Cot(Tan^(- 1)X+Cot^(- 1)X) . Let f(x) = arctan(x) +arcot(x) for all x ∈r. Cot−1x = tan−1(1 x) let y = cot−1x, then by definition of inverse. The value of the constant is f(0) = arctan(0). Use inverse trigonometric functions to find the solutions, and check for extraneous solutions. Prove\:\frac {\csc (\theta)+\cot (\theta)} {\tan (\theta)+\sin (\theta)}=\cot (\theta)\csc (\theta) i know what you did last summer…trigonometric. Trigonometry is a branch of mathematics concerned with relationships between angles and side lengths of triangles. Y = tan−1(1 x) ∴. \begin {cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end {cases} \right. The function f is differentiable and f′(x) = 1 1+x2 + −1 1+x2 = 0, so f is constant. A basic trigonometric equation has the form sin.
from brainly.in
\begin {cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end {cases} \right. Cot−1x = tan−1(1 x) let y = cot−1x, then by definition of inverse. Let f(x) = arctan(x) +arcot(x) for all x ∈r. Y = tan−1(1 x) ∴. A basic trigonometric equation has the form sin. Prove\:\frac {\csc (\theta)+\cot (\theta)} {\tan (\theta)+\sin (\theta)}=\cot (\theta)\csc (\theta) i know what you did last summer…trigonometric. The value of the constant is f(0) = arctan(0). Trigonometry is a branch of mathematics concerned with relationships between angles and side lengths of triangles. Use inverse trigonometric functions to find the solutions, and check for extraneous solutions. The function f is differentiable and f′(x) = 1 1+x2 + −1 1+x2 = 0, so f is constant.
[Expert Answer] if y= tan(1)x + cot(1)x then find dy/dx Brainly.in
Cot(Tan^(- 1)X+Cot^(- 1)X) A basic trigonometric equation has the form sin. \begin {cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end {cases} \right. Y = tan−1(1 x) ∴. Use inverse trigonometric functions to find the solutions, and check for extraneous solutions. Prove\:\frac {\csc (\theta)+\cot (\theta)} {\tan (\theta)+\sin (\theta)}=\cot (\theta)\csc (\theta) i know what you did last summer…trigonometric. Trigonometry is a branch of mathematics concerned with relationships between angles and side lengths of triangles. The function f is differentiable and f′(x) = 1 1+x2 + −1 1+x2 = 0, so f is constant. A basic trigonometric equation has the form sin. Let f(x) = arctan(x) +arcot(x) for all x ∈r. The value of the constant is f(0) = arctan(0). Cot−1x = tan−1(1 x) let y = cot−1x, then by definition of inverse.
From www.youtube.com
Q30 If y=tan^(1)x + cot^(1)x, x∈R, then dy/dx is YouTube Cot(Tan^(- 1)X+Cot^(- 1)X) Prove\:\frac {\csc (\theta)+\cot (\theta)} {\tan (\theta)+\sin (\theta)}=\cot (\theta)\csc (\theta) i know what you did last summer…trigonometric. The function f is differentiable and f′(x) = 1 1+x2 + −1 1+x2 = 0, so f is constant. Let f(x) = arctan(x) +arcot(x) for all x ∈r. Use inverse trigonometric functions to find the solutions, and check for extraneous solutions. \begin {cases} {. Cot(Tan^(- 1)X+Cot^(- 1)X).
From brainly.in
[Expert Answer] if y= tan(1)x + cot(1)x then find dy/dx Brainly.in Cot(Tan^(- 1)X+Cot^(- 1)X) Trigonometry is a branch of mathematics concerned with relationships between angles and side lengths of triangles. Cot−1x = tan−1(1 x) let y = cot−1x, then by definition of inverse. Y = tan−1(1 x) ∴. The value of the constant is f(0) = arctan(0). Use inverse trigonometric functions to find the solutions, and check for extraneous solutions. Prove\:\frac {\csc (\theta)+\cot (\theta)}. Cot(Tan^(- 1)X+Cot^(- 1)X).
