
Dart Programming Language Specification
6th edition draft

Version 2.13-dev

October 9, 2025

Contents
1 Scope 7

2 Conformance 7

3 Normative References 7

4 Terms and Definitions 7

5 Notation 7

6 Overview 11
6.1 Scoping . 12
6.2 Privacy . 14
6.3 Concurrency . 15

7 Errors and Warnings 15

8 Variables 16
8.1 Implicitly Induced Getters and Setters 18
8.2 Evaluation of Implicit Variable Getters 20

9 Functions 23
9.1 Function Declarations . 25
9.2 Formal Parameters . 26

9.2.1 Required Formals . 27
9.2.2 Optional Formals . 28
9.2.3 Covariant Parameters . 29

9.3 Type of a Function . 30
9.4 External Functions . 31

1

10 Classes 32
10.1 Fully Implementing an Interface 34
10.2 Instance Methods . 36

10.2.1 Operators . 37
10.2.2 The Method noSuchMethod 38
10.2.3 The Operator ‘==’ and Primitive Equality 42

10.3 Getters . 42
10.4 Setters . 43
10.5 Abstract Instance Members . 43
10.6 Instance Variables . 44
10.7 Constructors . 45

10.7.1 Generative Constructors 45
10.7.2 Factories . 51
10.7.3 Constant Constructors . 54

10.8 Static Methods . 55
10.9 Superclasses . 55

10.9.1 Inheritance and Overriding 56
10.10Superinterfaces . 58
10.11Class Member Conflicts . 59

11 Interfaces 59
11.1 Combined Member Signatures . 62
11.2 Superinterfaces . 63

11.2.1 Inheritance and Overriding 64
11.2.2 Correct Member Overrides 65

12 Mixins 65
12.1 Mixin Classes . 65
12.2 Mixin Declaration . 66
12.3 Mixin Application . 68

13 Extensions 69
13.1 Explicit Invocation of an Instance Member of an Extension . . . 71
13.2 Implicit Invocation of an Instance Member of an Extension . . . 74

13.2.1 Accessibility of an Extension 74
13.2.2 Applicability of an Extension 74
13.2.3 Specificity of an Extension 75

13.3 Static analysis of Members of an Extension 77
13.4 Extension Method Closurization 78
13.5 The call Member of an Extension 80

14 Enums 81

2

15 Generics 82
15.1 Variance . 83
15.2 Super-Bounded Types . 86
15.3 Instantiation to Bound . 88

15.3.1 Auxiliary Concepts for Instantiation to Bound 89
15.3.2 The Instantiation to Bound Algorithm 90

16 Metadata 93

17 Expressions 94
17.1 Expression Evaluation . 95
17.2 Object Identity . 95
17.3 Constants . 96

17.3.1 Further Remarks on Constants and Potential Constants . 101
17.3.2 Constant Contexts . 103

17.4 Null . 103
17.5 Numbers . 104
17.6 Booleans . 105
17.7 Strings . 105

17.7.1 String Interpolation . 110
17.8 Symbols . 111
17.9 Collection Literals . 112

17.9.1 Type Promotion . 114
17.9.2 Collection Literal Element Evaluation 114
17.9.3 List Literal Inference . 118
17.9.4 Lists . 119
17.9.5 Set and Map Literal Disambiguation 120
17.9.6 Set and Map Literal Inference 121
17.9.7 Sets . 126
17.9.8 Maps . 128

17.10Throw . 130
17.11Function Expressions . 130
17.12This . 134
17.13Instance Creation . 135

17.13.1 New . 135
17.13.2 Const . 137

17.14Spawning an Isolate . 139
17.15Function Invocation . 139

17.15.1 Actual Argument Lists . 142
17.15.2 Actual Argument List Evaluation 143
17.15.3 Binding Actuals to Formals 143
17.15.4 Unqualified Invocation . 146
17.15.5 Function Expression Invocation 147

17.16Function Closurization . 149
17.17Generic Function Instantiation 149
17.18Lookup . 151

3

17.19Top level Getter Invocation . 152
17.20Member Invocations . 152
17.21Method Invocation . 154

17.21.1 Ordinary Invocation . 154
17.21.2 Cascades . 159
17.21.3 Superinvocations . 160
17.21.4 Sending Messages . 161

17.22Property Extraction . 161
17.22.1 Getter Access and Method Extraction 162
17.22.2 Super Getter Access and Method Closurization 164
17.22.3 Instance Method Closurization 164
17.22.4 Super Closurization . 166
17.22.5 Generic Method Instantiation 167

17.23Assignment . 170
17.23.1 Compound Assignment 173

17.24Conditional . 175
17.25If-null Expressions . 176
17.26Logical Boolean Expressions . 176
17.27Equality . 177
17.28Relational Expressions . 178
17.29Bitwise Expressions . 178
17.30Shift . 179
17.31Additive Expressions . 179
17.32Multiplicative Expressions . 180
17.33Unary Expressions . 181
17.34Await Expressions . 182
17.35Postfix Expressions . 183
17.36Assignable Expressions . 185
17.37Lexical Lookup . 187
17.38Identifier Reference . 189
17.39Type Test . 193
17.40Type Cast . 193

18 Statements 194
18.0.1 Statement Completion . 194

18.1 Blocks . 195
18.2 Expression Statements . 195
18.3 Local Variable Declaration . 195
18.4 Local Function Declaration . 198
18.5 If . 199
18.6 For . 200

18.6.1 For Loop . 200
18.6.2 For-in . 201
18.6.3 Asynchronous For-in . 202

18.7 While . 203
18.8 Do . 203

4

18.9 Switch . 204
18.9.1 Switch case statements . 207

18.10Rethrow . 207
18.11Try . 208

18.11.1 on-catch clauses . 209
18.12Return . 210
18.13Labels . 211
18.14Break . 212
18.15Continue . 212
18.16Yield . 213
18.17Yield-Each . 214
18.18Assert . 216

19 Libraries and Scripts 216
19.1 Imports . 218

19.1.1 The Imported Namespace 219
19.1.2 Semantics of Imports . 221

19.2 Exports . 223
19.3 Namespace Combinators . 224
19.4 Conflict Merging of Namespaces 225
19.5 Parts . 226
19.6 Scripts . 227
19.7 URIs . 227

20 Types 229
20.1 Static Types . 229

20.1.1 Type Promotion . 231
20.2 Dynamic Type System . 232
20.3 Type Aliases . 232
20.4 Subtypes . 236

20.4.1 Meta-Variables . 238
20.4.2 Subtype Rules . 238
20.4.3 Being a subtype . 239
20.4.4 Informal Subtype Rule Descriptions 241
20.4.5 Additional Subtyping Concepts 243

20.5 Function Types . 243
20.6 Type Function . 244
20.7 Type dynamic . 244
20.8 Type FutureOr . 246
20.9 Type Void . 247

20.9.1 Void Soundness . 250
20.10Parameterized Types . 251

20.10.1 Actual Types . 252
20.10.2 Least Upper Bounds . 252

5

21 Reference 253
21.1 Lexical Rules . 253

21.1.1 Reserved Words . 254
21.1.2 Comments . 254

21.2 Operator Precedence . 254

6

Dart Programming Language Specification 7

1 Scope ecmaScope

This Ecma standard specifies the syntax and semantics of the Dart program-
ming language. It does not specify the APIs of the Dart libraries except where
those library elements are essential to the correct functioning of the language
itself (e.g., the existence of class Object with methods such as noSuchMethod,
runtimeType).

2 Conformance ecmaConformance

A conforming implementation of the Dart programming language must pro-
vide and support all the APIs (libraries, types, functions, getters, setters, whether
top-level, static, instance or local) mandated in this specification.

A conforming implementation is permitted to provide additional APIs, but
not additional syntax, except for experimental features.

3 Normative References ecmaNormativeReferences

The following referenced documents are indispensable for the application
of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including
any amendments) applies.

1. The Unicode Standard, Version 5.0, as amended by Unicode 5.1.0, or
successor.

2. Dart API Reference, https://api.dartlang.org/

4 Terms and Definitions ecmaTermsAndDefinitions

Terms and definitions used in this specification are given in the body of the
specification proper.

5 Notation notation

We distinguish between normative and non-normative text. Normative text
defines the rules of Dart. It is given in this font. At this time, non-normative
text includes:

Rationale Discussion of the motivation for language design decisions appears in ital-
ics. Distinguishing normative from non-normative helps clarify what part
of the text is binding and what part is merely expository.

Dart Programming Language Specification 8

Commentary Comments such as “The careful reader will have noticed that the name Dart
has four characters” serve to illustrate or clarify the specification, but are
redundant with the normative text. The difference between commentary
and rationale can be subtle. Commentary is more general than rationale,
and may include illustrative examples or clarifications.

Reserved words and built-in identifiers (17.38) appear in bold.
Examples would be switch or class.
Grammar productions are given in a common variant of EBNF. The left

hand side of a production ends with ‘‘::=’’. On the right hand side, alternation
is represented by vertical bars, and sequencing by spacing. As in PEGs, alter-
nation gives priority to the left. Optional elements of a production are suffixed
by a question mark like so: anElephant?. Appending a star to an element of
a production means it may be repeated zero or more times. Appending a plus
sign to a production means it occurs one or more times. Parentheses are used
for grouping. Negation is represented by prefixing an element of a production
with a tilde. Negation is similar to the not combinator of PEGs, but it consumes
input if it matches. In the context of a lexical production it consumes a single
character if there is one; otherwise, a single token if there is one.

An example would be:

⟨aProduction⟩ ::= ⟨anAlternative⟩
| ⟨anotherAlternative⟩
| ⟨oneThing⟩ ⟨after⟩ ⟨another⟩
| ⟨zeroOrMoreThings⟩*
| ⟨oneOrMoreThings⟩+
| ⟨anOptionalThing⟩?
| (⟨some⟩ ⟨grouped⟩ ⟨things⟩)
| ~⟨notAThing⟩
| ‘aTerminal’
| ⟨A_LEXICAL_THING⟩

Both syntactic and lexical productions are represented this way. Lexical
productions are distinguished by their names. The names of lexical productions
consist exclusively of upper case characters and underscores. As always, within
grammatical productions, whitespace and comments between elements of the
production are implicitly ignored unless stated otherwise. Punctuation tokens
appear in quotes.

Productions are embedded, as much as possible, in the discussion of the
constructs they represent.

A term is a syntactic construct. It may be considered to be a piece of △

text which is derivable in the grammar, and it may be considered to be a tree
created by such a derivation. An immediate subterm of a given term t is a △

syntactic construct which corresponds to an immediate subtree of t considered
as a derivation tree. A subterm of a given term t is t, or an immediate subterm △

of t, or a subterm of an immediate subterm of t.
A list x1, . . . , xn denotes any list of n elements of the form xi, 1 ≤ i ≤ n. x1, . . . , xn

Dart Programming Language Specification 9

Note that n may be zero, in which case the list is empty. We use such lists
extensively throughout this specification.

For j ∈ 1..n, let yj be an atomic syntactic entity (like an identifier), xj a j, yj , xj

composite syntactic entity (like an expression or a type), and E again a com- E
posite syntactic entity. The notation [x1/y1, . . . , xn/yn]E then denotes a copy △

of E in which each occurrence of yi, 1 ≤ i ≤ n has been replaced by xi.
This operation is also known as substitution, and it is the variant that avoids △

capture. That is, when E contains a construct that introduces yi into a nested
scope for some i ∈ 1..n, the substitution will not replace yi in that scope.
Conversely, if such a replacement would put an identifier id (a subterm of xi) into
a scope where id is declared, the relevant declarations in E are systematically
renamed to fresh names.

In short, capture freedom ensures that the “meaning” of each identifier is pre-
served during substitution.

We sometimes abuse list or map literal syntax, writing [o1, . . . , on] (re-
spectively {k1: o1, ..., kn: on}) where the oi and ki may be objects rather
than expressions. The intent is to denote a list (respectively map) object whose
elements are the oi (respectively, whose keys are the ki and values are the oi).

The specifications of operators often involve statements such as x op y is x, op, y
equivalent to the method invocation x.op(y). Such specifications should be △

understood as a shorthand for:

• x op y is equivalent to the method invocation x.op′(y), assuming the
class of x actually declared a non-operator method named op′ defining the
same function as the operator op.

This circumlocution is required because x.op(y), where op is an operator,
is not legal syntax. However, it is painfully verbose, and we prefer to state this
rule once here, and use a concise and clear notation across the specification.

When the specification refers to the order given in the program, it means the
order of the program source code text, scanning left-to-right and top-to-bottom.

When the specification refers to a fresh variable, it means a local variable △

with a name that doesn’t occur anywhere in the current program. When the
specification introduces a fresh variable bound to an object, the fresh variable
is implicitly bound in a surrounding scope.

References to otherwise unspecified names of program entities (such as classes
or functions) are interpreted as the names of members of the Dart core library.

Examples would be the classes Object and Type representing, respectively,
the root of the class hierarchy and the reification of run-time types. It would be
possible to declare, e.g., a local variable named Object, so it is generally incorrect
to assume that the name Object will actually resolve to said core class. However,
we will generally omit mentioning this, for brevity.

When the specification says that one piece of syntax is equivalent to another △

piece of syntax, it means that it is equivalent in all ways, and the former syn-
tax should generate the same compile-time errors and have the same run-time
behavior as the latter, if any. Error messages, if any, should always refer to the

Dart Programming Language Specification 10

original syntax. If execution or evaluation of a construct is said to be equivalent
to execution or evaluation of another construct, then only the run-time behavior
is equivalent, and compile-time errors apply only for the original syntax.

When the specification says that one piece of syntax s is treated as another s, s′

△piece of syntax s′, it means that the static analysis of s is the static analysis of
s′ (in particular, exactly the same compile-time errors occur). Moreover, if s has
no compile-time errors then the behavior of s at run time is exactly the behavior
of s′.

Error messages, if any, should always refer to the original syntax s.
In short, whenever s is treated as s′, the reader should immediately switch to

the section about s′ in order to get any further information about the static analysis
and dynamic semantics of s.

The notion of being ‘treated as’ is similar to the notion of syntactic sugar:
“s is treated as s′” could as well have been worded “s is desugared into s′”. Of
course, it should then actually be called “semantic sugar”, because the applica-
bility of the transformation and the construction of s′ may rely on information
from static analysis.

The point is that we only specify the static analysis and dynamic semantics
of a core language which is a subset of Dart (just slightly smaller than Dart),
and desugaring transforms any given Dart program to a program in that core
language. This helps keeping the language specification consistent and compre-
hensible, because it shows directly that some language features are introducing
essential semantics, and others are better described as mere abbreviations of
existing constructs.

The specification uses one syntactic construct, the let expression, which △

is not derivable in the grammar (that is, no Dart source code contains such
an expression). This expression is helpful in specifying certain syntactic forms
that are treated as other syntactic forms, because it allows for introducing and
initializing one or more fresh variables, and using them in an expression.

That is, a let expression is only introduced as a tool to define the evaluation
semantics of an expression in terms of other expressions containing let expressions.

The syntax of a let expression is as follows:

⟨letExpression⟩ ::= let ⟨staticFinalDeclarationList⟩ in ⟨expression⟩

Let elet be a let expression of the form let v1 = e1, · · · , vk = ek in e. It is elet , ej , vj , k
tacitly assumed that vj is a fresh variable, j ∈ 1..k, unless something is stated
to the contrary.

elet contains k nested scopes, S1, . . . , Sk. The enclosing scope for S1 is the S1, . . . , Sk

current scope for elet , and the enclosing scope for Sj is Sj−1, j ∈ 2..k. The
current scope of e1 is the current scope of elet , the current scope of ej is Sj−1,
j ∈ 2..k, and the current scope of e is Sk. For j ∈ 1..k, vj introduces a final,
local variable into Sj , with the static type of ej as its declared type.

Type inference of ej and the context type used for inference of ej are not
relevant. It is generally assumed that type inference has occurred already (6).

Evaluation of elet proceeds by evaluating ej to an object oj and binding vj

Dart Programming Language Specification 11

to oj , where j ∈ 1..k, in that order. Finally, e is evaluated to an object o and
then elet evaluates to o.

The right margin of each page in this document is used to indicate referenced
entities.

The document contains an index at the end. Each entry in the index refers
to a page number, p. On page p there is a ‘⋄’ in the margin at the definition of
the given indexed phrase, and the phrase itself is shown using this typeface. We
have hereby introduced the index marker ⋄ itself. △

The right margin also contains symbols. Whenever a symbol (say, C or xj) is C
xjintroduced and used in more than a few lines of text, it is shown in the margin.

The point is that it is easy to find the definition of a symbol by scanning back
in the text until that symbol occurs in the margin. To avoid useless verbosity,
some symbols are not mentioned in the margin. For instance, we may introduce
e1, . . . , ek, but only show ej and k in the margin.

Note that it may be necessary to look at a few lines of text above the ‘⋄’ or
symbol, because the margin markers can be pushed down one line when there is
more than one marker for a single line.

6 Overview overview

Dart is a class-based, single-inheritance, pure object-oriented programming
language. Dart is optionally typed (20) and supports reified generics. The run-
time type of every object is represented as an instance of class Type which can
be obtained by calling the getter runtimeType declared in class Object, the
root of the Dart class hierarchy.

Dart programs may be statically checked. Programs with compile-time er-
rors do not have a specified dynamic semantics. This specification makes no
attempt to answer additional questions about a library or program at the point
where it is known to have a compile-time error.

However, tools may choose to support execution of some programs with errors.
For instance, a compiler may compile certain constructs with errors such that a
dynamic error will be raised if an attempt is made to execute such a construct,
or an IDE integrated runtime may support opening an editor window when such a
construct is executed, allowing developers to correct the error. It is expected that
such features would amount to a natural extension of the dynamic semantics of
Dart as specified here, but, as mentioned, this specification makes no attempt to
specify exactly what that means.

As specified in this document, dynamic checks are guaranteed to be per-
formed in certain situations, and certain violations of the type system throw
exceptions at run time.

An implementation is free to omit such checks whenever they are guaranteed to
succeed, e.g., based on results from the static analysis.

The coexistence between optional typing and reification is based on the following:

1. Reified type information reflects the types of objects at run time and may

Dart Programming Language Specification 12

always be queried by dynamic typechecking constructs (the analogs of in-
stanceOf, casts, typecase etc. in other languages). Reified type information
includes access to instances of class Type representing types, the run-time
type (aka class) of an object, and the actual values of type parameters to
constructors and generic function invocations.

2. Type annotations declare the types of variables and functions (including meth-
ods and constructors).

3. Type annotations may be omitted, in which case they are generally filled in
with the type dynamic (20.7).

Dart as implemented includes extensive support for inference of omitted types.
This specification makes the assumption that inference has taken place, and hence
inferred types are considered to be present in the program already. However, in some
cases no information is available to infer an omitted type annotation, and hence this
specification still needs to specify how to deal with that. A future version of this
specification will also specify type inference.

Dart programs are organized in a modular fashion into units called libraries △

(19). Libraries are units of encapsulation and may be mutually recursive.
However they are not first class. To get multiple copies of a library running

simultaneously, one needs to spawn an isolate.
A dart program execution may occur with assertions enabled or disabled.

The method used to enable or disable assertions is implementation specific.

6.1 Scoping scoping

A compile-time namespace is a partial function that maps names to names- △

pace values. Compile-time namespaces are used much more frequently than
run-time namespaces (defined later in this section), so when the word namespace △

is used alone, it means compile-time namespace. A name is a lexical token which △

is an ⟨IDENTIFIER⟩, an ⟨IDENTIFIER⟩ followed by ‘=’, or an ⟨operator⟩, or
unary-; and a namespace value is a declaration, a namespace, or the special △

value NAME_CONFLICT (19.4).
If NS (n) = V then we say that NS maps the key n to the value V , and that △

△

△

NS has the binding n 7→ V . The fact that NS is a partial function just means
△

that each name is mapped to at most one namespace value. That is, if NS has the
bindings n 7→ V1 and n 7→ V2 then V1 = V2.

Let NS be a namespace. We say that a name n is in NS if n is a key of NS . △

We say a declaration d is in NS if a key of NS is mapped to d. △

A scope S0 has an associated namespace NS0. The bindings of NS0 is spec-
ified in this document by saying that a given declaration D named n introduces D, n

△a specific entity V into S0, which means that the binding n 7→ V is added to
VNS0.

In some cases, the name of the declaration differs from the identifier that occurs
in the declaration syntax used to declare it. Setters have names that are distinct

Dart Programming Language Specification 13

from the corresponding getters because they always have an ‘=’ automatically added
at the end, and the unary minus operator has the special name unary-.

It is typically the case that V is the declaration D itself, but there are excep-
tions. For example, a variable declaration introduces an implicitly induced getter
declaration, and in some cases also an implicitly induced setter declaration into the
given scope.

Note that labels (18.13) are not included in the namespace of a scope. They
are resolved lexically rather then being looked up in a namespace.

It is a compile-time error if there is more than one entity with the same
name declared in the same scope.

It is therefore impossible, e.g., to define a class that declares a method and a
getter with the same name in Dart. Similarly one cannot declare a top-level function
with the same name as a library variable or a class which is declared in the same
library.

We introduce the notion of a run-time namespace. This is a partial function △

from names to run-time entities, in particular storage locations and functions.
Each run-time namespace corresponds to a namespace with the same keys, but
with values that correspond to the semantics of the namespace values.

A namespace typically maps a name to a declaration, and it can be used
statically to figure out what that name refers to. For example, a variable is
associated with an actual storage location at run time. We introduce the notion
of a run-time namespace based on a namespace, such that the dynamic semantics
can access run-time entities like that storage location. The same code may be
executed multiple times with the same run-time namespace, or with different
run-time namespaces for each execution. E.g., local variables declared inside a
function are specific to each invocation of the function, and instance variables
are specific to an object.

Dart is lexically scoped. Scopes may nest. A name or declaration d is
available in scope S if d is in the namespace induced by S or if d is available △

in the lexically enclosing scope of S. We say that a name or declaration d is in △

scope if d is available in the current scope.
If a declaration d named n is in the namespace induced by a scope S, then d

hides any declaration named n that is available in the lexically enclosing scope △

of S.
A consequence of these rules is that it is possible to hide a type with a method

or variable. Naming conventions usually prevent such abuses. Nevertheless, the
following program is legal:

class HighlyStrung {
String() => "?";

}

Names may be introduced into a scope by declarations within the scope or
by other mechanisms such as imports or inheritance.

The interaction of lexical scoping and inheritance is a subtle one. Ultimately,
the question is whether lexical scoping takes precedence over inheritance or vice

Dart Programming Language Specification 14

versa. Dart chooses the former.
Allowing inherited names to take precedence over locally declared names

could create unexpected situations as code evolves. Specifically, the behavior
of code in a subclass could silently change if a new name is introduced in a
superclass. Consider:

library L1;
class S {}
library L2;
import ‘L1.dart’;
foo() => 42;
class C extends S{ bar() => foo();}

Now assume a method foo() is added to S.

library L1;
class S {foo() => 91;}

If inheritance took precedence over the lexical scope, the behavior of C would
change in an unexpected way. Neither the author of S nor the author of C are
necessarily aware of this. In Dart, if there is a lexically visible method foo(),
it will always be called.

Now consider the opposite scenario. We start with a version of S that con-
tains foo(), but do not declare foo() in library L2. Again, there is a change in
behavior—but the author of L2 is the one who introduced the discrepancy that
effects their code, and the new code is lexically visible. Both these factors make
it more likely that the problem will be detected.

These considerations become even more important if one introduces con-
structs such as nested classes, which might be considered in future versions of
the language.

Good tooling should of course endeavor to inform programmers of such situ-
ations (discreetly). For example, an identifier that is both inherited and lexically
visible could be highlighted (via underlining or colorization). Better yet, tight in-
tegration of source control with language aware tools would detect such changes
when they occur.

6.2 Privacy privacy

Dart supports two levels of privacy: public and private. A declaration is △

private iff its name is private, otherwise it is public. A name q is private iff △

△

△

any one of the identifiers that comprise q is private, otherwise it is public. An
△

identifier is private iff it begins with an underscore (the _ character) otherwise
△it is public.
△A declaration m is accessible to a library L if m is declared in L or if m is △

public.

Dart Programming Language Specification 15

This means private declarations may only be accessed within the library in which
they are declared.

Privacy applies only to declarations within a library, not to the library decla-
ration as a whole. This is because libraries do not reference each other by name,
and so the idea of a private library is meaningless (19.1). Thus, if the name of
a library begins with an underscore, it has no effect on the accessibility of the
library or its members.

Privacy is, at this point, a static notion tied to a particular piece of code
(a library). It is designed to support software engineering concerns rather than
security concerns. Untrusted code should always run in an another isolate.

Privacy is indicated by the name of a declaration—hence privacy and naming
are not orthogonal. This has the advantage that both humans and machines can
recognize access to private declarations at the point of use without knowledge of
the context from which the declaration is derived.

6.3 Concurrency concurrency

Dart code is always single threaded. There is no shared-state concurrency
in Dart. Concurrency is supported via actor-like entities called isolates. △

An isolate is a unit of concurrency. It has its own memory and its own
thread of control. Isolates communicate by message passing (17.21.4). No state
is ever shared between isolates. Isolates are created by spawning (17.14).

7 Errors and Warnings errorsAndWarnings

This specification distinguishes between several kinds of errors.
Compile-time errors are errors that preclude execution. A compile-time error △

must be reported by a Dart compiler before the erroneous code is executed.
A Dart implementation has considerable freedom as to when compilation

takes place. Modern programming language implementations often interleave
compilation and execution, so that compilation of a method may be delayed,
e.g., until it is first invoked. Consequently, compile-time errors in a method m
may be reported as late as the time of m’s first invocation.

Dart is often loaded directly from source, with no intermediate binary repre-
sentation. In the interests of rapid loading, Dart implementations may choose
to avoid full parsing of method bodies, for example. This can be done by tok-
enizing the input and checking for balanced curly braces on method body entry.
In such an implementation, even syntax errors will be detected only when the
method needs to be executed, at which time it will be compiled (JITed).

In a development environment a compiler should of course report compilation
errors eagerly so as to best serve the programmer.

A Dart development environment might choose to support error eliminating
program transformations, e.g., replacing an erroneous expression by the invoca-
tion of a debugger. It is outside the scope of this document to specify how such
transformations work, and where they may be applied.

Dart Programming Language Specification 16

If an uncaught compile-time error occurs within the code of a running isolate
A, A is immediately suspended. The only circumstance where a compile-time
error could be caught would be via code run reflectively, where the mirror system
can catch it.

Typically, once a compile-time error is thrown and A is suspended, A will
then be terminated. However, this depends on the overall environment. A Dart
engine runs in the context of a runtime, a program that interfaces between the △

engine and the surrounding computing environment. The runtime may be, for
instance, a C++ program on the server. When an isolate fails with a compile-
time error as described above, control returns to the runtime, along with an
exception describing the problem. This is necessary so that the runtime can
clean up resources etc. It is then the runtime’s decision whether to terminate
the isolate or not.

Static warnings are situations that do not preclude execution, but which are △

unlikely to be intended, and likely to cause bugs or inconveniences. A Dart
compiler is free to report some, all, or none of the specified static warnings
before the associated code is executed. A Dart compiler may also choose to
report additional warnings not defined by this specification.

When this specification says that a dynamic error occurs, it means that a △

corresponding error object is thrown. When it says that a dynamic type error △

occurs, it represents a failed type check at run time, and the object which is
thrown implements TypeError.

Whenever we say that an exception ex is thrown, it acts like an expression △

had thrown (18.0.1) with ex as exception object and with a stack trace corre-
sponding to the current system state. When we say that a C is thrown, where △

C is a class, we mean that an instance of class C is thrown.
If an uncaught exception is thrown by a running isolate A, A is immediately

suspended.

8 Variables variables

Variables are storage locations in memory.

⟨finalConstVarOrType⟩ ::= late? final ⟨type⟩?
| const ⟨type⟩?
| late? ⟨varOrType⟩

⟨varOrType⟩ ::= var
| ⟨type⟩

⟨initializedVariableDeclaration⟩ ::=
⟨declaredIdentifier⟩ (‘=’ ⟨expression⟩)? (‘,’ ⟨initializedIdentifier⟩)*

⟨initializedIdentifier⟩ ::= ⟨identifier⟩ (‘=’ ⟨expression⟩)?

⟨initializedIdentifierList⟩ ::= ⟨initializedIdentifier⟩ (‘,’ ⟨initializedIdentifier⟩)*

Dart Programming Language Specification 17

An ⟨initializedVariableDeclaration⟩ that declares two or more variables is
equivalent to multiple variable declarations declaring the same set of variable
names, in the same order, with the same initialization, type, and modifiers.

For example, var x, y; is equivalent to var x; var y; and static late final
String s1, s2 = "foo"; is equivalent to having both static late final String
s1; and static late final String s2 = "foo";.

It is possible for a variable declaration to include the modifier covariant. The
effect of doing this with an instance variable is described elsewhere (10.6). It is
a compile-time error for the declaration of a variable which is not an instance ⊖

variable to include the modifier covariant.
A formal parameter declaration induces a local variable into a scope, but formal

parameter declarations are not variable declarations and do not give rise to the
above error. The effect of having the modifier covariant on a formal parameter is
described elsewhere (9.2.3).

In a variable declaration of one of the forms N id; or N id = e; where N is
derived from ⟨metadata⟩ ⟨finalConstVarOrType⟩ and id is an identifier, we say
that id is a declaring occurrence of the identifier. For every identifier which is △

not a declaring occurrence, we say that it is a referencing occurrence. We also △

abbreviate that to say that an identifier is a declaring identifier respectively an △

referencing identifier . △

In an expression of the form e.id ′ it is possible that e has static type dynamic
and id ′ cannot be associated with any specific declaration named id ′ at compile-
time, but in this situation id ′ is still a referencing identifier.

For brevity, we will refer to a variable using its name, even though the name
of a variable and the variable itself are very different concepts.

So we will talk about “the variable id”, rather than introducing “the variable
v named id”, in order to be able to say “the variable v” later on. This should not
create any ambiguities, because the concept of a name and the concept of a variable
are so different.

An initializing variable declaration is a variable declaration whose declaring △

identifier is immediately followed by ‘=’ and an initializing expression. △

A variable declared at the top-level of a library is referred to as either a
library variable or a top-level variable. It is a compile-time error if a library △

△

⊖
variable declaration has the modifier static.

A static variable is a variable whose declaration is immediately nested inside △

a class, mixin, enum, or extension declaration and includes the modifier static.
A compile-time error occurs if a static or library variable has no initializing ⊖

expression and a type which is not nullable (??), unless the variable declaration
has the modifier late or the modifier external.

A non-local variable is a library variable, a static variable, or an instance △

variable. That is, any kind of variable which is not a local variable.
A constant variable is a variable whose declaration includes the modifier △

const. A constant variable must be initialized to a constant expression (17.3),
or a compile-time error occurs. ⊖

An initializing expression e of a constant variable declaration occurs in a constant
context (17.3.2). This means that const modifiers in e need not be specified

Dart Programming Language Specification 18

explicitly.
It is grammatically impossible for a constant variable declaration to have

the modifier late. However, even if it had been grammatically possible, a late
constant variable would still have to be a compile-time error, because being a
compile-time constant is inherently incompatible with being computed late.

Similarly, an instance variable cannot be constant (10.6).

8.1 Implicitly Induced Getters and Setters implicitlyInducedGettersAndSetters

The following rules on implicitly induced getters and setters apply to all
non-local variable declarations. Local variable declarations (18.3) do not induce
getters or setters.

Case ⟨Getter: Variable with declared type⟩. Consider a variable declaration
of one of the forms

• static? late? final? T id;

• static? late? final? T id = e;

• static? const T id = e;

where T is a type, id is an identifier, and ‘?’ indicates that the given modifier
may be present or absent. Each of these declarations implicitly induces a getter
(10.3) with the header T get id, whose invocation evaluates as described below
(8.2). In these cases the declared type of id is T . □

Case ⟨Getter: Variable with no declared type⟩. A variable declaration of
one of the forms

• static? late? var id;

• static? late? var id = e;

• static? late? final id;

• static? late? final id = e;

• static? const id = e;

implicitly induces a getter with the header that contains static iff the declaration
contains static and is followed by T get id, where T is obtained from type
inference in the case where e exists, and T is dynamic otherwise. The invocation
of this getter evaluates as described below (8.2). In these cases, the declared
type of id is T . □

Case ⟨Setter: Mutable variable with declared type⟩. A variable declaration
of one of the forms

• static? late? T id;

• static? late? T id = e;

Dart Programming Language Specification 19

implicitly induces a setter (10.4) with the header void set id(T x), whose exe-
cution sets the value of id to the incoming argument x.

Case ⟨Setter: Mutable variable with no declared type, with initialization⟩.
A variable declaration of the form static? late? var id = e; implicitly induces
a setter with the header void set id(dynamic x), whose execution sets the value
of id to the incoming argument x.

Type inference could have provided a type different from dynamic (6). □

Case ⟨Setter: Mutable variable with no declared type, no initialization⟩. A
variable declaration of the form static? late? var id; implicitly induces a setter
with the header void set id(dynamic x), whose execution sets the value of id
to the incoming argument x.

Type inference has not yet been specified in this document (6). Note that type
inference could change, e.g., var x; to T x;, which would take us to an earlier
case. □

Case ⟨Setter: Late-final variable with declared type⟩. A variable declara-
tion of the form static? late final T id; implicitly induces a setter (10.4) with
the header void set id(T x). If this setter is executed in a situation where the
variable id has not been bound, it will bind id to the object that x is bound to.
If this setter is executed in a situation where the variable id has been bound to
an object, a dynamic error occurs. □

Case ⟨Setter: Late-final variable with no declared type, no initialization⟩.
A variable declaration of the form static? late final id; implicitly induces a
setter with the header void set id(dynamic x). An execution of said setter in
a situation where the variable id has not been bound will bind id to the object
that the argument x is bound to. An execution of the setter in a situation where
the variable id has been bound to an object will incur a dynamic error. □

The scope into which the implicit getters and setters are introduced depends
on the kind of variable declaration involved.

A library variable introduces a getter into the library scope of the enclosing
library. A static variable introduces a static getter into the body scope of the
immediately enclosing class, mixin, enum, or extension declaration. An instance
variable introduces an instance getter into the body scope of the immediately
enclosing class, mixin, or enum declaration (an extension cannot declare instance
variables).

A non-local variable introduces a setter iff it does not have the modifier final
or the modifier const, or it is late and final, but does not have an initializing
expression.

A library variable which introduces a setter will introduce a library setter
into the enclosing library scope. A static variable which introduces a setter will
introduce a static setter into the body scope of the immediately enclosing class,
mixin, enum, or extension declaration. An instance variable that introduces a
setter will introduce an instance setter into the body scope of the immediately
enclosing class, mixin, or enum declaration (an extension cannot declare instance
variables).

Let id be a variable declared by a variable declaration that has an initializing
expression e. It is a compile-time error if the static type of e is not assignable ⊖

Dart Programming Language Specification 20

to the declared type of id. It is a compile-time error if a final instance variable ⊖

whose declaration has an initializer expression is also initialized by a constructor,
either by an initializing formal or an initializer list entry.

It is a compile-time error if a final instance variable that has been initialized by
means of an initializing formal of a constructor k is also initialized in the initializer
list of k (10.7.1).

A non-late static variable declaration D named id that has the modifier final
or the modifier const does not induce a setter. However, an assignment to id at a
location where D is in scope is not necessarily a compile-time error. For example,
a setter named id= could be found by lexical lookup (17.37).

Similarly, a non-late final instance variable id does not induce a setter, but an
assignment could be an invocation of a setter which is provided in some other way.
For example, it could be that lexical lookup yields nothing, and the location of the
assignment has access to this, and the interface of an enclosing class has a setter
named id= (in this case both the getter and setter are inherited).

Consider a variable id whose declaration does not have the modifier late.
Assume that id does not have an initializing expression, and it is not initialized
by an initializing formal (10.7.1), nor by an element in a constructor initializer
list (10.7.1). The initial value of id is then the null object (17.4).

Note that there are many situations where such a variable declaration is a
compile-time error, in which case the initial value is of course irrelevant.

Otherwise, variable initialization proceeds as follows:
A declaration of a static or library variable with an initializing expression is

initialized lazily (8.2).
The lazy semantics are given because we do not want a language where one

tends to define expensive initialization computations, causing long application
startup times. This is especially crucial for Dart, which must support the coding
of client applications.

Initialization of an instance variable with no initializing expression takes place
during constructor execution (10.7.1).

Initialization of an instance variable id with an initializing expression e pro- id, o
ceeds as follows: e is evaluated to an object o and the variable id is bound to
o.

It is specified elsewhere when this initialization occurs, and in which environment
(p. 50, 18.3, 17.15.3).

If the initializing expression throws then access to the uninitialized variable is
prevented, because the instance creation that caused this initialization to take place
will throw.

It is a dynamic type error if the dynamic type of o is not a subtype of the
actual type of the variable id (20.10.1).

8.2 Evaluation of Implicit Variable Getters evaluationOfImplicitVariableGetters

We introduce two specific kinds of getters in order to specify the behavior of
various kinds of variables without duplicating the specification of their common
behaviors.

Dart Programming Language Specification 21

A late-initialized getter is a getter g which is implicitly induced by a non- △

local variable v that has an initializing expression e. It is described below which
declarations induce a late-initialized getter. An invocation of g proceeds as follows:

If the variable v has not been bound to an object then e is evaluated to an
object o. If v has now been bound to an object, and v is final, a dynamic error
occurs. Otherwise, v is bound to o, and the evaluation of g completes returning
o. If the evaluation of e throws then the invocation of g completes throwing the
same object and stack trace, and does not change the binding of v.

An invocation of g in a situation where v has been bound to an object o′

completes immediately, returning o′.
Consider a non-local variable declaration of the form late var x = e;, whose

implicitly induced getter is late-initialized. Perhaps surprisingly, if the variable x has
been bound to an object when its getter is invoked for the first time, e will never
be executed. In other words, the initializing expression can be pre-empted by an
assignment.

Also note that an initializing expression can have side effects that are significant
during initialization. For example:

bool b = true;
int i = (() => (b = !b) ? (i = 10) : i + 1)();

void main() {
print(i); // ’11’.

}

In this example, main invokes the implicitly induced getter named i, and the
variable i has not been bound at this point. Hence, evaluation of the initializing
expression proceeds. This causes b to be toggled to false, which again causes i + 1
to be evaluated. This causes the getter i to be invoked again, and it is still true that
the variable has not been bound, so the initializing expression is evaluated again.
This toggles b to true, which causes i = 10 to be evaluated, which causes the
implicitly induced setter named i= to be invoked, and the most recent invocation
of the getter i returns 10. This makes i + 1 evaluate to 11, and the variable is then
bound to 11. Finally, the invocation of the getter i in main completes returning
11.

This is a change from the semantics of older versions of Dart: Throwing an ex-
ception during initializer evaluation no longer sets the variable to null, and reading
the variable during initializer evaluation no longer causes a dynamic error.

A late-uninitialized getter is a getter g which is implicitly induced by a △

non-local variable v that does not have an initializing expression. Again, only
some non-local variables without an initializing expression induce a late-uninitialized
getter, as specified below. An invocation of g proceeds as follows: If the variable
v has not been bound to an object then a dynamic error occurs. If v has been
bound to an object o′ then the invocation of g completes immediately, returning
o′.

Let d be the declaration of a non-local variable named id. For brevity, we d, id

Dart Programming Language Specification 22

will refer to it below as ‘the variable id’ or ‘the variable d’, or just as ‘id’ or ‘d’.
Execution of the implicitly induced getter of id proceeds as follows:

Case ⟨Non-late instance variable⟩. If d declares an instance variable which
does not have the modifier late, then the invocation of the implicit getter of id
evaluates to the object that id is bound to.

It is not possible to invoke an instance getter on an object before the object
has been initialized. Hence, a non-late instance variable is always bound when the
instance getter is invoked. □

Case ⟨Late, initialized instance variable⟩. If d declares an instance variable
id which has the modifier late and an initializing expression, the implicitly
induced getter of id is a late-initialized getter. This determines the semantics
of an invocation. □

Case ⟨Late, uninitialized instance variable⟩. If d declares an instance vari-
able id which has the modifier late and does not have an initializing expression,
the implicitly induced getter of id is a late-uninitialized getter. This determines
the semantics of an invocation.

In this case it is possible for id to be unbound, but there are also several ways
to bind id to an object: A constructor can have an initializing formal (10.7.1) or an
initializer list entry (10.7.1) that will initialize id, and the implicitly induced setter
named id= could have been invoked and completed normally. □

Case ⟨Static or library variable⟩. If d declares a static or library variable,
the implicitly induced getter of id executes as follows:

• Non-constant variable with an initializer. In the case where d has an
initializing expression and is not constant, the implicitly induced getter
of id is a late-initialized getter. This determines the semantics of an
invocation. Note that these static or library variables can be implicitly late-
initialized, in the sense that they do not have the modifier late.

