
Search
a new era
David Pilato

@dadoonet
@pilato.fr

omailEciearch
You Know, for Search

These are not the droids
you are looking for.

GET /_analyze

{

 "char_filter": ["html_strip"],

 "tokenizer": "standard",

 "filter": ["lowercase", "stop", "snowball"],

 "text": "These are not the droids
 you are looking for."

}

These are not the droids you are
looking for.

These are not the droids you are
looking for.

"char_filter": "html_strip"

These are not the droids you are looking for.

These
are
not
the
droids
you
are
looking
for

"tokenizer": "standard"

These
are
not
the
droids
you
are
looking
for

"filter": "lowercase"

these
are
not
the
droids
you
are
looking
for

droids
you

looking

"filter": "stop"

These
are
not
the
droids
you
are
looking
for

these
are
not
the
droids
you
are
looking
for

droids
you

looking

These
are
not
the
droids
you
are
looking
for

these
are
not
the
droids
you
are
looking
for

droid
you

look

"filter": "snowball"

These are not the droids you are looking for.

{ "tokens": [{

 "token": "droid",

 "start_offset": 27, "end_offset": 33,

 "type": "<ALPHANUM>", "position": 4

 },{

 "token": "you",

 "start_offset": 34, "end_offset": 37,

 "type": "<ALPHANUM>", "position": 5

 }, {

 "token": "look",

 "start_offset": 42, "end_offset": 49,

 "type": "<ALPHANUM>", "position": 7

 }]}

SesatlEc
search

≠
nEleram

matches

omailEciearch
You Know, for LeclVr Search

What is a
 LeclVr ?

Embeddings represent your data
Example: 1-dimensional vector

CarlVVtReamEilEc

Characler LeclVr

[1 

 1 

Multiple dimensions
represent different data aspects

Husat

MachEte

CarlVVtReamEilEc

Characler LeclVr

[1, 1 

 1, 0 

Characler LeclVr

[1.0, 1.0 

 1.0, 0.0 

[1.0, 0.8 

 1.0, 1.0 

[1.0, 1.0 

Similar data
is grouped together

CarlVVtReamEilEc

Husat

MachEte

Vector search ranks objects
by similarity (~relevance) to the query

CarlVVtReamEilEc

Ratk Reiuml

Query

1

2

3

4

5

Husat

MachEte

HVw dV yVu
index veclVri ?

Architecture of Vector Search

PUT ecommerce
{
 "mappings": {
 "properties": {
 "description": {
 "type": "text"
 }
 "desc_embedding": {
 "type": "dense_vector"
 }
 }
 }
}

dense_vector field type

{
 "_id":"product-1234",
 "product_name":"Summer Dress",
 "description":"Our best-selling…",
 "Price": 118,
 "color":"blue",
 "fabric":"cotton",
 "desc_embedding":[0.452,0.3242,…],
 "img_embedding":[0.012,0.0,…]
}

{
 "_id":"product-1234",
 "product_name":"Summer Dress",
 "description":"Our best-selling…",
 "Price": 118,
 "color":"blue",
 "fabric":"cotton",
 "desc_embedding":[0.452,0.3242,…]
}

{
 "_id":"product-1234",
 "product_name":"Summer Dress",
 "description":"Our best-selling…",
 "Price": 118,
 "color":"blue",
 "fabric":"cotton"
}

Data Ingestion and Embedding Generation

POST /ecommerce/_doc

SVurce dala

POST /ecommerce/_doc

{
 "_id":"product-1234",
 "product_name":"Summer Dress",
 "description":"Our best-selling…",
 "Price": 118,
 "color":"blue",
 "fabric":"cotton",
 "desc_embedding":[0.452,0.3242,…]
}

With Elastic ML

POST /ecommerce/_doc

SVurce dala

cVssercEam

{
 "_id":"product-1234",
 "product_name":"Summer Dress",
 "description":"Our best-selling…",
 "Price": 118,
 "color":"blue",
 "fabric":"cotton",
 }

Eland Imports PyTorch Models

$ eland_import_hub_model
--url https://cluster_URL --hub-
model-id BERT-MiniLM-L6 --task-
type text_embedding --start

BERT-MiniLM-L6

Select the
appropriate model

Load it Manage models

CVssercEam

Elastic’s range of supported NLP models
● FEmm saik sVdem

Mask some of the words in a sentence and predict words
that replace masks

● Nased etlEly recVgtElEVt sVdem
NLP method that extracts information from text

● Texl esbeddEtg sVdem
Represent individual words as numerical vectors in a predefined
vector space