From www.youtube.com
tan^1(x) = cot^1(1/x) arctan x = arccot(1/x) YouTube Cot(Tan^(- 1)X+Cot^(- 1)X) The value of the constant is f(0) = arctan(0). Use inverse trigonometric functions to find the solutions, and check for extraneous solutions. Trigonometry is a branch of mathematics concerned with relationships between angles and side lengths of triangles. Prove\:\frac {\csc (\theta)+\cot (\theta)} {\tan (\theta)+\sin (\theta)}=\cot (\theta)\csc (\theta) i know what you did last summer…trigonometric. Y = tan−1(1 x) ∴. \begin. Cot(Tan^(- 1)X+Cot^(- 1)X).
From socratic.org
How do you prove (tan(x)1)/(tan(x)+1)= (1cot(x))/(1+cot(x))? Socratic Cot(Tan^(- 1)X+Cot^(- 1)X) The value of the constant is f(0) = arctan(0). Let f(x) = arctan(x) +arcot(x) for all x ∈r. \begin {cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end {cases} \right. Cot−1x = tan−1(1 x) let y = cot−1x, then by definition of inverse. Prove\:\frac {\csc (\theta)+\cot (\theta)} {\tan (\theta)+\sin (\theta)}=\cot (\theta)\csc (\theta) i know what you. Cot(Tan^(- 1)X+Cot^(- 1)X).
From math.stackexchange.com
Solve inverse trigonometric equation \sin\left(\operatorname{cot^{1 Cot(Tan^(- 1)X+Cot^(- 1)X) A basic trigonometric equation has the form sin. Prove\:\frac {\csc (\theta)+\cot (\theta)} {\tan (\theta)+\sin (\theta)}=\cot (\theta)\csc (\theta) i know what you did last summer…trigonometric. Let f(x) = arctan(x) +arcot(x) for all x ∈r. The value of the constant is f(0) = arctan(0). \begin {cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end {cases} \right. Cot−1x =. Cot(Tan^(- 1)X+Cot^(- 1)X).
From www.teachoo.com
Example 6 Chapter 2 Class 12 Inverse NCERT cot1 Examples Cot(Tan^(- 1)X+Cot^(- 1)X) Let f(x) = arctan(x) +arcot(x) for all x ∈r. Trigonometry is a branch of mathematics concerned with relationships between angles and side lengths of triangles. \begin {cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end {cases} \right. Y = tan−1(1 x) ∴. The function f is differentiable and f′(x) = 1 1+x2 + −1 1+x2 =. Cot(Tan^(- 1)X+Cot^(- 1)X).
From socratic.org
How do you prove (tan(x)1)/(tan(x)+1)= (1cot(x))/(1+cot(x))? Socratic Cot(Tan^(- 1)X+Cot^(- 1)X) The value of the constant is f(0) = arctan(0). Let f(x) = arctan(x) +arcot(x) for all x ∈r. Prove\:\frac {\csc (\theta)+\cot (\theta)} {\tan (\theta)+\sin (\theta)}=\cot (\theta)\csc (\theta) i know what you did last summer…trigonometric. The function f is differentiable and f′(x) = 1 1+x2 + −1 1+x2 = 0, so f is constant. Use inverse trigonometric functions to find the. Cot(Tan^(- 1)X+Cot^(- 1)X).
From www.numerade.com
SOLVED For the following exercises, simplify the first trigonometric Cot(Tan^(- 1)X+Cot^(- 1)X) Prove\:\frac {\csc (\theta)+\cot (\theta)} {\tan (\theta)+\sin (\theta)}=\cot (\theta)\csc (\theta) i know what you did last summer…trigonometric. The function f is differentiable and f′(x) = 1 1+x2 + −1 1+x2 = 0, so f is constant. Y = tan−1(1 x) ∴. Cot−1x = tan−1(1 x) let y = cot−1x, then by definition of inverse. Use inverse trigonometric functions to find the. Cot(Tan^(- 1)X+Cot^(- 1)X).
