline

Learn more about deploying Machine Learning models in Elastic

Hybrid ranking



Reciprocal Rank Fusion (RRF)

$$RRFscore(d \in D) = \sum_{r \in R} \frac{1}{k+r(d)}$$

D - set of docs

R - set of rankings as permutation on $1..|D|$

k - typically set to 60 by default

Dense Vector			
Doc	Score	r(d)	k+r(d)
A	1	1	61
B	0.7	2	62
C	0.5	3	63
D	0.2	4	64
E	0.01	5	65

BM25			
Doc	Score	r(d)	k+r(d)
C	1,341	1	61
A	739	2	62
F	732	3	63
G	192	4	64
H	183	5	65

Doc	RRF Score
A	$1/61 + 1/62 = 0,0325$
C	$1/63 + 1/61 = 0,0323$
B	$1/62 = 0,0161$
F	$1/63 = 0,0159$
D	$1/64 = 0,0156$

```
GET index/_search
{
  "retriever": {
    "rrf": {
      "retrievers": [
        {
          "standard": {
            "query": {
              "match": { ... }
            }
          }
        },
        {
          "standard": {
            "query": {
              "sparse_vector": { ... }
            }
          }
        },
        {
          "knn": { ... }
        }
      ]
    }
  }
}
```

Hybrid Ranking

BM25f

+

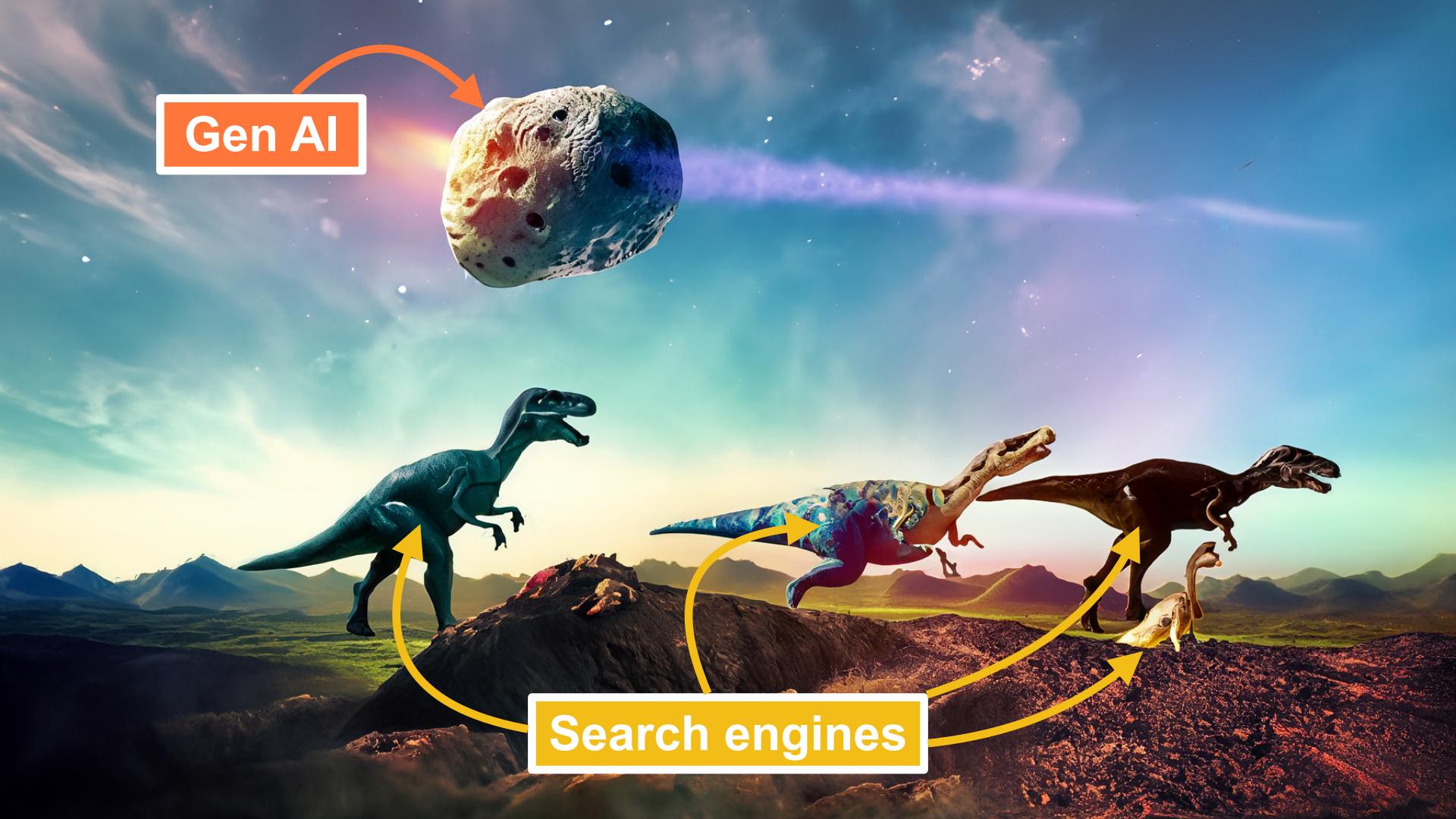
Sparse Vector

+

Dense Vector

ChatGPT

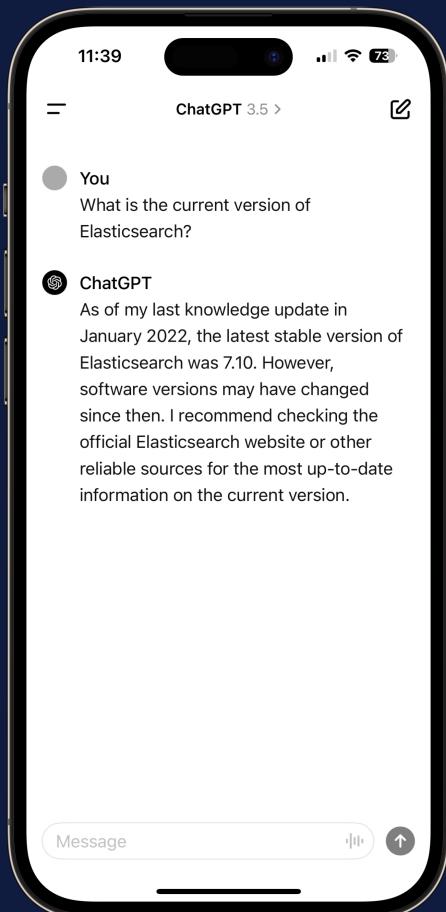
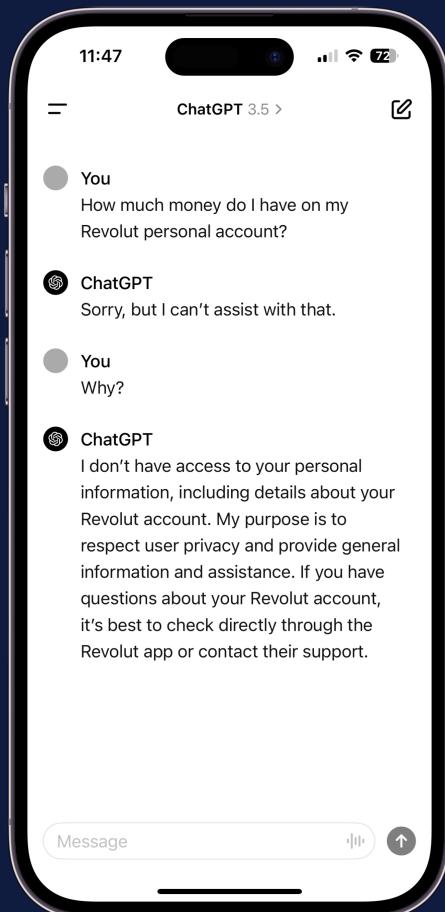
Elastic and LLM