• Constant variable. If d declares a constant variable with the initializing
expression e, the result of executing the implicitly induced getter is the
value of the constant expression e. Note that a constant expression cannot
depend on itself, so no cyclic references can occur.

• Variable without an initializer. If d declares a variable id without an
initializing expression and does not have the modifier late, an invocation
of the implicitly induced getter of id evaluates to the object that id is
bound to.
The variable is always bound to an object in this case. This may be the null
object, which is the initial value of some variable declarations covered by this
case.
If d declares a variable id without an initializing expression and has the
modifier late, the implicitly induced getter is a late-uninitialized getter.
This determines the semantics of an invocation.

□

Dart Programming Language Specification 23

9 Functions functions

Functions abstract over executable actions.

⟨functionSignature⟩ ::=
⟨type⟩? ⟨identifier⟩ ⟨formalParameterPart⟩

⟨formalParameterPart⟩ ::= ⟨typeParameters⟩? ⟨formalParameterList⟩

⟨functionBody⟩ ::= async? ‘=>’ ⟨expression⟩ ‘;’
| (async ‘*’? | sync ‘*’)? ⟨block⟩

⟨block⟩ ::= ‘{’ ⟨statements⟩ ‘}’

Functions can be introduced by function declarations (9.1), method decla-
rations (10.2, 10.8), getter declarations (10.3), setter declarations (10.4), and
constructor declarations (10.7); and they can be introduced by function literals
(17.11).

A function is asynchronous if its body is marked with the async or async* △

modifier. Otherwise the function is synchronous. A function is a generator if △

△its body is marked with the sync* or async* modifier. Further details about
these concepts are given below.

Whether a function is synchronous or asynchronous is orthogonal to whether it
is a generator or not. Generator functions are a sugar for functions that produce
collections in a systematic way, by lazily applying a function that generates individual
elements of a collection. Dart provides such a sugar in both the synchronous case,
where one returns an iterable, and in the asynchronous case, where one returns a
stream. Dart also allows both synchronous and asynchronous functions that produce
a single value.

Each declaration that introduces a function has a signature that specifies
its return type, name, and formal parameter part, except that the return type
may be omitted, and getters never have a formal parameter part. Function
literals have a formal parameter part, but no return type and no name. The
formal parameter part optionally specifies the formal type parameter list of the
function, and it always specifies its formal parameter list. A function body is
either:

• a block statement (18.1) containing the statements (18) executed by the
function, optionally marked with one of the modifiers: async, async* or
sync*. Unless it is statically known that the body of the function cannot
complete normally (that is, it cannot reach the end and “fall through”,
cf. 18.0.1), it is a compile-time error if the addition of return; at the end
of the body would be a compile-time error. For instance, it is an error if
the return type of a synchronous function is int, and the body may complete
normally. The precise rules are given in section 18.12.
Because Dart supports dynamic function invocations, we cannot guarantee
that a function that does not return an object will not be used in the context

Dart Programming Language Specification 24

of an expression. Therefore, every function must either throw or return an
object. A function body that ends without doing a throw or return will cause
the function to return the null object (17.4), as will a return without an
expression. For generator functions, the situation is more subtle. See further
discussion in section 18.12.
OR

• of the form => e or the form async => e, which both return the value
of the expression e as if by a return e. The other modifiers do not apply
here, because they apply only to generators, discussed below. Generators are
not allowed to explicitly return anything, objects are added to the generated
stream or iterable using yield or yield*. Let T be the declared return type
of the function that has this body. It is a compile-time error if one of the
following conditions hold:

– The function is synchronous, T is not void, and it would have been a
compile-time error to declare the function with the body { return e;
} rather than => e. In particular, e can have any type when the return
type is void. This enables concise declarations of void functions. It
is reasonably easy to understand such a function, because the return
type is textually near to the returned expression e. In contrast, return
e; in a block body is only allowed for an e with one of a few specific
static types, because it is less likely that the developer understands
that the returned object will not be used (18.12).

– The function is asynchronous, flatten(T) is not void, and it would
have been a compile-time error to declare the function with the body
async { return e; } rather than async => e. In particular, e can
have any type when the flattened return type is void, and the rationale
is similar to the synchronous case.

It is a compile-time error if an async, async* or sync* modifier is attached
to the body of a setter or constructor.

An asynchronous setter would be of little use, since setters can only be used
in the context of an assignment (17.23), and an assignment expression always
evaluates to the value of the assignment’s right hand side. If the setter actually
did its work asynchronously, one might imagine that one would return a future
that resolved to the assignment’s right hand side after the setter did its work.

An asynchronous constructor would, by definition, never return an instance
of the class it purports to construct, but instead return a future. Calling such
a beast via new would be very confusing. If you need to produce an object
asynchronously, use a method.

One could allow modifiers for factories. A factory for Future could be modi-
fied by async, a factory for Stream could be modified by async*, and a factory for
Iterable could be modified by sync*. No other scenario makes sense because
the object returned by the factory would be of the wrong type. This situation

Dart Programming Language Specification 25

is very unusual so it is not worth making an exception to the general rule for
constructors in order to allow it.

It is a compile-time error if the declared return type of a function marked
async is not a supertype of Future<T> for some type T . It is a compile-time
error if the declared return type of a function marked sync* is not a supertype
of Iterable<T> for some type T . It is a compile-time error if the declared
return type of a function marked async* is not a supertype of Stream<T> for
some type T . It is a compile-time error if the declared return type of a function
marked sync* or async* is void.

We define the union-free type derived from a type T as follows: If T is of △

the form S? or the form FutureOr<S> then the union-free type derived from T
is the union-free type derived from S. Otherwise, the union-free type derived
from T is T . For example, the union-free type derived from FutureOr<int?>? is
int.

We define the element type of a generator function f as follows: Let S △

be the union-free type derived from the declared return type of f . If f is a
synchronous generator and S implements Iterable<U> for some U (11.2) then
the element type of f is U . If f is an asynchronous generator and S implements
Stream<U> for some U then the element type of f is U . Otherwise, if f is a
generator (synchronous or asynchronous) and S is a supertype of Object (which
includes Object itself) then the element type of f is dynamic. No further cases
are possible.

9.1 Function Declarations functionDeclarations

A function declaration is a function that is neither a member of a class nor △

a function literal. Function declarations include exactly the following: library △

functions, which are function declarations at the top level of a library, and
local functions, which are function declarations declared inside other functions. △

Library functions are often referred to simply as top-level functions.
A function declaration consists of an identifier indicating the function’s

name, possibly prefaced by a return type. The function name is followed by
a signature and body. For getters, the signature is empty. The body is empty
for functions that are external.

The scope of a library function is the scope of the enclosing library. The
scope of a local function is described in section 18.4. In both cases, the name
of the function is in scope in its formal parameter scope (9.2).

It is a compile-time error to preface a function declaration with the built-in
identifier static.

When we say that a function f1 forwards to another function f2, we mean △

that invoking f1 causes f2 to be executed with the same arguments and/or
receiver as f1, and returns the result of executing f2 to the caller of f1, unless f2
throws an exception, in which case f1 throws the same exception. Furthermore,
we only use the term for synthetic functions introduced by the specification.

Dart Programming Language Specification 26

9.2 Formal Parameters formalParameters

Every non-getter function declaration includes a formal parameter list, which △

consists of a list of required positional parameters (9.2.1), followed by any op-
tional parameters (9.2.2). The optional parameters may be specified either as a
set of named parameters or as a list of positional parameters, but not both.

Some function declarations include a formal type parameter list (9), in which △

case we say that it is a generic function. A non-generic function is a function △

△which is not generic.
The formal parameter part of a function declaration consists of the formal △

type parameter list, if any, and the formal parameter list.
The following kinds of functions cannot be generic: Getters, setters, operators,

and constructors.
The formal type parameter list of a function declaration introduces a new

scope known as the function’s type parameter scope. The type parameter scope △

of a generic function f is enclosed in the scope where f is declared. Every formal
type parameter introduces a type into the type parameter scope.

If it exists, the type parameter scope of a function f is the current scope for
the signature of f , and for the formal type parameter list itself; otherwise the
scope where f is declared is the current scope for the signature of f .

This means that formal type parameters are in scope in the bounds of parameter
declarations, allowing for so-called F-bounded type parameters like
class C<X extends Comparable<X>> { ... },
and the formal type parameters are in scope for each other, allowing dependencies
like class D<X extends Y, Y> { ... }.

The formal parameter list of a function declaration introduces a new scope
known as the function’s formal parameter scope. The formal parameter scope △

of a non-generic function f is enclosed in the scope where f is declared. The
formal parameter scope of a generic function f is enclosed in the type parameter
scope of f . Every formal parameter introduces a local variable into the formal
parameter scope. The current scope for the function’s signature is the scope
that encloses the formal parameter scope.

This means that in a generic function declaration, the return type and parameter
type annotations can use the formal type parameters, but the formal parameters are
not in scope in the signature.

The body of a function declaration introduces a new scope known as the
function’s body scope. The body scope of a function f is enclosed in the scope △

introduced by the formal parameter scope of f .
It is a compile-time error if a formal parameter is declared as a constant

variable (8).

⟨formalParameterList⟩ ::= ‘(’ ‘)’
| ‘(’ ⟨normalFormalParameters⟩ ‘,’? ‘)’
| ‘(’ ⟨normalFormalParameters⟩ ‘,’ ⟨optionalOrNamedFormalParameters⟩ ‘)’
| ‘(’ ⟨optionalOrNamedFormalParameters⟩ ‘)’

Dart Programming Language Specification 27

⟨normalFormalParameters⟩ ::=
⟨normalFormalParameter⟩ (‘,’ ⟨normalFormalParameter⟩)*

⟨optionalOrNamedFormalParameters⟩ ::= ⟨optionalPositionalFormalParameters⟩
| ⟨namedFormalParameters⟩

⟨optionalPositionalFormalParameters⟩ ::=
‘[’ ⟨defaultFormalParameter⟩ (‘,’ ⟨defaultFormalParameter⟩)* ‘,’? ‘]’

⟨namedFormalParameters⟩ ::=
‘{’ ⟨defaultNamedParameter⟩ (‘,’ ⟨defaultNamedParameter⟩)* ‘,’? ‘}’

Formal parameter lists allow an optional trailing comma after the last pa-
rameter (‘,’?). A parameter list with such a trailing comma is equivalent in
all ways to the same parameter list without the trailing comma. All parameter
lists in this specification are shown without a trailing comma, but the rules
and semantics apply equally to the corresponding parameter list with a trailing
comma.

9.2.1 Required Formals requiredFormals

A required formal parameter may be specified in one of three ways: △

• By means of a function signature that names the parameter and describes
its type as a function type (20.5). It is a compile-time error if any default
values are specified in the signature of such a function type.

• As an initializing formal, which is only valid as a parameter to a generative
constructor (10.7.1).

• Via an ordinary variable declaration (8).

⟨normalFormalParameter⟩ ::=
⟨metadata⟩ ⟨normalFormalParameterNoMetadata⟩

⟨normalFormalParameterNoMetadata⟩ ::= ⟨functionFormalParameter⟩
| ⟨fieldFormalParameter⟩
| ⟨simpleFormalParameter⟩

⟨functionFormalParameter⟩ ::=
covariant? ⟨type⟩? ⟨identifier⟩ ⟨formalParameterPart⟩ ‘?’?

⟨simpleFormalParameter⟩ ::= ⟨declaredIdentifier⟩
| covariant? ⟨identifier⟩

⟨declaredIdentifier⟩ ::= covariant? ⟨finalConstVarOrType⟩ ⟨identifier⟩

Dart Programming Language Specification 28

⟨fieldFormalParameter⟩ ::=
⟨finalConstVarOrType⟩? this ‘.’ ⟨identifier⟩ (⟨formalParameterPart⟩ ‘?’?)?

It is a compile-time error if a formal parameter has the modifier const or
the modifier late. It is a compile-time error if var occurs as the first token of a
⟨fieldFormalParameter⟩.

It is a compile-time error if a parameter derived from ⟨fieldFormalParameter⟩
occurs as a parameter of a function which is not a non-redirecting generative
constructor.

A ⟨fieldFormalParameter⟩ declares an initializing formal, which is described
elsewhere (10.7.1).

It is possible to include the modifier covariant in some forms of parameter
declarations. The effect of doing this is described in a separate section (9.2.3).

Note that the non-terminal ⟨normalFormalParameter⟩ is also used in the gram-
mar rules for optional parameters, which means that such parameters can also be
covariant.

It is a compile-time error if the modifier covariant occurs on a parameter of a
function which is not an instance method, instance setter, or instance operator.

9.2.2 Optional Formals optionalFormals

Optional parameters may be specified and provided with default values.

⟨defaultFormalParameter⟩ ::= ⟨normalFormalParameter⟩ (‘=’ ⟨expression⟩)?

⟨defaultNamedParameter⟩ ::=
⟨metadata⟩ required? ⟨normalFormalParameterNoMetadata⟩
((‘=’ | ‘:’) ⟨expression⟩)?

The form ⟨normalFormalParameter⟩ ‘:’ ⟨expression⟩ is equivalent to the
form ⟨normalFormalParameter⟩ ‘=’ ⟨expression⟩. The colon-syntax is included
only for backwards compatibility. It is deprecated and will be removed in a later
version of the language specification.

It is a compile-time error if the default value of an optional parameter is not
a constant expression (17.3). If no default is explicitly specified for an optional
parameter an implicit default of null is provided.

It is a compile-time error if the name of a named optional parameter begins
with an ‘_’ character.

The need for this restriction is a direct consequence of the fact that naming
and privacy are not orthogonal. If we allowed named parameters to begin with
an underscore, they would be considered private and inaccessible to callers from
outside the library where it was defined. If a method outside the library overrode
a method with a private optional name, it would not be a subtype of the original
method. The static checker would of course flag such situations, but the conse-
quence would be that adding a private named formal would break clients outside
the library in a way they could not easily correct.

Dart Programming Language Specification 29

9.2.3 Covariant Parameters covariantParameters

Dart allows formal parameters of instance methods, including setters and
operators, to be declared covariant.

The syntax for doing this is specified in an earlier section (9.2.1).
It is a compile-time error if the modifier covariant occurs in the declaration

of a formal parameter of a function which is not an instance method, an instance
setter, or an operator.

As specified below, a parameter can also be covariant for other reasons. The
overall effect of having a covariant parameter p in the signature of a given method
m is to allow the type of p to be overridden covariantly, which means that the type
required at run time for a given actual argument may be a proper subtype of the
type which is known at compile time at the call site.

This mechanism allows developers to explicitly request that a compile-time
guarantee which is otherwise supported (namely: that an actual argument whose
static type satisfies the requirement will also do so at run time) is replaced by
dynamic type checks. In return for accepting these dynamic type checks, develop-
ers can use covariant parameters to express software designs where the dynamic
type checks are known (or at least trusted) to succeed, based on reasoning that
the static type analysis does not capture.

Let m be a method signature with formal type parameters X1, . . . , Xs, posi- m, Xj , s
tional formal parameters p1, . . . , pn, and named formal parameters q1, . . . , qk. pj , n, qj , k
Let m′ be a method signature with formal type parameters X ′

1, . . . , X ′
s, posi-

m′, X ′
jtional formal parameters p′

1, . . . , p′
n′ , and named formal parameters q′

1, . . . , q′
k′ .

p′
j , n′, q′

j , k′Assume that j ∈ 1..n′, and j ≤ n; we say that p′
j is the parameter in m′ that

corresponds to the formal parameter pj in m. Assume that j ∈ 1..k′ and l ∈ 1..k; △

we say that q′
j is the parameter in m′ that corresponds to the formal parameter △

ql in m if q′
j = ql. Similarly, we say that the formal type parameter X ′

j from m′

corresponds to the formal type parameter Xj from m, for all j ∈ 1..s. △

This includes the case where m respectively m′ has optional positional param-
eters, in which case k = 0 respectively k′ = 0 must hold, but we can have n ̸= n′.
The case where the numbers of formal type parameters differ is not relevant.

Let C be a class that declares a method m which has a parameter p whose C, m, p
declaration has the modifier covariant; in this case we say that the parameter
p is covariant-by-declaration. In this case the interface of C has the method △

signature m, and that signature has the parameter p; we also say that the
parameter p in this method signature is covariant-by-declaration. Finally, the △

parameter p of the method signature m of the interface of a class C is covariant- △

by-declaration if a direct superinterface of C has an accessible method signature
m′ with the same name as m, which has a parameter p′ that corresponds to p,
such that p′ is covariant-by-declaration.

Assume that C is a generic class with formal type parameter declarations C, Xj , Bj , s
X1 extends B1 . . . , Xs extends Bs, let m be a declaration of an instance m, p, T
method in C (which can be a method, a setter, or an operator), let p be a
parameter declared by m, and let T be the declared type of p. The parameter p
is covariant-by-class if, for any j ∈ 1..s, Xj occurs in a covariant or an invariant △

Dart Programming Language Specification 30

position in T . In this case the interface of C also has the method signature
m, and that signature has the parameter p; we also say that the parameter p
in this method signature is covariant-by-class. Finally, the parameter p of the △

method signature m of the interface of the class C is covariant-by-class if a △

direct superinterface of C has an accessible method signature m′ with the same
name as m, which has a parameter p′ that corresponds to p, such that p′ is
covariant-by-class.

A formal parameter p is covariant if p is covariant-by-declaration or p is △

covariant-by-class.
It is possible for a parameter to be simultaneously covariant-by-declaration

and covariant-by-class. Note that a parameter may be covariant-by-declaration
or covariant-by-class based on a declaration in any direct or indirect superinterface,
including any superclass: The definitions above propagate these properties to an
interface from each of its direct superinterfaces, but they will in turn receive the
property from their direct superinterfaces, and so on.

9.3 Type of a Function typeOfAFunction

This section specifies the static type which is ascribed to the function denoted
by a function declaration, and the dynamic type of the corresponding function
object.

In this specification, the notation used to denote the type of a function, that
is, a function type, follows the syntax of the language, except that extends is △

abbreviated to ◁. This means that every function type is of one of the forms
T0 Function<X1 ◁ B1, . . . , Xs ◁ Bs>(T1, . . . , Tn, [Tn+1, . . . , Tn+k])
T0 Function<X1 ◁ B1, . . . , Xs ◁ Bs>(

T1, . . . , Tn, {rn+1 Tn+1 xn+1, . . . , rn+k Tn+k xn+k})
where T0 is the return type, Xj are the formal type parameters with bounds
Bj , j ∈ 1..s, Tj are the formal parameter types for j ∈ 1..n + k, and xn+j are
the names of named parameters for j ∈ 1..k. Non-generic function types are
covered by the case s = 0, where the type parameter declaration list <...> as a
whole is omitted. Similarly, the optional brackets [] and {} are omitted when
there are no optional parameters.

Both forms with optionals cover function types with no optionals when k = 0,
and every rule in this specification is such that any of the two forms may be used
without ambiguity to determine the treatment of function types with no optionals.

If a function declaration does not declare a return type explicitly, its return
type is dynamic (20.7), unless it is a constructor, in which case it is not consid-
ered to have a return type, or it is a setter or operator []=, in which case its
return type is void.

A function declaration may declare formal type parameters. The type of the
function includes the names of the type parameters and for each type parameter
the upper bound, which is considered to be the built-in class Object if no
bound is specified. When consistent renaming of type parameters can make two
function types identical, they are considered to be the same type.

Dart Programming Language Specification 31

It is convenient to include the formal type parameter names in function types
because they are needed in order to express such things as relations among different
type parameters, F-bounds, and the types of formal parameters. However, we do
not wish to distinguish between two function types if they have the same structure
and only differ in the choice of names. This treatment of names is also known as
alpha-equivalence.

In the following three paragraphs, if the number s of formal type parameters s
is zero then the type parameter list in the function type is omitted.

Let F be a function with type parameters X1 extends B1, . . . , Xs extends Bs,
required formal parameter types T1, . . . , Tn, return type T0, and no optional
parameters. Then the static type of F is
T0 Function<X1 ◁ B1, . . . , Xs ◁ Bs>(T1, . . . , Tn).

Let F be a function with type parameters X1 extends B1, . . . , Xs extends Bs,
required formal parameter types T1, . . . , Tn, return type T0 and positional op-
tional parameter types Tn+1, . . . , Tn+k. Then the static type of F is
T0 Function<X1 ◁ B1, . . . , Xs ◁ Bs>(T1, . . . , Tn, [Tn+1, . . . , Tn+k]).

Let F be a function with type parameters X1 extends B1, . . . , Xs extends Bs,
required formal parameter types T1, . . . , Tn, return type T0, and named param-
eters Tn+1 xn+1, . . . , Tn+k xn+k, where xn+j , j ∈ 1..k may or may not have a
default value. Then the static type of F is
T0 Function<X1 ◁ B1, . . . , Xs ◁ Bs>(

T1, . . . , Tn, {rn+1 Tn+1 xn+1, . . . , rn+k Tn+k xn+k}).
Let T be the static type of a function declaration F . Let u be the run-

time type of a function object o obtained by function closurization (17.16) or
instance method closurization (17.22.3) applied to F , and let t be the actual type
corresponding to T at the occasion where o was created (20.10.1). T may contain
free type variables, but t contains their actual values. The following must then
hold: u is a class that implements the built-in class Function; u is a subtype of t;
and u is not a subtype of any function type which is a proper subtype of t. If we
had omitted the last requirement then f is int Function([int]) could evaluate
to true with the declaration void f() {}, which is obviously not the intention.

It is up to the implementation to choose an appropriate representation for
function objects. For example, consider that a function object produced via
property extraction treats equality differently from other function objects, and is
therefore likely a different class. Implementations may also use different classes
for function objects based on arity and or type. Arity may be implicitly affected
by whether a function is an instance method (with an implicit receiver parame-
ter) or not. The variations are manifold and, e.g., one cannot assume that any
two distinct function objects will necessarily have the same run-time type.

9.4 External Functions externalFunctions

An external function is a function whose body is provided separately from its △

declaration. An external function may be a top-level function (19), a method
(10.2, 10.8), a getter (10.3), a setter (10.4), or a non-redirecting constructor

Dart Programming Language Specification 32

(10.7.1, 10.7.2). External functions are introduced via the built-in identifier
external (17.38) followed by the function signature.

External functions allow us to introduce type information for code that is
not statically known to the Dart compiler.

Examples of external functions might be foreign functions (defined in C, or
Javascript etc.), primitives of the implementation (as defined by the Dart run-time
system), or code that was dynamically generated but whose interface is statically
known. However, an abstract method is different from an external function, as it
has no body.

An external function is connected to its body by an implementation specific
mechanism. Attempting to invoke an external function that has not been con-
nected to its body will throw a NoSuchMethodError or some subclass thereof.

An implementation specific compile-time error can be raised at an external
function declaration.

Such errors are intended to indicate that every invocation of that function would
throw, e.g., because it is known that it will not be connected to a body.

The actual syntax is given in sections 10 and 19 below.

10 Classes classes

A class defines the form and behavior of a set of objects which are its in- △

△stances. Classes may be defined by class declarations as described below, or via
mixin applications (12.3).

⟨classDeclaration⟩ ::= abstract? class ⟨typeIdentifier⟩ ⟨typeParameters⟩?
⟨superclass⟩? ⟨interfaces⟩?
‘{’ (⟨metadata⟩ ⟨memberDeclaration⟩)* ‘}’

| abstract? class ⟨mixinApplicationClass⟩

⟨typeNotVoidList⟩ ::= ⟨typeNotVoid⟩ (‘,’ ⟨typeNotVoid⟩)*

⟨memberDeclaration⟩ ::= ⟨declaration⟩ ‘;’
| ⟨methodSignature⟩ ⟨functionBody⟩

⟨methodSignature⟩ ::= ⟨constructorSignature⟩ ⟨initializers⟩?
| ⟨factoryConstructorSignature⟩
| static? ⟨functionSignature⟩
| static? ⟨getterSignature⟩
| static? ⟨setterSignature⟩
| ⟨operatorSignature⟩

⟨declaration⟩ ::= external ⟨factoryConstructorSignature⟩
| external ⟨constantConstructorSignature⟩
| external ⟨constructorSignature⟩
| (external static?)? ⟨getterSignature⟩
| (external static?)? ⟨setterSignature⟩

Dart Programming Language Specification 33

| (external static?)? ⟨functionSignature⟩
| external? ⟨operatorSignature⟩
| static const ⟨type⟩? ⟨staticFinalDeclarationList⟩
| static final ⟨type⟩? ⟨staticFinalDeclarationList⟩
| static late final ⟨type⟩? ⟨initializedIdentifierList⟩
| static late? ⟨varOrType⟩ ⟨initializedIdentifierList⟩
| covariant late final ⟨type⟩? ⟨identifierList⟩
| covariant late? ⟨varOrType⟩ ⟨initializedIdentifierList⟩
| late? final ⟨type⟩? ⟨initializedIdentifierList⟩
| late? ⟨varOrType⟩ ⟨initializedIdentifierList⟩
| ⟨redirectingFactoryConstructorSignature⟩
| ⟨constantConstructorSignature⟩ (⟨redirection⟩ | ⟨initializers⟩)?
| ⟨constructorSignature⟩ (⟨redirection⟩ | ⟨initializers⟩)?

⟨staticFinalDeclarationList⟩ ::=
⟨staticFinalDeclaration⟩ (‘,’ ⟨staticFinalDeclaration⟩)*

⟨staticFinalDeclaration⟩ ::= ⟨identifier⟩ ‘=’ ⟨expression⟩

It is possible to include the modifier covariant in some forms of declarations.
The effect of doing this is described elsewhere (9.2.3).

A class has constructors, instance members and static members. The mem-
bers are declared by member declarations. The instance members of a class are △

△its instance methods, getters, setters and instance variables. The static members
△of a class are its static methods, getters, setters, and variables. The members
△

of a class are its static and instance members.
A class declaration introduces two scopes:

• A type-parameter scope, which is empty if the class is not generic (15). △

The enclosing scope of the type-parameter scope of a class declaration is
the library scope of the current library.

• A body scope. The enclosing scope of the body scope of a class declaration △

is the type parameter scope of the class declaration.

The current scope of an instance member declaration, a static member dec-
laration, or a constructor declaration is the body scope of the class in which it
is declared.

The current instance (and hence its members) can only be accessed at specific
locations in a class: We say that a location ℓ has access to this iff ℓ is inside the △

body of a declaration of an instance member or a generative constructor, or in
the initializing expression of a late instance variable declaration.

Note that an initializing expression for a non-late instance variable does not
have access to this, and neither does any part of a declaration marked static.

Every class has a single superclass except class Object which has no super-
class. A class may implement a number of interfaces by declaring them in its
implements clause (10.10).

Dart Programming Language Specification 34

An abstract class declaration is a class declaration that is explicitly declared △

with the abstract modifier. A concrete class declaration is a class declaration △

that is not abstract. An abstract class is a class whose declaration is abstract, △

and a concrete class is a class whose declaration is concrete. △

We want different behavior for concrete classes and abstract classes. If A is
intended to be abstract, we want the static checker to warn about any attempt to
instantiate A, and we do not want the checker to complain about unimplemented
methods in A. In contrast, if A is intended to be concrete, the checker should
warn about all unimplemented methods, but allow clients to instantiate it freely.

The interface of a class C is an implicit interface that declares instance member
signatures that correspond to the instance members declared by C, and whose direct
superinterfaces are the direct superinterfaces of C (11, 10.10).

When a class name appears as a type, that name denotes the interface of
the class.

It is a compile-time error if a class named C declares a member with base-
name (10.11) C. If a generic class named G declares a type variable named
X, it is a compile-time error if X is equal to G, or if G has a member whose
basename is X, or if G has a constructor named G.X.

Here are simple examples, that illustrate the difference between “has a member”
and “declares a member”. For example, B declares one member named f, but it △

has two such members. The rules of inheritance determine what members a class △

has.

class A {
var i = 0;
var j;
f(x) => 3;

}

class B extends A {
int i = 1; // getter i and setter i= override versions from A
static j; // compile-time error: static getter & setter conflict
// with instance getter & setter

// compile-time error: static method conflicts with instance method
static f(x) => 3;

}

10.1 Fully Implementing an Interface fullyImplementingAnInterface

A concrete class must fully implement its interface. Let C be a concrete class C, I, m
declared in library L, with interface I. Assume that I has a member signature
m which is accessible to L. It is a compile-time error if C does not have a
concrete member with the same name as m and accessible to L, unless C has a
non-trivial noSuchMethod (10.2.2).

Dart Programming Language Specification 35

Each concrete member must have a suitable signature: Assume that C has
a concrete member with the same name as m and accessible to L, and let m′′ m′′

be its member signature. The concrete member may be declared in C or inherited
from a superclass. Let m′ be the member signature which is obtained from m′′ by m′

adding, if not present already, the modifier covariant (9.2.3) to each parameter
p in m′′ where the corresponding parameter in m has the modifier covariant. It
is a compile-time error if m′ is not a correct override of m (11.2.2), unless that
concrete member is a noSuchMethod forwarder (10.2.2).

Consider a concrete class C, and assume that C declares or inherits a member
implementation with the same name for every member signature in its interface.
It is still an error if one or more of those member implementations has parameters
or types such that they do not satisfy the corresponding member signature in the
interface. For this check, any missing covariant modifiers are implicitly added to
the signature of an inherited member (this is how we get m′ from m′′). When
the modifier covariant is added to one or more parameters (which will only happen
when the concrete member is inherited), an implementation may choose to implicitly
induce a forwarding method with the same signature as m′, in order to perform the
required dynamic type check, and then invoke the inherited method.

It is an implementation specific choice whether or not an implicitly induced
forwarding method is used when the modifier covariant is added to one or more
parameters in m′.

This is true in spite of the fact that such forwarding methods can be observed.
E.g., we can compare the run-time type of a tearoff of the method from a receiver
of type C to the run-time type of a tearoff of the super-method from a location in
the body of C.

With or without a forwarding method, the member signature in the interface
of C is m.

The forwarding method does not change the interface of C, it is an implemen-
tation detail. In particular, this holds even in the case where an explicit declaration
of the forwarding method would have changed the interface of C, because m′ is a
subtype of m.

When a class has a non-trivial noSuchMethod, the class may leave some mem-
bers unimplemented, and the class is allowed to have a noSuchMethod forwarder
which does not satisfy the class interface (in which case it will be overridden by
another noSuchMethod forwarder).

Here is an example:

class B {
void m(int i) {} // Signature m′′: void m(int).

}

abstract class I {
void m(covariant num n); // Signature: void m(covariant num).

}

class C extends B implements I {

Dart Programming Language Specification 36

// Signature m: void m(covariant num).
//
// To check that this class fully implements its interface,
// check that m′, that is, void m(covariant int),
// correctly overrides m: OK!

}

Parameters that are covariant-by-declaration must also satisfy the following
constraint: Assume that the parameter p of m′ has the modifier covariant.
Assume that a direct or indirect superinterface of C has a method signature ms

with the same name as m′ and accessible to L, such that ms has a parameter
ps that corresponds to p. In this situation, a compile-time error occurs if the
type of p is not a subtype and not a supertype of the type of ps.

This ensures that an inherited method satisfies the same constraint for each for-
mal parameter which is covariant-by-declaration as the constraint which is specified
for a declaration in C (10.2).

10.2 Instance Methods instanceMethods

Instance methods are functions (9) whose declarations are immediately con- △

tained within a class declaration and that are not declared static. The instance △

methods of a class C are the instance methods declared by C and the instance
methods inherited by C from its superclass (10.9.1).

Consider a class C and an instance member declaration D in C, with member C, D, m
signature m (11). It is a compile-time error if D overrides a declaration with
member signature m′ from a direct superinterface of C (11.2.1), unless m is a
correct member override of m′ (11.2.2).

This is not the only kind of conflict that may exist: An instance member dec-
laration D may conflict with another declaration D′, even in the case where they
do not have the same name or they are not the same kind of declaration. E.g., D
could be an instance getter and D′ a static setter (10.11).

For each parameter p of m where covariant is present, it is a compile-time
error if there exists a direct or indirect superinterface of C which has an ac-
cessible method signature m′′ with the same name as m, such that m′′ has a
parameter p′′ that corresponds to p (9.2.3), unless the type of p is a subtype or
a supertype of the type of p′′.

This means that a parameter which is covariant-by-declaration can have a type
which is a supertype or a subtype of the type of a corresponding parameter in a
superinterface, but the two types cannot be unrelated. Note that this requirement
must be satisfied for each direct or indirect superinterface separately, because that
relationship is not transitive.

The superinterface may be the statically known type of the receiver, so this
means that we relax the potential typing relationship between the statically known
type of a parameter and the type which is actually required at run time to the
subtype-or-supertype relationship, rather than the strict supertype relationship
which applies to a parameter which is not covariant. It should be noted that it is

Dart Programming Language Specification 37

not statically known at the call site whether any given parameter is covariant,
because the covariance could be introduced in a proper subtype of the statically
known type of the receiver. We chose to give priority to flexibility rather than
safety here, because the whole point of covariant parameters is that developers
can make the choice to increase the flexibility in a trade-off where some static
type safety is lost.

10.2.1 Operators operators

Operators are instance methods with special names, except for operator ‘[]’ △

which is an instance getter and operator ‘[]=’ which is an instance setter.

⟨operatorSignature⟩ ::=
⟨type⟩? operator ⟨operator⟩ ⟨formalParameterList⟩

⟨operator⟩ ::= ‘~’
| ⟨binaryOperator⟩
| ‘[]’
| ‘[]=’

⟨binaryOperator⟩ ::= ⟨multiplicativeOperator⟩
| ⟨additiveOperator⟩
| ⟨shiftOperator⟩
| ⟨relationalOperator⟩
| ‘==’
| ⟨bitwiseOperator⟩

An operator declaration is identified using the built-in identifier (17.38) op-
erator.

The following names are allowed for user-defined operators: ‘<’, ‘>’, ‘<=’,
‘>=’, ‘==’, ‘-’, ‘+’, ‘/’, ‘~/’, ‘*’, ‘%’, ‘|’, ‘ˆ’, ‘&’, ‘<<’, ‘>>>’, ‘>>’, ‘[]=’, ‘[]’, ‘~’.

It is a compile-time error if the arity of the user-declared operator ‘[]=’ is
not 2. It is a compile-time error if the arity of a user-declared operator with
one of the names: ‘<’, ‘>’, ‘<=’, ‘>=’, ‘==’, ‘-’, ‘+’, ‘~/’, ‘/’, ‘*’, ‘%’, ‘|’, ‘ˆ’,
‘&’, ‘<<’, ‘>>>’, ‘>>’, ‘[]’ is not 1. It is a compile-time error if the arity of the
user-declared operator ‘-’ is not 0 or 1.

The ‘-’ operator is unique in that two overloaded versions are permitted. If
the operator has no arguments, it denotes unary minus. If it has an argument, it
denotes binary subtraction.

The name of the unary operator ‘-’ is unary-.
This device allows the two methods to be distinguished for purposes of method

lookup, override and reflection.
It is a compile-time error if the arity of the user-declared operator ‘~’ is not

0.
It is a compile-time error to declare an optional parameter in an operator.
It is a compile-time error if a user-declared operator ‘[]=’ declares a return

type other than void.

Dart Programming Language Specification 38

If no return type is specified for a user-declared operator ‘[]=’, its return type
is void (9.3).

The return type is void because a return statement in an implementation of
operator ‘[]=’ does not return an object. Consider a non-throwing evaluation
of an expression e of the form e1[e2] = e3, and assume that the evaluation of
e3 yields an object o. e will then evaluate to o, and even if the executed body of
operator ‘[]=’ completes with an object o′, that is, if o′ is returned it is simply
ignored. The rationale for this behavior is that assignments should be guaranteed
to evaluate to the assigned object.

10.2.2 The Method noSuchMethod theMethodNoSuchMethod

The method noSuchMethod is invoked implicitly during execution in situa-
tions where one or more member lookups fail (17.21.1, 17.22.1, 17.23).

We may think of noSuchMethod as a backup which kicks in when an invocation
of a member m is attempted, but there is no member named m, or it exists, but
the given invocation has an argument list shape that does not fit the declaration
of m (passing fewer positional arguments than required or more than supported,
or passing named arguments with names not declared by m). This can only occur
for an ordinary method invocation when the receiver has static type dynamic, or
for a function invocation when the invoked function has static type Function or
dynamic. The method noSuchMethod can also be invoked in other ways, e.g.,
it can be called explicitly like any other method, and it can be invoked from a
noSuchMethod forwarder, as explained below.

We say that a class C has a non-trivial noSuchMethod if C has a concrete △

member named noSuchMethod which is distinct from the one declared in the
built-in class Object.

Note that it must be a method that accepts one positional argument, in order
to correctly override noSuchMethod in Object. For instance, it can have signa-
ture noSuchMethod(Invocation i) or noSuchMethod(Object i, [String s
= ”]), but not noSuchMethod(Invocation i, String s). This implies that
the situation where noSuchMethod is invoked (explicitly or implicitly) with one ac-
tual argument cannot fail for the reason that “there is no such method”, such that
we would enter an infinite loop trying to invoke noSuchMethod. It is possible, how-
ever, to encounter a dynamic error during an invocation of noSuchMethod because
the actual argument fails to satisfy a type check, but that situation will give rise
to a dynamic type error rather than a repeated attempt to invoke noSuchMethod
(17.15.3). Here is an example where a dynamic type error occurs because an at-
tempt is made to pass an Invocation where only the null object is accepted:

class A {
noSuchMethod(covariant Null n) => n;

}

void main() {
dynamic d = A();

Dart Programming Language Specification 39

d.foo(42); // Dynamic type error when invoking noSuchMethod.
}

Let C be a concrete class, let L be the library that contains the declaration C, L, m
of C, and let m be a name. Then m is noSuchMethod forwarded in C iff one of △

the following is true:

• Requested in program: C has a non-trivial noSuchMethod, the inter-
face of C contains a member signature S named m, and C has no concrete
member named m and accessible to L that correctly overrides S (that is,
no member named m is declared or inherited by C, or one is inherited, but
it does not have the required signature). In this case we also say that S is
noSuchMethod forwarded.

• Forced by privacy: There exists a direct or indirect superinterface D
of C which is declared in a library L2 different from L, the interface of
D contains a member signature S named m, m is a private name, and
no superclass of C has a concrete member named m accessible to L2 that
correctly overrides S. In this case we also say that S is noSuchMethod
forwarded.

For a concrete class C, a noSuchMethod forwarder is implicitly induced for △

each member signature which is noSuchMethod forwarded.
It is a compile-time error if the name m is noSuchMethod forwarded in a

concrete class C, and a superclass of C has an accessible concrete declaration
of m which is not a noSuchMethod forwarder.

A noSuchMethod forwarder is a concrete member of C with the signature
taken from the interface of C, and with the same default value for each optional
parameter. It can be invoked in an ordinary invocation and in a superinvoca-
tion, and when m is a method it can be closurized (17.22.3) using a property
extraction (17.22).

The error concerned with an implictly induced forwarder that would override
a human-written declaration can only occur if that concrete declaration does not
correctly override S. Consider the following example:

class A {
foo(int i) => null;

}
abstract class B {

foo([int i]);
}
class C extends A implements B {

noSuchMethod(Invocation i) => ...;
// Error: noSuchMethod forwarder cannot override ‘A.foo‘.

}

Dart Programming Language Specification 40

In this example, an implementation with signature foo(int i) is inherited
by C, and the superinterface B declares the signature foo([int i]). This is a
compile-time error because C does not have a method implementation with signature
foo([int]). We do not wish to implicitly induce a noSuchMethod forwarder with
signature foo([int]) because it would override A.foo, and that is likely to be
highly confusing for developers. In particular, it would cause an invocation like
C().foo(42) to invoke noSuchMethod, even though that is an invocation which
is correct for the declaration of foo in A. Hence, we require developers to explicitly
resolve the conflict whenever an implicitly induced noSuchMethod forwarder would
override an explicitly declared inherited implementation. It is no problem, however,
to let a noSuchMethod forwarder override another noSuchMethod forwarder, and
hence there is no error in that situation.

This implies that a noSuchMethod forwarder has the same properties as an
explicitly declared concrete member, except of course that a noSuchMethod for-
warder does not prevent itself or another noSuchMethod forwarder from being in-
duced. We do not specify the body of a noSuchMethod forwarder, but it will invoke
noSuchMethod, and we specify the dynamic semantics of executing it below.

At the beginning of this section we mentioned that implicit invocations of
noSuchMethod can only occur with a receiver of static type dynamic or a function of
static type dynamic or Function. With a noSuchMethod forwarder, noSuchMethod
can also be invoked on a receiver whose static type is not dynamic. No similar sit-
uation exists for functions, because it is impossible to induce a noSuchMethod
forwarder into the class of a function object.

For a concrete class C, we may think of a non-trivial noSuchMethod (declared in
or inherited by C) as a request for “automatic implementation” of all unimplemented
members in the interface of C as noSuchMethod forwarders. Similarly, there is
an implicit request for automatic implementation of all unimplemented inaccessible
members of any concrete class, whether or not there is a non-trivial noSuchMethod.
Note that the latter cannot be written explicitly in Dart, because their names are
inaccessible; but the language can still specify that they are induced implicitly,
because compilers control the treatment of private names.