From www.youtube.com
`sin "cosec"^(1) cot (tan^(1)x) =x` YouTube Cot(Tan^(- 1)X+Cot^(- 1)X) Trigonometry is a branch of mathematics concerned with relationships between angles and side lengths of triangles. The function f is differentiable and f′(x) = 1 1+x2 + −1 1+x2 = 0, so f is constant. A basic trigonometric equation has the form sin. Let f(x) = arctan(x) +arcot(x) for all x ∈r. Use inverse trigonometric functions to find the solutions,. Cot(Tan^(- 1)X+Cot^(- 1)X).
From www.youtube.com
The value of `tan^(1)x+cot^(1)x` is Class 12 Maths Doubtnut YouTube Cot(Tan^(- 1)X+Cot^(- 1)X) Trigonometry is a branch of mathematics concerned with relationships between angles and side lengths of triangles. Use inverse trigonometric functions to find the solutions, and check for extraneous solutions. \begin {cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end {cases} \right. The function f is differentiable and f′(x) = 1 1+x2 + −1 1+x2 = 0,. Cot(Tan^(- 1)X+Cot^(- 1)X).
From www.doubtnut.com
tan(tan^(1)x+tan^(1)y+tan^(1)z]cot(cot^(1)x+cot^(1)y+cot^(1)z) Cot(Tan^(- 1)X+Cot^(- 1)X) Trigonometry is a branch of mathematics concerned with relationships between angles and side lengths of triangles. Cot−1x = tan−1(1 x) let y = cot−1x, then by definition of inverse. \begin {cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end {cases} \right. The value of the constant is f(0) = arctan(0). Let f(x) = arctan(x) +arcot(x) for. Cot(Tan^(- 1)X+Cot^(- 1)X).
From www.doubtnut.com
int(0)^(1)(tan^(1)x+cot^(1)x) dx Cot(Tan^(- 1)X+Cot^(- 1)X) Trigonometry is a branch of mathematics concerned with relationships between angles and side lengths of triangles. The value of the constant is f(0) = arctan(0). A basic trigonometric equation has the form sin. Prove\:\frac {\csc (\theta)+\cot (\theta)} {\tan (\theta)+\sin (\theta)}=\cot (\theta)\csc (\theta) i know what you did last summer…trigonometric. \begin {cases} { 8x+2y = 46 } \\ { 7x+3y =. Cot(Tan^(- 1)X+Cot^(- 1)X).
From loepvoadc.blob.core.windows.net
If Int Cos4X 1 Cot X Tan X Dx A Cos4X B Then at John Washington blog Cot(Tan^(- 1)X+Cot^(- 1)X) Use inverse trigonometric functions to find the solutions, and check for extraneous solutions. The value of the constant is f(0) = arctan(0). Trigonometry is a branch of mathematics concerned with relationships between angles and side lengths of triangles. Cot−1x = tan−1(1 x) let y = cot−1x, then by definition of inverse. Y = tan−1(1 x) ∴. \begin {cases} { 8x+2y. Cot(Tan^(- 1)X+Cot^(- 1)X).
From www.teachoo.com
Find tan1 root 3 cot1 ( root 3) Inverse Trigo MCQ Teachoo Cot(Tan^(- 1)X+Cot^(- 1)X) Prove\:\frac {\csc (\theta)+\cot (\theta)} {\tan (\theta)+\sin (\theta)}=\cot (\theta)\csc (\theta) i know what you did last summer…trigonometric. The value of the constant is f(0) = arctan(0). \begin {cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end {cases} \right. The function f is differentiable and f′(x) = 1 1+x2 + −1 1+x2 = 0, so f is constant.. Cot(Tan^(- 1)X+Cot^(- 1)X).
From www.youtube.com
cot^1(x) = pi cot^1(x) arccot(x) = pi arccot x YouTube Cot(Tan^(- 1)X+Cot^(- 1)X) Y = tan−1(1 x) ∴. The function f is differentiable and f′(x) = 1 1+x2 + −1 1+x2 = 0, so f is constant. Use inverse trigonometric functions to find the solutions, and check for extraneous solutions. Prove\:\frac {\csc (\theta)+\cot (\theta)} {\tan (\theta)+\sin (\theta)}=\cot (\theta)\csc (\theta) i know what you did last summer…trigonometric. A basic trigonometric equation has the form. Cot(Tan^(- 1)X+Cot^(- 1)X).
