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These are not the droids  
you are looking for.



GET /_analyze 

{ 

  "char_filter": [ "html_strip" ], 

  "tokenizer": "standard", 

  "filter": [ "lowercase", "stop", "snowball" ], 

  "text": "These are <em>not</em> the droids 
         you are looking for." 

}
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These are <em>not</em> the droids you are looking for. 

{ "tokens": [{ 

      "token": "droid", 

      "start_offset": 27, "end_offset": 33, 

      "type": "<ALPHANUM>", "position": 4 

    },{ 

      "token": "you", 

      "start_offset": 34, "end_offset": 37, 

      "type": "<ALPHANUM>", "position": 5 

    }, { 

      "token": "look", 

      "start_offset": 42, "end_offset": 49, 

      "type": "<ALPHANUM>", "position": 7 

    }]}
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omailEciearch
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What is a 
  LeclVr ?



Embeddings represent your data 
Example: 1-dimensional vector

CarlVVtReamEilEc

Characler LeclVr
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Multiple dimensions 
represent different data aspects

Husat

MachEte
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Characler LeclVr

[ 1.0, 1.0 
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[ 1.0, 0.8 
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Similar data 
is grouped together
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Vector search ranks objects 
by similarity (~relevance) to the query
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Architecture of Vector Search



PUT ecommerce 
{ 
  "mappings": { 
    "properties": { 
      "description": { 
        "type": "text" 
      } 
      "desc_embedding": { 
        "type": "dense_vector" 
      } 
    } 
  } 
}

dense_vector field type



{ 
  "_id":"product-1234", 
  "product_name":"Summer Dress", 
  "description":"Our best-selling…", 
  "Price": 118, 
  "color":"blue", 
  "fabric":"cotton", 
  "desc_embedding":[0.452,0.3242,…], 
  "img_embedding":[0.012,0.0,…] 
}

{ 
  "_id":"product-1234", 
  "product_name":"Summer Dress", 
  "description":"Our best-selling…", 
  "Price": 118, 
  "color":"blue", 
  "fabric":"cotton", 
  "desc_embedding":[0.452,0.3242,…] 
}

{ 
  "_id":"product-1234", 
  "product_name":"Summer Dress", 
  "description":"Our best-selling…", 
  "Price": 118, 
  "color":"blue", 
  "fabric":"cotton" 
}

Data Ingestion and Embedding Generation

POST /ecommerce/_doc

SVurce dala

POST /ecommerce/_doc



{ 
  "_id":"product-1234", 
  "product_name":"Summer Dress", 
  "description":"Our best-selling…", 
  "Price": 118, 
  "color":"blue", 
  "fabric":"cotton", 
  "desc_embedding":[0.452,0.3242,…] 
}

With Elastic ML

POST /ecommerce/_doc

SVurce dala

cVssercEam

{ 
  "_id":"product-1234", 
  "product_name":"Summer Dress", 
  "description":"Our best-selling…", 
  "Price": 118, 
  "color":"blue", 
  "fabric":"cotton", 
 }



Eland Imports PyTorch Models

$ eland_import_hub_model  
--url https://cluster_URL --hub-
model-id BERT-MiniLM-L6 --task-
type text_embedding --start

BERT-MiniLM-L6

Select the 
appropriate model

Load it Manage models

CVssercEam



Elastic’s range of supported NLP models
● FEmm saik sVdem 

Mask some of the words in a sentence and predict words  
that replace masks 

● Nased etlEly recVgtElEVt sVdem 
NLP method that extracts information from text 

● Texl esbeddEtg sVdem 
Represent individual words as numerical vectors in a predefined  
vector space 

● Texl cmaiiEfEcalEVt sVdem 
Assign a set of predefined categories to open-ended text 

● QueilEVt atiwerEtg sVdem 
Model that can answer questions given some or no context 

● ZerV-ihVl lexl cmaiiEfEcalEVt sVdem 
Model trained on a set of labeled examples, that is able to classify previously unseen examples

Full list at: ela.st/nlp-supported-models

cVssercEam

https://ela.st/nlp-supported-models
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Architecture of Vector Search



GET /ecommerce/_search 
{ 
 "query" : { 
    "bool": { 
      "must": [{   
         "knn": { 
           "field": "desc_embbeding",         
           "query_vector": [0.123, 0.244,...] 
         