For the dynamic semantics, assume that a class C has an implicitly induced C, m, Xj , r
noSuchMethod forwarder named m, with formal type parameters X1, . . . , Xr,
positional formal parameters a1, . . . , ak (some of which may be optional when aj , k, xj , n
n = 0), and named formal parameters with names x1, . . . , xn (with default
values as mentioned above).

For this purpose we need not distinguish between a signature that has optional
positional parameters and a signature that has named parameters, because the
former is covered by n = 0.

The execution of the body of m creates an instance im of the predefined im
class Invocation such that:

• im.isMethod evaluates to true iff m is a method.

• im.isGetter evaluates to true iff m is a getter.

• im.isSetter evaluates to true iff m is a setter.

Dart Programming Language Specification 41

• im.memberName evaluates to the symbol m.

• im.positionalArguments evaluates to an unmodifiable list whose dy-
namic type implements List<Object>, containing the same objects as
the list resulting from evaluation of <Object>[a1, . . . , ak].

• im.namedArguments evaluates to an unmodifiable map whose dynamic
type implements Map<Symbol, Object>, with the same keys and values
as the map resulting from evaluation of
<Symbol, Object>{#x1: x1, . . . , #xm: xm}.

• im.typeArguments evaluates to an unmodifiable list whose dynamic type
implements List<Type>, containing the same objects as the list resulting
from evaluation of <Type>[X1, . . . , Xr].

Next, noSuchMethod is invoked with im as the actual argument, and the
result obtained from there is returned by the execution of m.

This is an ordinary method invocation of noSuchMethod (17.21.1). That is, a
noSuchMethod forwarder in a class C can invoke an implementation of noSuchMethod
that is declared in a subclass of C.

Dynamic type checks on the actual arguments passed to m are performed in the
same way as for an invocation of an explicitly declared method. In particular, an
actual argument passed to a covariant parameter will be checked dynamically.

Also, like other ordinary method invocations, it is a dynamic type error if the
result returned by a noSuchMethod forwarder has a type which is not a subtype of
the return type of the forwarder.

One special case to be aware of is where a forwarder is torn off and then invoked
with an actual argument list which does not match the formal parameter list. In
that situation we will get an invocation of Object.noSuchMethod rather than the
noSuchMethod in the original receiver, because this is an invocation of a function
object (and they do not override noSuchMethod):

class A {
noSuchMethod(Invocation i) => null;
void foo();

}

void main() {
A a = A();
Function f = a.foo;
// Invokes ‘Object.noSuchMethod‘, which throws.
f(42);

}

Dart Programming Language Specification 42

10.2.3 The Operator ‘==’ and Primitive Equality theOperatorEqualsEquals

The operator ‘==’ is used implicitly in certain situations, and in particular
constant expressions (17.3) give rise to constraints on that operator. The situ-
ation is similar with the getter hashCode. In order to specify these constraints
just once we introduce the notion of primitive equality. △

Certain constant expressions are known to have a value whose equality is
primitive. This is useful to know because it allows the value of equality expres-
sions and the value of invocations of hashCode to be computed at compile-time.
In particular, this can be used to build constant collections at compile-time, and
it can be used to check that all elements in a constant set are distinct, and all
keys in a constant map are distinct.

• The null object has primitive equality (17.4).

• Every instance of type bool, int, and String has primitive equality.

• Every instance of type Symbol which was originally obtained by evaluation
of a literal symbol or a constant invocation of a constructor of the Symbol
class has primitive equality.

• Every instance of type Type which was originally obtained by evaluating
a constant type literal (20.2) has primitive equality.

• Let o be an object obtained by evaluation of a constant list literal (17.9.4),
a constant map literal (17.9.8), or a constant set literal (17.9.7), then o
has primitive equality.

• A function object obtained by function closurization of a static method
or a top-level function (17.16) as the value of a constant expression has
primitive equality.

• An instance o has primitive equality if the dynamic type of o is a class C,
and C has primitive equality.

• The class Object has primitive equality.

• A class C has primitive equality if it does not have an implementation
of the operator ‘==’ that overrides the one inherited from Object, and it
does not have an implementation of the getter hashCode that overrides
the one inherited from Object.

When we say that a given instance or class does not have primitive equality, △

it means that it is not true that said instance or class has primitive equality.

10.3 Getters getters

Getters are functions (9) that are used to retrieve the values of object prop-
erties.

Dart Programming Language Specification 43

⟨getterSignature⟩ ::= ⟨type⟩? get ⟨identifier⟩

If no return type is specified, the return type of the getter is dynamic.
A getter definition that is prefixed with the static modifier defines a static

getter. Otherwise, it defines an instance getter. The name of the getter is given
by the identifier in the definition.

The instance getters of a class C are those instance getters declared by C, △

either implicitly or explicitly, and the instance getters inherited by C from its
superclass. The static getters of a class C are those static getters declared by △

C.
A getter declaration may conflict with other declarations (10.11). In particular,

a getter can never override a method, and a method can never override a getter
or an instance variable. The rules for when a getter correctly overrides another
member are given elsewhere (11.2.2).

10.4 Setters setters

Setters are functions (9) that are used to set the values of object properties.

⟨setterSignature⟩ ::= ⟨type⟩? set ⟨identifier⟩ ⟨formalParameterList⟩

If no return type is specified, the return type of the setter is void (9.3).
A setter definition that is prefixed with the static modifier defines a static

setter. Otherwise, it defines an instance setter. The name of a setter is obtained
by appending the string ‘=’ to the identifier given in its signature.

Hence, a setter name can never conflict with, override or be overridden by a
getter or method.

The instance setters of a class C are those instance setters declared by C △

either implicitly or explicitly, and the instance setters inherited by C from its
superclass. The static setters of a class C are those static setters declared by △

C, either implicitly or explicitly.
It is a compile-time error if a setter’s formal parameter list does not consist of

exactly one required formal parameter p. We could enforce this via the grammar,
but we’d have to specify the evaluation rules in that case.

It is a compile-time error if a setter declares a return type other than void.
It is a compile-time error if a class has a setter named v= with argument type
T and a getter named v with return type S, and S may not be assigned to T .

The rules for when a setter correctly overrides another member are given else-
where (11.2.2). A setter declaration may conflict with other declarations as well
(10.11).

10.5 Abstract Instance Members abstractInstanceMembers

An abstract method (respectively, abstract getter or abstract setter) is an △

△

△

instance method, getter or setter that is not declared external and does not
provide an implementation. A concrete method (respectively, concrete getter or

△

△concrete setter) is an instance method, getter or setter that is not abstract.
△

Dart Programming Language Specification 44

Abstract instance members are useful because of their interplay with classes.
Every Dart class induces an implicit interface, and Dart does not support speci-
fying interfaces explicitly. Using an abstract class instead of a traditional inter-
face has important advantages. An abstract class can provide default implemen-
tations. It can also provide static methods, obviating the need for service classes
such as Collections or Lists, whose entire purpose is to group utilities related
to a given type.

Invocation of an abstract method, getter, or setter cannot occur, because lookup
(17.18) will never yield an abstract member as its result. One way to think about
this is that an abstract member declaration in a subclass does not override or shadow
an inherited member implementation. It only serves to specify the signature of the
given member that every concrete subtype must have an implementation of; that
is, it contributes to the interface of the class, not to the class itself.

The purpose of an abstract method is to provide a declaration for purposes
such as type checking and reflection. In mixins, it is often useful to introduce
such declarations for methods that the mixin expects will be provided by the
superclass the mixin is applied to.

We wish to detect if one declares a concrete class with abstract members.
However, code like the following should work:

class Base {
int get one => 1;

}

abstract class Mix {
int get one;
int get two => one + one;

}

class C extends Base with Mix { }

At run time, the concrete method one declared in Base will be executed, and
no problem should arise. Therefore no error should be raised if a corresponding
concrete member exists in the hierarchy.

10.6 Instance Variables instanceVariables

Instance variables are variables whose declarations are immediately con- △

tained within a class declaration and that are not declared static. The instance △

variables of a class C are the instance variables declared by C and the instance
variables inherited by C from its superclass.

It is a compile-time error if an instance variable is declared to be constant.
The notion of a constant instance variable is subtle and confusing to pro-

grammers. An instance variable is intended to vary per instance. A constant
instance variable would have the same value for all instances, and as such is
already a dubious idea.

Dart Programming Language Specification 45

The language could interpret const instance variable declarations as instance
getters that return a constant. However, a constant instance variable could not
be treated as a true compile-time constant, as its getter would be subject to
overriding.

Given that the value does not depend on the instance, it is better to use
a static variable. An instance getter for it can always be defined manually if
desired.

It is possible for the declaration of an instance variable to include the mod-
ifier covariant (8). The effect of this is that the formal parameter of the corre-
sponding implicitly induced setter is considered to be covariant-by-declaration
(9.2.3).

The modifier covariant on an instance variable has no other effects. In par-
ticular, the return type of the implicitly induced getter can already be overridden
covariantly without covariant, and it can never be overridden to a supertype or an
unrelated type, regardless of whether the modifier covariant is present.

10.7 Constructors constructors

A constructor is a special function that is used in instance creation ex- △

pressions (17.13) to obtain objects, typically by creating or initializing them.
Constructors may be generative (10.7.1) or they may be factories (10.7.2).

A constructor name always begins with the name of its immediately enclosing △

class, and may optionally be followed by a dot and an identifier id. It is a
compile-time error if the name of a constructor is not a constructor name.

The function type of a constructor k is the function type whose return type is △

the class that contains the declaration of k, and whose formal parameter types,
optionality, and names of named parameters correspond to the declaration of k.

Note that the function type F of a constructor k may contain type variables
declared by the enclosing class C. In that case we can apply a substitution to F ,
as in [T1/X1, . . . , Tm/Xm]F , where Xj , j ∈ 1..m are the formal type parameters
of C and Tj , j ∈ 1..m are specified in the given context. We may also omit such
a substitution when the given context is the body scope of C, where X1, . . . , Xm

are in scope.
A constructor declaration may conflict with static member declarations (10.11).
A constructor declaration does not introduce a name into a scope. If a function

expression invocation (17.15.5) or an instance creation (17.13) denotes a constructor
as C, prefix.C, C.id, or prefix.C.id, resolution relies on the library scope to
determine the class (possibly via an import prefix). The class declaration is then
directly checked for whether it has a constructor named C respectively C.id. It is
not possible for an identifier to directly refer to a constructor, since the constructor
is not in any scope used for resolving identifiers.

Iff no constructor is specified for a class C, it implicitly has a default con-
structor C(): super() {}, unless C is the built-in class Object.

10.7.1 Generative Constructors generativeConstructors

Dart Programming Language Specification 46

A generative constructor declaration consists of a constructor name, a formal △

parameter list (9.2), and either a redirect clause or an initializer list and an
optional body.

⟨constructorSignature⟩ ::= ⟨constructorName⟩ ⟨formalParameterList⟩

⟨constructorName⟩ ::= ⟨typeIdentifier⟩ (‘.’ ⟨identifier⟩)?

See ⟨declaration⟩ and ⟨methodSignature⟩ for grammar rules introducing a redi-
rection or an initializer list and a body.

A compile-time error occurs if a generative constructor declaration has a
body of the form ‘=> e;’.

In other function declarations, this kind of body is taken to imply that the value
of e is returned, but generative constructors do not return anything.

If a formal parameter declaration p is derived from ⟨fieldFormalParameter⟩,
it declares an initializing formal parameter . A term of the form this.id is △

contained in p, and id is the name of p. It is a compile-time error if id is not △

also the name of an instance variable of the immediately enclosing class or enum.
It is a compile-time error for an initializing formal parameter to occur in

any function which is not a generative constructor. Also, it is a compile-time
error for an initializing formal parameter to occur in a redirecting or external
constructor. In particuar, there is always an enclosing class or enum.

Assume that p is a declaration of an initializing formal parameter named
id. Let Tid be the type of the instance variable named id in the immediately
enclosing class or enum. If p has a type annotation T then the declared type of
p is T . Otherwise, the declared type of p is Tid. It is a compile-time error if the
declared type of p is not a subtype of Tid.

Initializing formals constitute an exception to the rule that every formal pa-
rameter introduces a local variable into the formal parameter scope (9.2). When
the formal parameter list of a non-redirecting generative constructor contains
any initializing formals, a new scope is introduced, the formal parameter ini- △

tializer scope, which is the current scope of the initializer list of the constructor,
and which is enclosed in the scope where the constructor is declared. Each
initializing formal in the formal parameter list introduces a final local variable
into the formal parameter initializer scope, but not into the formal parameter
scope; every other formal parameter introduces a local variable into both the
formal parameter scope and the formal parameter initializer scope.

This means that formal parameters, including initializing formals, must have
distinct names, and that initializing formals are in scope for the initializer list, but
they are not in scope for the body of the constructor. When a formal parameter
introduces a local variable into two scopes, it is still one variable and hence one
storage location. The type of the constructor is defined in terms of its formal
parameters, including the initializing formals.

Initializing formals are executed during the execution of generative construc-
tors detailed below. Executing an initializing formal this.id causes the instance
variable id of the immediately surrounding class to be assigned the value of the

Dart Programming Language Specification 47

corresponding actual parameter, unless the assigned object has a dynamic type
which is not a subtype of the declared type of the instance variable id, in which
case a dynamic error occurs.

The above rule allows initializing formals to be used as optional parameters:

class A {
int x;
A([this.x]);

}

is legal, and has the same effect as

class A {
int x;
A([int x]): this.x = x;

}

A fresh instance is an instance whose identity is distinct from any previously △

allocated instance of its class. A generative constructor always operates on a
fresh instance of its immediately enclosing class.

The above holds if the constructor is actually run, as it is by new. If a constructor
c is referenced by const, c may not be run; instead, a canonical object may be looked
up. See the section on instance creation (17.13).

If a generative constructor c is not a redirecting constructor and no body is
provided, then c implicitly has an empty body {}.
Redirecting Generative Constructors

redirectingGenerativeConstructors

A generative constructor may be redirecting, in which case its only action is △

to invoke another generative constructor. A redirecting constructor has no body;
instead, it has a redirect clause that specifies which constructor the invocation
is redirected to, and with which arguments.

⟨redirection⟩ ::= ‘:’ this (‘.’ ⟨identifier⟩)? ⟨arguments⟩

Assume that C<X1 extends B1 . . . , Xm extends Bm> is the name and C, Xj , Bj , m
formal type parameters of the enclosing class, const? stands for either const or const?
nothing, N is C or C.id0 for some identifier id0, and id is an identifier. Consider N, id
a declaration of a redirecting generative constructor of one of the forms
const? N(T1 x1 . . . , Tn xn, [Tn+1 xn+1 = d1 . . . , Tn+k xn+k = dk]): R;
const? N(T1 x1 . . . , Tn xn, {Tn+1 xn+1 = d1 . . . , Tn+k xn+k = dk}): R;
where R is of one of the forms
this(e1 . . . , ep, x1: ep+1, . . . , xq: ep+q)
this.id(e1 . . . , ep, x1: ep+1, . . . , xq: ep+q).

The redirectee constructor for this declaration is then the constructor de- △

noted by C<X1 . . . , Xm> respectively C<X1 . . . , Xm>.id. It is a compile-time
error if the static argument list type (17.15.1) of (e1 . . . , ep, x1: ep+1, . . . , xq:
ep+q) is not an assignable match for the formal parameter list of the redirectee.

Dart Programming Language Specification 48

Note that the case where no named parameters are passed is covered by letting
q be zero, and the case where C is a non-generic class is covered by letting m be
zero, in which case the formal type parameter list and actual type argument lists
are omitted (15).

We require an assignable match rather than the stricter subtype match be-
cause a generative redirecting constructor k invokes its redirectee k′ in a manner
which resembles function invocation in general. For instance, k could accept an
argument x and pass on an expression ej using x such as x.f(42) to k′, and it
would be surprising if ej were subject to more strict constraints than the ones
applied to actual arguments to function invocations in general.

A redirecting generative constructor q′ is redirection-reachable from a redi- △

recting generative constructor q iff q′ is the redirectee constructor of q, or q′′ is
the redirectee constructor of q and q′ is redirection-reachable from q′′. It is a
compile-time error if a redirecting generative constructor is redirection-reachable
from itself.

When const? is const, it is a compile-time error if the redirectee is not a
constant constructor. Moreover, when const? is const, each ei, i ∈ 1..p + q,
must be a potentially constant expression (10.7.3).

It is a dynamic type error if an actual argument passed in an invocation
of a redirecting generative constructor k is not a subtype of the actual type
(20.10.1) of the corresponding formal parameter in the declaration of k. It is
a dynamic type error if an actual argument passed to the redirectee k′ of a
redirecting generative constructor is not a subtype of the actual type (20.10.1)
of the corresponding formal parameter in the declaration of the redirectee.
Initializer Lists

initializerLists

An initializer list begins with a colon, and consists of a comma-separated
list of individual initializers. △

There are three kinds of initializers.

• A superinitializer identifies a superconstructor — that is, a specific constructor
of the superclass. Execution of the superinitializer causes the initializer list of
the superconstructor to be executed.

• An instance variable initializer assigns an object to an individual instance
variable.

• An assertion.

⟨initializers⟩ ::= ‘:’ ⟨initializerListEntry⟩ (‘,’ ⟨initializerListEntry⟩)*

⟨initializerListEntry⟩ ::= super ⟨arguments⟩
| super ‘.’ ⟨identifier⟩ ⟨arguments⟩
| ⟨fieldInitializer⟩
| ⟨assertion⟩

Dart Programming Language Specification 49

⟨fieldInitializer⟩ ::=
(this ‘.’)? ⟨identifier⟩ ‘=’ ⟨initializerExpression⟩

⟨initializerExpression⟩ ::=
⟨assignableExpression⟩ ⟨assignmentOperator⟩ ⟨expression⟩

| ⟨conditionalExpression⟩
| ⟨cascade⟩
| ⟨throwExpression⟩

As a special disambiguation rule, an ⟨initializerExpression⟩ can not derive a
⟨functionExpression⟩.

This resolves a near-ambiguity: In A() : x = () { ... }, x could be initialized
to the empty record, and the block could be the body of the constructor. Alterna-
tively, x could be initialized to a function object, and the constructor would then
not have a body. It would only be known which case we have when we encounter
(or do not encounter) a semicolon at the very end. That was considered unread-
able. Hence, parsers can commit to not parsing a function expression in this
situation. Note that it is still possible for ⟨initializerExpression⟩ to derive a term
that contains a function expression as a subterm, e.g., A() : x = (() { ... });.

An initializer of the form v = e is equivalent to an initializer of the form
this.v = e, and both forms are called instance variable initializers. It is a △

compile-time error if the enclosing class does not declare an instance variable
named v. It is a compile-time error unless the static type of e is assignable to
the declared type of v.

Consider a superinitializer s of the form △

super(a1, . . . , an, xn+1 : an+1, . . . , xn+k: an+k) respectively
super.id(a1, . . . , an, xn+1 : an+1, . . . , xn+k: an+k).
Let S be the superclass of the enclosing class of s. It is a compile-time error if
class S does not declare a generative constructor named S (respectively S.id).
Otherwise, the static analysis of s is performed as specified in Section 17.15.3,
as if super respectively super.id had had the function type of the denoted
constructor, and substituting the formal type variables of the superclass for the
corresponding actual type arguments passed to the superclass in the header of
the current class.

Let k be a generative constructor. Then k may include at most one superini- k
tializer in its initializer list or a compile-time error occurs. If no superinitializer
is provided, an implicit superinitializer of the form super() is added at the end of
k’s initializer list, unless the enclosing class is class Object. It is a compile-time
error if a superinitializer appears in k’s initializer list at any other position than
at the end. It is a compile-time error if more than one initializer corresponding
to a given instance variable appears in k’s initializer list. It is a compile-time
error if k’s initializer list contains an initializer for a variable that is initialized
by means of an initializing formal of k. It is a compile-time error if k’s initial-
izer list contains an initializer for a final variable f whose declaration includes
an initialization expression. It is a compile-time error if k includes an initial-
izing formal for a final variable f whose declaration includes an initialization

Dart Programming Language Specification 50

expression.
Let f be a final instance variable declared in the immediately enclosing f

class or enum. A compile-time error occurs unless f is initialized by one of the
following means:

• f is declared by an initializing variable declaration.

• f is initialized by means of an initializing formal of k.

• f has an initializer in k’s initializer list.

It is a compile-time error if k’s initializer list contains an initializer for a
variable that is not an instance variable declared in the immediately surrounding
class.

The initializer list may of course contain an initializer for any instance variable
declared by the immediately surrounding class, even if it is not final.

It is a compile-time error if a generative constructor of class Object includes
a superinitializer.
Execution of Generative Constructors

executionOfGenerativeConstructors

Execution of a generative constructor k of type T to initialize a fresh instance k, T, i
i is always done with respect to a set of bindings for its formal parameters and
the type parameters of the immediately enclosing class or enum bound to a set
of actual type arguments of T , t1, . . . , tm. t1, . . . , tm

These bindings are usually determined by the instance creation expression that
invoked the constructor (directly or indirectly). However, they may also be deter-
mined by a reflective call.

If k is redirecting then its redirect clause has the form
this.g(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k)

where g identifies another generative constructor of the immediately sur- g
rounding class. Then execution of k to initialize i proceeds by evaluating
the argument list (a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k) to an actual
argument list a of the form (o1, . . . , on, xn+1: on+1, . . . , xn+k: on+k) in an
environment where the type parameters of the enclosing class are bound to
t1, . . . , tm.

Next, the body of g is executed to initialize i with respect to the bindings
that map the formal parameters of g to the corresponding objects in the ac-
tual argument list a, with this bound to i, and the type parameters of the
immediately enclosing class or enum bound to t1, . . . , tm.

Otherwise, k is not redirecting. Execution then proceeds as follows:
The instance variable declarations of the immediately enclosing class or enum

are visited in the order they appear in the program text. For each such decla-
ration d, if d has the form ⟨finalConstVarOrType⟩ v = e; then e is evaluated
to an object o and the instance variable v of i is bound to o.

Any initializing formals declared in k’s parameter list are executed in the
order they appear in the program text. Then, the initializers of k’s initializer list
are executed to initialize i in the order they appear in the program, as described
below (p. 51).

Dart Programming Language Specification 51

We could observe the order by side effecting external routines called. So we
need to specify the order.

Then if any instance variable of i declared by the immediately enclosing class
or enum is not yet bound to an object, all such variables are initialized with the
null object (17.4).

Then, unless the enclosing class is Object, the explicitly specified or implic-
itly added superinitializer (10.7.1) is executed to further initialize i.

After the superinitializer has completed, the body of k is executed in a scope
where this is bound to i.

This process ensures that no uninitialized final instance variable is ever seen
by code. Note that this is not in scope on the right hand side of an initializer
(see 17.12) so no instance method can execute during initialization: an instance
method cannot be directly invoked, nor can this be passed into any other code
being invoked in the initializer.
Execution of Initializer Lists

executionOfInitializerLists

During the execution of a generative constructor to initialize an instance i, i
execution of an initializer of the form this.v = e proceeds as follows:

First, the expression e is evaluated to an object o. Then, the instance variable
v of i is bound to o. It is a dynamic type error if the dynamic type of o is not
a subtype of the actual type (20.10.1) of the instance variable v.

Execution of an initializer that is an assertion proceeds by executing the
assertion (18.18).

Consider a superinitializer s of the form s
super(a1, . . . , an, xn+1 : an+1, . . . , xn+k: an+k) respectively
super.id(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k).

Let C be the class in which s appears and let S be the superclass of C. If S is C, S, uj , p
generic (15), let u1, . . . , up be the actual type arguments passed to S, obtained
by substituting the actual bindings t1, . . . , tm of the formal type parameters
of C in the superclass as specified in the header of C. Let k be the constructor k
declared in S and named S respectively S.id.

Execution of s proceeds as follows: The argument list (a1, . . . , an, xn+1:
an+1, . . . , xn+k: an+k) is evaluated to an actual argument list a of the form
(o1, . . . , on, xn+1: on+1, . . . , xn+k: on+k). Then the body of the super-
constructor k is executed in an environment where the formal parameters of k
are bound to the corresponding actual arguments from a, and the formal type
parameters of S are bound to u1, . . . , up.

10.7.2 Factories factories

A factory is a constructor prefaced by the built-in identifier (17.38) factory. △

⟨factoryConstructorSignature⟩ ::=
const? factory ⟨constructorName⟩ ⟨formalParameterList⟩

The return type of a factory whose signature is of the form factory M or the
form factory M.id is M if M is not a generic type; otherwise the return type

Dart Programming Language Specification 52

is M<T1, . . . , Tn> where T1, . . . , Tn are the type parameters of the enclosing
class.

It is a compile-time error if M is not the name of the immediately enclosing
class or enum.

It is a dynamic type error if a factory returns a non-null object whose type
is not a subtype of its actual (20.10.1) return type.

It seems useless to allow a factory to return the null object (17.4). But it is
more uniform to allow it, as the rules currently do.

Factories address classic weaknesses associated with constructors in other
languages. Factories can produce instances that are not freshly allocated: they
can come from a cache. Likewise, factories can return instances of different
classes.
Redirecting Factory Constructors

redirectingFactoryConstructors

A redirecting factory constructor specifies a call to a constructor of another △

class that is to be used whenever the redirecting constructor is called.

⟨redirectingFactoryConstructorSignature⟩ ::=
const? factory ⟨constructorName⟩ ⟨formalParameterList⟩ ‘=’
⟨constructorDesignation⟩

⟨constructorDesignation⟩ ::= ⟨typeIdentifier⟩
| ⟨qualifiedName⟩
| ⟨typeName⟩ ⟨typeArguments⟩ (‘.’ ⟨identifier⟩)?

Assume that C<X1 extends B1 . . . , Xm extends Bm> is the name and C, Xj , Bj , m
formal type parameters of the enclosing class, const? is const or empty, N const?, N
is C or C.id0 for some identifier id0, and id is an identifier, then consider a id
declaration of a redirecting factory constructor k of one of the forms k

const? factory
N(T1 x1 . . . , Tn xn, [Tn+1 xn+1=d1, . . . , Tn+k xn+k=dk]) = R;

const? factory
N(T1 x1 . . . , Tn xn, {Tn+1 xn+1=d1, . . . , Tn+k xn+k=dk}) = R;

where R is of one of the forms T<S1 . . . , Sp> or T<S1 . . . , Sp>.id. R, T
It is a compile-time error if T does not denote a class accessible in the

current scope. If T does denote such a class D, it is a compile-time error if
R does not denote a constructor. Otherwise, it is a compile-time error if R
denotes a generative constructor and D is abstract. Otherwise, the redirectee △

constructor for this declaration is the constructor k′ denoted by R. k′

A redirecting factory constructor q′ is redirection-reachable from a redirecting △

factory constructor q iff q′ is the redirectee constructor of q, or q′′ is the redirectee
constructor of q and q′ is redirection-reachable from q′′. It is a compile-time error
if a redirecting factory constructor is redirection-reachable from itself.

Let Ts be the static argument list type (17.15.1) (T1 . . . , Tn+k) when k

Dart Programming Language Specification 53

takes no named arguments, and (T1 . . . , Tn, Tn+1 xn+1, . . . , Tn+k xn+k)
when k takes some named arguments. It is a compile-time error if Ts is not a
subtype match for the formal parameter list of the redirectee.

We require a subtype match (rather than the more forgiving assignable match
which is used with a generative redirecting constructor), because a factory redi-
recting constructor k always invokes its redirectee k′ with exactly the same actual
arguments that k received. This means that a downcast on an actual argument
“between” k and k′ would either be unused because the actual argument has the
type required by k′, or it would amount to a dynamic error which is simply
delayed a single step.

Note that the non-generic case is covered by letting m or p or both be zero,
in which case the formal type parameter list of the class C and/or the actual type
argument list of the redirectee constructor is omitted (15).

It is a compile-time error if k explicitly specifies a default value for an op-
tional parameter.

Default values specified in k would be ignored, since it is the actual parame-
ters that are passed to k′. Hence, default values are disallowed.

It is a compile-time error if a formal parameter of k′ has a default value
whose type is not a subtype of the type annotation on the corresponding formal
parameter in k.

Note that it is not possible to modify the arguments being passed to k′.
At first glance, one might think that ordinary factory constructors could sim-

ply create instances of other classes and return them, and that redirecting fac-
tories are unnecessary. However, redirecting factories have several advantages:

• An abstract class may provide a constant constructor that utilizes the con-
stant constructor of another class.

• A redirecting factory constructor avoids the need for forwarders to repeat
the formal parameters and their default values.

It is a compile-time error if k is prefixed with the const modifier but k′ is
not a constant constructor (10.7.3).

Let T1, . . . , Tm be the actual type arguments passed to k′ in the declaration T1, . . . , Tm

of k. Let X1, . . . , Xm be the formal type parameters declared by the class that X1, . . . , Xm
contains the declaration of k′. Let F ′ be the function type of k′ (10.7). It is F ′
a compile-time error if [T1/X1, . . . , Tm/Xm]F ′ is not a subtype of the function
type of k.

In the case where the two classes are non-generic this is just a subtype check on
the function types of the two constructors. In general, this implies that the resulting
object conforms to the interface of the class or enum that immediately encloses k.

For the dynamic semantics, assume that k is a redirecting factory constructor k
and k′ is the redirectee of k. k′

It is a dynamic type error if an actual argument passed in an invocation
of k is not a subtype of the actual type (20.10.1) of the corresponding formal
parameter in the declaration of k.

When the redirectee k′ is a factory constructor, execution of k amounts

Dart Programming Language Specification 54

to execution of k′ with the actual arguments passed to k. The result of the
execution of k′ is the result of k.

When the redirectee k′ is a generative constructor, let o be a fresh instance
(10.7.1) of the class that contains k′. Execution of k then amounts to execution
of k′ to initialize o, governed by the same rules as an instance creation expression
(17.13). If k′ completed normally then the execution of k completes normally
returning o, otherwise k completes by throwing the exception and stack trace
thrown by k′.

10.7.3 Constant Constructors constantConstructors

A constant constructor may be used to create compile-time constant (17.3) △

objects. A constant constructor is prefixed by the reserved word const.

⟨constantConstructorSignature⟩ ::=
const ⟨constructorName⟩ ⟨formalParameterList⟩

Constant constructors have stronger constraints than other constructors. For
instance, all the work of a non-redirecting generative constant constructor must be
done in its initializers and in the initializing expressions of the instance variables
of the enclosing class (and the latter may already have happened earlier, because
those initializing expressions must be constant).

Constant redirecting generative and factory constructors are specified else-
where (p. 47, p. 52). This section is henceforth concerned with non-redirecting
generative constant constructors.

It is a compile-time error if a non-redirecting generative constant constructor
is declared by a class that has a instance variable which is not final.

The above refers to both locally declared and inherited instance variables.
If a non-redirecting generative constant constructor k is declared by a class k

C, it is a compile-time error for an instance variable declared in C to have an
initializing expression that is not a constant expression.

A superclass of C cannot have such an initializing expression e either. If it has
a non-redirecting generative constant constructor then e is an error, and if it does
not have such a constructor then the (implicit or explicit) superinitializer in k is an
error.

The superinitializer that appears, explicitly or implicitly, in the initializer
list of a constant constructor must specify a generative constant constructor of
the superclass of the immediately enclosing class, or a compile-time error occurs.

Any expression that appears within the initializer list of a constant con-
structor must be a potentially constant expression (17.3), or a compile-time
error occurs.

When a constant constructor k is invoked from a constant object expression, k
it is a compile-time error if the invocation of k at run time would throw an
exception, and it is a compile-time error if substitution of the actual arguments
for the formal parameters yields an initializing expression e in the initializer list
of k which is not a constant expression.

Dart Programming Language Specification 55

For instance, if e is a.length where a is a formal argument of k with type
dynamic, e is potentially constant and can be used in the initializer list of k. It
is an error to invoke k with an argument of type C if C is a class different from
String, even if C has a length getter, and that same expression would evaluate
without errors at run time.

10.8 Static Methods staticMethods

Static methods are functions, other than getters or setters, whose declara- △

tions are immediately contained within a class declaration and that are declared
static. The static methods of a class C are those static methods declared by C.

Inheritance of static methods has little utility in Dart. Static methods cannot
be overridden. Any required static method can be obtained from its declaring
library, and there is no need to bring it into scope via inheritance. Experience
shows that developers are confused by the idea of inherited methods that are not
instance methods.

Of course, the entire notion of static methods is debatable, but it is retained
here because so many programmers are familiar with it. Dart static methods
may be seen as functions of the enclosing library.

Static method declarations may conflict with other declarations (10.11).

10.9 Superclasses superclasses

The superclass S′ of a class C whose declaration has a with clause with
M1, . . . , Mk and an extends clause extends S is the abstract class obtained
by application of mixin composition (12) Mk ∗ · · · ∗ M1 to S. The name S′ is a
fresh identifier. If no with clause is specified then the extends clause of a class
C specifies its superclass. If no extends clause is specified, then either:

• C is Object, which has no superclass. OR

• Class C is deemed to have an extends clause of the form extends Object,
and the rules above apply.

It is a compile-time error to specify an extends clause for class Object.

⟨superclass⟩ ::= extends ⟨typeNotVoid⟩ ⟨mixins⟩?
| ⟨mixins⟩

⟨mixins⟩ ::= with ⟨typeNotVoidList⟩

The scope of the extends and with clauses of a class C is the type-parameter
scope of C.

It is a compile-time error if the type in the extends clause of a class C is a
type variable (15), a type alias that does not denote a class (20.3), an enumerated
type (14), a deferred type (20.1), type dynamic (20.7), or type FutureOr<T>
for any T (20.8).

Dart Programming Language Specification 56

Note that void is a reserved word, which implies that the same restrictions
apply for the type void, and similar restrictions are specified for other types like
Null (17.4) and String (17.7).

The type parameters of a generic class are available in the lexical scope of
the superclass clause, potentially shadowing classes in the surrounding scope. The
following code is therefore illegal and should cause a compile-time error:

class T {}

/* Compilation error: Attempt to subclass a type parameter */
class G<T> extends T {}

A class S is a superclass of a class C iff either: △

• S is the superclass of C, or

• S is a superclass of a class S′, and S′ is the superclass of C.

It is a compile-time error if a class C is a superclass of itself.

10.9.1 Inheritance and Overriding inheritanceAndOverriding

Let C be a class, let A be a superclass of C, and let S1, . . . , Sk be superclasses
of C that are also subclasses of A. C inherits all concrete, accessible instance △

members of A that have not been overridden by a concrete declaration in C or
in at least one of S1, . . . , Sk.

It would be more attractive to give a purely local definition of inheritance,
that depended only on the members of the direct superclass S. However, a class
C can inherit a member m that is not a member of its superclass S. This can
occur when the member m is private to the library L1 of C, whereas S comes
from a different library L2, but the superclass chain of S includes a class declared
in L1.

A class may override instance members that would otherwise have been
inherited from its superclass.

Let C = S0 be a class declared in library L, and let {S1, . . . , Sk} be the set
of all superclasses of C, where Si is the superclass of Si−1 for i ∈ 1..k. Sk is
the built-in class Object. Let C declare a concrete member m, and let m′ be
a concrete member of Sj , j ∈ 1..k, that has the same name as m, such that
m′ is accessible to L. Then m overrides m′ if m′ is not already overridden by
a concrete member of at least one of S1, . . . , Sj−1 and neither m nor m′ are
instance variables.

Instance variables never override each other. The getters and setters induced by
instance variables do.

Again, a local definition of overriding would be preferable, but fails to account
for library privacy.

Whether an override is legal or not is specified relative to all direct superin-
terfaces, not just the interface of the superclass, and that is described elsewhere

Dart Programming Language Specification 57

(10.2). Static members never override anything, but they may participate in some
conflicts involving declarations in superinterfaces (10.11).

For convenience, here is a summary of the relevant rules, using ‘error’ to denote
compile-time errors. Remember that this is not normative. The controlling language
is in the relevant sections of the specification.

1. There is only one namespace for getters, setters, methods and constructors
(6.1). A non-local variable f introduces a getter f , and a non-local variable f
also introduces a setter if it is not final and not constant, or it is late and final
and has no initializing expression f= (10.6, 8). When we speak of members
here, we mean accessible instance, static, or library variables, getters, setters,
and methods (10).

2. You cannot have two members with the same name in the same class—be
they declared or inherited (6.1, 10).

3. Static members are never inherited.

4. It is an error if you have a static member named m in your class and an
instance member of the same basename (10.11).

5. It is an error if you have a static setter v=, and an instance member v (10.4).

6. It is an error if you have a static getter v and an instance setter v= (10.3).

7. If you define an instance member named m, and your superclass has an
instance member of the same name, they override each other. This may or
may not be legal.

8. If two members override each other, it is an error unless it is a correct override
(11.2.2).

9. Setters, getters and operators never have optional parameters of any kind; it’s
an error (10.2.1, 10.3, 10.4).

10. It is an error if a member has the same name as its enclosing class (10).

11. A class has an implicit interface (10).

12. Superinterface members are not inherited by a class, but are inherited by its
implicit interface. Interfaces have their own inheritance rules (11.2.1).

13. A member is abstract if it has no body and is not labeled external (10.5,
9.4).

14. A class is abstract iff it is explicitly labeled abstract.

15. It is an error if a concrete class does not implement some member of its
interface, and there is no non-trivial noSuchMethod (10).

Dart Programming Language Specification 58

16. It is an error to call a non-factory constructor of an abstract class using an
instance creation expression (17.13), such a constructor may only be invoked
from another constructor using a superinvocation (17.21.3).

17. If a class defines an instance member named m, and any of its superinterfaces
have a member signature named m, the interface of the class contains the m
from the class itself.

18. An interface inherits all members of its superinterfaces that are not overridden
and not members of multiple superinterfaces.

19. If multiple superinterfaces of an interface define a member with the same
name as m, then at most one member is inherited. That member (if it exists)
is the one whose type is a subtype of all the others. If there is no such
member, an error occurs (11.2.1).

20. Rule 8 applies to interfaces as well as classes (11.2.1).

21. It is an error if a concrete class does not have an implementation for a method
in its interface unless it has a non-trivial noSuchMethod (10.2.2).

22. The identifier of a named constructor cannot be the same as the basename
of a static member declared in the same class (10.11).

10.10 Superinterfaces superinterfaces

A class has a set of direct superinterfaces. This set contains the interface △

of its superclass and the interfaces of the classes specified in the implements
clause of the class.

⟨interfaces⟩ ::= implements ⟨typeNotVoidList⟩

The scope of the implements clause of a class C is the type-parameter scope
of C.

It is a compile-time error if an element in the type list of the implements
clause of a class C is a type variable (15), a type alias that does not denote
a class (20.3), an enumerated type (14), a deferred type (20.1), type dynamic
(20.7), or type FutureOr<T> for any T (20.8). It is a compile-time error if two
elements in the type list of the implements clause of a class C specifies the same
type T . It is a compile-time error if the superclass of a class C is one of the
elements of the type list of the implements clause of C.

One might argue that it is harmless to repeat a type in the superinterface
list, so why make it an error? The issue is not so much that the situation is
erroneous, but that it is pointless. As such, it is an indication that the program-
mer may very well have meant to say something else—and that is a mistake that
should be called to her or his attention.

It is a compile-time error if a class C has two superinterfaces that are different

Dart Programming Language Specification 59

instantiations of the same generic class. For example, a class can not have both
List<void> and List<dynamic> as superinterfaces, directly or indirectly.

When a generic class C declares a type parameter X, it is a compile-time
error if X occurs in a non-covariant position in a type which specifies a super-
interface of C. For example, the class can not have List<void Function(X)> in
its extends or implements clause.

It is a compile-time error if the interface of a class C is a superinterface of
itself.

A class does not inherit members from its superinterfaces. However, its implicit
interface does.

10.11 Class Member Conflicts classMemberConflicts

Some pairs of class, mixin, enum, and extension member declarations cannot
coexist, even though they do not both introduce the same name into the same
scope. This section specifies these errors.

The basename of a getter or method named n is n; the basename of a setter △

named n= is n. The basename of an operator named n is n, except for operator
[]= whose basename is [].

Let C be a class. It is a compile-time error if C declares a constructor C
named C.n and a static member with basename n. It is a compile-time error
if C declares a static member with basename n and the interface of C has an
instance member with basename n. It is a compile-time error if the interface of
C has an instance method named n and an instance setter with basename n.
It is a compile-time error if C declares a static method named n and a static
setter with basename n.

When C is a mixin or an extension, the compile-time errors occur according C
to the same rules. This is redundant in some cases. For instance, it is already an
error for a mixin to declare a constructor. But useful cases exist as well, e.g., a
conflict between a static member and an instance member.

These errors occur when the getters or setters are defined explicitly as well
as when they are induced by variable declarations.

Note that other errors which are similar in nature are covered elsewhere. For
instance, if C is a class that has two superinterfaces I1 and I2, where I1 has a
method named m and I2 has a getter named m, then it is an error because the
computation of the interface of C includes a computation of the combined member
signature (11.1) of that getter and that method, and it is an error for a combined
member signature to include a getter and a non-getter.