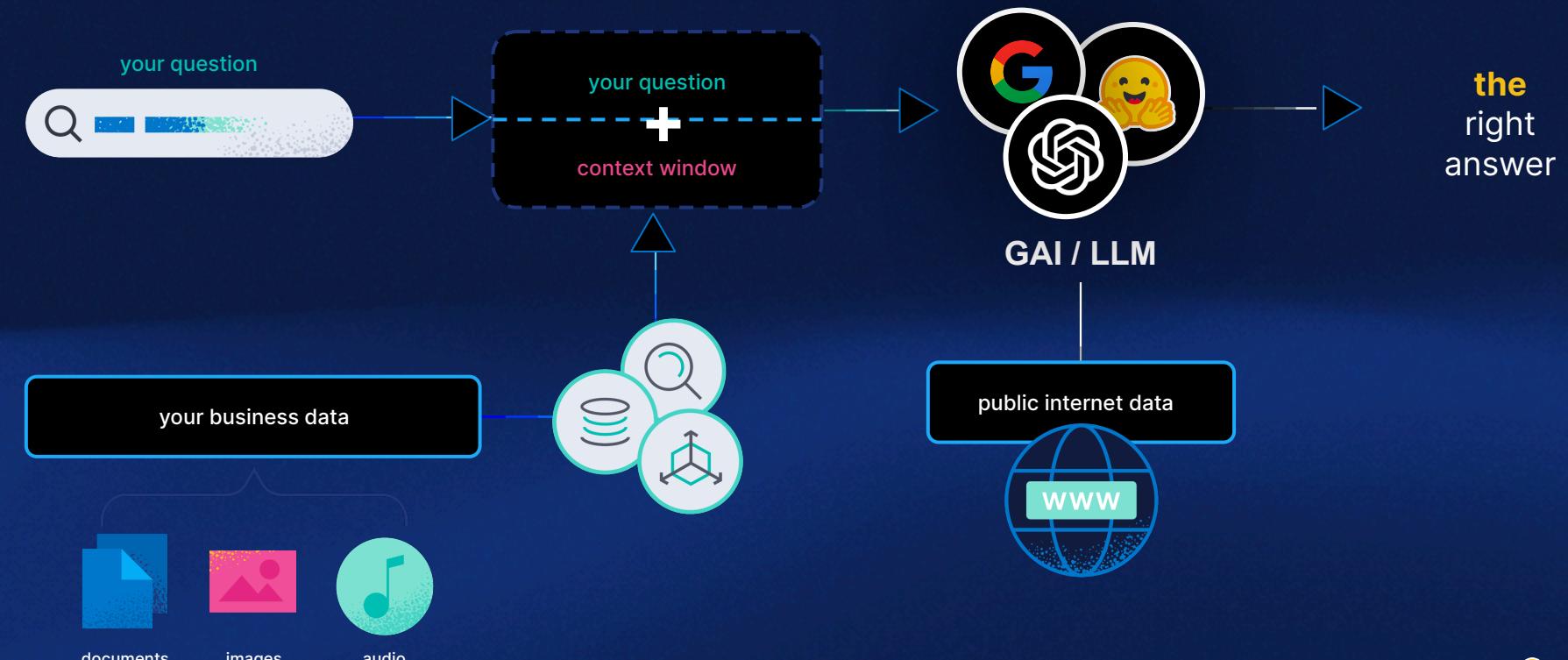
Gen AI

Search engines

LLM: opportunities and limits



Retrieval Augmented Generation



Demo

Elastic Playground

Search your transactions:

This search is not enabled by Elastic and reflects the ~~kind~~ of functionality available to customers today.

[Submit](#)

Date	Account	Description	Value	Opening balance	Closing balance
18/06/24	EL03-130981-Transmission	Inbound payment made from EL03-130981-Transmission, St.James's Plac (STJ): 864dce1b-bb95-47d5-87dd-7d02f3b10c3f	7419.0	-825.0	6594.0
18/06/24	EL03-130981-Transmission	Purchase at merchant: Southeastern Grocers, LLC, location: Fayetteville,AR	82.0	6594.0	6512.0
18/06/24	EL03-130981-Transmission	Purchase at merchant: Müller Holding Ltd. & Co. KG, location: Glendale,AZ	188.0	6512.0	6324.0
17/06/24	EL03-130981-Transmission	Payment made from EL03-130981-Transmission to Elwood Erickson, Mitie Grp. (MTO): d37085fc-1382-4593-9cb8-26e5526bd9a0	533.0	20.0	-513.0
17/06/24	EL03-130981-Transmission	Payment made from EL03-130981-Transmission to Classie Johns, Barclays (BARC): 75b603a2-1c1b-45e9-a7ec-4a551bf98a8d	312.0	-513.0	-825.0
16/06/24	EL03-130981-Transmission	Purchase at merchant: E-MART Inc., location: Fayetteville,AR	31.0	51.0	20.0
14/06/24	EL03-130981-Transmission	Purchase at merchant: Dick's Sporting Goods, Inc., location: Montgomery,AL	182.0	329.0	147.0
14/06/24	EL03-130981-Transmission	Purchase at merchant: Valor Holdings Co., Ltd., location: Louisville,KY	96.0	147.0	51.0
13/06/24	EL03-130981-Transmission	Purchase at merchant: The Save Mart Companies, location:	34.0	363.0	329.0

Elasticsearch

You Know, for **Semantic** Search

Search a new era

David Pilato | [@dadoonet](https://twitter.com/dadoonet)

FinistDevs

A white rectangular banner with the text "FinistDevs" in red. To the right of the text is a small logo featuring a sailboat on water and a map of the Finistère region of France.