● Texl cmaiiEfEcalEVt sVdem
Assign a set of predefined categories to open-ended text

● QueilEVt atiwerEtg sVdem
Model that can answer questions given some or no context

● ZerV-ihVl lexl cmaiiEfEcalEVt sVdem
Model trained on a set of labeled examples, that is able to classify previously unseen examples

Full list at: ela.st/nlp-supported-models

cVssercEam

https://ela.st/nlp-supported-models

HVw dV yVu
search veclVri ?

Architecture of Vector Search

GET /ecommerce/_search
{
 "query" : {
 "bool": {
 "must": [{
 "knn": {
 "field": "desc_embbeding",
 "query_vector": [0.123, 0.244,...]

 }
 }],
 "filter": {
 "term": {
 "department": "women"
 }
 }
 }
 },
 "size": 10
}

knn query

GET /ecommerce/_search
{
 "query" : {
 "bool": {
 "must": [{
 "knn": {
 "field": "desc_embbeding",
 "query_vector_builder": {
 "text_embedding": {
 "model_text": "summer clothes",
 "model_id": <text-embedding-model>
 }
 }
 }
 }],
 "filter": {
 "term": {
 "department": "women"
 }
 }
 }
 },
 "size": 10
}

knn query (with Elastic ML

TratifVrser sVdem

cVssercEam

semantic_text field type

tew frVs 8.15

POST ecommerce/_doc
{
 "description": "Our best-selling…"
}

GET ecommerce/_search
{
 "query": {
 "semantic": {
 "field": "desc_embedding"
 "query" : "I'm looking for a red dress for a DJ party"
}}}

PUT ecommerce
{
 "mappings": {
 "properties": {
 "description": {
 "type": "text",
 "copy_to": ["desc_embedding"]
 }
 "desc_embedding": {
 "type": "semantic_text",
 "inference_id": "e5-small-multilingual"
 }
 }
 }
}

PUT /_inference/text_embedding/e5-small-multilingual
{
 "service": "elasticsearch",
 "service_settings": {
 "num_allocations": 1,
 "num_threads": 1,
 "model_id": ".multilingual-e5-small_linux-x86_64"
 }
}

Architecture of Vector Search

ChVEce Vf osbeddEtg MVdem

oxletd lV HEgher Remevatce

●Apply hybrid scoring
●Bring Your Own Model:

requires expertise + labeled
data

Slarl wElh Off-lhe Shemf
MVdemi

●Text data: Hugging Face
(like Microsoft's E5

●Images: OpenAI’s CLIP

Problem
training vs actual use-case

Bul hVw dVei El
really work?

q

Similarity

Husat

ReamEilEc

θ

d1

d2

cos(θ) = ⃗q × ⃗d
| ⃗q | × | ⃗d |

_score = 1 + cos(θ)
2

Similarity: cosine (cosine)

_score = 1 + 1
2 = 1 _score = 1 + 0

2 = 0.5 _score = 1 − 1
2 = 0

θ θ θ

Similar vectors
θ close to 0

cos(θ) close to 1

Orthogonal vectors
θ close to 90°

cos(θ) close to 0

Opposite vectors
θ close to 180°

cos(θ) close to -1

⃗q × ⃗d = | ⃗q | × cos(θ) × | ⃗d |

Similarity: Dot Product (dot_product or
max_inner_product)

scorefloat = 1 + dot product(q, d)
2

scorebyte = 0.5 + dot product(q, d)
32768 × dims

q

θd

| ⃗q | × cos(θ)

l2_normq,d =
n

∑
i=1

(xi − yi)2

Similarity: Euclidean distance (l2_norm)