11 Interfaces interfaces

This section introduces the notion of interfaces. We define the notion of
member signatures first, because that concept is needed in the definition of
interfaces.

A member signature s can be derived from a class instance member dec- △

Dart Programming Language Specification 60

laration D. It contains the same information as D, except that s omits the
body, if any; it contains the return type and parameter types even if they are
implicit in D; it omits the names of positional parameters; it omits the mod-
ifier final from each parameter, if any; it omits metadata (16); and it omits
information about whether the member is external, async, async*, or sync*.
It makes no difference whether D is given as explicit syntax or it is induced
implicitly, e.g., by a variable declaration. Finally, if s has formal parameters,
each of them has the modifier covariant (9.2.1) if and only if that parameter is
covariant-by-declaration (9.2.3).

We use a syntax similar to that of an abstract member declaration to specify
member signatures. The difference is that the names of positional parameters
are omitted. This syntax is only used for the purposes of specification.

Member signatures are synthetic entities, that is, they are not supported
as concrete syntax in a Dart program, they are computed entities used during
static analysis. However, it is useful to be able to indicate the properties of a
member signature in this specification via a syntactic representation. A member
signature makes it explicit whether a parameter is covariant-by-declaration, but
it remains implicit whether it is covariant-by-class (9.2.3). The reason for this is
that the rule for determining whether a given override relation is correct (11.2.2)
depends on the former and not on the latter.

Let m be a method signature of the form m
T0 id<X1 extends B1, . . . , Xs extends Bs>(

covariant? T 1, . . . , covariant? T n,
[covariant? T n+1 = dn+1, . . . , covariant? T n+k = dn+k]).

The function type of m is then △

T0 Function<X1 ◁ B1, . . . , Xs ◁ Bs>(T1, . . . , Tn, [Tn+1, . . . , Tn+k]).
Let m be a method signature of the form m

T0 id<X1 extends B1, . . . , Xs extends Bs>(
covariant? T 1, . . . , covariant? T n,
{covariant? T n+1 xn+1 = dn+1, . . . , covariant? T n+k xn+k = dn+k}).

The function type of m is then △

T0 Function<X1 ◁ B1, . . . , Xs ◁ Bs>(
T1, . . . , Tn, {rn+1 Tn+1 xn+1, . . . , rn+k Tn+k xn+k}).

Let m be a setter signature of the form void set id(covariant? T p). The m
function type of m is then void Function(T). △

The function type of a member signature remains unchanged if some or all
default values are omitted.

We do not specify the function type of a getter signature. For such signatures
we will instead directly refer to the return type.

An interface is a synthetic entity that defines how one may interact with △

an object. An interface has method, getter and setter signatures, and a set
of superinterfaces, which are again interfaces. Each interface is the implicit
interface of a class, in which case we call it a class interface, or a combination △

of several other interfaces, in which case we call it a combined interface. △

Let C be a class. The class interface I of C is the interface that declares △

Dart Programming Language Specification 61

a member signature derived from each instance member declared by C. The
direct superinterfaces of I are the direct superinterfaces of C (10.10). △

We say that the class interface ‘declares’ these member signatures, such that we
can say that an interface ‘declares’ or ‘has’ a member, just like we do for classes.
Note that a member signature s of the interface of class C may have a parameter
p with modifier covariant, even though s was derived from a declaration D in C
and the parameter corresponding to p in D does not have that modifier. This is
because p may have “inherited” the property of being covariant-by-declaration from
one of its superinterfaces (9.2.3).

For the purpose of performing static checks on ordinary method invocations
(17.21.1) and property extractions (17.22), any type T which is T0 bounded
(17.15.3), where T0 is a class with interface I, is also considered to have interface
I. Similarly, when T is T0 bounded where T0 is a function type, T is considered
to have a method named call with signature m, such that the function type of
m is T0.

The combined interface I of a list of interfaces I1, . . . , Ik is the interface that I, I1, . . . , Ik
△declares the set of member signatures M , where M is determined as specified

below. The direct superinterfaces of I is the set I1, . . . , Ik. △

Let M0 be the set of all member signatures declared by I1, . . . , Ik. M is M
then the smallest set satisfying the following:

• For each name id and library L such that M0 contains a member signature
named id which is accessible to L, let m be the combined member signature
named id from I1, . . . , Ik with respect to L. It is a compile-time error
if the computation of this combined member signature failed. Otherwise,
M contains m.

Interfaces must be able to contain inaccessible member signatures, because
they may be accessible from the interfaces associated with declarations of sub-
types.

For instance, class C in library L may declare a private member named _foo,
a class D in a different library L2 may extend C, and a class E in library L may
extend D; E may then declare a member that overrides _foo from C, and that
override relation must be checked based on the interface of D. So we cannot allow
the interface of D to “forget” inaccessible members like _foo.

For conflicts the situation is even more demanding: Classes C1 and C2 in library
L may declare private members String _foo(int i) and int get _foo, and a
subtype D12 in a different library L2 may have an implements clause listing both
C1 and C2. In that case we must report a conflict even though the conflicting
declarations are not accessible to L2, because those member signatures are then
noSuchMethod forwarded (10.2.2), and an invocation of _foo on an instance of D
in L must return an ‘int‘ according to the first member signature, and it must return
a function object according to the second one, and an invocation of _foo(42) must
return a String with the first member signature, and it must fail (at compile time
or, for a dynamic invocation, run time) with the second.

It may not be possible to satisfy such constraints simultaneously, and it will
inevitably be a complex semantics, so we have chosen to make it an error. It is

Dart Programming Language Specification 62

unfortunate that the addition of a private declaration in one library may break
existing code in a different library. But it should be noted that the conflicts can
be detected locally in the library where the private declarations exist, because they
only arise for private members with the same name and incompatible signatures.
Renaming that private member to anything not used in that library will eliminate
the conflict and will not break any clients.

11.1 Combined Member Signatures combinedMemberSignatures

This section specifies how to compute a member signature which will appro-
priately stand for a prioritized set of several member signatures, taken from a
given list of interfaces.

In general, a combined member signature has a type which is a subtype of all
the types given for that member. This is needed in order to ensure that the type of
a member id of a class C is well-defined, even in the case where C inherits several
different declarations of id and does not override id. In case of failure, it serves to
specify the situations where a developer must add a declaration in order to resolve
an ambiguity. The member signatures are prioritized in the sense that we will select
a member signature from the interface with the lowest possible index in the case
where several member signatures are equally suitable to be chosen as the combined
member signature. That is, “the first interface wins”.

For the purposes of computing a combined member signature, we need a
special notion of equality of member signatures. Two member signatures m1 △

and m2 are equal iff they have the same name, are accessible to the same set
of libraries, have the same same return type (for getters), or the same function
type and the same occurrences of covariant (for methods and setters).

In particular, private methods from different libraries are never equal. Top types
differ as well. For instance, dynamic Function() and Object Function() are
not equal, even though they are subtypes of each other. We need this distinction
because management of top type discrepancies is one of the purposes of computing
a combined interface.

Now we define combined member signatures. Let id be an identifier, L a id, L, Ij , k
library, I1, . . . , Ik a list of interfaces, and M0 the set of all member signatures M0
from I1, . . . , Ik named id and accessible to L. The combined member signature △

named id from I1, . . . , Ik with respect to L is the member signature which is
obtained as follows:

If M0 is empty, computation of the combined member signature failed.
If M0 contains exactly one member signature m′, the combined member

signature is m′.
Otherwise, M0 contains more than one member signature m1, . . . , mq. m1, . . . , mq

Case ⟨Failing mixtures⟩. If M0 contains at least one getter signature and
at least one non-getter signature, the computation of the combined member
signature failed. □

Case ⟨Getters⟩. If M0 contains getter signatures only, the computation of
the combined member signature proceeds as described below for methods and

Dart Programming Language Specification 63

setters, except that it uses the return type of the getter signature where methods
and setters use the function type of the member signature. □

Case ⟨Methods and setters⟩. In this case M0 consists of setter signatures
only, or method signatures only, because the name id in the former case always
ends in ‘=’, which is never true in the latter case.

Determine whether there exists a non-empty set N ⊆ 1..q such that for each N
i ∈ N , the function type of mi is a subtype of the function type of mj for each j ∈
1..q. If no such set exists, the computation of the combined member signature
failed. A useful intuition about this situation is that the given member signatures
do not agree on which type is suitable for the member named id. Otherwise we
have a set of member signatures which are “most specific” in the sense that their
function types are subtypes of them all.

Otherwise, when a set N as specified above exists, let Nall be the greatest
set satisfying the requirement on N , and let Mall = {mi | i ∈ Nall}. That is, Mall
Mall contains all member signatures named id with the most specific type. Dart
subtyping is a partial pre-order, which ensures that such a greatest set of least
elements exists, if any non-empty set of least elements exist. We can have several
such signatures because member signatures can be such that they are not equal,
and yet their function types are subtypes of each other. We need to compute one
member signature from Mall, and we do that by using the ordering of the given
interfaces.

Let j ∈ 1..k be the smallest number such that Mfirst = Mall∩Ij is non-empty. Mfirst
Let mi be the single element that Mfirst contains. This set contains exactly one
element because it is non-empty and no interface contains more than one member
signature named id. In other words, we choose mi as the member signature from
the first possible interface among the most specific member signatures Mall.

The combined member signature is then m′, which is obtained from mi by
adding the modifier covariant to each parameter p (if it is not already present)
when there exists a j ∈ 1..q such that the parameter corresponding to p (9.2.3)
has the modifier covariant. In other words, each parameter in the combined mem-
ber signature is marked covariant if any of the corresponding parameters are marked
covariant, not just among the most specific signatures, but among all signatures
named id (which are accessible to L) in the given list of interfaces. □

11.2 Superinterfaces interfaceSuperinterfaces

An interface has a set of direct superinterfaces (11). An interface J is a
superinterface of an interface I iff either J is a direct superinterface of I or J is △

a superinterface of a direct superinterface of I.
When we say that a type S implements another type T , this means that T is △

a superinterface of S, or S is S0 bounded for some type S0 (17.15.3), and T is a
superinterface of S0. Assume that G is a raw type (15.3) whose declaration de-
clares s type parameters. When we say that a type S implements G, this means △

that there exist types U1, . . . , Us such that S implements G<U1, . . . , Us>.
Note that this is not the same as being a subtype. For instance, List<int>

implements Iterable<int>, but it does not implement Iterable<num>. Similarly,

Dart Programming Language Specification 64

List<int> implements Iterable. Also, note that when S implements T where T
is not a subtype of Null, S cannot be a subtype of Null.

Assume that S is a type and G is a raw type such that S implements G. Then
there exist unique types U1, . . . , Us such that S implements G<U1, . . . , Us>.
We then say that U1, . . . , Us are the actual type arguments of S at G, and we △

say that Uj is the jth actual type argument of S at G, for any j ∈ 1..s. △

For instance, the type argument of List<int> at Iterable is int. This con-
cept is particularly useful when the chain of direct superinterfaces from S to G
does not just pass all type arguments on unchanged, e.g., with a declaration like
class C<X, Y> extends B<List<Y>, Y, X> {}.

11.2.1 Inheritance and Overriding interfaceInheritanceAndOverriding

Let J be an interface and K be a library. We define inherited(J, K) to be J, K
the set of member signatures m such that all of the following hold: m

• m is accessible to K and

• A is a direct superinterface of J and either

– A declares a member signature m or
– m is a member of inherited(A, K).

• m is not overridden by J .

Furthermore, we define overrides(J, K) to be the set of member signatures
m′ such that all of the following hold: m′

• J is the interface of a class C.

• C declares a member signature m.

• m′ has the same name as m.

• m′ is accessible to K.

• A is a direct superinterface of J and either

– A declares a member signature m′ or
– m′ is a member of inherited(A, K).

Let I be the interface of a class C declared in library L. I inherits all △

members of inherited(I, L) and I overrides m′ if m′ ∈ overrides(I, L). △

All the compile-time errors pertaining to the overriding of instance members
given in section 10 hold for overriding between interfaces as well.

If the above rule would cause multiple member signatures with the same
name id to be inherited then exactly one member is inherited, namely the
combined member signature named id, from the direct superinterfaces in the
textual order that they are declared, with respect to L (11.1). It is a compile-
time error if the computation of said combined member signature fails.

Dart Programming Language Specification 65

11.2.2 Correct Member Overrides correctMemberOverrides

Let m and m′ be member signatures with the same name id. Then m is a m, m′, id
correct override of m′ iff the following criteria are all satisfied: △

• m and m′ are both methods, both getters, or both setters.

• If m and m′ are both getters: The return type of m must be a subtype of
the return type of m′.

• If m and m′ are both methods or both setters: Let F be the function type
of m except that the parameter type is the built-in class Object for each
parameter of m which is covariant-by-declaration (9.2.3). Let F ′ be the
function type of m′. F must then be a subtype of F ′.
The subtype requirement ensures that argument list shapes that are admissible
for an invocation of a method with signature m′ are also admissible for an
invocation of a method with signature m. For instance, m′ may accept 2 or
3 positional arguments, and m may accept 1, 2, 3, or 4 positional arguments,
but not vice versa. This is a built-in property of the function type subtype
rules.

• If m and m′ are both methods, p is an optional parameter of m, p′ is
the parameter of m′ corresponding to p, p has default value d and p′ has
default value d′, then d and d′ must be identical, or a static warning occurs.

Note that a parameter which is covariant-by-declaration must have a type which
satisfies one more requirement, relative to the corresponding parameters in all su-
perinterfaces, both direct and indirect (10.2). We cannot make that requirement a
part of the notion of correct overrides, because correct overrides are only concerned
with the relation to a single superinterface.

12 Mixins mixins

A mixin describes the difference between a class and its superclass. A mixin
is either derived from an existing class declaration or introduced by a mixin
declaration. It is a compile-time error to derive a mixin from a class that
declares a generative constructor, or from a class that has a superclass other
than Object.

Mixin application occurs when one or more mixins are mixed into a class
declaration via its with clause (12.3). Mixin application may be used to extend a
class per section 10; alternatively, a class may be defined as a mixin application
as described in the following section.

12.1 Mixin Classes mixinClasses

Dart Programming Language Specification 66

⟨mixinApplicationClass⟩ ::=
⟨identifier⟩ ⟨typeParameters⟩? ‘=’ ⟨mixinApplication⟩ ‘;’

⟨mixinApplication⟩ ::= ⟨typeNotVoid⟩ ⟨mixins⟩ ⟨interfaces⟩?

It is a compile-time error if an element in the type list of the with clause of
a mixin application is a type variable (15), a function type (20.5), a type alias
that does not denote a class (20.3), an enumerated type (14), a deferred type
(20.1), type dynamic (20.7), type void (20.9), or type FutureOr<T> for any T
(20.8). If T is a type in a with clause, the mixin of T is either the mixin derived △

from T if T denotes a class, or the mixin introduced by T if T denotes a mixin
declaration.

Let D be a mixin application class declaration of the form

abstract? class N = S with M1, ..., Mn implements I1, ..., Ik;

It is a compile-time error if S is an enumerated type (14). It is a compile-time
error if any of M1, . . . , Mk is an enumerated type (14).

The effect of D in library L is to introduce the name N into the scope of
L, bound to the class (10) defined by the clause S with M1, ..., Mn with
name N , as described below. If k > 0 then the class also implements I1, . . . , Ik.
Iff the class declaration is prefixed by the built-in identifier abstract, the class
being defined is made an abstract class.

A clause of the form S with M1, ..., Mn with name N defines a class as
follows:

If there is only one mixin (n = 1), then S with M1 defines the class yielded
by the mixin application (12.3) of the mixin of M1 (12.2) to the class denoted
by S with name N .

If there is more than one mixin (n > 1), then let X be the class defined by
S with M1, ..., Mn−1 with name F , where F is a fresh name, and make X
abstract. Then S with M1, ..., Mn defines the class yielded by the mixin
application of the mixin of Mn to the class X with name N .

In either case, let K be a class declaration with the same constructors,
superclass, interfaces and instance members as the defined class. It is a compile-
time error if the declaration of K would cause a compile-time error.

It is an error, for example, if M contains a member declaration d which overrides
a member signature m in the interface of S, but which is not a correct override of
m (11.2.2).

12.2 Mixin Declaration mixinDeclaration

A mixin defines zero or more member declarations, zero or more required △

△superinterfaces, one combined superinterface, and zero or more implemented
△

△
interfaces.

The mixin derived from a class declaration:

abstract? class X implements I1, ..., Ik {

Dart Programming Language Specification 67

members
}

has Object as required superinterface and combined superinterface, I1, . . . ,
Ik as implemented interfaces, and the instance members of members as mixin
member declarations. If X is generic, so is the mixin.

A mixin declaration introduces a mixin and provides a scope for static mem-
ber declarations.

⟨mixinDeclaration⟩ ::= mixin ⟨typeIdentifier⟩ ⟨typeParameters⟩?
(on ⟨typeNotVoidList⟩)? ⟨interfaces⟩?
‘{’ (⟨metadata⟩ ⟨memberDeclaration⟩)* ‘}’

It is a compile-time error to declare a constructor in a mixin-declaration.
A mixin declaration with no on clause is equivalent to one with the clause

on Object.
Let M be a mixin declaration of the form

mixin N<X1 extends B1, . . . , Xs extends Bs> on T1, . . . , Tn

implements I1, . . . , Ik {
members

}

It is a compile-time error if any of the types T1 through Tn or I1 through Ik

is a type variable (15), a function type (20.5), a type alias not denoting a class
(20.3), an enumerated type (14), a deferred type (20.1), type dynamic (20.7),
type void (20.9), or type FutureOr<T> for any T (20.8).

Let MS be the interface declared by the class declaration

abstract class Msuper<P1, ..., Pm> implements T1, . . . , Tn {}

where Msuper is a fresh name. It is a compile-time error for the mixin declaration
if the MS class declaration would cause a compile-time error, that is, if any
member is declared by more than one declared superinterface, and there is not a most
specific signature for that member among the super interfaces. The interface MS

is called the superinvocation interface of the mixin declaration M . If the mixin △

declaration M has only one declared superinterface, T1, then the superinvocation
interface MS has exactly the same members as the interface T1.

Let MI be the interface that would be defined by the class declaration

abstract class N<X1 extends B1, . . . , Xs extends Bs>
implements T1, . . . , Tn, I1, . . . , Ik {

members′

}

where members′ are the member declarations of the mixin declaration M ex-
cept that all superinvocations are treated as if super was a valid expression

Dart Programming Language Specification 68

with static type MS . It is a compile-time error for the mixin M if this N class
declaration would cause a compile-time error, that is, if the required superinter-
faces, the implemented interfaces and the declarations do not define a consistent
interface, if any member declaration contains a compile-time error other than a
super-invocation, or if a super-invocation is not valid against the interface MS .
The interface introduced by the mixin declaration M has the same member
signatures and superinterfaces as MI .

The mixin declaration M introduces a mixin with the required superinter- △

faces T1, . . . , Tn, the combined superinterface MS , implemented interfaces I1, △

△. . . , Ik and the instance members declared in M as member declarations.
△

12.3 Mixin Application mixinApplication

A mixin may be applied to a superclass, yielding a new class.
Let S be a class, M be a mixin with required superinterfaces T1, . . . , Tn, △

combined superinterface MS , implemented interfaces I1, . . . , Ik and members △

△as member declarations, and let N be a name.
△It is a compile-time error to apply M to S if S does not implement, directly

or indirectly, all of T1, . . . , Tn. It is a compile-time error if any of members
contains a super-invocation of a member m (for example super.foo, super + 2,
or super[1] = 2), and S does not have a concrete implementation of m which is a
valid override of the member m in the interface MS . We treat super-invocations
in mixins as interface invocations on the combined superinterface, so we require
the superclass of a mixin application to have valid implementations of those
interface members that are actually super-invoked.

The mixin application of M to S with name N introduces a new class, C,
with name N , superclass S, implemented interface M and members as instance
members. The class C has no static members. If S declares any generative
constructors, then the application introduces generative constructors on C as
follows:

Let LC be the library containing the mixin application. That is, the library
containing the clause S with M or the clause S0 with M1, ..., Mk, M giv-
ing rise to the mixin application.

Let SN be the name of S.
For each generative constructor of the form Sq(T1 a1, . . ., Tk ak) of S

that is accessible to LC , C has an implicitly declared constructor of the form

Cq(T1 a1, ..., Tk ak): superq(a1, . . ., ak);

where Cq is obtained from Sq by replacing occurrences of SN , which denote the
superclass, by N , and superq is obtained from Sq by replacing occurrences of SN

which denote the superclass by super. If Sq is a generative const constructor,
and C does not declare any instance variables, Cq is also a const constructor.

For each generative constructor of the form Sq(T1 a1, ..., Tk ak, [Tk+1
ak+1 = d1, ..., Tk+p ak+p = dp]) of S that is accessible to LC , C has an
implicitly declared constructor of the form

Dart Programming Language Specification 69

Cq(T1 a1, ... , Tk ak, [Tk+1 ak+1 = d′
1, ... , Tk+p ak+p = d′

p])
: superq(a1, ... , ak, ak+1, ..., ap);

where Cq is obtained from Sq by replacing occurrences of SN , which denote the
superclass, by N , superq is obtained from Sq by replacing occurrences of SN

which denote the superclass by super, and d′
i, i ∈ 1..p, is a constant expression

evaluating to the same value as di. If Sq is a generative const constructor, and
MC does not declare any instance variables, Cq is also a const constructor.

For each generative constructor of the form Sq(T1 a1, ..., Tk ak, {Tk+1
ak+1 = d1, ..., Tk+n ak+n = dn}) of S that is accessible to LC , C has an
implicitly declared constructor of the form

Cq(T1 a1, ... , Tk ak, {Tk+1 ak+1 = d′
1, ... , Tk+n ak+n = d′

n})
: superq(a1, ... , ak, ak+1: ak+1, ..., ap: ap);

where Cq is obtained from Sq by replacing occurrences of SN which denote the
superclass by N , superq is obtained from Sq by replacing occurrences of SN

which denote the superclass by super, and d′
i, i ∈ 1..n, is a constant expression

evaluating to the same value as di. If Sq is a generative const constructor, and
M does not declare any fields, Cq is also a const constructor.

If S does not declare any generative constructors then the application does
not implicitly induce any forwarding constructors. In particular, it does not
induce a default constructor (10.7).

The default constructor would have a superinitializer that attempts to invoke a
constructor that does not exist. Developers would have no way to eliminate this
error.

13 Extensions extensions

This section specifies extensions. This mechanism supports the declaration
of functions that are similar to instance methods in use, but similar to non-
method functions in that they are declared outside the target class, and they
are resolved statically. The resolution is based on whether the relevant extension
is in scope, and whether the invocation satisfies several other requirements.

⟨extensionDeclaration⟩ ::=
extension ⟨typeIdentifierNotType⟩? ⟨typeParameters⟩? on ⟨type⟩
‘{’ (⟨metadata⟩ ⟨memberDeclaration⟩)* ‘}’

A declaration derived from ⟨extensionDeclaration⟩ is known as an extension △

declaration. It introduces an extension with the given ⟨identifier⟩, if present, △

into the namespace of the enclosing library (and hence into the library scope),
and provides a scope for the declaration of extension members. Additionally, the
extension is introduced into the library namespace with a fresh, private name.
The former is known as the declared name of the extension, and the latter is △

known as the fresh name of the extension. △

Dart Programming Language Specification 70

A fresh name is also introduced into the library namespace of the current library
for each imported extension, even when it is imported with a prefix (19.1.1). The
declared name of an extension E is introduced into the library scope of the current
library following the same rules as the names of other locally declared or imported
declarations like classes. A fresh name of E is introduced in these cases, but also
in one additional case: when there is a name clash on the declared name of E.

The fresh name makes it possible for an extension to be used in an implicit
invocation (13.2), even in the case where the declared name or an import prefix that
provides access to the declared name is shadowed by a declaration in an intermediate
scope, or conflicted by a name clash.

The fact that an extension can be used implicitly even in the case where it
does not have a declared name or the declared name is shadowed or conflicted
reflects the fact that the primary intended usage is implicit invocation. Even
though a developer cannot know (and hence cannot use) the fresh name of a
given extension, an implicit invocation can use it.

It is a compile-time error if the current library has a deferred import of a
library L′ such that the imported namespace from L′ contains a name denoting
an extension.

This implies that the import must use hide or show to eliminate the names of
extensions from the deferred import.

This restriction ensures that no extensions are introduced using deferred im-
ports, which allows us to introduce a semantics for such extensions in the future
without affecting existing code.

The ⟨type⟩ in an extension declaration is known as the extension’s on type. △

The on type can be any valid type, including a type variable.
The basic intuition is that an extension E may have an on type T (specifying

the type of receiver) and a set of members. If e is an expression whose static type
is T and foo() is a member declared by E, e.foo() may invoke said member with
the value of e bound to this. An explicitly resolved form E(e).foo() is available,
such that E.foo can be invoked even in the case where e.foo() would invoke
some other function because some other extension is more specific. Details of these
concepts, rules, and mechanisms are given in this section and its subsections.

The declared name of an extension does not denote a type, but it can be
used to denote the extension itself (e.g., in order to access static members of the
extension, or in order to resolve an invocation explicitly).

An extension declaration introduces two scopes:

• A type-parameter scope, which is empty if the extension is not generic △

(15). The enclosing scope of the type-parameter scope of an extension
declaration is the library scope of the current library. The type parameter
scope is the current scope for the type parameters and for the extension’s
on ⟨type⟩.

• A body scope. The enclosing scope of the body scope of an extension △

declaration is the type parameter scope of the extension declaration. The
current scope for an extension member declaration is the body scope of
the enclosing extension declaration.

Dart Programming Language Specification 71

Let D be an extension declaration with declared name E. A member declara- D, E
tion in D with the modifier static is designated as a static member declaration. △

A member declaration in D without the modifier static is designated as an in- △

stance member declaration. Member naming conflict errors may occur in D in
situations that also occur in classes and mixins (10.11). Moreover, a compile-
time error occurs in the following situations:

• D declares a member whose basename is E.

• D declares a type parameter named E.

• D declares a member whose basename is the name of a type parameter of
D.

• D declares an instance member or a static member whose basename is
hashCode, noSuchMethod, runtimeType, toString, or ‘==’. That is, a
member whose basename is also the name of an instance member that every
object has.

• D declares a constructor.

• D declares an instance variable.

• D declares an abstract member.

• D declares a method with a formal parameter with the modifier covariant.

Abstract members are not allowed because there is no support for providing
an implementation. Constructors are not allowed since the extension does not
introduce any type that can be constructed. Instance variables are not allowed
because no memory is allocated for each object accessed as this in the members.
Developers can emulate per-this state if needed, e.g., using an Expando. Mem-
bers with the same basename as members of Object are not allowed because
they could only be invoked using explicit resolution, as in E(e).toString(14),
which would be confusing and error-prone.

13.1 Explicit Invocation of an Instance Member of an Ex-
tension explicitExtensionInvocations

Let E be a simple or qualified identifier that denotes an extension. An E
extension application is then an expression of the form E ⟨typeArguments⟩? ‘(’ △

⟨expression⟩ ‘)’. An extension member with a name accessible to the current
library can be invoked explicitly on a particular object by performing a member
invocation (17.20) where the receiver is an extension application.

Type inference is not yet specified in this document, and is assumed to have
taken place already (6), but the following describes the intended treatment. This
section and its subsections have similar commentary about type inference below,
marked ’With type inference: . . . ’.

Dart Programming Language Specification 72

Let E be a simple or qualified identifier denoting an extension named E and
declared as follows:

extension E<X1 extends B1, . . . , Xs extends Bs> on T { ... }

Type inference for an extension application of the form E(e) is done exactly the
same as it would be for the same syntax considered as a constructor invocation
where E is assumed to denote the following class, and the context type is empty
(implying no requirements):

class E<X1 extends B1, . . . , Xs extends Bs> {
final T target;
E(this.target);

}

This will infer type arguments for E(e), and it will introduce a context type
for the expression e. For example, if E is declared as extension E<T> on Set<T>
{ ... } then E({}) will provide the expression {} with a context type that makes
it a set literal.

Let a be an extension application of the form E<T1, . . . , Ts>(e), where E a, E, Tj , e
denotes an extension declared as
extension E<X1 extends B1, . . . , Xs extends Bs> on T { . . . }. Xj , Bj , s, T

We define the instantiated on type of a as [T1/X1, . . . , Ts/Xs]T . We de- △

fine the instantiation-to-bound on type of a as [U1/X1, . . . , Us/Xs]T , where △

U1, . . . , Us is the result of instantiation to bound on the type parameters of
E (15.3). A compile-time error occurs unless Tj <: [T1/X1, . . . , Ts/Xs]Bj ,
j ∈ 1..s (that is, the bounds cannot be violated). A compile-time error occurs
unless the static type of e is assignable to the instantiated on type of a. Note
that a compile-time error occurs as well if the static type of e is void (20.9).

It is a compile-time error if an extension application occurs in a location
where it is not the syntactic receiver of a simple or composite member invocation
(17.20).

That is, the only valid use of an extension application is to invoke or tear off
members on it. This is similar to how prefix names can also only be used as member
invocation targets, except that extensions can also declare operators. For instance,
E(e) + 1 can be a valid invocation of an operator ‘+’ declared in an extension E.

An extension application does not have a type.
This is consistent with the fact that any use of an extension application where

a type is needed is a compile-time error.
Let i be a simple member invocation (17.20) whose receiver r is an exten- i, r

sion application of the form E<T1, . . . , Tk>(e) (which is E(e) when k is zero) E, Tj , k, e
whose corresponding member name is n, and assume that r has no compile-time n
errors. A compile-time error occurs unless the extension denoted by E declares
a member named n. Otherwise let X1, . . . , Xk be the type parameters of said X1, . . . , Xk

extension. Let s be the member signature of the member n declared by E. s
Exactly the same compile-time errors occur for i as the ones that would occur

Dart Programming Language Specification 73

for a member invocation i1 which is obtained from i by replacing r by a variable
whose type is a class C declared in the same scope as E that declares a member
n with member signature s1 = [T1/X1, . . . , Tk/Xk]s:

abstract class C {
D // Member declaration with signature s1.

}

The member signature s1 is called the invocation member signature of i. The △

static type of i is the return type of the invocation member signature of i. For
example:

extension E<X> on List<X> {
List<List<X>> split(int at) =>

[this.sublist(0, at), this.sublist(at)];
}

void main() {
List<num> xs = [1, 2, 3];
var ys = E<num>(xs).split(1); // (*)

}

abstract class C {
// Declaration with invocation member signature for (*).
List<List<num>> split(int at);

}

With type inference: In the case where the invocation member signature s1
is generic, type inference occurs on i in the same way as it would occur for an
invocation of a function whose type is the function type of s1.

For the dynamic semantics, let i be a simple, unconditional member invoca- i, r
tion whose receiver r is an extension application of the form E<T1, . . . , Tk>(e) E, Tj , k, e
where the type parameters of E are X1, . . . , Xk and the actual values of X1, . . . , Xk
T1, . . . , Tk are t1, . . . , tk (20.10.1), and whose corresponding member name

t1, . . . , tk

n, mis n. Let m be the member of E that has the name n. Evaluation of i proceeds
by evaluating e to an object o, evaluating and binding the actual arguments to
the formal parameters (17.15.3), and finally executing m in a binding environ-
ment where X1, . . . , Xk are bound to t1, . . . , tk, this is bound to o, and each
formal parameter is bound to the corresponding actual argument. The value of
i is the value returned by the invocation of m.

When i is a conditional or composite member invocation, the static analysis
and dynamic semantics is determined by member invocation desugaring (17.20).

Note that a cascade (17.21.2) whose receiver is an extension application a
is a compile-time error. This is so because it implies that a denotes an object,
which is not true, and also because it would force each ⟨cascadeSection⟩ to invoke
a member of the same extension, which is unlikely to be desirable.

Dart Programming Language Specification 74

13.2 Implicit Invocation of an Instance Member of an Ex-
tension implicitExtensionInvocations

Instance members of an extension can be invoked or closurized implicitly
(without mentioning the name of the extension), as if they were instance members
of the receiver of the given member invocation.

For instance, if E<T1, T2>(e1).m<T3>(e2) is a correct explicit invocation of the
instance member m of an extension E, then e1.m<T3>(e2) may be a correct implicit
invocation with the same meaning. In other words, the receiver r of a member
invocation can be implicitly replaced by an extension application with receiver r, if
a number of requirements that are detailed below are satisfied.

Implicit invocation is intended as the primary way to use extensions, with
explicit invocation as a fallback in case the implicit invocation is an error, or
the implicit invocation resolves to an instance member of a different extension
than the intended one.

An implicit extension member invocation occurs for a member invocation i, r, m
i (17.20) with receiver r and corresponding member name m iff (1) r is not a
type literal, (2) the interface of the static type of r does not have a member
whose basename is the basename of m, and (3) there exists a unique most spe-
cific (13.2.3) extension denoted by E which is accessible (13.2.1) and applicable
(13.2.2) to i.

In the case where no compile-time error occurs, i is treated as i′, which is
obtained from i by replacing the leading r by E(r).

With type inference: When E is generic, type inference applied to E(r) may
provide actual type arguments, yielding an i′ of the form E<T1, . . . , Tk>(r). If
this type inference step fails then E is not applicable (13.2.2).

Implicit invocation of an instance member of an extension in a cascade is also
possible, because a cascade is desugared to an expression that contains one or more
member invocations.

13.2.1 Accessibility of an Extension extensionAccessibility

An extension E is accessible in a given scope S if there exists a name n such △

that a lexical lookup for n from S (17.37) yields E.
The name n can be the declared name of E or the fresh name of E, but since

the fresh name is always in scope whenever the declared name is in scope, it is
sufficient to consider the fresh name. When the fresh name of E is in the library
scope, it is available in any scope, because the name is fresh and hence it cannot
be shadowed by any declaration in any intermediate scope. This implies that if E
is accessible anywhere in a given library L then it is accessible everywhere in L.

13.2.2 Applicability of an Extension extensionApplicability

Let E be an extension. Let e be a member invocation (17.20) with a receiver E, e, r, S, m
r with static type S and with a corresponding member name whose basename is
m. We say that E is applicable to e if the following conditions are all satisfied: △

Dart Programming Language Specification 75

• r is not a type literal.
This means that the invocation is an instance member invocation, in the sense
that r denotes an object, so it may invoke an instance member or be an error,
but it cannot be a static member access. Note that r also does not denote
a prefix or an extension, and it is not an extension application, because they
do not have a type.

• The type S does not have an instance member with the basename m, and
S is neither dynamic nor Never.
dynamic and Never are considered to have all members. Also, it is an error
to access a member on a receiver of type void (20.9), so extensions are never
applicable to receivers of any of the types dynamic, Never, or void.
For the purpose of determining extension applicability, function types and
the type Function are considered to have a member named call.
Hence, extensions are never applicable to functions when the basename of
the member is call. Instance members declared by the built-in class Object
exist on all types, so no extension is ever applicable for members with such
names.

• Consider an extension application a of the form E(v), where v is a fresh
variable with static type S. It is required that an occurrence of a in the
scope which is the current scope for e is not a compile-time error.
In other words, S must match the on type of E. With type inference, inferred
actual type arguments may be added, yielding E<S1, . . . , Sk>(v), which is
then required to not be an error. If this inference step fails it is not an error,
it just means that E is not applicable to e.

• The extension E declares an instance member with basename m.

With type inference: The context type of the invocation does not affect whether
the extension is applicable, and neither the context type nor the method invocation
affects the type inference of r, but if the extension method itself is generic, the
context type may affect the member invocation.

13.2.3 Specificity of an Extension extensionSpecificity

When E1, . . . , Ek, k > 1, are extensions which are accessible and applicable Ej , k
to a member invocation e (17.20), we define the notion of specificity, which is a △

partial order on E1, . . . , Ek.
Specificity is used to determine which extension method to execute in the situ-

ation where more than one choice is possible.
Let e be a member invocation with receiver r and correspsonding member e, r, m

name m, and let E1 and E2 denote two distinct accessible and applicable ex- E1, E2
tensions for e. Let Tj be the instantiated on type of e with respect to Ej , and Tj , Sj
Sj be the instantiation-to-bound on type of e with respect to Ej , for j ∈ 1..2

Dart Programming Language Specification 76

(13.1). Then E1 is more specific than E2 with respect to e if at least one of the
following conditions is satisfied:

• E1 is not declared in a system library, but E2 is declared in a system
library.

• E1 and E2 are both declared in a system library, or neither of them is
declared in a system library, and

– T1 <: T2, but not T2 <: T1, or
– T1 <: T2, T2 <: T1, and S1 <: S2, but not S2 <: S1.

In other words, the instantiated on type determines the specificity, and the
instantiation-to-bound on type is used as a tie breaker in the case where
subtyping does not distinguish between the former.

The following examples illustrate implicit extension resolution when multiple
applicable extensions are available.

extension ExtendIterable<T> on Iterable<T> {
void myForEach(void Function(T) f) {

for (var x in this) f(x);
}

}
extension ExtendList<T> on List<T> {

void myForEach(void Function(T) f) {
for (int i = 0; i < length; i++) f(this[i]);

}
}

void main() {
List<int> x = [1];
x.myForEach(print);

}

Here both of the extensions apply, but ExtendList is more specific than ExtendIterable
because List<int> <: Iterable<int>.

extension BestCom<T extends num> on Iterable<T> { T best() {...}}
extension BestList<T> on List<T> { T best() {...}}
extension BestSpec on List<num> { num best() {...}}

void main() {
List<int> x = ...;
var v = x.best();
List<num> y = ...;
var w = y.best();

Dart Programming Language Specification 77

}

Here all three extensions apply to both invocations. For x.best(), BestList
is most specific, because List<int> is a proper subtype of both Iterable<int>
and List<num>. Hence, the type of x.best() is int.

For y.best(), BestSpec is most specific. The instantiated on types that
are compared are Iterable<num> for BestCom and List<num> for the two other
extensions. Using the instantiation-to-bound on types as a tie breaker, we find that
List<Object> is less precise than List<num>, so BestSpec is selected. Hence,
the type of y.best() is num.

In general, the definition of specificity aims to select the extension which
has more precise type information available. This does not necessarily yield the
most precise type of the result (for instance, BestSpec.best could have returned
Object), but it is also important that the rule is simple.

In practice, we expect unintended extension member name conflicts to be
rare. If the same author is providing more specialized versions of an extension
for subtypes, the choice of an extension which has the most precise types available
is likely to be a rather unsurprising and useful behavior.

13.3 Static analysis of Members of an Extension staticAnalysisOfMembersOfAnExtension

Static analysis of the member declarations in an extension E relies on the
scopes of the extension (13) and follows the normal rules except for the following:

When static analysis is performed on the body of an instance member of an
extension E with on type Ton, the static type of this is Ton.

A compile-time error occurs if the body of an extension member contains
super.

A lexical lookup in an extension E may yield a declaration of an instance method
declared in E. As specified elsewhere (17.37), this implies that extension instance
members will shadow class instance members when called from another instance
member inside the same extension using an unqualified function invocation (that
is, invoking it as m() and not this.m(), 17.15.4). This is the only situation where
implicit invocation of an extension member with basename id can succeed even if
the interface of the receiver has a member with basename id. On the other hand, it
is consistent with the general property of Dart that lexically enclosing declarations
shadow other declarations, e.g., an inherited declaration can be shadowed by a
global declaration. Here is an example:

extension MyUnaryNumber on List<Object> {
bool get isEven => length.isEven;
bool get isOdd => !isEven;
static bool isListEven(List<Object> list) => list.isEven;
List<Object> get first => [];
List<Object> get smallest => first;

}

Dart Programming Language Specification 78

With list.isEven, isEven resolves to the declaration in MyUnaryNumber,
given that List does not have a member with basename isEven, and unless there
are any other extensions creating a conflict.

The use of length in the declaration of isEven is not defined in the current
lexical scope, so it is treated as this.length, because the interface of the on type
List<Object> has a length getter.

The use of isEven in isOdd resolves lexically to the isEven getter above it, so
it is treated as MyUnaryNumber(this).isEven, even if there are other extensions
in scope which define an isEven on List<Object>.

The use of first in smallest resolves lexically to the first getter above it,
even though there is a member with the same basename in the interface of this.
The getter first cannot be called in an implicit invocation from anywhere outside
of MyUnaryNumber. This is the exceptional case mentioned above, where a member
of an extension shadows a regular instance member on this. In practice, extensions
will very rarely introduce members with the same basename as a member of its on
type’s interface.

An unqualified identifier id which is not in scope is treated as this.id inside
instance members as usual (17.37). If id is not declared by the static type of
this (the on type) then it may be an error, or it may be resolved using a different
extension.

13.4 Extension Method Closurization extensionMethodClosurization

An extension instance method is subject to closurization in a similar manner
as class instance methods (17.22.2).