         } 
      }], 
      "filter": { 
        "term": { 
          "department": "women" 
        } 
      }      
    } 
  }, 
  "size": 10 
}

knn query



GET /ecommerce/_search 
{ 
 "query" : { 
    "bool": { 
      "must": [{   
         "knn": { 
           "field": "desc_embbeding", 
           "query_vector_builder": { 
             "text_embedding": { 
              "model_text": "summer clothes", 
              "model_id": <text-embedding-model>  
             } 
           } 
         } 
      }], 
      "filter": { 
        "term": { 
          "department": "women" 
        } 
      }      
    } 
  }, 
  "size": 10 
}

knn query (with Elastic ML

TratifVrser sVdem

cVssercEam



semantic_text field type

tew frVs 8.15

POST ecommerce/_doc 
{ 
  "description": "Our best-selling…" 
}

GET ecommerce/_search 
{ 
  "query": { 
    "semantic": { 
      "field": "desc_embedding" 
      "query" : "I'm looking for a red dress for a DJ party" 
}}}

PUT ecommerce 
{ 
  "mappings": { 
    "properties": { 
      "description": { 
        "type": "text", 
        "copy_to": [ "desc_embedding" ] 
      } 
      "desc_embedding": { 
        "type": "semantic_text", 
        "inference_id": "e5-small-multilingual" 
      } 
    } 
  } 
}

PUT /_inference/text_embedding/e5-small-multilingual 
{ 
    "service": "elasticsearch", 
    "service_settings": { 
       "num_allocations": 1, 
       "num_threads": 1, 
       "model_id": ".multilingual-e5-small_linux-x86_64" 
    } 
}



Architecture of Vector Search



ChVEce Vf osbeddEtg MVdem

oxletd lV HEgher Remevatce  

●Apply hybrid scoring  
●Bring Your Own Model: 

requires expertise + labeled 
data

Slarl wElh Off-lhe Shemf 
MVdemi  

●Text data: Hugging Face 
(like Microsoft's E5  

●Images: OpenAI’s CLIP



Problem 
training vs actual use-case



Bul hVw dVei El
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q

Similarity

Husat

ReamEilEc

θ

d1

d2

cos(θ) = ⃗q × ⃗d
| ⃗q | × | ⃗d |

_score = 1 + cos(θ)
2



Similarity: cosine (cosine)

_score = 1 + 1
2 = 1 _score = 1 + 0

2 = 0.5 _score = 1 − 1
2 = 0

θ θ θ

Similar vectors 
θ close to 0 

cos(θ) close to 1

Orthogonal vectors 
θ close to 90° 

cos(θ) close to 0

Opposite vectors 
θ close to 180° 

cos(θ) close to -1



⃗q × ⃗d = | ⃗q | × cos(θ) × | ⃗d |

Similarity: Dot Product (dot_product or 
max_inner_product)

_scorefloat = 1 + dot_ product(q, d)
2

_scorebyte = 0.5 + dot_ product(q, d)
32768 × dims

q

θd

| ⃗q | × cos(θ)



l2_normq,d =
n

∑
i=1

(xi − yi)2

Similarity: Euclidean distance (l2_norm)

_score = 1
1 + (l2_normq,d)2

q

d

y

xx1 x2

y1

y2

n

∑i=1
(x i−

y i)
2
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Hierarchical Navigable Small Worlds (HNSW 
One popular approach

HNSW: a layered approach that 
simplifies access to the nearest neighbor

Tiered: from coarse to fine 
approximation over a few steps

Balance: Bartering a little accuracy for a 
lot of scalability

Speed: Excellent query latency on large 
scale indices



Scaling Vector Search

Beil praclEcei  

1. Avoid searches during indexing 

2. Exclude vectors from _source 

3. Reduce vector dimensionality 

4. Use int8/int4/bit rather than float

LeclVr iearch 

1. Needs lots of memory 

2. Indexing is slower 

3. Merging is slow 

* Continuous improvements in Lucene + 
Elasticsearch



float32
Recall: High 
Precision: High 
Rescore: Likely Not Needed 
 
 
 