From www.toppr.com
Evaluate cot (tan^{1}x+cot^{1}x) Cot(Tan^(- 1)X+Cot^(- 1)X) A basic trigonometric equation has the form sin. The value of the constant is f(0) = arctan(0). The function f is differentiable and f′(x) = 1 1+x2 + −1 1+x2 = 0, so f is constant. Use inverse trigonometric functions to find the solutions, and check for extraneous solutions. Let f(x) = arctan(x) +arcot(x) for all x ∈r. Trigonometry is. Cot(Tan^(- 1)X+Cot^(- 1)X).
From www.youtube.com
Q2 Differentiate cot^(1)(1/x) Differentiate cot inverse 1 by x Cot(Tan^(- 1)X+Cot^(- 1)X) Cot−1x = tan−1(1 x) let y = cot−1x, then by definition of inverse. \begin {cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end {cases} \right. Y = tan−1(1 x) ∴. The value of the constant is f(0) = arctan(0). A basic trigonometric equation has the form sin. Prove\:\frac {\csc (\theta)+\cot (\theta)} {\tan (\theta)+\sin (\theta)}=\cot (\theta)\csc (\theta). Cot(Tan^(- 1)X+Cot^(- 1)X).
From www.toppr.com
3 Solve the inequality ( tan ^ { 1 } x > cot ^ { 1 } x ) Cot(Tan^(- 1)X+Cot^(- 1)X) Let f(x) = arctan(x) +arcot(x) for all x ∈r. \begin {cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end {cases} \right. Prove\:\frac {\csc (\theta)+\cot (\theta)} {\tan (\theta)+\sin (\theta)}=\cot (\theta)\csc (\theta) i know what you did last summer…trigonometric. Trigonometry is a branch of mathematics concerned with relationships between angles and side lengths of triangles. Use inverse trigonometric. Cot(Tan^(- 1)X+Cot^(- 1)X).
From www.teachoo.com
Derivative of cot1 x (cot inverse x) Teachoo [with Video] Cot(Tan^(- 1)X+Cot^(- 1)X) \begin {cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end {cases} \right. Trigonometry is a branch of mathematics concerned with relationships between angles and side lengths of triangles. Y = tan−1(1 x) ∴. The value of the constant is f(0) = arctan(0). Use inverse trigonometric functions to find the solutions, and check for extraneous solutions. Let. Cot(Tan^(- 1)X+Cot^(- 1)X).
From www.chegg.com
Solved Prove The Identity. Cot(x Y) = Cot(x) Cot(y) + 1... Cot(Tan^(- 1)X+Cot^(- 1)X) \begin {cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end {cases} \right. A basic trigonometric equation has the form sin. Trigonometry is a branch of mathematics concerned with relationships between angles and side lengths of triangles. The function f is differentiable and f′(x) = 1 1+x2 + −1 1+x2 = 0, so f is constant. Let. Cot(Tan^(- 1)X+Cot^(- 1)X).
From www.youtube.com
Find the limit as x approaches infinity for sin(tan(1/x)) cot (1/x Cot(Tan^(- 1)X+Cot^(- 1)X) Trigonometry is a branch of mathematics concerned with relationships between angles and side lengths of triangles. The value of the constant is f(0) = arctan(0). Let f(x) = arctan(x) +arcot(x) for all x ∈r. Prove\:\frac {\csc (\theta)+\cot (\theta)} {\tan (\theta)+\sin (\theta)}=\cot (\theta)\csc (\theta) i know what you did last summer…trigonometric. \begin {cases} { 8x+2y = 46 } \\ { 7x+3y. Cot(Tan^(- 1)X+Cot^(- 1)X).