_score = 1
1 + (l2_normq,d)2

q

d

y

xx1 x2

y1

y2

n

∑i=1
(x i−

y i)
2

Brule FVrce

Hierarchical Navigable Small Worlds (HNSW
One popular approach

HNSW: a layered approach that
simplifies access to the nearest neighbor

Tiered: from coarse to fine
approximation over a few steps

Balance: Bartering a little accuracy for a
lot of scalability

Speed: Excellent query latency on large
scale indices

Scaling Vector Search

Beil praclEcei

1. Avoid searches during indexing

2. Exclude vectors from _source

3. Reduce vector dimensionality

4. Use int8/int4/bit rather than float

LeclVr iearch

1. Needs lots of memory

2. Indexing is slower

3. Merging is slow

* Continuous improvements in Lucene +
Elasticsearch

float32
Recall: High
Precision: High
Rescore: Likely Not Needed

Full RAM Required

int4
Recall: Low
Precision: Low
Oversampling: Needed

Rescore: may be slower

8X RAM Savings

bit
Recall: Bad
Precision: Bad
Oversampling: Needed

Rescore: Expensive and Limiting

32X RAM Savings

Scalar Quantization

int8
Recall: Good
Precision: Good
Oversampling: Moderate

Rescore: Reasonable

4X RAM Savings

Elasticsearch
8.14 default

BBQ aka Better Binary Quantization

float32 int4 bitint8 BBQ*

BBQ 32X RAM savings.
Faster & more accurate than Product Quantization

100M vectors?
Only 12GB!?! One single node.

Memory required

Benchmarketing

https://djdadoo.pilato.fr/

https://github.com/dadoonet/music-search/

https://github.com/dadoonet/music-search/

omailEciearch
You Know, for HybrEd Search

HybrEd icVrEtg

Term-based
score

Vector similarity
score

CombinenEtear CVsbEtalEVt
manual boosting

GET ecommerce/_search
{
 "query" : {
 "bool" : {
 "must" : [{
 "match": {
 "description": {
 "query": "summer clothes",
 "boost": 0.1
 }
 }
 },{
 "knn": {
 "field": "desc_embbeding",
 "query_vector": [0.123, 0.244,...],
 "boost": 2.0,
 "filter": {
 "term": {
 "department": "women"
 }
 }
 }
 }],
 "filter" : {
 "range" : { "price": { "lte": 30 } }
 }
 }
 }
}

summer clothes

pre-filter

post-filter

PUT starwars
{
 "mappings": {
 "properties": {
 "text.tokens": {
 "type": "sparse_vector"
 }
 }
 }
}

GET starwars/_search
{
 "query":{
 "sparse_vector": {
 "field": "text.tokens",
 "query_vector": { "lucas": 0.50047517,
 "ship": 0.29860738,
 "dragon": 0.5300422,
 "quest": 0.5974301, ... }
 }
 }
}

"These are not the droids you are looking for.",

"Obi-Wan never told you what happened to your father."

onSoR
olastic nearned Sparse EncodoR

sparse_vector
Not BM25 or (dense) vector

Sparse vector like BM25

Stored as inverted index

CVssercEam

ranking 3

HybrEd ratkEtg
ranking 2ranking 1

Term-based
score

Dense vector
score

Combine

Sparse vector
score

RecEprVcam Ratk FuiEVt (RRF
blend multiple

ranking methods

Reciprocal Rank Fusion (RRF

Detie LeclVr

Doc Score r(d) k+r(d)

A 1 1 61

B 0.7 2 62

C 0.5 3 63

D 0.2 4 64

o 0.01 5 65

DVc RRF ScVre

A 1/61  1/62  0,0325

C 1/63  1/61  0,0323

B 1/62  0,0161

F 1/63  0,0159

D 1/64  0,0156

BM25

Doc Score r(d) k+r(d)

C 1,341 1 61

A 739 2 62

F 732 3 63

G 192 4 64

H 183 5 65

D  set of docs
R  set of rankings as permutation on 1..|D|
k - typically set to 60 by default

BM25f

Sparse Vector

Dense Vector

Hybrid Ranking

+

+

GET index/_search
{
 "retriever": {
 "rrf": {
 "retrievers": [{
 "standard" { "query": {
 "match": {...}
 }
 }
 },{
 "standard" { "query": {
 "sparse_vector": {...}
 }
 }
 },{
 "knn": { ... }
 }
]
 }
 }
}

cVssercEam

ChalGPT
Elastic and LLM

Search engines

Gen AI

LLM opportunities and limits

Vte
answer

GAI / LLM

your question

public internet data

your question

Retrieval Augmented Generation

lhe
right

answer

GAI / LLM

your question

+

public internet datayour business data

your question

context window

documents images audio

DesV
Elastic Playground

omailEciearch
You Know, for SesatlEc Search

Search
a new era
David Pilato

@dadoonet
@pilato.fr