Full RAM Required

int4
Recall: Low 
Precision: Low 
Oversampling: Needed 
 
Rescore: may be slower 
 
8X RAM Savings

bit
Recall: Bad 
Precision: Bad 
Oversampling: Needed 

Rescore: Expensive and Limiting 
 
32X RAM Savings

Scalar Quantization

int8
Recall: Good 
Precision: Good 
Oversampling: Moderate 
 
Rescore: Reasonable 
 
4X RAM Savings

Elasticsearch 
8.14 default



BBQ aka Better Binary Quantization

float32 int4 bitint8 BBQ*

BBQ 32X RAM savings.  
Faster & more accurate than Product Quantization 



100M vectors?  
Only 12GB!?! One single node.

Memory required



Benchmarketing



https://djdadoo.pilato.fr/



https://github.com/dadoonet/music-search/

https://github.com/dadoonet/music-search/


omailEciearch
You Know, for  HybrEd  Search



HybrEd icVrEtg

Term-based  
score

Vector similarity 
score

CombinenEtear CVsbEtalEVt 
manual boosting



GET ecommerce/_search 
{ 
  "query" : { 
    "bool" : { 
      "must" : [{ 
        "match": { 
          "description": { 
            "query": "summer clothes", 
            "boost": 0.1 
          } 
        } 
      },{ 
        "knn": { 
          "field": "desc_embbeding", 
          "query_vector": [0.123, 0.244,...], 
          "boost": 2.0, 
          "filter": { 
            "term": { 
              "department": "women" 
            } 
          } 
        } 
      }], 
      "filter" : { 
        "range" : { "price": { "lte": 30 } } 
      } 
    } 
  } 
}

summer clothes

pre-filter 

post-filter 



PUT starwars 
{ 
  "mappings": { 
    "properties": { 
      "text.tokens": { 
        "type": "sparse_vector" 
      } 
    } 
  } 
}

GET starwars/_search 
{ 
   "query":{ 
      "sparse_vector": { 
        "field": "text.tokens", 
        "query_vector": { "lucas": 0.50047517,  
                          "ship": 0.29860738,  
                          "dragon": 0.5300422,  
                          "quest": 0.5974301, ... } 
      } 
   } 
}

"These are not the droids you are looking for.", 

"Obi-Wan never told you what happened to your father."



onSoR 
olastic nearned Sparse EncodoR

sparse_vector 
Not BM25 or (dense) vector 

Sparse vector like BM25 

Stored as inverted index

CVssercEam



ranking 3

HybrEd ratkEtg
ranking 2ranking 1

Term-based  
score

Dense vector  
score

Combine

Sparse vector   
score

RecEprVcam Ratk FuiEVt (RRF 
blend multiple  

ranking methods



Reciprocal Rank Fusion (RRF

Detie LeclVr

Doc Score r(d) k+r(d)

A 1 1 61

B 0.7 2 62

C 0.5 3 63

D 0.2 4 64

o 0.01 5 65

DVc RRF ScVre

A 1/61  1/62  0,0325

C 1/63  1/61  0,0323

B 1/62  0,0161

F 1/63  0,0159

D 1/64  0,0156

BM25

Doc Score r(d) k+r(d)

C 1,341 1 61

A 739 2 62

F 732 3 63

G 192 4 64

H 183 5 65

D  set of docs 
R  set of rankings as permutation on 1..|D| 
k - typically set to 60 by default



BM25f

Sparse Vector

Dense Vector

Hybrid Ranking

+

+

GET index/_search 
{ 
  "retriever": { 
    "rrf": { 
     "retrievers": [{ 
          "standard" { "query": { 
              "match": {...}  
            }  
          } 
        },{ 
          "standard" { "query": { 
              "sparse_vector": {...}  
            }  
          } 
        },{ 
          "knn": { ... } 
        } 
      ] 
    } 
  } 
}

cVssercEam



ChalGPT
Elastic and LLM



Search engines

Gen AI



LLM opportunities and limits

Vte 
answer

GAI / LLM

your question

public internet data

your question





Retrieval Augmented Generation

lhe 
right  

answer

GAI / LLM

your question

+

public internet datayour business data

your question

context window

documents images audio



DesV
Elastic Playground 
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