From www.toppr.com
If y = cot^1 ( 1 x1 + x ) then dydx Cot(Tan^(- 1)X+Cot^(- 1)X) Let f(x) = arctan(x) +arcot(x) for all x ∈r. Y = tan−1(1 x) ∴. The function f is differentiable and f′(x) = 1 1+x2 + −1 1+x2 = 0, so f is constant. The value of the constant is f(0) = arctan(0). \begin {cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end {cases} \right. Prove\:\frac {\csc. Cot(Tan^(- 1)X+Cot^(- 1)X).
From klamyqfpr.blob.core.windows.net
How To Find The Value Of Inverse Cotangent at Rickie Davis blog Cot(Tan^(- 1)X+Cot^(- 1)X) Use inverse trigonometric functions to find the solutions, and check for extraneous solutions. The value of the constant is f(0) = arctan(0). Trigonometry is a branch of mathematics concerned with relationships between angles and side lengths of triangles. Cot−1x = tan−1(1 x) let y = cot−1x, then by definition of inverse. Y = tan−1(1 x) ∴. \begin {cases} { 8x+2y. Cot(Tan^(- 1)X+Cot^(- 1)X).
From www.toppr.com
If y = tan^1( cot x) + cot^1(tan x) , then find dydx Cot(Tan^(- 1)X+Cot^(- 1)X) Let f(x) = arctan(x) +arcot(x) for all x ∈r. A basic trigonometric equation has the form sin. Y = tan−1(1 x) ∴. The function f is differentiable and f′(x) = 1 1+x2 + −1 1+x2 = 0, so f is constant. \begin {cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end {cases} \right. The value of. Cot(Tan^(- 1)X+Cot^(- 1)X).
From www.epsilonify.com
Prove that cot^1(x) is equal to tan^1(1/x) Epsilonify Cot(Tan^(- 1)X+Cot^(- 1)X) The value of the constant is f(0) = arctan(0). A basic trigonometric equation has the form sin. The function f is differentiable and f′(x) = 1 1+x2 + −1 1+x2 = 0, so f is constant. \begin {cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end {cases} \right. Prove\:\frac {\csc (\theta)+\cot (\theta)} {\tan (\theta)+\sin (\theta)}=\cot (\theta)\csc. Cot(Tan^(- 1)X+Cot^(- 1)X).
From www.toppr.com
Prove thattan^{1}x+cot^{1}(x+1)=tan^{1}(x^{2}+x+1) Cot(Tan^(- 1)X+Cot^(- 1)X) A basic trigonometric equation has the form sin. Prove\:\frac {\csc (\theta)+\cot (\theta)} {\tan (\theta)+\sin (\theta)}=\cot (\theta)\csc (\theta) i know what you did last summer…trigonometric. Use inverse trigonometric functions to find the solutions, and check for extraneous solutions. \begin {cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end {cases} \right. The value of the constant is f(0). Cot(Tan^(- 1)X+Cot^(- 1)X).
From www.teachoo.com
Derivative of cot1 x (cot inverse x) Teachoo [with Video] Cot(Tan^(- 1)X+Cot^(- 1)X) Use inverse trigonometric functions to find the solutions, and check for extraneous solutions. \begin {cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end {cases} \right. Let f(x) = arctan(x) +arcot(x) for all x ∈r. Y = tan−1(1 x) ∴. The value of the constant is f(0) = arctan(0). Trigonometry is a branch of mathematics concerned with. Cot(Tan^(- 1)X+Cot^(- 1)X).
From www.toppr.com
If tan^{1}xcot^{1}x=tan^{1}dfrac{1}{sqrt{3}}, the value of x. Cot(Tan^(- 1)X+Cot^(- 1)X) \begin {cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end {cases} \right. The value of the constant is f(0) = arctan(0). Let f(x) = arctan(x) +arcot(x) for all x ∈r. Trigonometry is a branch of mathematics concerned with relationships between angles and side lengths of triangles. Y = tan−1(1 x) ∴. The function f is differentiable. Cot(Tan^(- 1)X+Cot^(- 1)X).