Let a be an extension application (13.1) of the form E<S1, . . . , Sm>(e1). a, E, Sj , e1
Let Y1, . . . , Ym be the formal type parameters of the extension E. An expression Yj , m

e, ide of the form a.id where id is an identifier is then known as an extension property
△

extraction. It is a compile-time error unless E declares an instance member
named id. If said instance member is a method then e has the static type
[S1/Y1, . . . , Sm/Ym]F , where F is the function type of said method declaration.

If id is a getter then e is a getter invocation, which is specified elsewhere (13.1).
If id is a method then e is known as an instance method closurization of id △

on a, and evaluation of e (which is E<S1, . . . , Sm>(e1).id) proceeds as follows:
Evaluate e1 to an object o. Let u be a fresh final variable bound to o. Then

e evaluates to a function object which is equivalent to:

• <X1 extends B′
1, . . . , Xs extends B′

s>

(T1 p1, . . . , Tn pn, {Tn+1 pn+1 = d1, . . . , Tn+k pn+k = dk}) =>

E<S1, . . . , Sm>(u)

.id<X1, . . . , Xs>(p1, . . . , pn, pn+1: pn+1, . . . , pn+k: pn+k);

where id declares type parameters X1 extends B1, . . . , Xs extends Bs, re-
quired parameters p1, . . . , pn, and named parameters pn+1, . . . , pn+k

Dart Programming Language Specification 79

with defaults d1, . . . , dk, using null for parameters whose default value
is not specified.

• <X1 extends B′
1, . . . , Xs extends B′

s>

(T1 p1, . . . , Tn pn, [Tn+1 pn+1 = d1, . . . , Tn+k pn+k = dk]) =>

E<S1, . . . , Sm>(u).id<X1, . . . , Xs>(p1, . . . , pn+k);

where id declares type parameters X1 extends B1, . . . , Xs extends Bs, re-
quired parameters p1, . . . , pn, and optional positional parameters pn+1, . . . , pn+k

with defaults d1, . . . , dk, using null for parameters whose default value
is not specified.

In the function literals above, B′
j = [S1/Y1, . . . , Sm/Ym]Bj , j ∈ 1..s, and

Tj = [S1/Y1, . . . , Sm/Ym]T ′
j , j ∈ 1..n + k, where T ′

j is the type of the cor-
responding parameter in the declaration of id. Capture of type variables in
S1, . . . , Sm must be avoided, so Xj must be renamed if S1, . . . , Sm contains
any occurrences of Xj , for all j ∈ 1..s.

In other words, the closurization is the value of a function literal whose signature
is the same as that of id, except that the actual type arguments are substituted for
the formal type parameters of E, and then it simply forwards the invocation to id
with the captured object u as the receiver.

Two extension instance method closurizations are never equal unless they are
identical. Note that this differs from closurizations of class instance methods, which
are equal when they tear off the same method of the same receiver.

The reason for this difference is that even if o1 and o2 are instance method
closurizations of the same extension E applied to the same receiver o, they may
have different actual type arguments passed to E, because those type arguments
are determined by the call site (and with inference: by the static type of the ex-
pression yielding o), and not just by the properties of o and the torn-off method.

Note that an instance method closurization on an extension is not a constant
expression, even in the case where the receiver is a constant expression. This is
because it creates a new function object each time it is evaluated.

Extension method closurization can occur for an implicit invocation of an
extension instance member.

This is a consequence of the fact that the implicit invocation is treated as
the corresponding explicit invocation (13.2). For instance, e.id may be implicitly
transformed into E<T1, T2>(e).id, which is then handled as specified above.

Extension method closurizations are subject to generic function instantiation
(17.17). For example:

extension on int {
Set<T> asSet<T extends num>() => {if (this is T) this as T};

}

void main() {

Dart Programming Language Specification 80

Set<double> Function() f = 1.asSet;
print(f()); // Prints ’{}’.

}

In this example {} is printed, because the function object obtained by extension
method closurization was subject to a generic function instantiation which gave T
the value double, which makes ‘this is T’ evaluate to false.

13.5 The call Member of an Extension theCallMemberOfAnExtension

An extension can provide a call method which is invoked implicitly, simi-
larly to a function expression invocation (17.15.5).

E.g., e() is treated as e.call() when the static type of e is a non-function
that has a method named call. Here is an example where the call method comes
from an extension:

extension E on int {
Iterable<int> call(int to) =>

Iterable<int>.generate(to - this + 1, (i) => this + i);
}

void main() {
for (var i in 1(3)) print(i); // Prints 1, 2, 3.
for (var i in E(4)(5)) print(i); // Prints 4, 5.

}

This may look somewhat surprising, though similar to an approach using op-
erator[]: for (var i in 1[3]) { ... }. We expect developers to use this power
responsibly.

Let a be an extension application (13.1), and i an expression of the form a, i
a<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k)
(where the type argument list is omitted when r is zero). i is then treated as (5)
a.call<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k).

In other words, an invocation of an extension application is immediately treated
as an invocation of an extension method named call.

Let e be an expression with static type S which is not a property extraction e, S, i
expression (17.22), and let i be an expression of the form
e<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k)
(where the type argument list is again omitted when r is zero). If S is dynamic,
Function, or a function type, or the interface of S has a method named call,
i is specified elsewhere (17.15.5). Otherwise, if S has a non-method instance
member with basename call then i is a compile-time error. Otherwise, i is
treated as the expression i′ which is
e.call<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k).

Dart Programming Language Specification 81

Note that i′ can be an implicit invocation of an extension method named call,
and it can be an error. In the latter case, error messages should be worded in terms
of i, not i′.

It is a compile-time error unless i′ is an implicit invocation of an extension
instance method named call.

In particular, i′ cannot be an invocation of an extension getter whose return
type is a function type, Function, or dynamic.

Note that there is no support for an implicit property extraction which tears off
an extension method named call. For instance, assuming the extension E declared
in the previous example:

Iterable<int> Function(int) from2 = 2; // Error.

The implicit property extraction could be allowed, but it would come at a
readability cost. A type like int is well known as being non-callable, and an
implicit .call tear-off would have no visible syntax. In an implicit call invo-
cation, the arguments are visible to a reader, but for an implicit tear-off of a
call function, there is no visible syntax at all.

If desired, the property extraction can be expressed explicitly using 2.call.

14 Enums enums

An enumerated type, or enum, is used to represent a fixed number of constant △

△values.

⟨enumType⟩ ::= enum ⟨identifier⟩
‘{’ ⟨enumEntry⟩ (‘,’ ⟨enumEntry⟩)* (‘,’)? ‘}’

⟨enumEntry⟩ ::= ⟨metadata⟩ ⟨identifier⟩

The declaration of an enum of the form m enum E {m0 id0, . . . , mn−1 idn−1}
has the same effect as a class declaration

m class E {
final int index;
const E(this.index);
m0 static const E id0 = const E(0);
. . .
mn−1 static const E idn−1 = const E(n - 1);
static const List<E> values = const <E>[id0, . . . , idn−1];
String toString() => { 0: ‘E.id0’, . . ., n-1: ‘E.idn−1’}[index]

}

It is also a compile-time error to subclass, mix-in or implement an enum or to
explicitly instantiate an enum. These restrictions are given in normative form in
sections 10.9, 10.10, 12.3 and 17.13 as appropriate.

Dart Programming Language Specification 82

15 Generics generics

A declaration of a class (10), mixin (12), extension (13), type alias (20.3),
or function (9) G may be generic, that is, G may have formal type parameters △

declared.
When an entity in this specification is described as generic, and the spe-

cial case is considered where the number of type arguments is zero, the type
argument list should be omitted.

This allows non-generic cases to be included implicitly as special cases. For
example, an invocation of a non-generic function arises as the special case where
the function takes zero type arguments, and zero type arguments are passed. In
this situation some operations are also omitted (have no effect), e.g., operations
where formal type parameters are replaced by actual type arguments.

A generic class declaration introduces a generic class into the library scope △

of the current library. A generic class is a mapping that accepts a list of actual △

type arguments and maps them to a class. Consider a generic class declaration G
named C with formal type parameter declarations X1 extends B1, . . . , Xm extends Bm,
and a parameterized type T of the form C<T1, . . . , Tl>.

It is a compile-time error if m ̸= l. It is a compile-time error if T is not
well-bounded (15.2).

Otherwise, said parameterized type C<T1, . . . , Tm> denotes an application
of the generic class declared by G to the type arguments T1, . . . , Tm. This yields
a class C ′ whose members are equivalent to those of a class declaration which
is obtained from the declaration G by replacing each occurrence of Xj by Tj .

Other properties of C ′ such as the subtype relationships are specified elsewhere
(20.4).

Generic type aliases are specified elsewhere (20.3).
A generic type is a type which is introduced by a generic class declaration △

or a generic type alias, or it is the type FutureOr.
A generic function declaration introduces a generic function (9.2) into the △

current scope.
Consider a function invocation expression of the form f<T1, . . . , Tl>(...),

where the static type of f is a generic function type with formal type parameters
X1 extends B1, . . . , Xm extends Bm. It is a compile-time error if m ̸= l. It
is a compile-time error if there exists a j such that Tj is not a subtype of
[T1/X1, . . . , Tm/Xm]Bj .

That is, if the number of type arguments is wrong, or if the jth actual type
argument is not a subtype of the corresponding bound, where each formal type
parameter has been replaced by the corresponding actual type argument.

⟨typeParameter⟩ ::= ⟨metadata⟩ ⟨identifier⟩ (extends ⟨typeNotVoid⟩)?

⟨typeParameters⟩ ::= ‘<’ ⟨typeParameter⟩ (‘,’ ⟨typeParameter⟩)* ‘>’

A type parameter T may be suffixed with an extends clause that specifies
the upper bound for T . If no extends clause is present, the upper bound is △

Dart Programming Language Specification 83

Object. It is a compile-time error if a type parameter is a supertype of its
upper bound when that upper bound is itself a type variable.

This prevents circular declarations like X extends X and X extends Y, Y ex-
tends X.

Type parameters are declared in the type parameter scope of a class or
function. The type parameters of a generic G are in scope in the bounds of all
of the type parameters of G. The type parameters of a generic class declaration
G are also in scope in the extends and implements clauses of G (if these exist)
and in the body of G.

However, a type parameter of a generic class is considered to be a malformed
type when referenced by a static member (20.1). The scopes associated with the
type parameters of a generic function are described in (9.2).

The restriction on static members is necessary since a type variable has no
meaning in the context of a static member, because statics are shared among
all generic instantiations of a generic class. However, a type variable may be
referenced from an instance initializer, even though this is not available.

Because type parameters are in scope in their bounds, we support F-bounded
quantification. This enables typechecking code such as:

class Ordered<T> {
operator >(T x);

}
class Sorter<T extends Ordered<T>> {

sort(List<T> l) {... l[n] < l[n+1] ...}
}

Even where type parameters are in scope there are numerous restrictions at this
time:

• A type parameter cannot be used to name a constructor in an instance creation
expression (17.13).

• A type parameter cannot be used as a superclass or superinterface (10.9,
10.10, 11.2).

• A type parameter cannot be used as a generic type.

The normative versions of these are given in the appropriate sections of this
specification. Some of these restrictions may be lifted in the future.

15.1 Variance variance

We say that a type S occurs covariantly in a type T iff S occurs in a covariant △

position in T , but not in a contravariant position, and not in an invariant
position.

We say that a type S occurs contravariantly in a type T iff S occurs in △

Dart Programming Language Specification 84

a contravariant position in T , but not in a covariant position, and not in an
invariant position.

We say that a type S occurs invariantly in a type T iff S occurs in an invari- △

ant position in T , or S occurs in a covariant position as well as a contravariant
position.

We say that a type S occurs in a covariant position in a type T iff one of △

the following conditions is true:

• T is S

• T is of the form G<S1, . . . , Sn> where G denotes a generic class and S
occurs in a covariant position in Sj for some j ∈ 1..n.

• T is of the form S0 Function<X1 extends B1, . . .>(S1 x1, . . .) where the
type parameter list may be omitted, and S occurs in a covariant position
in S0.

• T is of the form
S0 Function<X1 extends B1, . . .>

(S1 x1, . . . , Sk xk, [Sk+1 xk+1 = dk+1, . . . , Sn xn = dn])

or of the form
S0 Function<X1 extends B1, . . .>

(S1 x1, . . . , Sk xk, {Sk+1 xk+1 = dk+1, . . . , Sn xn = dn})

where the type parameter list and each default value may be omitted, and
S occurs in a contravariant position in Sj for some j ∈ 1..n.

• T is of the form G<S1, . . . , Sn> where G denotes a generic type alias such
that j ∈ 1..n, the formal type parameter corresponding to Sj is covariant,
and S occurs in a covariant position in Sj .

• T is of the form G<S1, . . . , Sn> where G denotes a generic type alias
such that j ∈ 1..n, the formal type parameter corresponding to Sj is
contravariant, and S occurs in a contravariant position in Sj .

We say that a type S occurs in a contravariant position in a type T iff one △

of the following conditions is true:

• T is of the form G<S1, . . . , Sn> where G denotes a generic class and S
occurs in a contravariant position in Sj for some j ∈ 1..n.

• T is of the form S0 Function<X1 extends B1, . . .>(S1 x1, . . .) where the
type parameter list may be omitted, and S occurs in a contravariant po-
sition in S0.

• T is of the form
S0 Function<X1 extends B1, . . .>

Dart Programming Language Specification 85

(S1 x1, . . . , Sk xk, [Sk+1 xk+1 = dk+1, . . . , Sn xn = dn])

or of the form
S0 Function<X1 extends B1, . . .>

(S1 x1, . . . , Sk xk, {Sk+1 xk+1 = dk+1, . . . , Sn xn = dn})

where the type parameter list and each default value may be omitted, and
S occurs in a covariant position in Sj for some j ∈ 1..n.

• T is of the form G<S1, . . . , Sn> where G denotes a generic type alias such
that j ∈ 1..n, the formal type parameter corresponding to Sj is covariant,
and S occurs in a contravariant position in Sj .

• T is of the form G<S1, . . . , Sn> where G denotes a generic type alias
such that j ∈ 1..n, the formal type parameter corresponding to Sj is
contravariant, and S occurs in a covariant position in Sj .

We say that a type S occurs in an invariant position in a type T iff one of △

the following conditions is true:

• T is of the form G<S1, . . . , Sn> where G denotes a generic class or a
generic type alias, and S occurs in an invariant position in Sj for some
j ∈ 1..n.

• T is of the form
S0 Function<X1 extends B1, . . . , Xm extends Bm>

(S1 x1, . . . , Sk xk, [Sk+1 xk+1 = dk+1, . . . , Sn xn = dn])

or of the form
S0 Function<X1 extends B1, . . . , Xm extends Bm>

(S1 x1, . . . , Sk xk, {Sk+1 xk+1 = dk+1, . . . , Sn xn = dn})

where the type parameter list and each default value may be omitted, and
S occurs in an invariant position in Sj for some j ∈ 0..n, or S occurs in
Bi for some i ∈ 1..m.

• T is of the form G<S1, . . . , Sn> where G denotes a generic type alias,
j ∈ 1..n, the formal type parameter corresponding to Sj is invariant, and
S occurs in Sj .

Consider a generic type alias declaration G with formal type parameter
declarations X1 extends B1, . . . , Xm extends Bm, and right hand side T . Let
j ∈ 1..m. We say that the formal type parameter Xj is invariant iff Xj occurs △

invariantly in T , Xj is covariant iff Xj occurs covariantly in T , and Xj is △

△contravariant iff Xj occurs contravariantly in T .
Variance gives a characterization of the way a type varies as the value of

a subterm varies, e.g., a type variable: Assume that T is a type where a type
variable X occurs, and L and U are types such that L is a subtype of U . If

Dart Programming Language Specification 86

X occurs covariantly in T then [L/X]T is a subtype of [U/X]T . Similarly,
if X occurs contravariantly in T then [U/X]T is a subtype of [L/X]T . If X
occurs invariantly then [L/X]T and [U/X]T are not guaranteed to be subtypes
of each other in any direction. In short: with covariance, the type covaries; with
contravariance, the type contravaries; with invariance, all bets are off.

15.2 Super-Bounded Types superBoundedTypes

This section describes how the declared upper bounds of formal type pa-
rameters are enforced, including some cases where a limited form of violation is
allowed.

A top type is a type T such that Object is a subtype of T . For instance, △

Object, dynamic, and void are top types, and so are FutureOr<void> and FutureOr<FutureOr<dynamic>>.
Every type which is not a parameterized type is regular-bounded. △

In particular, every non-generic class and every function type is a regular-
bounded type.

Let T be a parameterized type of the form G<S1, . . . , Sn> where G denotes a
generic class or a generic type alias. Let X1 extends B1, . . . , Xn extends Bn

be the formal type parameter declarations of G. T is regular-bounded iff Sj is a △

subtype of [S1/X1, . . . , Sn/Xn]Bj , for all j ∈ 1..n.
This means that regular-bounded types are those types that do not violate their

type parameter bounds.
Let T be a parameterized type of the form G<S1, . . . , Sn> where G denotes

a generic class or a generic type alias. T is super-bounded iff the following △

conditions are both true:

• T is not regular-bounded.

• Let T ′ be the result of replacing every occurrence in T of a top type in
a covariant position by Null, and every occurrence in T of Null in a
contravariant position by Object. It is then required that T ′ is regular-
bounded. Moreover, if G denotes a generic type alias with body U , it is
required that every type that occurs as a subterm of [S1/X1, . . . , Sn/Xn]U
is well-bounded (defined below).

In short, at least one type argument violates its bound, but the type is regular-
bounded after replacing all occurrences of an extreme type by an opposite extreme
type, depending on their variance.

A type T is well-bounded iff it is either regular-bounded or super-bounded. △

Any use of a type T which is not well-bounded is a compile-time error.
It is a compile-time error if a parameterized type T is super-bounded when

it is used in any of the following ways:

• T is an immediate subterm of a new expression (17.13.1) or a constant
object expression (17.13.2).

• T is an immediate subterm of a redirecting factory constructor signature
(10.7.2).

Dart Programming Language Specification 87

• T is an immediate subterm of an extends clause of a class (10.9), or it
occurs as an element in the type list of an implements clause (10.10, 14,
12), or a with clause (10, 14), or it occurs as an element in the type list
of an on clause of a mixin (12).

It is not an error if a super-bounded type occurs as an immediate subterm of
an extends clause that specifies the bound of a type variable (15).

Types of members from super-bounded class types are computed using the same
rules as types of members from other types. Types of function applications involv-
ing super-bounded types are computed using the same rules as types of function
applications involving other types. Here is an example:

class A<X extends num> {
X x;

}

A<Object> a;

With this, a.x has static type Object, even though the upper bound on the
type variable X is num.

Super-bounded types enable the expression of informative common supertypes
of some sets of types whose common supertypes would otherwise be much less
informative.

For example, consider the following class:

class C<X extends C<X>> {
X next;

}

Without super-bounded types, there is no type T which makes C<T> a common
supertype of all types of the form C<S> (noting that all types must be regular-
bounded when we do not have the notion of super-bounded types). So if we wish
to allow a variable to hold any instance “of type C” then that variable must use
Object or another top type as its type annotation, which means that a member
like next is not known to exist (which is what we mean by saying that the type is
‘less informative’).

We could introduce a notion of recursive (infinite) types, and express the
least upper bound of all types of the form C<S> as some syntax whose meaning
could be approximated by C<C<C<C<. . .>>>>. However, we expect that any such
concept in Dart would incur a significant cost on developers and implementa-
tions in terms of added complexity and subtlety, so we have chosen not to do
that. Super-bounded types are finite, but they offer a useful developer-controlled
approximation to such infinite types.

For example, C<Object> and C<C<C<void>>> are types that a developer may
choose to use as a type annotation. This choice serves as a commitment to a
finite level of unfolding of the infinite type, and it allows for a certain amount of

Dart Programming Language Specification 88

control at the point where the unfolding ends: If c has type C<C<dynamic>> then
c.next.next has type dynamic and c.next.next.whatever has no compile-time
error, but if c has type C<C<void>> then already Object x = c.next.next; is
a compile-time error. It is thus possible for developers to get a more or less strict
treatment of expressions whose type proceeds beyond the given finite unfolding.

15.3 Instantiation to Bound instantiationToBound

This section describes how to compute type arguments that are omitted from
a type, or from an invocation of a generic function.

Note that type inference is assumed to have taken place already (6), so type
arguments are not considered to be omitted if they are inferred. This means that
instantiation to bound is a backup mechanism, which will be used when no infor-
mation is available for inference.

Consider the situation where a term t of the form ⟨typeName⟩ denotes a
generic type declaration, and it is used as a type or as an expression in the en-
closing program. This implies that type arguments are accepted, but not provided.
We use the phrase raw type respectively raw type expression to identify such △

△terms. In the following we only mention raw types, but everything said about
raw types applies to raw type expressions in the obvious manner.

For instance, with the declaration Type listType() => List;, evaluation of
the raw type expression List in the body yields an instance of class Type reifying
List<dynamic>, because List is subject to instantiation to bound. Note that
List<dynamic> is not syntactically an expression, but it is still possible to get
access to a Type instance reifying List<dynamic> without instantiation to bound,
because it can be the value of a type variable.

We can unambiguously define raw types to denote the result of applying the
generic type to a list of implicitly provided actual type arguments, and instanti-
ation to bound is a mechanism which does just that. This is because Dart does
not, and will not, support higher-kinded types; for example, the value of a type
variable X will be a type, it cannot be the generic class List as such, and it
cannot be applied to type arguments, e.g., X<int>.

In the typical case where only covariance is encountered, instantiation to
bound will yield a supertype of all the regular-bounded types that can be ex-
pressed. This allows developers to consider a raw type as a type which is used
to specify that “the actual type arguments do not matter”. For example, assum-
ing the declaration class C<X extends num> {...}, instantiation to bound on C
yields C<num>, and this means that C x; can be used to declare a variable x whose
value can be a C<T> for all possible values of T .

Conversely, consider the situation where a generic type alias denotes a func-
tion type, and it has one type parameter which is contravariant. Instantiation to
bound on that type alias will then yield a subtype of all the regular-bounded types
that can be expressed by varying that type argument. This allows developers to
consider such a type alias used as a raw type as a function type which allows
the function to be passed to clients “where it does not matter which values for
the type argument the client expects”. E.g., with typedef F<X> = Function(X);

Dart Programming Language Specification 89

instantiation to bound on F yields F<dynamic>, and this means that F f; can be
used to declare a variable f whose value will be a function that can be passed to
clients expecting an F<T> for all possible values of T .

15.3.1 Auxiliary Concepts for Instantiation to Bound auxiliaryConceptsForInstantiationToBound

Before we specify instantiation to bound we need to define two auxiliary
concepts. Let T be a raw type. A type S then raw-depends on T if one or more △

of the following conditions hold:

• S is of the form ⟨typeName⟩, and S is T . Note that this case is not applicable
if S is a subterm of a term of the form S <typeArguments>, that is, if S
receives any type arguments. Also note that S cannot be a type variable,
because then ‘S is T ’ cannot hold. See the discussion below and the reference
to 20.4.2 for more details about why this is so.

• S is of the form ⟨typeName⟩ ⟨typeArguments⟩, and one of the type argu-
ments raw-depends on T .

• S is of the form ⟨typeName⟩ ⟨typeArguments⟩? where ⟨typeName⟩ denotes
a type alias F , and the body of F raw-depends on T .

• S is of the form ⟨type⟩? Function ⟨typeParameters⟩? ⟨parameterTypeList⟩
and ⟨type⟩? raw-depends on T , or a bound in ⟨typeParameters⟩? raw-
depends on T , or a type in ⟨parameterTypeList⟩ raw-depends on T .

Meta-variables (20.4.1) like S and T are understood to denote types, and they
are considered to be equal (as in ‘S is T ’) in the same sense as in the section about
subtype rules (20.4.2). In particular, even though two identical pieces of syntax may
denote two distinct types, and two different pieces of syntax may denote the same
type, the property of interest here is whether they denote the same type and not
whether they are spelled identically.

The intuition behind the situation where a type raw-depends on another type is
that we need to compute any missing type arguments for the latter in order to be
able to tell what the former means.

In the rule about type aliases, F may or may not be generic, and type arguments
may or may not be present. However, there is no need to consider the result of
substituting actual type arguments for formal type parameters in the body of F (or
even the correctness of passing those type arguments to F), because we only need
to inspect all types of the form ⟨typeName⟩ in its body, and they are not affected
by such a substitution. In other words, raw-dependency is a relation which is simple
and cheap to compute.

Let G be a generic class or a generic type alias with k formal type param-
eter declarations containing formal type parameters X1, . . . , Xk and bounds
B1, . . . , Bk. For any j ∈ 1..k, we say that the formal type parameter Xj has a
simple bound when one of the following requirements is satisfied: △

• Bj is omitted.

Dart Programming Language Specification 90

• Bj is included, but does not contain any of X1, . . . , Xk. If Bj raw-
depends on a raw type T then every type parameter of T must have a
simple bound.

The notion of a simple bound must be interpreted inductively rather than
coinductively, i.e., if a bound Bj of a generic class or generic type alias G is
reached during an investigation of whether Bj is a simple bound, the answer is
no.

For example, with class C<X extends C> {}, the type parameter X does not
have a simple bound: A raw C is used as a bound for X, so C must have simple
bounds, but one of the bounds of C is the bound of X, and that bound is C, so C
must have simple bounds: That was a cycle, so the answer is “no”, C does not have
simple bounds.

Let G be a generic class or a generic type alias. We say that G has simple △

bounds iff every type parameter of G has simple bounds.
We can now specify in which sense instantiation to bound requires the involved

types to be "simple enough". We impose the following constraint on all type pa-
rameter bounds, because all type parameters may be subject to instantiation to
bound.

It is a compile-time error if a formal type parameter bound B contains a
raw type T , unless T has simple bounds.

So type arguments on bounds can only be omitted if they themselves have
simple bounds. In particular, class C<X extends C> {} is a compile-time error,
because the bound C is raw, and the formal type parameter X that corresponds to
the omitted type argument does not have a simple bound.

Let T be a type of the form ⟨typeName⟩ which denotes a generic class or a
generic type alias (so T is raw). Then T is equivalent to the parameterized type
which is the result obtained by applying instantiation to bound to T . It is a
compile-time error if the instantiation to bound fails.

This rule is applicable for all occurrences of raw types, e.g., when it occurs as
a type annotation of a variable or a parameter, as a return type of a function, as a
type which is tested in a type test, as the type in an ⟨onPart⟩, etc.

15.3.2 The Instantiation to Bound Algorithm theInstantiationToBoundAlgorithm

We now specify how the instantiation to bound algorithm proceeds. Let T be △

a raw type. Let X1, . . . , Xk be the formal type parameters in the declaration
of G, and let B1, . . . , Bk be their bounds. For each i ∈ 1..k, let Si denote
the result of instantiation to bound on Bi; in the case where the ith bound is
omitted, let Si be dynamic.

If Bi for some i is raw (in general: if it raw-depends on some type U) then all
its (respectively U ’s) omitted type arguments have simple bounds. This limits the
complexity of instantiation to bound for Bi, and in particular it cannot involve a
dependency cycle where we need the result from instantiation to bound for G in
order to compute the instantiation to bound for G.

Let Ui,0 be Si, for all i ∈ 1..k. This is the "current value" of the bound for

Dart Programming Language Specification 91

type variable i, at step 0; in general we will consider the current step, m, and use
data for that step, e.g., the bound Ui,m, to compute the data for step m + 1.

Let →m be a relation among the type variables X1, . . . , Xk such that
Xp →m Xq iff Xq occurs in Up,m. So each type variable is related to, that is,
depends on, every type variable in its bound, which might include itself. Let →+

m

be the transitive (but not reflexive) closure of →m. For each m, let Ui,m+1, for
i ∈ 1..k, be determined by the following iterative process, where Vm denotes
G<U1,m, . . . , Uk,m>:

1. If there exists a j ∈ 1..k such that Xj →+
m Xj (that is, if the dependency

graph has a cycle) let M1, . . . , Mp be the strongly connected components
(SCCs) with respect to →m. That is, the maximal subsets of X1, . . . , Xk

where every pair of variables in each subset are related in both directions
by →+

m; note that the SCCs are pairwise disjoint; also, they are uniquely
defined up to reordering, and the order does not matter for this algorithm.
Let M be the union of M1, . . . , Mp (that is, all variables that participate
in a dependency cycle). Let i ∈ 1..k. If Xi does not belong to M then
Ui,m+1 is Ui,m. Otherwise there exists a q such that Xi ∈ Mq; Ui,m+1 is
then obtained from Ui,m by substituting dynamic for every occurrence of
a variable in Mq that is in a position in Vm which is not contravariant,
and substituting Null for every occurrence of a variable in Mq which is in
a contravariant position in Vm.

2. Otherwise (when there are no dependency cycles), let j be the lowest number
such that Xj occurs in Up,m for some p and Xj ̸→m Xq for all q in 1..k
(that is, the bound of Xj does not contain any type variables, but Xj occurs
in the bound of some other type variable). Then, for all i ∈ 1..k, Ui,m+1 is
obtained from Ui,m by substituting Uj,m for every occurrence of Xj that
is in a position in Vm which is not contravariant, and substituting Null
for every occurrence of Xj which is in a contravariant position in Vm.

3. Otherwise (when there are no dependencies at all), terminate with the result
<U1,m, . . . , Uk,m>.

This process will always terminate, because the total number of occurrences of
type variables from { X1, . . . , Xk } in the current bounds is strictly decreasing with
each step, and we terminate when that number reaches zero.

It may seem somewhat arbitrary to treat unused and invariant parameters in
the same way as covariant parameters, in particular because invariant parame-
ters fail to satisfy the expectation that a raw type denotes a supertype of all the
expressible regular-bounded types.

We could easily have made every instantiation to bound an error when applied
to a type where invariance occurs anywhere during the run of the algorithm.
However, there are a number of cases where this choice produces a usable type,
and we decided that it is not helpful to outlaw such cases.

typedef Inv<X> = X Function(X);

Dart Programming Language Specification 92

class B<Y extends num, Z extends Inv<Y>> {}

B b; // The raw B means B<num, Inv<num>>.

For example, the value of b can have dynamic type B<int, int Function(num)>.
However, the type arguments have to be chosen carefully, or the result will not be
a subtype of B. For instance, b cannot have dynamic type B<int, Inv<int>>,
because Inv<int> is not a subtype of Inv<num>.

A raw type T is a compile-time error if instantiation to bound on T yields a
type which is not well-bounded (15.2).

This kind of error can occur, as demonstrated by the following example:

class C<X extends C<X>> {}
typedef F<X extends C<X>> = X Function(X);

F f; // Compile-time error.

With these declarations, the raw F which is used as a type annotation is a
compile-time error: The algorithm yields F<C<dynamic>>, and that is neither a
regular-bounded nor a super-bounded type. The resulting type can be specified ex-
plicitly as C<dynamic> Function(C<dynamic>). That type exists, we just cannot
express it by passing a type argument to F, so we make it an error rather than
allowing it implicitly.

The core reason why it makes sense to make such a raw type an error is that
there is no subtype relationship between the relevant parameterized types. For
instance, F<T1> and F<T2> are unrelated, even when T1 <: T2 or vice versa. In
fact, there is no type T whatsoever such that a variable with declared type F<T>
could be assigned to a variable of type C<dynamic> Function(C<dynamic>). So
the raw F, if permitted, would not be “a supertype of F<T> for all possible T”, it
would be a type which is unrelated to F<T> for every single T that satisfies the
bound of F. This is so useless that we made it an error.

When instantiation to bound is applied to a type, it proceeds recursively:
For a parameterized type G<T1, . . . , Tk> it is applied to T1, . . . , Tk. For a
function type
T0 Function<X1 ◁ B1, . . . , Xs ◁ Bs>(T1, . . . , Tn, [Tn+1, . . . , Tn+k])
and a function type
T0 Function<X1 ◁ B1, . . . , Xs ◁ Bs>(

T1, . . . , Tn, {rn+1 Tn+1 xn+1, . . . , rn+k Tn+k xn+k}) it is applied to
T0, . . . , Tn+k.

This means that instantiation to bound has no effect on a type that does not
contain any raw types. Conversely, instantiation to bound acts on types which are
syntactic subterms, also when they are deeply nested.

Instantiation to bound on a generic function f also uses the algorithm de- △

scribed above, taking the formal parameters X1, . . . , Xk from the declaration
of f , with bounds B1, . . . , Bk, and, for each i ∈ 1..k, letting Si denote the

Dart Programming Language Specification 93

result of instantiation to bound on Bi, and letting Si be dynamic when the ith
bound is omitted.

Let f be a generic function declaration. If instantiation to bound on f yields
a list of type arguments T1, . . . , Tk such that, for some j ∈ 1..k, Tj is or contains
a type which is not well-bounded, or if T1, . . . , Tk does not satisfy the bounds
on the formal type parameters of f , then we say that f does not have default △

type arguments.

16 Metadata metadata

Dart supports metadata which is used to attach user defined annotations to
program structures.

⟨metadata⟩ ::= (‘@’ ⟨metadatum⟩)*

⟨metadatum⟩ ::=
⟨identifier⟩ | ⟨qualifiedName⟩ | ⟨constructorDesignation⟩ ⟨arguments⟩

Metadata consists of a series of annotations, each of which begin with the
character ‘@’, followed by a constant expression e derivable from ⟨metadatum⟩.
It is a compile-time error if e is not one of the following:

• A reference to a constant variable.

• A call to a constant constructor.

The expression e occurs in a constant context (17.3.2), which means that const
modifiers need not be specified explicitly.

Metadata that occurs as the first element of the right hand side of a grammar
rule is associated with the abstract syntax tree for the non-terminal on the
left hand side of said grammar rule (that is, it is associated with its parent).
Otherwise, metadata is associated with the abstract syntax tree of the program
construct p that immediately follows the metadata in the grammar rule.

These rules are intended to ensure a minimal level of consistency in the
association that binds each metadatum to a program construct. The structure of
the abstract syntax tree is implementation specific, and it is not even guaranteed
that a tool will use anything which is known as an abstract syntax tree. In
that case the phrase ‘abstract syntax tree’ should be interpreted as the program
representation entities which are actually used.

This implies that the fine details of the association between metadata and
an abstract syntax tree node is also implementation specific. In particular, an
implementation can choose to associate a given metadatum with more than one
abstract syntax tree node.

Metadata can be retrieved at run time via a reflective call, provided the
annotated program construct p is accessible via reflection.

Obviously, metadata can also be retrieved statically by parsing the program and
evaluating the constants via a suitable interpreter. In fact, many if not most uses

Dart Programming Language Specification 94

of metadata are entirely static. In this case the binding of each metadatum to an
abstract syntax tree node is determined by the given static analysis tool, which is of
course not subject to any constraints in this document. Surely it will still be useful
to strive for consistency among all tools with respect to the binding from metadata
to abstract syntax tree nodes.

It is important that no run-time overhead be incurred by the introduction of
metadata that is not actually used. Because metadata only involves constants,
the time at which it is computed is irrelevant. So implementations may skip the
metadata during ordinary parsing and execution, and evaluate it lazily.

It is possible to associate metadata with constructs that may not be accessible
via reflection, such as local variables (though it is conceivable that in the future,
richer reflective libraries might provide access to these as well). This is not as useless
as it might seem. As noted above, the data can be retrieved statically if source
code is available.

Metadata can appear before a library, part header, class, typedef, type pa-
rameter, constructor, factory, function, parameter, or variable declaration, and
before an import, export, or part directive.

The constant expression given in an annotation is type checked and evaluated
in the scope surrounding the declaration being annotated.

17 Expressions expressions

An expression is a fragment of Dart code that can be evaluated at run time. △

Every expression has an associated static type (20.1) and may have an as-
sociated static context type which may affect the static type and evaluation of
the expression. Every object has an associated dynamic type (20.2).

⟨expression⟩ ::= ⟨assignableExpression⟩ ⟨assignmentOperator⟩ ⟨expression⟩
| ⟨conditionalExpression⟩
| ⟨cascade⟩
| ⟨throwExpression⟩

⟨expressionWithoutCascade⟩ ::=
⟨assignableExpression⟩ ⟨assignmentOperator⟩ ⟨expressionWithoutCascade⟩

| ⟨conditionalExpression⟩
| ⟨throwExpressionWithoutCascade⟩

⟨expressionList⟩ ::= ⟨expression⟩ (‘,’ ⟨expression⟩)*

⟨primary⟩ ::= ⟨thisExpression⟩
| super ⟨unconditionalAssignableSelector⟩
| super ⟨argumentPart⟩
| ⟨functionExpression⟩
| ⟨literal⟩
| ⟨identifier⟩
| ⟨newExpression⟩

Dart Programming Language Specification 95

| ⟨constObjectExpression⟩
| ⟨constructorInvocation⟩
| ‘(’ ⟨expression⟩ ‘)’

⟨literal⟩ ::= ⟨nullLiteral⟩
| ⟨booleanLiteral⟩
| ⟨numericLiteral⟩
| ⟨stringLiteral⟩
| ⟨symbolLiteral⟩
| ⟨listLiteral⟩
| ⟨setOrMapLiteral⟩

An expression e may always be enclosed in parentheses, but this never has
any semantic effect on e.

However, it may have an effect on the surrounding expression. For instance,
given a class C with a static method m() => 42, C.m() returns 42, but (C).m() is
a compile-time error. The point is that the meaning of C.m() is specified in terms
of several parts, rather than being specified in a strictly compositional manner.
Concretely, the meaning of C and (C) as expressions is the same, but the meaning
of C.m() is not defined in terms of the meaning of C as an expression, and it differs
from the meaning of (C).m().

17.1 Expression Evaluation expressionEvaluation

Evaluation of an expression either produces an object or it throws an excep- △

△tion object and an associated stack trace. In the former case, we also say that
the expression evaluates to an object. △

If evaluation of one expression, e, is defined in terms of evaluation of another
expression e1, typically a subexpression of e, and the evaluation of e1 throws an
exception and a stack trace, the evaluation of e stops at that point and throws
the same exception object and stack trace.

17.2 Object Identity objectIdentity

The predefined Dart function identical() is defined such that identical(c1,
c2) iff:

• c1 evaluates to either the null object (17.4) or an instance of bool and c1
== c2, OR

• c1 and c2 are instances of int and c1 == c2, OR

• c1 and c2 are constant strings and c1 == c2, OR

• c1 and c2 are instances of double and one of the following holds:

– c1 and c2 are non-zero and c1 == c2.
– Both c1 and c2 are +0.0.

Dart Programming Language Specification 96

– Both c1 and c2 are −0.0.
– Both c1 and c2 represent a NaN value with the same underlying bit

pattern.

OR

• c1 and c2 are constant lists that are defined to be identical in the specifi-
cation of literal list expressions (17.9.4), OR

• c1 and c2 are constant maps that are defined to be identical in the speci-
fication of literal map expressions (17.9.8), OR

• c1 and c2 are constant objects of the same class C and the value of each in-
stance variable of c1 is identical to the value of the corresponding instance
variable of c2. OR

• c1 and c2 are the same object.

The definition of identity for doubles differs from that of equality in that a
NaN is identical to itself, and that negative and positive zero are distinct.

The definition of equality for doubles is dictated by the IEEE 754 standard,
which posits that NaNs do not obey the law of reflexivity. Given that hardware
implements these rules, it is necessary to support them for reasons of efficiency.

The definition of identity is not constrained in the same way. Instead, it
assumes that bit-identical doubles are identical.

The rules for identity make it impossible for a Dart programmer to observe
whether a boolean or numerical value is boxed or unboxed.

17.3 Constants constants

All usages of ’constant’ in Dart are associated with compile time. A potentially
constant expression is an expression that will generally yield a constant value when
the values of certain parameters are given. The constant expressions is a subset of
the potentially constant expressions that can be evaluated at compile time.

The constant expressions are restricted to expressions that perform only sim-
ple arithmetic operations, boolean conditions, and string and instance creation.
No user-written function body is executed during constant expression evaluation,
only members of the system classes Object, bool, int, double, String, Type,
Symbol, or Null.

The potentially constant expressions and constant expressions are the fol- △

△lowing:

• A literal boolean, true or false (17.6), is a potentially constant and con-
stant expression.

• A literal number (17.5) is a potentially constant and constant expression
if it evaluates to an instance of type int or double.

Dart Programming Language Specification 97

• A literal string (17.7) with string interpolations (17.7.1) with expressions
e1, . . . , en is a potentially constant expression if e1, . . . , en are potentially
constant expressions. The literal is further a constant expression if e1,
. . . , en are constant expressions evaluating to instances of int, double,
String, bool, or Null. These requirements hold trivially if there are no in-
terpolations in the string. It would be tempting to allow string interpolation
where the interpolated value is any compile-time constant. However, this
would require running the toString() method for constant objects, which
could contain arbitrary code.

• A literal symbol (17.8) is a potentially constant and constant expression.

• The literal null (17.4) is a potentially constant and constant expression.

• An identifier that denotes a constant variable is a potentially constant and
constant expression.

• A qualified reference to a static constant variable (8) that is not qualified
by a deferred prefix, is a potentially constant and constant expression. For
example, if class C declares a constant static variable v, C.v is a constant.
The same is true if C is accessed via a prefix p; p.C.v is a constant unless
p is a deferred prefix.

• A simple or qualified identifier denoting a class, a mixin or a type alias
that is not qualified by a deferred prefix, is a potentially constant and
constant expression. The constant expression always evaluates to a Type
object. For example, if C is the name of a class or type alias, the expression
C is a constant, and if C is imported with a prefix p, p.C is a constant Type
instance representing the type of C unless p is a deferred prefix.

• Let e be a simple or qualified identifier denoting a top-level function (9)
or a static method (10.8) that is not qualified by a deferred prefix. If e is
not subject to generic function instantiation (17.17) then e is a potentially
constant and constant expression. If generic function instantiation does
apply to e and the provided actual type arguments are T1, . . . , Ts then e
is a potentially constant and constant expression iff each Tj , j ∈ 1..s, is a
constant type expression (17.3).

• An identifier expression denoting a parameter of a constant constructor
(10.7.3) that occurs in the initializer list of the constructor, is a potentially
constant expression.

• A constant object expression (17.13.2) is a potentially constant and con-
stant expression.

• A constant list literal (17.9.4) is a potentially constant and constant ex-
pression.

• A constant set literal (17.9.7) is a potentially constant and constant ex-
pression.

Dart Programming Language Specification 98

• A constant map literal (17.9.8) is a potentially constant and constant
expression.

• A parenthesized expression (e) is a potentially constant expression if e is
a potentially constant expression. It is further a constant expression if e
is a constant expression.

• An expression of the form identical(e1, e2) is a potentially constant
expression if e1 and e2 are potentially constant expressions and identical
is statically bound to the predefined dart function identical() discussed
above (17.2). It is further a constant expression if e1 and e2 are constant
expressions.

• An expression of the form e1 != e2 is equivalent to !(e1 == e2) in every
way, including whether it is potentially constant or constant.

• An expression of the form e1 == e2 is potentially constant if e1 and e2 are
both potentially constant expressions. It is further constant if both e1 and
e2 are constant, and either e1 evaluates to an instance of double or an
instance that that has primitive equality (10.2.3), or e2 evaluates to the
null object (17.4).

• An expression of the form !e1 is potentially constant if e1 is potentially
constant. It is further constant if e1 is a constant expression that evaluates
to an instance of type bool.

• An expression of the form e1 && e2 is potentially constant if e1 and e2
are both potentially constant expressions. It is further constant if e1 is a
constant expression and either

1. e1 evaluates to false, or
2. e1 evaluates to true and e2 is a constant expression that evaluates to

an instance of type bool.

• An expression of the form e1 || e2 is potentially constant if e1 and e2
are both potentially constant expressions. It is further constant if e1 is a
constant expression and either

1. e1 evaluates to true, or
2. e1 evaluates to false and e2 is a constant expression that evaluates

to an instance of type bool.

• An expression of the form ~e1 is a potentially constant expression if e1
is a potentially constant expression. It is further a constant expression if
e1 is a constant expression that evaluates to an instance of type int such
that ~ denotes an instance operator invocation.

Dart Programming Language Specification 99

• An expression of one of the forms e1 & e2, e1 | e2, or e1 ˆ e2 is potentially
constant if e1 and e2 are both potentially constant expressions. It is further
constant if both e1 and e2 are constant expressions that both evaluate to
instances of int, or both to instances of bool, such that the operator
symbol ‘&’, ‘|’, respectively ‘ˆ’ denotes an instance operator invocation.

• An expression of one of the forms e1 >> e2, e1 >>> e2, or e1 << e2 is poten-
tially constant if e1 and e2 are both potentially constant expressions. It
is further constant if both e1 and e2 are constant expressions that both
evaluate to an instance of int, such that the operator symbol ‘>>’, ‘>>>’,
respectively ‘<<’ denotes an instance operator invocation.

• An expression of the form e1 + e2 is a potentially constant expression if e1
and e2 are both potentially constant expressions. It is further a constant
expression if both e1 and e2 are constant expressions and either both
evaluate to an instance of int or double, or both evaluate to an instance
of String, such that ‘+’ denotes an instance operator invocation.

• An expression of the form -e1 is a potentially constant expression if e1
is a potentially constant expression. It is further a constant expression if
e1 is a constant expression that evaluates to an instance of type int or
double, such that ‘-’ denotes an instance operator invocation.

• An expression of the form e1 - e2, e1 * e2, e1 / e2,e1 ~/ e2, e1 % e2, e1 < e2,
e1 <= e2, e1 > e2, or e1 >= e2 is potentially constant if e1 and e2 are both
potentially constant expressions. It is further constant if both e1 and
e2 are constant expressions that evaluate to instances of int or double,
such that the given operator symbol denotes an invocation of an instance
operator.

• An expression of the form e1 ? e2 : e3 is potentially constant if e1, e2, and
e3 are all potentially constant expressions. It is further constant if e1 is a
constant expression and either

1. e1 evaluates to true and e2 is a constant expression, or
2. e1 evaluates to false and e3 is a constant expression.

• An expression of the form e1 ?? e2 is potentially constant if e1 and e2
are both potentially constant expressions. It is further constant if e1 is a
constant expression and either

1. e1 evaluates to an object which is not the null object, or
2. e1 evaluates to the null object, and e2 is a constant expression.

• An expression of the form e.length is potentially constant if e is a poten-
tially constant expression. It is further constant if e is a constant expres-
sion that evaluates to an instance of String, such that length denotes
an instance getter invocation.

Dart Programming Language Specification 100

• An expression of the form e?.length is potentially constant if e is a po-
tentially constant expression. It is further constant if e is a constant
expression that evaluates to null, or it evaluates to an instance of String
and length denotes an instance getter invocation.

• An expression of the form e as T is potentially constant if e is a potentially
constant expression and T is a constant type expression, and it is further
constant if e is constant. It is a compile-time error to evaluate the constant
expression if the cast operation would throw, that is, if e evaluates to an
object which is not the null object and not of type T .

• An expression of the form e is T is potentially constant if e is a potentially
constant expression and T is a constant type expression, and it is further
constant if e is constant.

• An expression of the form e is! T is equivalent to !(e is T) in every
way, including whether it’s potentially constant or constant.

A constant type expression is one of: △

• An simple or qualified identifier denoting a type declaration (a type alias,
class or mixin declaration) that is not qualified by a deferred prefix, op-
tionally followed by type arguments of the form <T1, ..., Tn> where T1,
. . . , Tn are constant type expressions.

• A type of the form FutureOr<T> where T is a constant type expression.

• A function type R Function<typeParameters>(argumentTypes) (where
R and <typeParameters> may be omitted) and where R, typeParameters
and argumentTypes (if present) contain only constant type expressions.

• The type void.

• The type dynamic.

It is a compile-time error if an expression is required to be a constant ex-
pression, but its evaluation would throw an exception. It is a compile-time error
if an assertion is evaluated as part of a constant object expression evaluation,
and the assertion would throw an exception.

It is a compile-time error if the value of a constant expression depends on
itself.

As an example, consider:

class CircularConsts {
// Illegal program - mutually recursive compile-time constants
static const i = j; // a compile-time constant
static const j = i; // a compile-time constant

}

Dart Programming Language Specification 101

17.3.1 Further Remarks on Constants and Potential Constants
furtherCommentsOnConstantsAndPotentiallyConstants

There is no requirement that every constant expression evaluate correctly.
Only when a constant expression is required (e.g., to initialize a constant vari-
able, or as a default value of a formal parameter, or as metadata) do we insist
that a constant expression actually be evaluated successfully at compile time.

The above is not dependent on program control-flow. The mere presence of a
required compile-time constant whose evaluation would fail within a program is an
error. This also holds recursively: since compound constants are composed out of
constants, if any subpart of a constant would throw an exception when evaluated,
that is an error. On the other hand, since implementations are free to compile code
late, some compile-time errors may manifest quite late:

const x = 1 ~/ 0;
final y = 1 ~/ 0;

class K {
m1() {

var z = false;
if (z) { return x; }
else { return 2; }

}

m2() {
if (true) { return y; }
else { return 3; }

}
}

An implementation is free to immediately issue a compilation error for x, but
it is not required to do so. It could defer errors if it does not immediately compile
the declarations that reference x. For example, it could delay giving a compilation
error about the method m1 until the first invocation of m1. However, it could not
choose to execute m1, see that the branch that refers to x is not taken, and return
2 successfully.

The situation with respect to an invocation of m2 is different. Because y is not a
compile-time constant (even though its value is), one need not give a compile-time
error upon compiling m2. An implementation may run the code, which will cause
the getter for y to be invoked. At that point, the initialization of y must take place,
which requires the initializer to be compiled, which will cause a compilation error.

The treatment of null merits some discussion. Consider null + 2. This ex-
pression always causes an error. We could have chosen not to treat it as a
constant expression (and in general, not to allow null as a subexpression of nu-
meric or boolean constant expressions). There are two arguments for including
it: First, it is constant so we can evaluate it at compile time. Second, it seems
more useful to give the error stemming from the evaluation explicitly.

Dart Programming Language Specification 102

One might reasonably ask why e1 ? e2 : e3 and e1 ?? e2 have constant forms.
If e1 is known statically, why do we need to test it? The answer is that there are
contexts where e1 is a variable, e.g., in constant constructor initializers such as
const C(foo): this.foo = foo ?? someDefaultValue;

The difference between a potentially constant expression and a constant ex-
pression deserves some explanation. The key issue is how one treats the formal
parameters of a constructor.

If a constant constructor is invoked from a constant object expression, the actual
arguments will be required to be constant expressions. Therefore, if we were assured
that constant constructors were always invoked from constant object expressions,
we could assume that the formal parameters of a constructor were compile-time
constants.

However, constant constructors can also be invoked from ordinary instance cre-
ation expressions (17.13.1), and so the above assumption is not generally valid.

Nevertheless, the use of the formal parameters of a constant constructor is of
considerable utility. The concept of potentially constant expressions is introduced to
facilitate limited use of such formal parameters. Specifically, we allow the usage of
the formal parameters of a constant constructor for expressions that involve built-in
operators, but not for constant objects, lists and maps. For instance:

class C {
final x, y, z;
const C(p, q): x = q, y = p + 100, z = p + q;

}

The assignment to x is allowed under the assumption that q is constant (even
though q is not, in general a compile-time constant). The assignment to y is similar,
but raises additional questions. In this case, the superexpression of p is p + 100,
and it requires that p be a numeric constant expression for the entire expression
to be considered constant. The wording of the specification allows us to assume
that p evaluates to an integer, for an invocation of this constructor in a constant
expression. A similar argument holds for p and q in the assignment to z.

However, the following constructors are disallowed:

class D {
final w;
const D.makeList(p): w = const [p]; // compile-time error
const D.makeMap(p): w = const {"help": q}; // compile-time error
const D.makeC(p): w = const C(p, 12); // compile-time error

}

The problem is that all these run afoul of the rules for constant lists (17.9.4),
maps (17.9.8), and objects (17.13.2), all of which independently require their subex-
pressions to be constant expressions.

All of the illegal constructors of D above could not be sensibly invoked via
new, because an expression that must be constant cannot depend on a formal

Dart Programming Language Specification 103

parameter, which may or may not be constant. In contrast, the legal examples
make sense regardless of whether the constructor is invoked via const or via
new.

Careful readers will of course worry about cases where the actual arguments
to C() are constants, but are not numeric. This is precluded by the rules on
constant constructors (10.7.3), combined with the rules for evaluating constant
objects (17.13.2).

17.3.2 Constant Contexts constantContexts

Let e be an expression; e occurs in a constant context iff one of the following △

applies:

• e is an element of a list or set literal whose first token is const, or e is a
key or a value of an entry of a map literal whose first token is const.

• e occurs as @e in a construct derived from ⟨metadata⟩.

• e is an actual argument in an expression derived from ⟨constObjectExpression⟩.

• e is the initializing expression of a constant variable declaration (8).

• e is a switch case expression (18.9).

• e is an immediate subexpression of an expression e0 which occurs in a
constant context, where e0 is not a function literal (17.11).

A constant context is introduced in situations where an expression is required
to be constant. This is used to allow the const modifier to be omitted in cases
where it does not contribute any new information.

17.4 Null null

The reserved word null evaluates to the null object. △

⟨nullLiteral⟩ ::= null

The null object is the sole instance of the built-in class Null. Attempting
to instantiate Null causes a compile-time error. It is a compile-time error for a
class to extend, mix in or implement Null. The Null class extends the Object
class and declares no methods except those also declared by Object.

The null object has primitive equality (10.2.3).
The static type of null is the Null type.

Dart Programming Language Specification 104

17.5 Numbers numbers

A numeric literal is either a decimal or hexadecimal numeral representing △

an integer value, or a decimal double representation.

⟨numericLiteral⟩ ::= ⟨NUMBER⟩
| ⟨HEX_NUMBER⟩

⟨NUMBER⟩ ::= ⟨DIGIT ⟩+ (‘.’ ⟨DIGIT ⟩+)? ⟨EXPONENT ⟩?
| ‘.’ ⟨DIGIT ⟩+ ⟨EXPONENT ⟩?

⟨EXPONENT ⟩ ::= (‘e’ | ‘E’) (‘+’ | ‘-’)? ⟨DIGIT ⟩+

⟨HEX_NUMBER⟩ ::= ‘0x’ ⟨HEX_DIGIT ⟩+
| ‘0X’ ⟨HEX_DIGIT ⟩+

⟨HEX_DIGIT ⟩ ::= ‘a’ .. ‘f’
| ‘A’ .. ‘F’
| ⟨DIGIT ⟩

A numeric literal starting with ‘0x’ or ‘0X’ is a hexadecimal integer literal. △

It has the numeric integer value of the hexadecimal numeral following ‘0x’ (re-
spectively ‘0X’).

A numeric literal that contains only decimal digits is a decimal integer literal. △

It has the numeric integer value of the decimal numeral.
An integer literal is either a hexadecimal integer literal or a decimal integer △

literal.
Let l be an integer literal that is not the operand of by a unary minus

operator, and let T be the static context type of l. If double is assignable to
T and int is not assignable to T , then the static type of l is double; otherwise
the static type of l is int.

This means that an integer literal denotes a double when it would satisfy the
type requirement, and an int would not. Otherwise it is an int, even in situations
where that is an error.

A numeric literal that is not an integer literal is a double literal. A double △

literal always contains either a decimal point or an exponent part. The static type
of a double literal is double.

If l is an integer literal with numeric value i and static type int, and l is not
the operand of a unary minus operator, then evaluation of l proceeds as follows:

• If l is a hexadecimal integer literal, 263 ≤ i < 264 and the int class is
implemented as signed 64-bit two’s complement integers, then l evaluates
to an instance of the int class representing the numeric value i − 264,

• Otherwise l evaluates to an instance of the int class representing the
numeric value i. It is a compile-time error if the integer i cannot be
represented exactly by an instance of int.

Dart Programming Language Specification 105

Integers in Dart are designed to be implemented as 64-bit two’s complement
integer representations. In practice, implementations may be limited by other con-
siderations. For example, Dart compiled to JavaScript may use the JavaScript
number type, equivalent to Dart double, to represent integers, and if so, integer
literals with more than 53 bits of precision cannot be represented exactly.

A double literal evaluates to a an instance of the double class representing
a 64 bit double precision floating point number as specified by the IEEE 754
standard.

An integer literal with static type double and numeric value i evaluates to
an instance of the double class representing the value i. It is a compile-time
error if the value i cannot be represented precisely by an instance of double.

A 64 bit double precision floating point number is usually taken to represent
a range of real numbers around the precise value denoted by the number’s sign,
mantissa and exponent. For integer literals evaluating to double values we insist
that the integer literal’s numeric value is the precise value of the double instance.

It is a compile-time error for a class to extend, mix in or implement int. It
is a compile-time error for a class to extend, mix in or implement double. It is
a compile-time error for any class other than int and double to extend, mix in
or implement num.

The instances of int and double all override the ‘==’ operator inherited
from the Object class.

17.6 Booleans booleans

The reserved words true and false evaluate to objects true and false that △

△represent the boolean values true and false respectively. They are the boolean
△literals.

⟨booleanLiteral⟩ ::= true
| false

Both true and false are instances of the built-in class bool, and there are △

△no other objects that implement bool. It is a compile-time error for a class to
extend, mix in or implement bool.

The true and false objects have primitive equality (10.2.3).
Invoking the getter runtimeType on a boolean value returns the Type object

that is the value of the expression bool. The static type of a boolean literal is
bool.

17.7 Strings strings

A string is a sequence of UTF-16 code units. △

This decision was made for compatibility with web browsers and Javascript.
Earlier versions of the specification required a string to be a sequence of valid
Unicode code points. Programmers should not depend on this distinction.

⟨stringLiteral⟩ ::= (⟨multilineString⟩ | ⟨singleLineString⟩)+

Dart Programming Language Specification 106

A string can be a sequence of single line strings and multiline strings.

⟨singleLineString⟩ ::= ⟨RAW_SINGLE_LINE_STRING⟩
| ⟨SINGLE_LINE_STRING_SQ_BEGIN_END⟩
| ⟨SINGLE_LINE_STRING_SQ_BEGIN_MID⟩ ⟨expression⟩

(⟨SINGLE_LINE_STRING_SQ_MID_MID⟩ ⟨expression⟩)*
⟨SINGLE_LINE_STRING_SQ_MID_END⟩

| ⟨SINGLE_LINE_STRING_DQ_BEGIN_END⟩
| ⟨SINGLE_LINE_STRING_DQ_BEGIN_MID⟩ ⟨expression⟩

(⟨SINGLE_LINE_STRING_DQ_MID_MID⟩ ⟨expression⟩)*
⟨SINGLE_LINE_STRING_DQ_MID_END⟩

⟨RAW_SINGLE_LINE_STRING⟩ ::= ‘r’ ‘’’ (~(‘’’ | ‘\r’ | ‘\n’))* ‘’’
| ‘r’ ‘"’ (~(‘"’ | ‘\r’ | ‘\n’))* ‘"’

⟨STRING_CONTENT_COMMON ⟩ ::= ~(‘\’ | ‘’’ | ‘"’ | ‘$’ | ‘\r’ | ‘\n’)
| ⟨ESCAPE_SEQUENCE⟩
| ‘\’ ~(‘n’ | ‘r’ | ‘b’ | ‘t’ | ‘v’ | ‘x’ | ‘u’ | ‘\r’ | ‘\n’)
| ⟨SIMPLE_STRING_INTERPOLATION ⟩

⟨STRING_CONTENT_SQ⟩ ::= ⟨STRING_CONTENT_COMMON ⟩ | ‘"’

⟨SINGLE_LINE_STRING_SQ_BEGIN_END⟩ ::=
‘’’ ⟨STRING_CONTENT_SQ⟩* ‘’’

⟨SINGLE_LINE_STRING_SQ_BEGIN_MID⟩ ::=
‘’’ ⟨STRING_CONTENT_SQ⟩* ‘${’

⟨SINGLE_LINE_STRING_SQ_MID_MID⟩ ::=
‘}’ ⟨STRING_CONTENT_SQ⟩* ‘${’

⟨SINGLE_LINE_STRING_SQ_MID_END⟩ ::=
‘}’ ⟨STRING_CONTENT_SQ⟩* ‘’’

⟨STRING_CONTENT_DQ⟩ ::= ⟨STRING_CONTENT_COMMON ⟩ | ‘’’

⟨SINGLE_LINE_STRING_DQ_BEGIN_END⟩ ::=
‘"’ ⟨STRING_CONTENT_DQ⟩* ‘"’

⟨SINGLE_LINE_STRING_DQ_BEGIN_MID⟩ ::=
‘"’ ⟨STRING_CONTENT_DQ⟩* ‘${’

⟨SINGLE_LINE_STRING_DQ_MID_MID⟩ ::=
‘}’ ⟨STRING_CONTENT_DQ⟩* ‘${’

⟨SINGLE_LINE_STRING_DQ_MID_END⟩ ::=
‘}’ ⟨STRING_CONTENT_DQ⟩* ‘"’

Dart Programming Language Specification 107

A single line string is delimited by either matching single quotes or matching
double quotes.

Hence, ’abc’ and "abc" are both legal strings, as are ’He said "To be or
not to be" did he not?’ and "He said ’To be or not to be’ didn’t he?".
However, "This’ is not a valid string, nor is ’this".

The grammar ensures that a single line string cannot span more than one line of
source code, unless it includes an interpolated expression that spans multiple lines.

Adjacent strings are implicitly concatenated to form a single string literal.
Here is an example:

print("A string" "and then another"); // A stringand then another

Dart also supports the operator + for string concatenation.
The + operator on Strings requires a String argument. It does not coerce its

argument into a string. This helps avoid puzzlers such as

print("A simple sum: 2 + 2 = " +
2 + 2);

which would print ‘A simple sum: 2 + 2 = 22’ rather than ‘A simple
sum: 2 + 2 = 4’. However, for efficiency reasons, the recommended Dart id-
iom is to use string interpolation.

print("A simple sum: 2 + 2 = ${2+2}");

String interpolation works well for most cases. The main situation where it
is not fully satisfactory is for string literals that are too large to fit on a line.
Multiline strings can be useful, but in some cases, we want to visually align the
code. This can be expressed by writing smaller strings separated by whitespace,
as shown here:

’Imagine this is a very long string that does not fit on a line. What shall we do? ’
’Oh what shall we do? ’
’We shall split it into pieces ’
’like so’.

An auxiliary string interpolation state stack is maintained outside the parser, △

in order to ensure that string interpolations are matched up correctly.
This is necessary because the expression of a non-simple string interpolation may

itself contain string literals with their own non-simple string interpolations.
For rules with names ⟨. . . _BEGIN_MID⟩, a marker is pushed on the aux-

iliary stack to indicate that a string interpolation of the given kind has started,
where the kind is ‘’’, ‘"’, ‘’’’’, or ‘"""’. For rules with names ⟨. . . _MID_MID⟩,
only the rule with the kind on the top of the auxiliary stack can be used. For
rules with names ⟨. . . _MID_END⟩, only the rule with the kind on the top of
the auxiliary stack can be used, and the marker is then popped.

Dart Programming Language Specification 108

⟨multilineString⟩ ::= ⟨RAW_MULTI_LINE_STRING⟩
| ⟨MULTI_LINE_STRING_SQ_BEGIN_END⟩
| ⟨MULTI_LINE_STRING_SQ_BEGIN_MID⟩ ⟨expression⟩

(⟨MULTI_LINE_STRING_SQ_MID_MID⟩ ⟨expression⟩)*
⟨MULTI_LINE_STRING_SQ_MID_END⟩

| ⟨MULTI_LINE_STRING_DQ_BEGIN_END⟩
| ⟨MULTI_LINE_STRING_DQ_BEGIN_MID⟩ ⟨expression⟩

(⟨MULTI_LINE_STRING_DQ_MID_MID⟩ ⟨expression⟩)*
⟨MULTI_LINE_STRING_DQ_MID_END⟩

⟨RAW_MULTI_LINE_STRING⟩ ::= ‘r’ ‘’’’’ .*? ‘’’’’
| ‘r’ ‘"""’ .*? ‘"""’

⟨QUOTES_SQ⟩ ::= | ‘’’ | ‘’’’

⟨STRING_CONTENT_TSQ⟩ ::=
⟨QUOTES_SQ⟩ (⟨STRING_CONTENT_COMMON ⟩ | ‘"’ | ‘\r’ | ‘\n’)

⟨MULTI_LINE_STRING_SQ_BEGIN_END⟩ ::=
‘’’’’ ⟨STRING_CONTENT_TSQ⟩* ‘’’’’

⟨MULTI_LINE_STRING_SQ_BEGIN_MID⟩ ::=
‘’’’’ ⟨STRING_CONTENT_TSQ⟩* ⟨QUOTES_SQ⟩ ‘${’

⟨MULTI_LINE_STRING_SQ_MID_MID⟩ ::=
‘}’ ⟨STRING_CONTENT_TSQ⟩* ⟨QUOTES_SQ⟩ ‘${’

⟨MULTI_LINE_STRING_SQ_MID_END⟩ ::=
‘}’ ⟨STRING_CONTENT_TSQ⟩* ‘’’’’

⟨QUOTES_DQ⟩ ::= | ‘"’ | ‘""’

⟨STRING_CONTENT_TDQ⟩ ::=
⟨QUOTES_DQ⟩ (⟨STRING_CONTENT_COMMON ⟩ | ‘’’ | ‘\r’ | ‘\n’)

⟨MULTI_LINE_STRING_DQ_BEGIN_END⟩ ::=
‘"""’ ⟨STRING_CONTENT_TDQ⟩* ‘"""’

⟨MULTI_LINE_STRING_DQ_BEGIN_MID⟩ ::=
‘"""’ ⟨STRING_CONTENT_TDQ⟩* ⟨QUOTES_DQ⟩ ‘${’

⟨MULTI_LINE_STRING_DQ_MID_MID⟩ ::=
‘}’ ⟨STRING_CONTENT_TDQ⟩* ⟨QUOTES_DQ⟩ ‘${’

⟨MULTI_LINE_STRING_DQ_MID_END⟩ ::=
‘}’ ⟨STRING_CONTENT_TDQ⟩* ‘"""’

Dart Programming Language Specification 109

⟨ESCAPE_SEQUENCE⟩ ::= ‘\n’ | ‘\r’ | ‘\f’ | ‘\b’ | ‘\t’ | ‘\v’
| ‘\x’ ⟨HEX_DIGIT ⟩ ⟨HEX_DIGIT ⟩
| ‘\u’ ⟨HEX_DIGIT ⟩ ⟨HEX_DIGIT ⟩ ⟨HEX_DIGIT ⟩ ⟨HEX_DIGIT ⟩
| ‘\u{’ ⟨HEX_DIGIT_SEQUENCE⟩ ‘}’

⟨HEX_DIGIT_SEQUENCE⟩ ::=
⟨HEX_DIGIT ⟩ ⟨HEX_DIGIT ⟩? ⟨HEX_DIGIT ⟩?
⟨HEX_DIGIT ⟩? ⟨HEX_DIGIT ⟩? ⟨HEX_DIGIT ⟩?

Multiline strings are delimited by either matching triples of single quotes or
matching triples of double quotes. If the first line of a multiline string consists
solely of the whitespace characters defined by the production ⟨WHITESPACE⟩
(21.1), possibly prefixed by ‘\’, then that line is ignored, including the line break
at its end.

The idea is to ignore a whitespace-only first line of a multiline string, where
whitespace is defined as tabs, spaces and the final line break. These can be
represented directly, but since for most characters prefixing by backslash is an
identity in a non-raw string, we allow those forms as well.

In the rule for ⟨RAW_MULTI_LINE_STRING⟩, the two occurrences of
‘.*?’ denote a non-greedy token recognition step: It terminates as soon as the
lookahead is the specified next token (that is, ‘’’’’ or ‘"""’).

Note that multi-line string interpolation relies on the auxiliary string interpolation
state stack, just like single-line string interpolation.

Strings support escape sequences for special characters. The escapes are:

• ‘\n’ for newline, equivalent to ‘\x0A’.

• ‘\r’ for carriage return, equivalent to ‘\x0D’.

• ‘\f’ for form feed, equivalent to ‘\x0C’.

• ‘\b’ for backspace, equivalent to ‘\x08’.

• ‘\t’ for tab, equivalent to ‘\x09’.

• ‘\v’ for vertical tab, equivalent to ‘\x0B’.

• ‘\x’ ⟨HEX_DIGIT ⟩1 ⟨HEX_DIGIT ⟩2, equivalent to
‘\u{’ ⟨HEX_DIGIT ⟩1 ⟨HEX_DIGIT ⟩2 ‘}’.

• ‘\u’ ⟨HEX_DIGIT ⟩1 ⟨HEX_DIGIT ⟩2 ⟨HEX_DIGIT ⟩3 ⟨HEX_DIGIT ⟩4,
equivalent to
‘\u{’ ⟨HEX_DIGIT ⟩1 ⟨HEX_DIGIT ⟩2 ⟨HEX_DIGIT ⟩3 ⟨HEX_DIGIT ⟩4
‘}’.

• ‘\u{’ ⟨HEX_DIGIT_SEQUENCE⟩ ‘}’ is the Unicode code point repre-
sented by the ⟨HEX_DIGIT_SEQUENCE⟩. It is a compile-time error if
the value of the ⟨HEX_DIGIT_SEQUENCE⟩ is not a valid Unicode code
point. For example, ‘\u{0A}’ is the code point U+000A.

Dart Programming Language Specification 110

• ‘$’ indicating the beginning of an interpolated expression.

• Otherwise, ‘\k’ indicates the character k for any k not in {‘n’, ‘r’, ‘f’, ‘b’,
‘t’, ‘v’, ‘x’, ‘u’}.

Any string may be prefixed with the character ‘r’, indicating that it is a raw △

string, in which case no escapes or interpolations are recognized.
Line breaks in a multiline string are represented by the ⟨LINE_BREAK ⟩

production. A line break introduces a single newline character (U+000A) into
the string value.

It is a compile-time error if a non-raw string literal contains a character
sequence of the form ‘\x’ that is not followed by a sequence of two hexadecimal
digits. It is a compile-time error if a non-raw string literal contains a character
sequence of the form ‘\u’ that is not followed by either a sequence of four
hexadecimal digits, or by curly brace delimited sequence of hexadecimal digits.

⟨LINE_BREAK ⟩ ::= ‘\n’
| ‘\r\n’
| ‘\r’

All string literals evaluate to instances of the built-in class String. It is
a compile-time error for a class to extend, mix in or implement String. The
String class overrides the ‘==’ operator inherited from the Object class. The
static type of a string literal is String.

17.7.1 String Interpolation stringInterpolation

It is possible to embed expressions within non-raw string literals, such that
these expressions are evaluated, and the resulting objects are converted into
strings and concatenated with the enclosing string. This process is known as
string interpolation. △

⟨stringInterpolation⟩ ::= ⟨SIMPLE_STRING_INTERPOLATION ⟩
| ‘${’ ⟨expression⟩ ‘}’

⟨SIMPLE_STRING_INTERPOLATION ⟩ ::=
‘$’ (⟨IDENTIFIER_NO_DOLLAR⟩ | ⟨BUILT_IN_IDENTIFIER⟩ | this)

The reader will note that the expression inside the interpolation could itself
include strings, which could again be interpolated recursively.

An unescaped ‘$’ character in a string signifies the beginning of an interpo-
lated expression. The ‘$’ sign may be followed by either:

• A single identifier id that does not contain the ‘$’ character (but it can
be a built-in identifier), or the reserved word this.

• An expression e delimited by curly braces.

Dart Programming Language Specification 111

The form $id is equivalent to the form ${id}. An interpolated string, s, with
content ‘s0${e1}s1 . . . sn−1${en}sn’ (where any of s0, . . . , sn can be empty) is
evaluated by evaluating each expression ei (1 ≤ i ≤ n) into a string ri in the
order they occur in the source text, as follows:

• Evaluate ei to an object oi.

• Invoke the toString method on oi with no arguments, and let ri be the
returned object.

• If ri is the null object, a dynamic error occurs.

Finally, the result of the evaluation of s is the concatenation of the strings
s0, r1, . . . , rn, and sn.

17.8 Symbols symbols

A symbol literal denotes a name that would be either a valid declaration △

name, a valid library name, or void.

⟨symbolLiteral⟩ ::= ‘#’ (⟨identifier⟩ (‘.’ ⟨identifier⟩)* | ⟨operator⟩ | void)

The static type of a symbol literal is Symbol.
Let id be an identifier that does not begin with an underscore (‘_’). The

symbol literal #id evaluates to an instance of Symbol representing the identifier
id.

A symbol literal #id1.id2.· · · .idn where id1, . . . , idn are identifiers evalu-
ates to an instance of Symbol representing that particular sequence of identifiers.
This kind of symbol literal denotes the name of a library declaration, as specified in
a ⟨libraryName⟩. Library names are not subject to library privacy, even if some of
its identifiers begin with an underscore.

A symbol literal #op where op is derived from ⟨operator⟩ evaluates to an
instance of Symbol representing that particular operator name.

The symbol literal #void evaluates to an instance of Symbol representing
the reserved word void.

For the value o of a symbol literal representing a source code term as specified
in the previous paragraphs, we say that o is a non-private symbol based on the △

string whose contents is the characters of that term, without whitespace.
Note that this does not apply for private symbols, which are discussed below.

A private symbol is not based on any string.
If o is the value of an invocation of the Symbol constructor of the form

Symbol(e), new Symbol(e), or const Symbol(e), where e is an expression (con-
stant if necessary) that evaluates to a string s, we say that o is a non-private △

symbol based on s.
Note that Symbol(’_foo’) is a non-private symbol, and it is distinct from

#_foo, as described below.
Assume that i ∈ 1, 2, and that oi is the value of a constant expression which

Dart Programming Language Specification 112

is a symbol based on the string si. If s1 == s2 then o1 and o2 is the same object.
That is, symbol instances are canonicalized.

If o1 and o2 are non-private symbols (not necessarily constant) based on
strings s1 and s2 then o1 and o2 are equal according to operator ‘==’ if and only
if s1 == s2 (17.27).

A symbol literal #_id where _id is an identifier evaluates to an instance
of Symbol representing the private identifier _id of the enclosing library. All
occurrences of #_id in the same library evaluate to the same object, and no
other symbol literal or Symbol constructor invocation evaluates to the same
object, nor to a Symbol instance that is equal to that object according to the
‘==’ operator.

One may well ask what is the motivation for introducing literal symbols? In
some languages, symbols are canonicalized whereas strings are not. However
literal strings are already canonicalized in Dart. Symbols are slightly easier to
type compared to strings and their use can become strangely addictive, but this is
not nearly sufficient justification for adding a literal form to the language. The
primary motivation is related to the use of reflection and a web specific practice
known as minification.

Minification compresses identifiers consistently throughout a program in or-
der to reduce download size. This practice poses difficulties for reflective pro-
grams that refer to program declarations via strings. A string will refer to an
identifier in the source, but the identifier will no longer be used in the minified
code, and reflective code using these would fail. Therefore, Dart reflection uses
objects of type Symbol rather than strings. Instances of Symbol are guaranteed
to be stable with respect to minification. Providing a literal form for symbols
makes reflective code easier to read and write. The fact that symbols are easy
to type and can often act as convenient substitutes for enums are secondary
benefits.

17.9 Collection Literals collectionLiterals

This section specifies several literal expressions denoting collections. Some
syntactic forms may denote more than one kind of collection, in which case a
disambiguation step is performed in order to determine the kind (17.9.5).

The subsections of this section are concerned with mechanisms that are com-
mon to all kinds of collection literals (17.9.1, 17.9.2), followed by a specification
of list literals (17.9.3, 17.9.4), followed by a specification of how to disambiguate
and infer types for sets and maps (17.9.5, 17.9.6), and finally a specification of
sets (17.9.7) and maps (17.9.8).

⟨listLiteral⟩ ::= const? ⟨typeArguments⟩? ‘[’ ⟨elements⟩? ‘]’

⟨setOrMapLiteral⟩ ::= const? ⟨typeArguments⟩? ‘{’ ⟨elements⟩? ‘}’

⟨elements⟩ ::= ⟨element⟩ (‘,’ ⟨element⟩)* ‘,’?

Dart Programming Language Specification 113

⟨element⟩ ::= ⟨expressionElement⟩
| ⟨mapElement⟩
| ⟨spreadElement⟩
| ⟨ifElement⟩
| ⟨forElement⟩

⟨expressionElement⟩ ::= ⟨expression⟩

⟨mapElement⟩ ::= ⟨expression⟩ ‘:’ ⟨expression⟩

⟨spreadElement⟩ ::= (‘...’ | ‘...?’) ⟨expression⟩

⟨ifElement⟩ ::= if ‘(’ ⟨expression⟩ ‘)’ ⟨element⟩ (else ⟨element⟩)?

⟨forElement⟩ ::= await? for ‘(’ ⟨forLoopParts⟩ ‘)’ ⟨element⟩

Syntactically, a collection literal can be a ⟨listLiteral⟩ or a ⟨setOrMapLiteral⟩. △

The contents of the collection is specified as a sequence of collection literal ele- △

ments, in short elements. Each element may be a declarative specification of a △

single entity, such as an ⟨expressionElement⟩ or a ⟨mapElement⟩, it may specify
a collection which is to be included, of the form ⟨spreadElement⟩, or it may be
a computational element specifying how to obtain zero or more entities, of the
form ⟨ifElement⟩ or ⟨forElement⟩.

Terms derived from ⟨element⟩, and the ability to build collections from them,
is also known as UI-as-code. △

The leaf elements of an element ℓ derived from ⟨expressionElement⟩ or △

⟨mapElement⟩ is {ℓ}. The leaf elements of an element of the form if (e) ℓ or
for (forLoopParts) ℓ is the leaf elements of ℓ. The leaf elements of an element
of the form if (e) ℓ1 else ℓ2 is the union of the leaf elements of ℓ1 and ℓ2. The
leaf elements of a ⟨spreadElement⟩ is the empty set.

The leaf elements of a collection literal is always a set of expression elements
and/or map elements.

In order to allow collection literals to occur as constant expressions, we
specify what it means for an element ℓ to be constant or potentially constant: △

△

• When ℓ is an ⟨expressionElement⟩ of the form e:
ℓ is a potentially constant element if e is a potentially constant expression,
and ℓ is a constant element if e is a constant expression.

• When ℓ is a ⟨mapElement⟩ of the form ‘e1: e2’:
ℓ is a potentially constant element if both e1 and e2 are potentially con-
stant expressions, and it is a constant element if they are constant expres-
sions.

• When ℓ is a ⟨spreadElement⟩ of the form ‘...e’ or ‘...?e’:
ℓ is a potentially constant element if e is a potentially constant expression.

Dart Programming Language Specification 114

ℓ is a constant element if e is a constant expression that evaluates to a
List, Set, or Map instance originally created by a list, set, or map literal.
Moreover, ℓ is a constant element if it is ‘...?e’, where e is a constant
expression that evaluates to the null object.

• When ℓ is an ⟨ifElement⟩ of the form if (b) ℓ1 or the form if (b) ℓ1 else ℓ2:
ℓ is a potentially constant element if b is a potentially constant expression,
ℓ1 is potentially constant, and so is ℓ2, if present.
ℓ is a constant element if b is a constant expression and:

– ℓ is if (b) ℓ1 and either b evaluates to true and ℓ1 is constant, or b
evaluates to false and ℓ1 is potentially constant.

– ℓ is if (b) ℓ1 else ℓ2 and either b evaluates to true, ℓ1 is constant,
and ℓ2 is potentially constant; or b evaluates to false, ℓ1 is potentially
constant, and ℓ2 is constant.

A ⟨forElement⟩ can never occur in a constant collection literal.

17.9.1 Type Promotion collectionLiteralTypePromotion

An ⟨ifElement⟩ interacts with type promotion in the same way that if state-
ments do. Let ℓ be an ⟨ifElement⟩ of the form if (b) ℓ1 or if (b) ℓ1 else ℓ2. If
b shows that a local variable v has type T , then the type of v is known to be T
in ℓ1, unless any of the following are true:

• v is potentially mutated in ℓ1,

• v is potentially mutated within a function other than the one where v is
declared, or

• v is accessed by a function defined in ℓ1 and v is potentially mutated
anywhere in the scope of v.

Type promotion will likely get more sophisticated in a future version of Dart.
When that happens, ⟨ifElement⟩s will continue to match if statements (18.5).

17.9.2 Collection Literal Element Evaluation collectionLiteralElementEvaluation

The evaluation of a sequence of collection literal elements (17.9) yields a col- △

lection literal object sequence, also called an object sequence when no ambiguity △

can arise.
We use the notation [[. . .]] to denote an object sequence with explicitly listed △

elements, and we use ‘+’ to compute the concatenation of object sequences (as
in s1 +s2), which is an operation that will succeed and has no side-effects. Each
element in the sequence is an object o or a pair o1 : o2. There is no notion of
an element type for an object sequence, and hence no notion of dynamic errors
arising from a type mismatch during concatenation.

Dart Programming Language Specification 115

Object sequences can safely be treated as a low-level mechanism which may
omit otherwise required actions like dynamic type checks because every access to an
object sequence occurs in code created by language defined desugaring on statically
checked constructs. It is left unspecified how an object sequence is implemented,
it is only required that it contains the indicated objects or pairs in the given order.
For each kind of collection, the sequence is used in the given order to populate
the collection, in a manner which is specific to the kind, and which is specified
separately (17.9.4, 17.9.7, 17.9.8).

There may be an actual data structure representing the object sequence at run
time, but the object sequence could also be eliminated, e.g., because each element
is inserted directly into the target collection as soon as it has been computed.
Note that each object sequence will exclusively contain objects, or it will exclusively
contain pairs, because any attempt to create a mixed sequence would cause an error
at compile time or at run time (the latter may occur for a spread element with static
type dynamic).

Assume that a literal collection target is given, and the object sequence
obtained as described below will be used to populate target. Let Ttarget denote
the dynamic type of target.