From quizparaguayan.z4.web.core.windows.net
How To Find Tan Inverse Cot(Tan^(- 1)X+Cot^(- 1)X) \begin {cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end {cases} \right. The value of the constant is f(0) = arctan(0). A basic trigonometric equation has the form sin. Y = tan−1(1 x) ∴. Let f(x) = arctan(x) +arcot(x) for all x ∈r. Use inverse trigonometric functions to find the solutions, and check for extraneous solutions.. Cot(Tan^(- 1)X+Cot^(- 1)X).
From www.toppr.com
Prove that tan(cot^1x) = cot(tan^1x) . State with reason whether the Cot(Tan^(- 1)X+Cot^(- 1)X) Trigonometry is a branch of mathematics concerned with relationships between angles and side lengths of triangles. The function f is differentiable and f′(x) = 1 1+x2 + −1 1+x2 = 0, so f is constant. Prove\:\frac {\csc (\theta)+\cot (\theta)} {\tan (\theta)+\sin (\theta)}=\cot (\theta)\csc (\theta) i know what you did last summer…trigonometric. Y = tan−1(1 x) ∴. The value of the. Cot(Tan^(- 1)X+Cot^(- 1)X).
From www.youtube.com
Integral of tan^1(cot x) Integral of arctan(cot x) inverse of tan Cot(Tan^(- 1)X+Cot^(- 1)X) Let f(x) = arctan(x) +arcot(x) for all x ∈r. Prove\:\frac {\csc (\theta)+\cot (\theta)} {\tan (\theta)+\sin (\theta)}=\cot (\theta)\csc (\theta) i know what you did last summer…trigonometric. A basic trigonometric equation has the form sin. The value of the constant is f(0) = arctan(0). The function f is differentiable and f′(x) = 1 1+x2 + −1 1+x2 = 0, so f is. Cot(Tan^(- 1)X+Cot^(- 1)X).
From www.doubtnut.com
xinR, cosec(tan^(1)x+cot^(1)x)= Cot(Tan^(- 1)X+Cot^(- 1)X) Y = tan−1(1 x) ∴. Use inverse trigonometric functions to find the solutions, and check for extraneous solutions. \begin {cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end {cases} \right. Cot−1x = tan−1(1 x) let y = cot−1x, then by definition of inverse. The value of the constant is f(0) = arctan(0). The function f is. Cot(Tan^(- 1)X+Cot^(- 1)X).
From www.doubtnut.com
tan^(1)x+cot^(1)x=? Cot(Tan^(- 1)X+Cot^(- 1)X) The value of the constant is f(0) = arctan(0). Cot−1x = tan−1(1 x) let y = cot−1x, then by definition of inverse. Let f(x) = arctan(x) +arcot(x) for all x ∈r. Prove\:\frac {\csc (\theta)+\cot (\theta)} {\tan (\theta)+\sin (\theta)}=\cot (\theta)\csc (\theta) i know what you did last summer…trigonometric. \begin {cases} { 8x+2y = 46 } \\ { 7x+3y = 47 }. Cot(Tan^(- 1)X+Cot^(- 1)X).
From math.stackexchange.com
trigonometry Solving \tan^{1}x > \cot^{1}x Mathematics Stack Cot(Tan^(- 1)X+Cot^(- 1)X) Prove\:\frac {\csc (\theta)+\cot (\theta)} {\tan (\theta)+\sin (\theta)}=\cot (\theta)\csc (\theta) i know what you did last summer…trigonometric. Y = tan−1(1 x) ∴. A basic trigonometric equation has the form sin. The value of the constant is f(0) = arctan(0). Use inverse trigonometric functions to find the solutions, and check for extraneous solutions. Let f(x) = arctan(x) +arcot(x) for all x ∈r.. Cot(Tan^(- 1)X+Cot^(- 1)X).
From www.youtube.com
Value of cot^(1)(tan(x)) What is the value of cot^(1)(tan(x)) How Cot(Tan^(- 1)X+Cot^(- 1)X) Trigonometry is a branch of mathematics concerned with relationships between angles and side lengths of triangles. \begin {cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end {cases} \right. The value of the constant is f(0) = arctan(0). The function f is differentiable and f′(x) = 1 1+x2 + −1 1+x2 = 0, so f is constant.. Cot(Tan^(- 1)X+Cot^(- 1)X).