Access to the type of target is needed below in order to raise dynamic errors at
specific points during the evaluation of an object sequence. Note that the dynamic
type of target is statically known, except for the binding of any type variables in its
⟨typeArguments⟩. This implies that some questions can be answered at compile-
time, e.g., whether or not Iterable occurs as a superinterface of Ttarget . In any
case, Ttarget is guaranteed to implement Iterable (when target is a list or a set)
or Map (when target is a map), but never both.

Assume that a location in code and a dynamic context is given, such that
ordinary expression evaluation is possible. Evaluation of a collection literal △

element sequence at that location and in that context is specified as follows:
Let ssyntax of the form ℓ1, . . . , ℓk be a sequence of collection literal ele-

ments. The sequence of objects sobject obtained by evaluating ssyntax is the
concatenation of the sequences of objects obtained by evaluating each element
ℓj , j ∈ 1..k: sobject = evaluateElement(ℓ1) + . . . + evaluateElement(ℓk), where
evaluateElement(ℓj) denotes the object sequence yielded by evaluation of a sin-
gle collection literal element ℓj .

When a pseudo-statement of the form s := s + evaluateElement(ℓ); is used
in normative code below, it denotes the extension of s with the object sequence
yielded by evaluation of ℓ, but it also denotes the specification of actions taken
to produce said object sequence, and to produce the side effects associated
with this computation, as implied by evaluation of expressions and execution of
statements as specified below for the evaluation of evaluateElement(ℓ).

When a pseudo-statement of the form evaluateElement(ℓ) := s; occurs in
normative code below, it occurs at a point where the computation is com-
plete and it specifies that the value of evaluateElement(ℓ) is s. Evaluation △

of a collection literal element ℓ in the given context to an object sequence
evaluateElement(ℓ) is then specified as follows: △

Case ⟨Expression element⟩. In this case ℓ is an expression e; e is evaluated

Dart Programming Language Specification 116

to an object o and evaluateElement(ℓ) := [[o]]. □

Case ⟨Map element⟩. In this case ℓ is pair of expressions e1:e2; first
e1 is evaluated to an object o1, then e2 is evaluated to an object o2, and
evaluateElement(ℓ) := [[o1 : o2]]. □

Case ⟨Spread element⟩. The element ℓ is of the form ‘...e’ or ‘...?e’.
Evaluate e to an object ospread .

1. When ℓ is ‘...e’: If ospread is the null object then a dynamic error occurs.
Otherwise evaluation proceeds with step 2.
When ℓ is ‘...?e’: If ospread is the null object then evaluateElement(ℓ) :=
[[]]. Otherwise evaluation proceeds with step 2.

2. Let Tspread be the dynamic type of ospread . Let S be the static type of e.
When S is not a top type (15.2), let Sspread be S. When S is a top type: If
target is a list or a set then let Sspread be Iterable<dynamic>; otherwise
(where target is a map), let Sspread be Map<dynamic, dynamic>.

• When target is a list or a set and Tspread implements (11.2) Iterable,
the following code is executed in the context where ℓ occurs, where
spread, s, v, and value are fresh variables, and Value is a fresh type
variable bound to the actual type argument of Ttarget at Iterable
(11.2):

Sspread spread = ospread;
var s = [[;]]
for (var v in spread) {

Value value = v;
s := s + [[value]];

}
evaluateElement(ℓ) := s;

The code makes use of a pseudo-variable s denoting an object sequence.
We do not specify the type of s, this variable is only used to indicate the
required semantic actions taken to gather the resulting object sequence.
In the case where the implementation does not have a representation
of s at all, the action may be to extend target immediately. A similar
approach is used in subsequent cases.

• When target is a map and Tspread implements Map, the following
code is executed in the context where ℓ occurs, where spread, s, v,
key, and value are fresh variables, and Key and Value are fresh type
variables bound to the first respectively second actual type argument
of Ttarget at Map:

Dart Programming Language Specification 117

Sspread spread = ospread;
var s = [[;]]
for (var v in spread) {

Key key = v.key;
Value value = v.value;
s := s + [[key : value]];

}
evaluateElement(ℓ) := s;

It is allowed for an implementation to delay the dynamic errors that
occur if the given key does not have the type Key, or the given value
does not have the type Value, but it cannot occur after the pair has
been appended to s.

• Otherwise, a dynamic error occurs.
This occurs when the target is an iterable respectively a map, and the
spread is not, which is possible for a spread whose static type is dynamic.

This may not be the most efficient way to traverse the items in a collec-
tion, and implementations may of course use any other approach with the same
observable behavior. However, in order to give implementations more room to
optimize we also allow the following.

If ospread is an object whose dynamic type implements (11.2) List, Queue,
or Set, an implementation may choose to call length on the object. If ospread is
an object whose dynamic type implements List, an implementation may choose
to call operator ‘[]’ in order to access elements from the list. If it does so, it
will only pass indices that are non-negative and less than the value returned by
length.

This may allow for more efficient code for allocating the collection and ac-
cessing its parts. The given classes are expected to have an efficient and side-
effect free implementation of length and operator ‘[]’. A Dart implementation
may detect whether these options apply at compile time based on the static type
of e, or at runtime based on the actual value. □

Case ⟨If element⟩. When ℓ is an ⟨ifElement⟩ of the form if (b) ℓ1 or
if (b) ℓ1 else ℓ2, the condition b is evaluated to a value ob. If ob is true then
evaluateElement(ℓ) := evaluateElement(ℓ1). If ob is false and ℓ2 is present
then evaluateElement(ℓ) := evaluateElement(ℓ2), and if ℓ2 is not present then
evaluateElement(ℓ) := [[]]. If ob is neither true nor false then a dynamic error
occurs. □

Case ⟨For element⟩. Let P be derived from ⟨forLoopParts⟩ and let ℓ be
a ⟨forElement⟩ of the form await? for (P) ℓ1, where ‘await?’ indicates that
await may be present or absent. To evaluate ℓ, the following code is executed
in the context where ℓ occurs, where await is present if and only if it is present
in ℓ:

Dart Programming Language Specification 118

var s = [[;]]
await? for (P) {

s := s + evaluateElement(ℓ1);
}
evaluateElement(ℓ) := s;

□

17.9.3 List Literal Inference listLiteralInference

This section specifies how a list literal list is traversed and an inferred element △

type for list is determined. We specify first how to infer the element type of a
single element, then how to use that result to infer the element type of list as a
whole.

The context type P (17.9.5) for each element of list is obtained from the con-
text type of list. If downwards inference constrains the type of list to List<Pe>
or Iterable<Pe> for some Pe then P is Pe. Otherwise, P is ?□ (17.9.5).

Let ℓ be a term derived from ⟨element⟩. Inference of the element type of ℓ
with context type P proceeds as follows, where the context type for inference
of an element type is always P , unless anything is said to the contrary:

Case ⟨Expression element⟩. In this case ℓ is an expression e. The inferred
element type of ℓ is the inferred type of e in context P . □

Case ⟨Map element⟩. This cannot occur: it is a compile-time error when a
leaf element of a list literal is a map element (17.9.4). □

Case ⟨Spread element⟩. Let e be the expression of ℓ. If ℓ is ‘...e’, let S be
the inferred type of e in context Iterable<P>. Otherwise (when ℓ is ‘...?e’),
let S be the non-nullable type of the inferred type of e in context Iterable<P>?.

• If S implements Iterable, the inferred element type of ℓ is the type
argument of S at Iterable.

• If S is dynamic, the inferred element type of ℓ is dynamic.

• If S is Null and the spread operator is ‘...?’, the inferred element type
of ℓ is Null.

• Otherwise, a compile-time error occurs.
□

Case ⟨If element⟩. In this case ℓ is of the form if (b) ℓ1 or if (b) ℓ1 else ℓ2.
The condition b is always inferred with a context type of bool.

Assume that ‘else ℓ2’ is not present. Then, if the inferred element type of
ℓ1 is S, the inferred element type of ℓ is S.

Otherwise, ‘else ℓ2’ is present. If the inferred element type of ℓ1 is S1 and
the inferred element type of ℓ2 is S2, the inferred element type of ℓ is the least
upper bound of S1 and S2. □

Case ⟨For element⟩. In this case ℓ is of the form await? for (P) ℓ1 where P

Dart Programming Language Specification 119

is derived from ⟨forLoopParts⟩ and ‘await?’ indicates that await may be present
or absent.

The same compile-time errors occur for ℓ as the errors that would occur with
the corresponding for statement await? for (P) {}, located in the same scope
as ℓ. Moreover, the errors and type analysis of ℓ is performed as if it occurred in
the body scope of said for statement. For instance, if P is of the form var v in e1
then the variable v is in scope for ℓ.

Inference for the parts (such as the iterable expression of a for-in, or the
⟨forInitializerStatement⟩ of a for loop) is done as for the corresponding for state-
ment, including await if and only if the element includes await. Then, if the
inferred element type of ℓ1 is S, the inferred element type of ℓ is S.

In other words, inference flows upwards from the body element. □

Finally, we define type inference on a list literal as a whole. Assume that △

list is derived from ⟨listLiteral⟩ and contains the elements ℓ1, . . . , ℓn, and the
context type for list is P .

• If P is ?□ then the inferred element type for list is T , where T is the least
upper bound of the inferred element types of ℓ1, . . . , ℓn.

• Otherwise, the inferred element type for list is T , where T is determined
by downwards inference.

In both cases, the static type of list is List<T>.

17.9.4 Lists lists

A list literal denotes a list object, which is an integer indexed collection of △

objects. The grammar rule for ⟨listLiteral⟩ is specified elsewhere (17.9).
When a given list literal e has no type arguments, the type argument T is

selected as specified elsewhere (17.9.3), and e is henceforth treated as (5) <T>e.
The static type of a list literal of the form <T>e is List<T> (17.9.3).
Let e be a list literal of the form <T>[ℓ1, . . . , ℓm]. It is a compile-time

error if a leaf element of e is a ⟨mapElement⟩. It is a compile-time error if, for
some j ∈ 1..m, ℓj does not have an element type, or the element type of ℓj may
not be assigned to T .

A list may contain zero or more objects. The number of objects in a list is
its size. A list has an associated set of indices. An empty list has an empty set
of indices. A non-empty list has the index set {0, . . . , n − 1} where n is the size
of the list. It is a dynamic error to attempt to access a list using an index that
is not a member of its set of indices.

The system libraries define many members for the type List, but we specify
only the minimal set of requirements which are used by the language itself.

If a list literal e begins with the reserved word const or e occurs in a constant
context (17.3.2), it is a constant list literal, which is a constant expression (17.3) △

and therefore evaluated at compile time. Otherwise, it is a run-time list literal △

and it is evaluated at run time. Only run-time list literals can be mutated after

Dart Programming Language Specification 120

they are created. Attempting to mutate a constant list literal will result in a
dynamic error.

Note that the collection literal elements of a constant list literal occur in a
constant context (17.3.2), which means that const modifiers need not be specified
explicitly.

It is a compile-time error if an element of a constant list literal is not constant.
It is a compile-time error if the type argument of a constant list literal (no matter
whether it is explicit or inferred) is not a constant type expression (17.3).

The binding of a formal type parameter of an enclosing class or function
is not known at compile time, so we cannot use such type parameters inside
constant expressions.

The value of a constant list literal const? <T>[ℓ1, . . . , ℓm] is an object o
whose class implements the built-in class List<t> where t is the actual value of
T (20.10.1), and whose contents is the object sequence o1, . . . , on obtained by
evaluation of ℓ1, . . . , ℓm (17.9.2). The ith object of o (at index i − 1) is then oi.

Let const? <T1>[ℓ11, . . . , ℓ1m1] and const? <T2>[ℓ21, . . . , ℓ2m2] be two con-
stant list literals. Let o1 with contents o11, . . . , o1n and actual type argument
t1 respectively o2 with contents o21, . . . , o2n and actual type argument t2 be the
result of evaluating them. Then identical(o1, o2) evaluates to true iff t1 ==
t2 and identical(o1i, o2i) evaluates to true for all i ∈ 1..n.

In other words, constant list literals are canonicalized. There is no need to
consider canonicalization for other instances of type List, because such instances
cannot be the result of evaluating a constant expression.

A run-time list literal <T>[ℓ1, . . . , ℓm] is evaluated as follows:

• The elements ℓ1, . . . , ℓm are evaluated (17.9.2), to an object sequence
[[o1, . . . , on]].

• A fresh instance (10.7.1) o, of size n, whose class implements the built-in
class List<t> is allocated, where t is the actual value of T (20.10.1).

• The operator ‘[]=’ is invoked on o with first argument i and second argu-
ment oi+1, 0 ≤ i < n.

• The result of the evaluation is o.

The objects created by list literals do not override the ‘==’ operator inherited
from the Object class.

Note that this document does not specify an order in which the elements are
set. This allows for parallel assignments into the list if an implementation so desires.
The order can only be observed as follows (and may not be relied upon): if element
i is not a subtype of the element type of the list, a dynamic type error will occur
when a[i] is assigned oi−1.

17.9.5 Set and Map Literal Disambiguation setAndMapLiteralDisambiguation

Some terms like {} and { ...id } are ambiguous: they may be either a set

Dart Programming Language Specification 121

literal or a map literal. This ambiguity is eliminated in two steps. The first step
uses only the syntax and context type, and is described in this section. The
second step uses expression types and is described next (17.9.6).

Let e be a ⟨setOrMapLiteral⟩ with leaf elements L and context type C. If
C is ?□ then let S be undefined. Otherwise let S be the greatest closure of
futureOrBase(C) (20.8).

A future version of this document will specify context types. The basic intuition
is that a context type is the type declared for a receiving entity such as a formal △

parameter p or a declared variable v. That type will be the context type for an
actual argument passed to p, respectively an initializing expression for v. In some
situations the context has no constraints, e.g., when a variable is declared with var
rather than a type annotation. This gives rise to an unconstrained context type, ?□, △

△which may also occur in a composite term, e.g., List< ?□>. The greatest closure of a
context type C is approximately the least common supertype of all types obtainable
by replacing ?□ by a type.

The disambiguation step of this section is the first applicable entry in the
following list:

• When e has type arguments T1, . . . , Tk, k > 0: If k = 1 then e is a set
literal with static type Set<T1>. If k = 2 then e is a map literal with
static type Map<T1, T2>. Otherwise a compile-time error occurs.

• When S implements (11.2) Iterable but not Map, e is a set literal. When
S implements Map but not Iterable, e is a map literal.

• When L ≠ ∅ (that is, e has leaf elements): If L contains a ⟨mapElement⟩ as
well as an ⟨expressionElement⟩, a compile-time error occurs. Otherwise, if
L contains an ⟨expressionElement⟩, e is a set literal. Otherwise L contains
a ⟨mapElement⟩, and e is a map literal.

• When e is of the form {} and S is undefined, e is a map literal. There is
no deeper reason for this choice, but the fact that {} is a map by default
was useful when set literals were introduced, because it would be a breaking
change to make it a set.

• Otherwise, e is still ambiguous. In this case e is non-empty, but contains
only spreads wrapped zero or more times in ⟨ifElement⟩s or ⟨forElement⟩s.
Disambiguation will then occur during inference (17.9.6).

When this step does not determine a static type, it will be determined by type
inference (17.9.6).

If this process successfully disambiguates the literal then we say that e is
unambiguously a set or unambiguously a map, as appropriate. △

△

17.9.6 Set and Map Literal Inference setAndMapLiteralInference

This section specifies how a ⟨setOrMapLiteral⟩ e is traversed and an associ-
ated inferred element type and/or an associated inferred key and value type pair △

△

Dart Programming Language Specification 122

is determined.
If e has an element type then it may be a set, and if it has a key and value type

pair then it may be a map. However, if the literal e contains a spread element of
type dynamic, that element cannot be used to determine whether e is a set or a
map. The ambiguity is represented as having both an element type and a key and
value type pair.

It is an error if the ambiguity is not resolved by some other elements, but if it
is resolved then the dynamic spread element is required to evaluate to a suitable
instance (implementing Iterable when e is a set, and implementing Map when e
is a map), which means that it is a dynamic error if there is a mismatch. In other
situations it is a compile-time error to have both an element type and a key and
value type pair, because e must be both a set and a map. Here is an example:

dynamic x = <int, int>{};
Iterable l = [];
Map m = {};

void main() {
var v1 = {...x}; // Compile-time error: ambiguous
var v2 = {...x, ...l}; // A set, dynamic error when ‘x‘ is evaluated
var v3 = {...x, ...m}; // A map, no dynamic errors
var v4 = {...l, ...m}; // Compile-time error: must be set and map

}

Let collection be a collection literal derived from ⟨setOrMapLiteral⟩. The
inferred type of an ⟨element⟩ is an element type T , a pair of a key and value
type (K, V), or both. It is computed relative to a context type P (17.9.5), which
is determined as follows:

• If collection is unambiguously a set (17.9.5) then P is Set<Pe>, where Pe is
determined by downwards inference, and may be ?□ (17.9.5) if downwards
inference does not constrain it.
A future version of this document will specify inference, the notion of down-
wards inference, and constraining. The brief intuition is that inference selects
values for type parameters in generic constructs where no type arguments
have been provided, aiming at a type which matches a given context type;
downwards inference does this by passing information from a given expression
into its subexpressions, and upwards inference propagates information in the
opposite direction. Constraints are expressed in terms of context types; being
unconstrained means having ?□ as the context type. Having a context type
that contains one or more occurrences of ?□ provides a partial constraint on
the inferred type.

• If collection is unambiguously a map then P is Map<Pk, Pv> where Pk

and Pv are determined by downwards inference, and may be ?□ if the
downwards context does not constrain one or both.

Dart Programming Language Specification 123

• Otherwise, collection is ambiguous, and the downwards context for the
elements of collection is ?□.

We say that a collection literal element can be a set if it has an element type; △

it can be a map if it has a key and value type pair; it must be a set if it can be △

△a set and has and no key and value type pair; and it must be a map if can be a
△map and has no element type.

Let ℓ be a term derived from ⟨element⟩. Inference of the type of ℓ with △

context type P then proceeds as follows:
Case ⟨Expression element⟩. In this case ℓ is an expression e. If P is ?□, the

inferred element type of ℓ is the inferred type of e in context ?□. If P is Set<Pe>,
the inferred element type of ℓ is the inferred type of e in context Pe. □

Case ⟨Map element⟩. In this case ℓ is a pair of expressions ek: ev. If P
is ?□, the inferred key and value type pair of ℓ is (K, V), where K and V is
the inferred type of ek respectively ev, in context ?□. If P is Map<Pk, Pv>, the
inferred key and value type pair of ℓ is (K, V), where K is the inferred type of
ek in context Pk, and the V is the inferred type of ev in context Pv. □

Case ⟨Spread element⟩. In this case ℓ is of the form ‘...e’ or ‘...?e’. If P
is ?□ then let S be the inferred type of e in context ?□. Then:

• If S implements Iterable, the inferred element type of ℓ is the type
argument of S at Iterable.
This is the result of constraint matching for X using the constraint S <:
Iterable<X>. Note that when S implements a class like Map or Iterable,
it cannot be a subtype of Null (11.2).

• If S implements Map, the inferred key and value type pair of ℓ is (K, V),
where K is the first and V the second type argument of S at Map.
This is the result of constraint matching for X and Y using the constraint
S <: Map<X, Y >.
Note that this case and the previous case can match on the same element
simultaneously when S implements both Iterable and Map. The same situ-
ation arises several times below. In such cases we rely on other elements to
disambiguate.

• If S is dynamic then the inferred element type of ℓ is dynamic, and the
inferred key and value type pair of ℓ is (dynamic, dynamic).
We produce both an element type and a key and value type pair here, and
rely on other elements to disambiguate.

• If S is Null and the spread operator is ‘...?’ then the inferred element
type of ℓ is Null, and the inferred key and value type pair (Null, Null).

• Otherwise, a compile-time error occurs.

Otherwise, if P is Set<Pe> then let S be the inferred type of e in context
Iterable<Pe>, and then:

Dart Programming Language Specification 124

• If S implements Iterable, the inferred element type of ℓ is the type
argument of S at Iterable. This is the result of constraint matching for X
using the constraint S <: Iterable<X>.

• If S is dynamic, the inferred element type of ℓ is dynamic.

• If S is Null and the spread operator is ‘...?’, the inferred element type
of ℓ is Null.

• Otherwise, a compile-time error occurs.

Otherwise, if P is Map<Pk, Pv> then let S be the inferred type of e in context
P , and then:

• If S implements Map, the inferred key and value type pair of ℓ is (K, V),
where K is the first and V the second type argument of S at Map. This
is the result of constraint matching for X and Y using the constraint S <:
Map<X, Y >.

• If S is dynamic, the inferred key and value type pair of ℓ is
(dynamic, dynamic).

• If S is Null and the spread operator is ‘...?’, the inferred key and value
type pair (Null, Null).

• Otherwise, a compile-time error occurs.
□

Case ⟨If element⟩. In this case ℓ is of the form if (b) ℓ1 or if (b) ℓ1 else ℓ2.
The condition b is always inferred with a context type of bool.

Assume that ‘else ℓ2’ is not present. Then:

• If the inferred element type of ℓ1 is S, the inferred element type of ℓ is S.

• If the inferred key and value type pair of ℓ1 is (K, V), the inferred key and
value type pair of ℓ is (K, V).

Otherwise, ‘else ℓ2’ is present. It is a compile error if ℓ1 must be a set and
ℓ2 must be a map, or vice versa.

This means that one cannot spread a map on one branch and a set on the
other. Since dynamic provides both an element type and a key and value type pair,
a dynamic spread in either branch does not cause the error to occur.

Then:

• If the inferred element type of ℓ1 is S1 and the inferred element type of
ℓ2 is S2, the inferred element type of ℓ is the least upper bound of S1 and
S2.

• If the inferred key and value type pair of e1 is (K1, V1) and the inferred
key and value type pair of e2 is (K2, V2), the inferred key and value type
pair of ℓ is (K, V), where K is the least upper bound of K1 and K2, and
and V is the least upper bound of V1 and V2.

Dart Programming Language Specification 125

□

Case ⟨For element⟩. In this case ℓ is of the form await? for (P) ℓ1 where P
is derived from ⟨forLoopParts⟩ and ‘await?’ indicates that await may be present
or absent.

The same compile-time errors occur for ℓ as the errors that would occur with
the corresponding for statement await? for (P) {}, located in the same scope
as ℓ. Moreover, the errors and type analysis of ℓ is performed as if it occurred
in the body scope of said for statement.

For instance, if P is of the form var v in e1 then the variable v is in scope for
ℓ.

Inference for the parts (such as the iterable expression of a for-in, or the
⟨forInitializerStatement⟩ of a for loop) is done as for the corresponding for state-
ment, including await if and only if the element includes await.

• If the inferred element type of ℓ1 is S then the inferred element type of ℓ
is S.

• If the inferred key and value type pair of e1 is (K, V), the inferred key and
value type pair of ℓ is (K, V).

In other words, inference flows upwards from the body element. □

Finally, we define type inference on a set or map literal as a whole. Assume △

that collection is derived from ⟨setOrMapLiteral⟩, and the context type for
collection is P .

• If collection is unambiguously a set:

– If P is ?□ then the static type of collection is Set<T> where T is the
least upper bound of the inferred element types of the elements.

– Otherwise, the static type of collection is T where T is determined
by downwards inference.
Note that the inference will never produce a key and value type pair with
the given context type.

The static type of collection is then Set<T>.

• If collection is unambiguously a map where P is Map<Pk, Pv> or P is ?□
and the inferred key and value type pairs are (K1, V1), . . . , (Kn, Vn):
If Pk is ?□ or P is ?□, the static key type of collection is K where K is
the least upper bound of K1, . . . , Kn. Otherwise the static key type of
collection is K where K is determined by downwards inference.
If Pv is ?□ or P is ?□, the static value type of collection is V where V is
the least upper bound of V1, . . . , Vn. Otherwise the static value type of
collection is V where V is determined by downwards inference.
Note that inference will never produce a element type here given this down-
wards context.
The static type of collection is then Map<K, V >.

Dart Programming Language Specification 126

• Otherwise, collection is still ambiguous, the downwards context for the
elements of collection is ?□, and the disambiguation is done using the
immediate elements of collection as follows:

– If all elements can be a set, and at least one element must be a set,
then collection is a set literal with static type Set<T> where T is the
least upper bound of the element types of the elements.

– If all elements can be a map, and at least one element must be a
map, then e is a map literal with static type Map<K, V > where K is
the least upper bound of the key types of the elements and V is the
least upper bound of the value types.

– Otherwise, a compile-time error occurs. In this case the literal cannot
be disambiguated.

This last error can occur if the literal must be both a set and a map. Here is
an example:

var iterable = [1, 2];
var map = {1: 2};
var ambiguous = {...iterable, ...map}; // Compile-time error

Or, if there is nothing indicates that it is either a set or a map:

dynamic dyn;
var ambiguous = {...dyn}; // Compile-time error

17.9.7 Sets sets

A set literal denotes a set object. The grammar rule for ⟨setOrMapLiteral⟩ △

which covers set literals as well as map literals occurs elsewhere (17.9). A
set literal consists of zero or more collection literal elements (17.9). A term
derived from ⟨setOrMapLiteral⟩ may be a set literal or a map literal, and it is
determined via a disambiguation step whether it is a set literal or a map literal
(17.9.5, 17.9.6).

When a given set literal e has no type arguments, the type argument T is
selected as specified elsewhere (17.9.6), and e is henceforth treated as (5) <T>e.

The static type of a set literal of the form <T>e is Set<T> (17.9.6).
Let e be a set literal of the form <T>{ℓ1, . . . , ℓm}. It is a compile-time

error if a leaf element of e is a ⟨mapElement⟩. It is a compile-time error if, for
some j ∈ 1..m, ℓj does not have an element type, or the element type of ℓj may
not be assigned to T .

A set may contain zero or more objects. Sets have a method which can be
used to insert objects; this will incur a dynamic error if the set is not modifiable.
Otherwise, when inserting an object onew into a set s, if an object oold exists in
s such that oold == onew evaluates to true then the insertion makes no changes

Dart Programming Language Specification 127

to s; if no such object exists, onew is added to s; in both cases the insertion
completes successfully.

A set is ordered: iteration over the elements of a set occurs in the order the
elements were added to the set.

The system libraries define many members for the type Set, but we specify only
the minimal set of requirements which are used by the language itself.

Note that an implementation may require consistent definitions of several mem-
bers of a class implementing Set in order to work correctly. For instance, there
may be a getter hashCode which is required to have a behavior which is in some
sense consistent with operator ‘==’. Such constraints are documented in the system
libraries.

If a set literal e begins with the reserved word const or e occurs in a constant
context (17.3.2), it is a constant set literal which is a constant expression (17.3) △

and therefore evaluated at compile time. Otherwise, it is a run-time set literal △

and it is evaluated at run time. Only run-time set literals can be mutated after
they are created. Attempting to mutate a constant set literal will result in a
dynamic error.

Note that the element expressions of a constant set literal occur in a constant
context (17.3.2), which means that const modifiers need not be specified explicitly.

It is a compile-time error if a collection literal element in a constant set
literal is not a constant expression. It is a compile-time error if an element in a
constant set literal does not have primitive equality (10.2.3). It is a compile-time
error if two elements of a constant set literal are equal according to their ‘==’
operator (17.27). It is a compile-time error if the type argument of a constant
set literal (no matter whether it is explicit or inferred) is not a constant type
expression (17.3).

The binding of a formal type parameter of an enclosing class or function
is not known at compile time, so we cannot use such type parameters inside
constant expressions.

The value of a constant set literal const? <T>{ℓ1, . . . , ℓm} is an object o
whose class implements the built-in class Set<t> where t is the actual value
of T (20.10.1), and whose contents is the set of objects in the object sequence
o1, . . . , on obtained by evaluation of ℓ1, . . . , ℓm (17.9.2). The elements of o
occur in the same order as the objects in said object sequence (which can be
observed by iteration).

Let const? <T1>{ ℓ11, . . . , ℓ1m1 } and const? <T2>{ ℓ21, . . . , ℓ2m2 } be two con-
stant set literals. Let o1 with contents o11, . . . , o1n and actual type argument t1
respectively o2 with contents o21, . . . , o2n and actual type argument t2 be the
result of evaluating them. Then identical(o1, o2) evaluates to true iff t1 ==
t2 and identical(o1i, o2i) evaluates to true for all i ∈ 1..n.

In other words, constant set literals are canonicalized if they have the same type
argument and the same values in the same order. Two constant set literals are never
identical if they have a different number of elements. There is no need to consider
canonicalization for other instances of type Set, because such instances cannot be
the result of evaluating a constant expression.

A run-time set literal <T>{ℓ1, . . . , ℓn} is evaluated as follows:

Dart Programming Language Specification 128

• The elements ℓ1, . . . , ℓm are evaluated (17.9.2), to an object sequence
[[o1, . . . , on]].

• A fresh object (10.7.1) o implementing the built-in class Set<t> is created,
where t is the actual value of T (20.10.1).

• For each object oj in o1, . . . , on, in order, oj is inserted into o. Note that
this leaves o unchanged when o already contains and object o which is equal
to oj according to operator ‘==’.

• The result of the evaluation is o.

The objects created by set literals do not override the ‘==’ operator inherited
from the Object class.

17.9.8 Maps maps

A map literal denotes a map object, which is a mapping from keys to values. △

The grammar rule for ⟨setOrMapLiteral⟩ which covers both map literals and set
literals occurs elsewhere (17.9). A map literal consists of zero or more collection
literal elements (17.9). A term derived from ⟨setOrMapLiteral⟩ may be a set
literal or a map literal, and it is determined via a disambiguation step whether
it is a set literal or a map literal (17.9.5, 17.9.6).

When a given map literal e has no type arguments, the type arguments K
and V are selected as specified elsewhere (17.9.6), and e is henceforth treated
as (5) <K, V >e.

The static type of a map literal of the form <K, V >e is Map<K, V > (17.9.6).
Let e be a map literal of the form <K, V >{ℓ1, . . . , ℓm}. It is a compile-time

error if a leaf element of e is an ⟨expressionElement⟩. It is a compile-time error
if, for some j ∈ 1..m, ℓj does not have a key and value type pair; or the key and
value type pair of ℓj is (Kj , Vj), and Kj may not be assigned to K or Vj may
not be assigned to V .

A map object consists of zero or more map entries. Each entry has a key △

and a value, and we say that the map binds or maps the key to the value. A △

△

△

key and value pair is added to a map using operator ‘[]=’, and the value for a
given key is retrieved from a map using operator ‘[]’. The keys of a map are
treated similarly to a set (17.9.7): When binding a key knew to a value v in a
map m (as in m[knew] = v), if m already has a key kold such that kold == knew
evaluates to true, m will bind kold to v; otherwise (when no such key kold exists),
a binding from knew to v is added to m.

A map is ordered: iteration over the keys, values, or key/value pairs occurs
in the order in which the keys were added to the set.

The system libraries support many operations on an instance whose type imple-
ments Map, but we specify only the minimal set of requirements which are used by
the language itself.

Note that an implementation may require consistent definitions of several mem-
bers of a class implementing Map in order to work correctly. For instance, there

Dart Programming Language Specification 129

may be a getter hashCode which is required to have a behavior which is in some
sense consistent with operator ‘==’. Such constraints are documented in the system
libraries.

If a map literal e begins with the reserved word const, or if e occurs in
a constant context (17.3.2), it is a constant map literal which is a constant △

expression (17.3) and therefore evaluated at compile time. Otherwise, it is a
run-time map literal and it is evaluated at run time. Only run-time map literals △

can be mutated after they are created. Attempting to mutate a constant map
literal will result in a dynamic error.

Note that the key and value expressions of a constant map literal occur in a
constant context (17.3.2), which means that const modifiers need not be specified
explicitly.

It is a compile-time error if a collection literal element in a constant map
literal is not constant. It is a compile-time error if a key in a constant map
literal does not have primitive equality (10.2.3). It is a compile-time error if two
keys of a constant map literal are equal according to their ‘==’ operator (17.27).
It is a compile-time error if a type argument of a constant map literal (no matter
whether it is explicit or inferred) is not a constant type expression (17.3).

The binding of a formal type parameter of an enclosing class or function
is not known at compile time, so we cannot use such type parameters inside
constant expressions.

The value of a constant map literal const? <T1, T2>{ℓ1, . . . , ℓm} is an ob-
ject o whose class implements the built-in class Map<t1, t2>, where t1 and t2 is
the actual value of T1 respectively T2 (20.10.1). The key and value pairs of o is
the pairs of the object sequence k1 : v1, . . . , kn : vn obtained by evaluation of
ℓ1, . . . , ℓm (17.9.2), in that order.

Let const? <U1, V1>{ℓ1, . . . , ℓm1} and const? <U2, V2>{ℓ1, . . . , ℓm2} be
two constant map literals. Let o1 with contents k11 : v11, . . . , k1n : v1n and
actual type arguments u1, v1 respectively o2 with contents k21 : v21, . . . , k2n :
v2n and actual type argument u2, v2 be the result of evaluating them. Then
identical(o1, o2) evaluates to true iff u1 == u2, v1 == v2, identical(k1i,
k2i), and identical(v1i, v2i) for all i ∈ 1..n.

In other words, constant map literals are canonicalized. There is no need to
consider canonicalization for other instances of type Map, because such instances
cannot be the result of evaluating a constant expression.

A run-time map literal <T1, T2>{ℓ1, . . . , ℓm} is evaluated as follows:

• The elements ℓ1, . . . , ℓm are evaluated (17.9.2), to an object sequence
[[k1 : v1, . . . , kn : vn]].

• A fresh instance (10.7.1) o whose class implements the built-in class Map<t1, t2>
is allocated, where t1 and t2 are the actual values of T1 respectively T2
(20.10.1).

• The operator ‘[]=’ is invoked on o with first argument ki and second
argument vi, for each i ∈ 1..n, in that order.

Dart Programming Language Specification 130

• The result of the evaluation is o.

The objects created by map literals do not override the ‘==’ operator inher-
ited from the Object class.

17.10 Throw throw

The throw expression is used to throw an exception. △

⟨throwExpression⟩ ::= throw ⟨expression⟩

⟨throwExpressionWithoutCascade⟩ ::= throw ⟨expressionWithoutCascade⟩

Evaluation of a throw expression of the form throw e; proceeds as follows:
The expression e is evaluated to an object v (17.1).
There is no requirement that the expression e must evaluate to any special kind

of object.
If v is the null object (17.4), then a NullThrownError is thrown. Otherwise

let t be a stack trace corresponding to the current execution state, and the
throw statement throws with v as exception object and t as stack trace (17.1).

If v is an instance of class Error or a subclass thereof, and it is the first time
that Error object is thrown, the stack trace t is stored on v so that it will be
returned by the stackTrace getter inherited from Error.

If the same Error object is thrown more than once, its stackTrace getter will
return the stack trace from the first time it was thrown.

The static type of a throw expression is ⊥.

17.11 Function Expressions functionExpressions

A function literal is an anonymous declaration and an expression that en- △

capsulates an executable unit of code.

⟨functionExpression⟩ ::= ⟨formalParameterPart⟩ ⟨functionExpressionBody⟩

⟨functionExpressionBody⟩ ::= async? ‘=>’ ⟨expression⟩
| (async ‘*’? | sync ‘*’)? ⟨block⟩

The grammar does not allow a function literal to declare a return type, but
it is possible for a function literal to have a declared return type, because it can △

be obtained by means of type inference. Such a return type is included when
we refer to the declared return type of a function.

Type inference will be specified in a future version of this document. Currently
we consider type inference to be a phase that has completed, and this document
specifies the meaning of Dart programs where inferred types have already been
added.

We say that a type T derives a future type F in the following cases, using △

the first applicable case:

Dart Programming Language Specification 131

• If T is a type which is introduced by a class, mixin, or enum declaration,
and if T or a direct or indirect superinterface (11.2) of T is Future<U>
for some U , then T derives the future type Future<U>.

• If T is the type FutureOr<U> for some U , then T derives the future type
FutureOr<U>.

• If T is S? for some S, and S derives the future type F , then T derives
the future type F?.

• If T is a type variable with bound B, and B derives the future type F ,
then T derives the future type F .

• There is no rule for the case where T is of the form X & S because this will
never occur (this concept is only used in flatten, which is defined below).

When none of these cases are applicable, we say that T does not derive a
future type.

Note that if T derives a future type F then T <: F , and F is always of the form
G<...> or G<...>?, where G is Future or FutureOr. The proof is by induction
on the structure of T :

• If T is a type which is introduced by a class, mixin, or enum declaration, and
if T or a direct or indirect superinterface (11.2) of T is Future<U> for some
U , then, letting G = Future and F = G<U>, T <: F .

• If T is the type FutureOr<U> for some U , then by reflexivity, T <: FutureOr<U>.
Letting G = FutureOr and F = G<U>, it follows that T <: F .

• If T is S? for some S, and S derives the future type F ′, then by the induction
hypothesis, S <: F ′, where F ′ is of the form G′<U> or G′<U>? and G′ is
Future or FutureOr. Therefore, S? <: F ′?, and by substitution, T <:
F ′?. Since T?? = T? for all T , it follows that T <: G′<U>?. So, letting
G = G′ and F = G<U>?, it follows that T <: F .

• If T is a type variable with bound B, and B derives the future type F , then
by the induction hypothesis, B <: F ′, where F ′ is of the form G′<U> or
G′<U>? and G′ is Future or FutureOr. Also, since B is the bound of T ,
T <: B, so by transitivity, T <: F ′. Therefore, letting G = G′ and F = F ′,
it follows that T <: F .

Also note that ’derives’ in this context refers to the computation where a type
T is given, the supertypes of T are searched, and a type F of one of those forms is
selected. There is no connection to the notion of a ’derived class’ meaning ’subclass’
that some programming language communities use.

We define the auxiliary function flatten(T) as follows, using the first appli- △

cable case:

• If T is X & S for some type variable X and type S then

Dart Programming Language Specification 132

– if S derives a future type U then flatten(T) △= flatten(U).

– otherwise, flatten(T) △= flatten(X).

• If T derives a future type Future<S> or FutureOr<S> then flatten(T) △= S.

• If T derives a future type Future<S>? or FutureOr<S>? then flatten(T) △=
S?.

• Otherwise, flatten(T) △= T .

This definition guarantees that for any type T , T <: FutureOr<flatten(T)>.
The proof is by induction on the structure of T :

• If T is X & S then

– if S derives a future type U , then T <: S and S <: U , so T <:
U . By the induction hypothesis, U <: FutureOr<flatten(U)>. Since
flatten(T) = flatten(U) in this case, it follows that U <: FutureOr<flatten(T)>,
and so T <: FutureOr<flatten(T)>.

– otherwise, T <: X. By the induction hypothesis, X <: FutureOr<flatten(X)>.
Since flatten(T) = flatten(X) in this case, it follows that U <:
FutureOr<flatten(T)>, and so T <: FutureOr<flatten(T)>.

• If T derives a future type Future<S> or FutureOr<S>, then, since Future<S>
<: FutureOr<S>, it follows that T <: FutureOr<S>. Since flatten(T) =
S in this case, it follows that T <: FutureOr<flatten(T)>.

• If T derives a future type Future<S>? or FutureOr<S>?, then, since
Future<S>? <: FutureOr<S>?, it follows that T <: FutureOr<S>?.
FutureOr<S>? <: FutureOr<S?> for any type S (this can be shown us-
ing the union type subtype rules and from Future<S> <: Future<S?> by
covariance), so by transivitity, T <: FutureOr<S?>. Since flatten(T) =
S? in this case, it follows that T <: FutureOr<flatten(T)>.

• Otherwise, flatten(T) = T , so FutureOr<flatten(T)> = FutureOr<T>.
Since T <: FutureOr<T>, it follows that T <: FutureOr<flatten(T)>.

Case ⟨Positional, arrow⟩. The static type of a function literal of the form
<X1 extends B1, . . . , Xs extends Bs>
(T1 a1, . . . , Tn an, [Tn+1 xn+1 = d1, . . . , Tn+k xn+k = dk]) => e
is
T0 Function<X1 ◁ B1, . . . , Xs ◁ Bs>(T1, . . . , Tn, [Tn+1, . . . , Tn+k]),
where T0 is the static type of e. □

Case ⟨Positional, arrow, future⟩. The static type of a function literal of the
form
<X1 extends B1, . . . , Xs extends Bs>
(T1 a1, . . . , Tn an, [Tn+1 xn+1 = d1, . . . , Tn+k xn+k = dk]) async => e

Dart Programming Language Specification 133

is
Future<flatten(T0)>
Function<X1 ◁ B1, . . . , Xs ◁ Bs>(T1, . . . , Tn, [Tn+1, . . . , Tn+k]),
where T0 is the static type of e. □

Case ⟨Named, arrow⟩. The static type of a function literal of the form
<X1 extends B1, . . . , Xs extends Bs>
(T1 a1, . . . , Tn an, {Tn+1 xn+1 = d1, . . . , Tn+k xn+k = dk}) => e
is
T0 Function<X1 ◁ B1, . . . , Xs ◁ Bs>(

T1, . . . , Tn, {rn+1 Tn+1 xn+1, . . . , rn+k Tn+k xn+k}),
where T0 is the static type of e. □

Case ⟨Named, arrow, future⟩. The static type of a function literal of the
form
<X1 extends B1, . . . , Xs extends Bs>
(T1 a1, . . . , Tn an, {Tn+1 xn+1 = d1, . . . , Tn+k xn+k = dk}) async => e
is
Future<flatten(T0)>
Function<X1 ◁ B1, . . . , Xs ◁ Bs>(

T1, . . . , Tn, {rn+1 Tn+1 xn+1, . . . , rn+k Tn+k xn+k}),
where T0 is the static type of e. □

Case ⟨Positional, block⟩. The static type of a function literal of the form
<X1 extends B1, . . . , XS extends BS>
(T1 a1, . . . , Tn an, [Tn+1 xn+1 = d1, . . . , Tn+k xn+k = dk]) { s }
is
dynamic
Function<X1 ◁ B1, . . . , Xs ◁ Bs>(T1, . . . , Tn, [Tn+1, . . . , Tn+k]) □

Case ⟨Positional, block, future⟩. The static type of a function literal of the
form
<X1 extends B1, . . . , Xs extends Bs>
(T1 a1, . . . , Tn an, [Tn+1 xn+1 = d1, . . . , Tn+k xn+k = dk]) async { s }
is
Future
Function<X1 ◁ B1, . . . , Xs ◁ Bs>(T1, . . . , Tn, [Tn+1, . . . , Tn+k]). □

Case ⟨Positional, block, stream⟩. The static type of a function literal of
the form
<X1 extends B1, . . . , Xs extends Bs>
(T1 a1, . . . , Tn an, [Tn+1 xn+1 = d1, . . . , Tn+k xn+k = dk]) async* { s
}
is
Stream
Function<X1 ◁ B1, . . . , Xs ◁ Bs>(T1, . . . , Tn, [Tn+1, . . . , Tn+k]). □

Case ⟨Positional, block, iterable⟩. The static type of a function literal of
the form
<X1 extends B1, . . . , Xs extends Bs>
(T1 a1, . . . , Tn an, [Tn+1 xn+1 = d1, . . . , Tn+k xn+k = dk]) sync* { s }
is

Dart Programming Language Specification 134

Iterable
Function<X1 ◁ B1, . . . , Xs ◁ Bs>(T1, . . . , Tn, [Tn+1, . . . , Tn+k]). □

Case ⟨Named, block⟩. The static type of a function literal of the form
<X1 extends B1, . . . , Xs extends Bs>
(T1 a1, . . . , Tn an, [Tn+1 xn+1 = d1, . . . , Tn+k xn+k = dk]) { s }
is
dynamic
Function<X1 ◁ B1, . . . , Xs ◁ Bs>(T1, . . . , Tn, [Tn+1, . . . , Tn+k]). □

Case ⟨Named, block, future⟩. The static type of a function literal of the
form
<X1 extends B1, . . . , Xs extends Bs>
(T1 a1, . . . , Tn an, {Tn+1 xn+1 = d1, . . . , Tn+k xn+k = dk}) async { s }
is
Future
Function<X1 ◁ B1, . . . , Xs ◁ Bs>(

T1, . . . , Tn, {rn+1 Tn+1 xn+1, . . . , rn+k Tn+k xn+k}). □

Case ⟨Named, block, stream⟩. The static type of a function literal of the
form
<X1 extends B1, . . . , Xs extends Bs>
(T1 a1, . . . , Tn an, {Tn+1 xn+1 = d1, . . . , Tn+k xn+k = dk}) async* { s
}
is
Stream
Function<X1 ◁ B1, . . . , Xs ◁ Bs>(

T1, . . . , Tn, {rn+1 Tn+1 xn+1, . . . , rn+k Tn+k xn+k}). □

Case ⟨Named, block, iterable⟩. The static type of a function literal of the
form
<X1 extends B1, . . . , Xs extends Bs>
(T1 a1, . . . , Tn an, {Tn+1 xn+1 = d1, . . . , Tn+k xn+k = dk}) sync* { s }
is
Iterable
Function<X1 ◁ B1, . . . , Xs ◁ Bs>(

T1, . . . , Tn, {rn+1 Tn+1 xn+1, . . . , rn+k Tn+k xn+k}). □

In all of the above cases, the type argument lists are omitted when m = 0,
and whenever Ti is not specified, i ∈ 1..n + k, it is considered to have been
specified as dynamic.

Evaluation of a function literal yields a function object o.
The run-time type of o is specified based on the static type T of the function

literal and the binding of type variables occurring in T at the occasion where the
evaluation occurred (9.3).

17.12 This this

The reserved word this denotes the target of the current instance member
invocation.

Dart Programming Language Specification 135

⟨thisExpression⟩ ::= this

The static type of this is the interface of the immediately enclosing class,
enum, or mixin, if any. The static type of this is the on type of the enclosing
extension, if any (13).

If none of those declarations exist, an occurrence of this is a compile-time error
(10).

It is a compile-time error if this appears, implicitly or explicitly, in a top-level
function or variable initializer, in a factory constructor, or in a static method
or variable initializer, or in the initializing expression of a non-late instance
variable.

17.13 Instance Creation instanceCreation

Instance creation expressions generally produce instances and invoke con-
structors to initialize them.

The exception is that a factory constructor invocation works like a regular func-
tion call. It may of course evaluate an instance creation expression and thus produce
a fresh instance, but no fresh instances are created as a direct consequence of the
factory constructor invocation.

It is a compile-time error if the type T in an instance creation expression of
one of the forms
new T.id(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k),
new T(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k),
const T.id(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k),
const T(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k)
is an enumerated type (14).

17.13.1 New new

The new expression invokes a constructor (10.7). △

⟨newExpression⟩ ::= new ⟨constructorDesignation⟩ ⟨arguments⟩

Let e be a new expression of the form
new T.id(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k) or the form
new T(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k).

It is a compile-time error if T is not a class or a parameterized type accessible
in the current scope, or if T is a parameterized type which is not a class. For
instance, new F<int>() is an error if F is a type alias that does not denote a class.

If T is a parameterized type (20.10) S<U1, . . . , Um>, let R be the generic
class S, and let X1 extends B1, . . . , Xp extends Bp be the formal type pa-
rameters of S. If T is not a parameterized type, let R be T .

• If e is of the form new T.id(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k)
it is a compile-time error if R.id is not the name of a constructor declared
by R, or id is not accessible.

Dart Programming Language Specification 136

• If e is of the form new T(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k)
it is a compile-time error if R is not the name of a constructor declared
by R.

Let q be the above-mentioned constructor named R.id or R.
It is a compile-time error if R is abstract and q is not a factory constructor. It

is a compile-time error if R is a non-generic class and T is a parameterized type.
It is a compile-time error if R is a generic class and T is not a parameterized
type. It is a compile-time error if R is a generic class, T is a parameterized
type, and m ̸= p. That is, the number of type arguments is incorrect. It is a
compile-time error if R is a generic class, T is a parameterized type, and T is
not regular-bounded (15.2).

If q is a redirecting factory constructor, it is a compile-time error if q in
some number of redirecting factory redirections redirects to itself. It is possible
and allowed for a redirecting factory q′ to enter an infinite loop, e.g., because q′

redirects to a non-redirecting factory constructor q′′ whose body uses q′ in an in-
stance creation expression. Only loops that consist exclusively of redirecting factory
redirections are detected at compile time.

Let Si be the static type of the formal parameter of the constructor R.id
(respectively R) corresponding to the actual argument ai, i ∈ 1..n + k. It is
a compile-time error if the static type of ai, i ∈ 1..n + k is not assignable to
[U1/X1, . . . , Um/Xm]Si. The non-generic case is covered with m = 0.

The static type of e is T .
Evaluation of e proceeds as follows:
First, the argument part

<U1, . . . , Um>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k)
is evaluated, yielding the evaluated actual argument part
<u1, . . . , um>(o1, . . . , on, xn+1: on+1, . . . , xn+k: on+k).
Note that the non-generic case is covered by letting m = 0. If for any j ∈ 1..n + k
the run-time type of oj is not a subtype of [u1/X1, . . . , um/Xm]Sj , a dynamic
type error occurs.

Case ⟨Non-loaded deferred constructors⟩. If T is a deferred type with prefix
p, then if p has not been successfully loaded, a dynamic error occurs. □

Case ⟨Generative constructors⟩. When q is a generative constructor (10.7.1)
evaluation proceeds to allocate a fresh instance (10.7.1), i, of class T . Then
q is executed to initialize i with respect to the bindings that resulted from
the evaluation of the argument list, and, if R is a generic class, with its type
parameters bound to u1, . . . , um.

If execution of q completes normally (18.0.1), e evaluates to i. Otherwise ex-
ecution of q throws an exception object x and stack trace t, and then evaluation
of e also throws exception object x and stack trace t (17.1). □

Case ⟨Redirecting factory constructors⟩. When q is a redirecting factory
constructor (10.7.2) of the form const? T(p1, . . . , pn+k) = c; or of the form
const? T.id(p1, . . . , pn+k) = c; where const? indicates that const may be
present or absent, the remaining evaluation of e is equivalent to evaluating new
c(v1, . . . , vn, xn+1: vn+1, . . . , xn+k: vn+k) in an environment where vj is

Dart Programming Language Specification 137

a fresh variable bound to oj for j ∈ 1..n+k, and Xj is bound to uj for j ∈ 1..m.
We need access to the type variables because c may contain them. □

Case ⟨Non-redirecting factory constructors⟩. When q is a non-redirecting
factory constructor, the body of q is executed with respect to the bindings that
resulted from the evaluation of the argument list, and with the type parameters,
if any, of q bound to the actual type arguments u1, . . . , um. If this execution
returns an object (18.0.1) then e evaluates to the returned object. Otherwise,
if the execution completes normally or returns with no object, then e evaluates
to the null object (17.4). Otherwise the execution throws an exception x and
stack trace t, and then evaluation of e also throws x and t (17.1).

A factory constructor can be declared in an abstract class and used safely,
as it will either produce a valid instance or throw. □

17.13.2 Const const

A constant object expression invokes a constant constructor (10.7.3). △

⟨constObjectExpression⟩ ::= const ⟨constructorDesignation⟩ ⟨arguments⟩

Let e be a constant object expression of the form
const T.id(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k) or the form
const T(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k).

It is a compile-time error if T is not a class or a parameterized type accessible
in the current scope, or if T is a parameterized type which is not a class. It is
a compile-time error if T is a deferred type (20.1). In particular, T must not be
a type variable.

It is a compile-time error if ai is not a constant expression for some i ∈
1..n + k.

If T is a parameterized type (20.10) S<U1, . . . , Um>, let R be the generic
class S, and let X1 extends B1, . . . , Xp extends Bp be the formal type pa-
rameters of S. If T is not a parameterized type, let R be T .

If T is a parameterized type, it is a compile-time error if Uj is not a constant
type expression for any j ∈ 1..m.

• If e is of the form const T.id(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k)
it is a compile-time error if R.id is not the name of a constant constructor
declared by R, or id is not accessible.

• If e is of the form const T(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k)
it is a compile-time error if R is not the name of a constant constructor
declared by R.

Let q be the above-mentioned constant constructor named R.id or R.
It is a compile-time error if R is abstract and q is not a factory constructor. It

is a compile-time error if R is a non-generic class and T is a parameterized type.
It is a compile-time error if R is a generic class and T is not a parameterized
type. It is a compile-time error if R is a generic class, T is a parameterized

Dart Programming Language Specification 138

type, and m ̸= p. That is, the number of type arguments is incorrect. It is a
compile-time error if R is a generic class, T is a parameterized type, and T is
not regular-bounded (15.2).

Let Si be the static type of the formal parameter of the constructor R.id
(respectively R) corresponding to the actual argument ai, i ∈ 1..n + k. It is
a compile-time error if the static type of ai, i ∈ 1..n + k is not assignable to
[U1/X1, . . . , Um/Xm]Si. The non-generic case is covered with m = 0.

The static type of e is T .
Evaluation of e proceeds as follows:
If e is of the form const T.id(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k)

let i be the value of the expression e′:
new T.id(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k).

Let o be the result of an evaluation of e′, at some point in time of some execution
of the program in the library L where e occurs. The result of an evaluation of e′

in L at some other time and/or in some other execution will yield a result o′, such
that o′ would be replaced by o by canonicalization as described below. This means
that the value is well-defined.

If e is of the form const T(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k),
let i be the value of new T(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k).
Which is well-defined for the same reason.

• If during execution of the program, a constant object expression has al-
ready evaluated to an instance j of class R with type arguments Ui, 1 ≤
i ≤ m, then:

– For each instance variable f of i, let vif be the value of the instance
variable f in i, and let vjf be the value of the instance variable f in
j. If identical(vif , vjf) for all instance variables f in i then the
value of e is j, otherwise the value of e is i.

• Otherwise the value of e is i.

In other words, constant objects are canonicalized. In order to determine if an
object is actually new, one has to compute it; then it can be compared to any
cached instances. If an equivalent object exists in the cache, we throw away the
newly created object and use the cached one. Objects are equivalent if they have
identical type arguments and identical instance variables. Since the constructor
cannot induce any side effects, the execution of the constructor is unobservable.
The constructor need only be executed once per call site, at compile time.

It is a compile-time error if evaluation of a constant object results in an
uncaught exception being thrown.

To see how such situations might arise, consider the following examples:

class A {
final x;
const A(p): x = p * 10;

}

Dart Programming Language Specification 139

class IntPair {
const IntPair(this.x, this.y);
final int x;
final int y;
operator *(v) => new IntPair(x*v, y*v);

}

const a1 = const A(true); // compile-time error
const a2 = const A(5); // legal
const a3 = const A(const IntPair(1,2)); // compile-time error

Due to the rules governing constant constructors, evaluating the constructor
A() with the argument "x" or the argument const IntPair(1, 2) would cause
it to throw an exception, resulting in a compile-time error. In the latter case, the
error is caused by the fact that operator * can only be used with a few “well-
known” types, which is required in order to avoid running arbitrary code during the
evaluation of constant expressions.

17.14 Spawning an Isolate spawningAnIsolate

Spawning an isolate is accomplished via what is syntactically an ordinary
method call, invoking one of the static methods spawnUri or spawn defined in
the Isolate class in the library dart:isolate. However, such calls have the
semantic effect of creating a new isolate with its own memory and thread of
control.

An isolate’s memory is finite, as is the space available to its thread’s call
stack. It is possible for a running isolate to exhaust its memory or stack, result-
ing in a dynamic error that cannot be effectively caught, which will force the
isolate to be suspended.

As discussed in section 7, the handling of a suspended isolate is the responsibility
of the runtime.

17.15 Function Invocation functionInvocation

Function invocation occurs in the following cases: when a function expression
(17.11) is invoked (17.15.5), when a method (17.21), getter (17.19, 17.22) or
setter (17.23) is invoked, or when a constructor is invoked (either via instance
creation (17.13), constructor redirection (10.7.1), or super initialization). The
various kinds of function invocation differ as to how the function to be invoked,
f , is determined, as well as whether this (17.12) is bound. Once f has been
determined, formal type parameters of f are bound to the corresponding actual
type arguments, and the formal parameters of f are bound to corresponding
actual arguments. When the body of f is executed it will be executed with the
aforementioned bindings.

Executing a body of the form => e is equivalent to executing a body of the

Dart Programming Language Specification 140

form { return e; }. Execution a body of the form async => e is equivalent
to executing a body of the form async { return e; }.

If f is synchronous and is not a generator (9) then execution of the body
of f begins immediately. If the execution of the body of f returns an object v
(18.0.1), the invocation evaluates to v. If the execution completes normally or it
returns without an object, the invocation evaluates to the null object (17.4). If
the execution throws an exception object and stack trace, the invocation throws
the same exception object and stack trace (17.1).

A complete function body can never break or continue (18.0.1) because a break
or continue statement must always occur inside the statement that is the target of
the break or continue. This means that a function body can only either complete
normally, throw, or return. Completing normally or returning without an object is
treated the same as returning with the null object (17.4), so the result of executing
a function body can always be used as the result of evaluating an expression, either
by evaluating to an object, or by the evaluation throwing.

If f is marked sync* (9), then a fresh instance (10.7.1) i implementing
Iterable<U> is immediately returned, where U is the actual type (20.10.1)
corresponding to the element type of f (9).

A Dart implementation will need to provide a specific implementation of Iterable
that will be returned by sync* methods. A typical strategy would be to pro-
duce an instance of a subclass of class IterableBase defined in dart:core. The
only method that needs to be added by the Dart implementation in that case is
iterator.

The iterable implementation must comply with the contract of Iterable and
should not take any steps identified as exceptionally efficient in that contract.

The contract explicitly mentions a number of situations where certain iterables
could be more efficient than normal. For example, by precomputing their length.
Normal iterables must iterate over their elements to determine their length. This
is certainly true in the case of a synchronous generator, where each element is
computed by a function. It would not be acceptable to pre-compute the results of
the generator and cache them, for example.

When iteration over the iterable is started, by getting an iterator j from the
iterable and calling moveNext(), execution of the body of f will begin. When
execution of the body of f completes (18.0.1),

• If it returns without an object or it completes normally (18.0.1), j is
positioned after its last element, so that its current value is the null object
(17.4) and the current call to moveNext() on j returns false, as must all
further calls.

• If it throws an exception object e and stack trace t then the current value
of j is the null object (17.4) and the current call to moveNext() throws e
and t as well. Further calls to moveNext() must return false.

Each iterator starts a separate computation. If the sync* function is impure,
the sequence of objects yielded by each iterator may differ.

Dart Programming Language Specification 141

One can derive more than one iterator from a given iterable. Note that op-
erations on the iterable itself can create distinct iterators. An example would be
length. It is conceivable that different iterators might yield sequences of different
length. The same care needs to be taken when writing sync* functions as when
writing an Iterator class. In particular, it should handle multiple simultaneous
iterators gracefully. If the iterator depends on external state that might change,
it should check that the state is still valid after every yield (and maybe throw a
ConcurrentModificationError if it isn’t).

Each iterator runs with its own shallow copies of all local variables; in par-
ticular, each iterator has the same initial arguments, even if their bindings are
modified by the function. Two executions of an iterator interact only via state
outside the function.

If f is marked async (9), then a fresh instance (10.7.1) o is associated with
the invocation, where the dynamic type of o implements Future<T>, where T
is the actual type (20.10.1) corresponding to the future value type of f . Then
the body of f is executed until it either suspends or completes, at which point
o is returned. The body of f may suspend during the evaluation of an await
expression or execution of an asynchronous for loop. The future o is completed
when execution of the body of f completes (18.0.1). If execution of the body
returns an object, o is completed with that object. If it completes normally or
returns without an object, o is completed with the null object (17.4), and if it
throws an exception e and stack trace t, o is completed with the error e and
stack trace t. If execution of the body throws before the body suspends the
first time, completion of o happens at some future time after the invocation has
returned. The caller needs time to set up error handling for the returned future,
so the future is not completed with an error before it has been returned.

If f is marked async* (9), then a fresh instance (10.7.1) s implementing
Stream<U> is immediately returned, where U is the actual type (20.10.1) cor-
responding to the element type of f (9). When s is listened to, execution of the
body of f will begin. When execution of the body of f completes:

• If it completes normally or returns without an object (18.0.1), then if s
has been canceled then its cancellation future is completed with the null
object (17.4).

• If it throws an exception object e and stack trace t:

– If s has been canceled then its cancellation future is completed with
error e and stack trace t.

– otherwise the error e and stack trace t are emitted by s.

• s is closed.

The body of an asynchronous generator function cannot break, continue or
return with an object (18.0.1). The first two are only allowed in contexts that will
handle the break or continue, and return statements with an expression are not
allowed in generator functions.

Dart Programming Language Specification 142

When an asynchronous generator’s stream has been canceled, cleanup will
occur in the finally clauses (18.11) inside the generator. We choose to direct
any exceptions that occur at this time to the cancellation future rather than have
them be lost.

17.15.1 Actual Argument Lists actualArgumentLists

Actual argument lists have the following syntax:

⟨arguments⟩ ::= ‘(’ (⟨argumentList⟩ ‘,’?)? ‘)’

⟨argumentList⟩ ::= ⟨namedArgument⟩ (‘,’ ⟨namedArgument⟩)*
| ⟨expressionList⟩ (‘,’ ⟨namedArgument⟩)*

⟨namedArgument⟩ ::= ⟨label⟩ ⟨expression⟩

Argument lists allow an optional trailing comma after the last argument
(‘,’?). An argument list with such a trailing comma is equivalent in all ways to
the same parameter list without the trailing comma. All argument lists in this
specification are shown without a trailing comma, but the rules and semantics
apply equally to the corresponding argument list with a trailing comma.

Let L be an argument list of the form (e1 . . . , em, ym+1: em+1 . . . , ym+p:
em+p) and assume that the static type of ei is Si, i ∈ 1..m + p. The static ar- △

gument list type of L is then (S1 . . . , Sm, Sm+1 ym+1 . . . , Sm+p ym+p).
Let Ss be the static argument list type

(S1 . . . , Sm, Sm+1 ym+1 . . . , Sm+p ym+p)
and let Ps be the formal parameter list
(T1 x1 . . . , Tn xn, [Tn+1 xn+1 = d1, . . . , Tn+k xn+k = dk])
where each parameter may be marked covariant (not shown, but allowed).

We say that Ss is a subtype match for Ps iff p = 0, n ≤ m ≤ n + k, and Si △

is a subtype of Ti for all i ∈ 1..m. We say that Ss is an assignable match for Ps △

iff p = 0, n ≤ m ≤ n + k, and Si is assignable to Ti for all i ∈ 1..m.
Let Ss be the static argument list type

(S1 . . . , Sm, Sm+1 ym+1 . . . , Sm+p ym+p)
and let Ps be the formal parameter list
(T1 x1 . . . , Tn xn, {Tn+1 xn+1 = d1, . . . , Tn+k xn+k = dk})
where each parameter may be marked covariant (not shown, but allowed).

We say that Ss is a subtype match for Ps iff m = n, {ym+1 . . . , ym+p} ⊆ △

{xn+1 . . . , xn+k}, Si is a subtype of Ti for all i ∈ 1..m, and Si is a subtype of Tj

whenever yi = xj and j ∈ n+1..n+k, for all i ∈ m+1..m+p. We say that Ss is
an assignable match for Ps iff m = n, {ym+1 . . . , ym+p} ⊆ {xn+1 . . . , xn+k}, Si △

is assignable to Ti for all i ∈ 1..m, and Si is assignable to Tj whenever yi = xj

and j ∈ n + 1..n + k, for all i ∈ m + 1..m + p.
In short, an actual argument list is a match for a formal parameter list whenever

the former can safely be passed to the latter.

Dart Programming Language Specification 143

17.15.2 Actual Argument List Evaluation actualArguments

Function invocation involves evaluation of the list of actual arguments to the
function, and binding of the results to the function’s formal parameters.

When parsing an argument list, an ambiguity may arise because the same
source code could be one generic function invocation, and it could be two or more
relational expressions and/or shift expressions. In this situation, the expression
is always parsed as a generic function invocation.

An example is f(a<B, C>(d)), which may be an invocation of f passing two
actual arguments of type bool, or an invocation of f passing the result returned by
an invocation of the generic function a. Note that the ambiguity can be eliminated
by omitting the parentheses around the expression d, or adding parentheses around
one of the relational expressions.

When the intention is to pass several relational or shift expressions as actual
arguments and there is an ambiguity, the source code can easily be adjusted to
a form which is unambiguous. Also, we expect that it will be more common to
have generic function invocations as actual arguments than having relational or
shift expressions that happen to match up and have parentheses at the end, such
that the ambiguity arises.

Evaluation of an actual argument part of the form
<A1, . . . , Ar>(a1, . . . , am, q1: am+1, . . . , ql: am+l) proceeds as follows:

The type arguments A1, . . . , Ar are evaluated in the order they appear in the
program, producing types t1, . . . , tr. The arguments a1, . . . , am+l are evaluated
in the order they appear in the program, producing objects o1, . . . , om+l.

Simply stated, an argument part consisting of s type arguments, m positional
arguments, and l named arguments is evaluated from left to right. Note that the
type argument list is omitted when r = 0 (15).

17.15.3 Binding Actuals to Formals bindingActualsToFormals

In the following, the non-generic case is covered implicitly: When the number of
actual type arguments is zero the entire type argument list <...> is omitted, and
similarly for empty type parameter lists (15).

Consider an invocation i of a function f with an actual argument part of
the form <A1, . . . , Ar>(a1, . . . , am, q1: am+1, . . . , ql: am+l).

Note that f denotes a function in a semantic sense, rather than a syntactic
construct. A reference to this section is used in other sections when the static
analysis of an invocation is specified, and the static type of f has been determined.
The function itself may have been obtained from a function declaration, from an
instance bound to this and an instance method declaration, or as a function object
obtained by evaluation of an expression. Because of that, we cannot indicate here
which syntactic construct corresponds to f . A reference to this section is also
used in other sections when actual arguments are to be bound to the corresponding
formal parameters, and f is about to be invoked, to specify the dynamic semantics.

We do not call f a ‘function object’ here, because we do not wish to imply
that every function invocation must involve a separate evaluation of an expression

Dart Programming Language Specification 144

that yields a function object, followed by an invocation of that function object.
For instance, an implementation should be allowed to compile the invocation of a
top-level function as a series of steps whereby a stack frame is created, followed
by a low-level jump to the generated code for the body. So, in this section, the
word ‘function’ is more low-level than ‘function object’, but ‘function’ still denotes
a semantic entity which is associated with a function declaration, even though there
may not be a corresponding entity in the heap at run time.

It is a compile-time error if qj = qk for any j ̸= k.
For a given type T0, we introduce the notion of a T0 bounded type: T0 itself △

is T0 bounded; if B is T0 bounded and X is a type variable with bound B then
X is T0 bounded; finally, if B is T0 bounded and X is a type variable then X&B
is T0 bounded. In particular, a dynamic bounded type is either dynamic itself △

or a type variable whose bound is dynamic bounded, or an intersection whose
second operand is dynamic bounded. Similarly for a Function bounded type. △

A function-type bounded type is a type T which is T0 bounded where T0 △

is a function type (20.5). A function-type bounded type T has an associated △

function type which is the unique function type T0 such that T is T0 bounded.
If the static type of f is dynamic bounded or Function bounded, no further

static checks are performed on the invocation i (apart from separate static checks
on subterms like arguments), and the static type of i is dynamic. Otherwise, it
is a compile-time error if the static type of f is not function-type bounded.

If no error occurred and the static analysis of i is not complete then the
static type Tf of f is function-type bounded; let F be the associated function
type of Tf .

Let S0 be the return type of F , let X1 extends B1, . . . , Xs extends Bs be
the formal type parameters, let h be the number of required parameters, let
p1, . . . , pn be the positional parameters, and let ph+1, . . . , ph+k be the optional
parameters of F . Let Si be the static type of the formal parameters pi, i ∈
1..h + k, and for each q let Sq be the type of the parameter named q, where
each parameter type is obtained by replacing Xj by Aj , j ∈ 1..s, in the given
parameter type annotation. Finally, let Ti be the static type of ai.

We have an actual argument list consisting of r type arguments, m positional
arguments, and l named arguments. We have a function with s type parameters, h
required parameters, and k optional parameters. Figure 1 shows how this situation
arises.

It is a compile-time error if r ̸= s. It is a compile-time error if r = s and for
some j ∈ 1..s, Aj ̸<: [A1/X1, . . . , Ar/Xs]Bj . It is a compile-time error unless
h ≤ m ≤ n. If l > 0, it is a compile-time error unless F has named parameters
and qj ∈ {ph+1, . . . , ph+k}, j ∈ 1..l.

That is, the number of type arguments must match the number of type param-
eters, and the bounds must be respected. We must receive at least the required
number of positional arguments, and not more than the total number of positional
parameters. For each named argument there must be a named parameter with the
same name.

The static type of i is [A1/X1, . . . , Ar/Xs]S0.
It is a compile-time error if Tj may not be assigned to Sj , j ∈ 1..m. It is a

Dart Programming Language Specification 145

Actual arguments:

⟨r type arguments⟩
(

m positional arguments, l named arguments
)

Declaration with named parameters: n = h

⟨s type parameters⟩

 h required parameters, k optional parameters
which may also be viewed as

n positional parameters, k named parameters


Declaration with optional positional parameters: n = h + k

⟨s type parameters⟩

 h required parameters, k optional parameters
which may also be viewed as
n positional parameters


Figure 1: Possible actual argument parts and formal parameter parts.

compile-time error if Tm+j may not be assigned to Sqj
, j ∈ 1..l.

Consider the case where the function invocation in focus here is an instance
method invocation. In that case, for each actual argument, the corresponding
parameter may be covariant. However, the above assignability requirements apply
equally both when the parameter is covariant and when it is not.

Parameter covariance in an instance method invocation can be introduced by
a subtype of the statically known receiver type, which means that any attempt to
flag a given actual argument as dangerous due to the dynamic type check that it
will be subjected to will be incomplete: some actual arguments can be subjected
to such a dynamic type check even though this is not known statically at the call
site. This is not surprising for a mechanism like parameter covariance which is
designed for the very purpose of allowing developers to explicitly request that this
specific kind of compile-time safety is violated. The point is that this mechanism
postpones the enforcement of the underlying invariant to run time, and in return
allows some useful program designs that would otherwise be rejected at compile-
time.

For the dynamic semantics, let f be a function with s type parameters and
h required parameters; let p1, . . . , pn be the positional parameters of f ; and let
ph+1, . . . , ph+k be the optional parameters declared by f .

An evaluated actual argument part
<t1, . . . , tr>(o1, . . . , om, q1: om+1, . . . , ql: om+l)
derived from an actual argument part of the form
<A1, . . . , Ar>(a1, . . . , am, q1: am+1, . . . , ql: am+l)
is bound to the formal type parameters and formal parameters of f as follows:

If r = 0 and s > 0 then if f does not have default type arguments (15.3)
then a dynamic error occurs. Otherwise replace the actual type argument list:
Let r be s and let ti for i ∈ 1..s be the result of instantiation to bound (15.3)

Dart Programming Language Specification 146

on the formal type parameters of f , substituting the actual values of any free
type variables (20.10.1). Otherwise, if r ̸= s, a NoSuchMethodError is thrown.

If l > 0 and n ̸= h, a NoSuchMethodError is thrown. If m < h, or
m > n, a NoSuchMethodError is thrown. Furthermore, each qi, i ∈ 1..l,
must have a corresponding named parameter in the set {ph+1, . . . , ph+k}, or
a NoSuchMethodError is thrown. Then pi is bound to oi, i ∈ 1..m, and qj is
bound to om+j , j ∈ 1..l. All remaining formal parameters of f are bound to
their default values.

All of these remaining parameters are necessarily optional and thus have default
values.

It is a dynamic type error if ti is not a subtype of the actual bound (20.10.1) of
the ith type argument of f , for actual type arguments t1, . . . , tr. It is a dynamic
type error if oi is not the null object (17.4) and the actual type (20.10.1) of pi

is not a supertype of the dynamic type of oi, i ∈ 1..m. It is a dynamic type
error if om+j is not the null object and the actual type (20.10.1) of qj is not a
supertype of the dynamic type of om+j , j ∈ 1..l.

17.15.4 Unqualified Invocation unqualifiedInvocation

An unqualified function invocation i has the form
id<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k),
where id is an identifier.

Note that the type argument list is omitted when r = 0 (15).
Perform a lexical lookup of id (17.37) from the location of i.
Case ⟨Lexical lookup yields a declaration⟩. Let D be the declaration yielded

by the lexical lookup of id.

• When D is a type declaration, that is, a declaration of a class, mixin, enum,
type alias, or type parameter, the following applies: If D is a declaration
of a class C that has a constructor named C then the meaning of i depends
on the context: If i occurs in a constant context (17.3.2), then i is treated
as (5) const i; if i does not occur in a constant context then i is treated
as new i. If D is not a class declaration, or it declares a class named C
that has no constructor named C, a compile-time error occurs.

• Otherwise, if D is a declaration of a local function, a library function, or
a library or static getter, or a variable, then i is treated as (5) a function
expression invocation (17.15.5).

• Otherwise, if D is a static method or getter (which may be implicitly induced
by a static variable) in the enclosing class or mixin C, i is treated as (5)
C.i (17.21.1).

• If D is an instance member of an extension E with type parameters
X1, . . . , Xk, i is treated as E<X1, . . . , Xk>(this).i. Both the static
analysis and evaluation proceeds with the transformed expression, so there
is no need to further specify the treatment of i.

Dart Programming Language Specification 147

In other words, inside E the instance members of E will shadow the instance
members of the on type, that is, the extension has higher priority than the
object interface. The opposite is true for invocations everywhere outside E.
There is no need to consider an instance member of a class, because a lexical
lookup in a class will never yield a declaration which is an instance member.

□

Case ⟨Lexical lookup yields an import prefix⟩. When the lexical lookup of
id yields an import prefix, a compile-time error occurs. □

Case ⟨Lexical lookup yields nothing⟩. When the lexical lookup of id yields
nothing, i is treated as (5) the ordinary method invocation this.i (17.21.1).

This occurs when the lexical lookup has determined that i must invoke an
instance member of a class or an extension, and the location of i can access this,
and the interface of the enclosing class has a member named id, or there is an
applicable extension with such a member. Both the static analysis and evaluation
proceeds with this.i, so there is no need to further specify the treatment of i. □

Note that an unqualified invocation does not specify an evaluation semantics.
This is because every case which is not an error ends in the conclusion that the
unqualified invocation should be treated as some other construct, which is specified
elsewhere.

17.15.5 Function Expression Invocation functionExpressionInvocation

A function expression invocation i has the form
ef <A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k),
where ef is an expression.

Note that the type argument list is omitted when r = 0 (15).
Consider the situation where ef denotes a class C that contains a declaration

of a constructor named C, or it is of the form e′
f .id where e′

f denotes a class
C that contains a declaration of a constructor named C.id. If i occurs in a
constant context (17.3.2) then i is treated as const i, and if i does not occur in
a constant context then i is treated as new i.

When i is treated as another construct i′, both the static analysis and the
dynamic semantics is specified in the section about i′ (5).

Otherwise, it is a compile-time error if ef is a type literal.
This error was already specified elsewhere (17.15.4) for the case where ef is an

identifier, but ef may also have other forms, e.g., p.C.
Otherwise, if ef is an identifier id, then id must necessarily denote a local

function, a library function, a library or static getter, or a variable as described
above, or i would not have been treated as a function expression invocation.

If ef is a property extraction expression (17.22) then i treated as an ordinary
method invocation (17.21.1).

a.b(x) is treated as a method invocation of method b() on object a, not as
an invocation of getter b on a followed by a function call (a.b)(x). If a method
or getter b exists, the two will be equivalent. However, if b is not defined on a,
the resulting invocation of noSuchMethod() would differ. The Invocation passed

Dart Programming Language Specification 148

to noSuchMethod() would describe a call to a method b with argument x in the
former case, and a call to a getter b (with no arguments) in the latter.

Let F be the static type of ef . If F is an interface type that has a method
named call, i is treated as (5) the ordinary invocation
ef .call<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k).

Otherwise, the static analysis of i is performed as specified in Section 17.15.3,
using F as the static type of the invoked function, and the static type of i is as
specified there.

Evaluation of a function expression invocation
ef <A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k)
proceeds to evaluate ef , yielding an object o. Let f be a fresh variable bound
to o. If o is a function object then the function invocation
f<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k)
is evaluated by binding actuals to formals as specified in Section 17.15.3, and
executing the body of f with those bindings; the returned result is then the
result of evaluating i.

Otherwise o is not a function object. If o has a method named call the
following ordinary method invocation is evaluated, and its result is then the
result of evaluating i:
f.call<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k).

Otherwise o has no method named call. A new instance im of the predefined
class Invocation is created, such that:

• im.isMethod evaluates to true.

• im.memberName evaluates to the symbol #call.

• im.positionalArguments evaluates to an unmodifiable list whose dy-
namic type implements List<Object>, containing the objects resulting
from evaluation of <Object>[a1, . . . , an].

• im.namedArguments evaluates to an unmodifiable map whose dynamic
type implements Map<Symbol, Object>, with the keys and values result-
ing from evaluation of
<Symbol, Object>{#xn+1: an+1, . . . , #xn+k: an+k}.

• im.typeArguments evaluates to an unmodifiable list whose dynamic type
implements List<Type>, with the values resulting from evaluation of
<Type>[A1, . . . , Ar].

Then the method invocation f.noSuchMethod(im) is evaluated, and its re-
sult is then the result of evaluating i.

The situation where noSuchMethod is invoked can only arise when the static
type of ef is dynamic. The run-time semantics ensures that a function invocation
may amount to an invocation of the instance method call. However, an interface
type with a method named call is not itself a subtype of any function type (20.4.2).

Dart Programming Language Specification 149

17.16 Function Closurization functionClosurization

Let f be an expression denoting a declaration of a top-level function, a local
function, a static method of a class, of a mixin, or of an extension (17.38); or let
f be a function literal (17.11). Evaluation of f yields a function object which
is the outcome of a function closurization applied to the declaration denoted △

by f respectively to the function literal f considered as a function declaration.
Closurization denotes instance method closurization (17.22.3) as well as function △

closurization, and it is also used as a shorthand for either of them when there
is no ambiguity.

Function closurization applied to a function declaration f amounts to the
creation of a function object o which is an instance of a class C whose interface
is a subtype of the actual type F (20.10.1) corresponding to the signature in
the function declaration f , using the current bindings of type variables, if any.
There does not exist a function type F ′ which is a proper subtype of F such
that C is a subtype of F ′.

If f is a static method or a top-level function then o has primitive equality
(10.2.3).

In other words, C has the freedom to be a proper subtype of the function type
that we can read off of the declaration of f because it may need to be a specific
internal platform defined class, but C does not have the freedom to be a subtype
of a different and more special function type, and it cannot be Null.

An invocation of o with a given argument list will bind actuals to formals in
the same way as an invocation of f (17.15.3), and then execute the body of f
in the captured scope amended with the bound parameter scope, yielding the
same completion (18.0.1) as the invocation of f would have yielded.

Let e1 and e2 be two constant expressions that both evaluate to a func-
tion object which is obtained by function closurization of the same function
declaration. In this case identical(e1, e2) shall evaluate to true.

That is, constant expressions whose evaluation is a function closurization are
canonicalized.

17.17 Generic Function Instantiation genericFunctionInstantiation

Generic function instantiation is a mechanism that yields a non-generic func-
tion object based on a given generic function.

The essence of generic function instantiation is to allow for “curried” invo-
cations, in the sense that a generic function can receive its actual type arguments
separately (it must then receive all type arguments, not just some of them), and
that yields a non-generic function object. The type arguments are passed im-
plicitly, based on type inference; a future version of Dart may allow for passing
them explicitly. Here is an example:

X fg<X extends num>(X x) => x;

class A {

Dart Programming Language Specification 150

static X fs<X extends num>(X x) => x;
}

void main() {
X fl<X extends num>(X x) => x;
List<int Function(int)> functions = [fg, A.fs, fl];

}

Each function object stored in functions has dynamic type int Function(int),
and it is obtained by implicitly “passing the actual type argument int” to the
corresponding generic function.

Let f be an expression whose static type G is a generic function type of f, G

T0, Xj , Bj , s, pthe form T0 Function<X1 ◁ B1, . . . , Xs ◁ Bs>(p) where (p) is derived from
⟨formalParameterList⟩. Note that s > 0 because G is generic. Assume that the
context type is a non-generic function type F . In this situation a compile-time
error occurs (8, 9, 10.7.1, 10.7.1, 10.7.1, 17.13.1, 17.13.2, 17.15.3, 17.23, 18.3,
18.9, 18.12, 18.17), except when the following step succeeds:

Generic function type instantiation: Type inference is applied to G with △

context type F , and it yields the actual type argument list T1, . . . , Ts. Tj

The generic function type instantiation fails in the case where type inference fails,
in which case the above mentioned compile-time error occurs. It will be specified
in a future version of this document how type inference computes T1, . . . , Ts (6).

Assume that the generic function type instantiation succeeded. Let F ′ de- F ′

note the type [T1/X1, . . . , Ts/Xs](T0 Function(p)). Note that it is guaranteed
that F ′ is assignable to F , or inference would have failed. Henceforth in the static
analysis, this occurrence of f is considered to have static type F ′.

Execution of f proceeds as follows. Evaluate f to an object o. A dynamic er-
ror occurs if o is the null object. Let S0 Function<Y1 ◁B′

1, . . . , Ys ◁B′
s>(q) be

the dynamic type of o (by soundness, this type is a subtype of G). f then evaluates
to a function object o′ with dynamic type [t1/Y1, . . . , ts/Ys](S0 Function(q)),
where tj is the actual value of Tj , for j ∈ 1..k. An invocation of o′ with ac-
tual arguments args has the same effect as an invocation of o with actual type
arguments t1, . . . , ts and actual arguments args.

Let f1 and f2 be two constant expressions that are subject to generic function
instantiation. Assume that f1 and f2 without a context type evaluate to o1
respectively o2 such that identical(o1, o2) is true. Assume that the given
context types give rise to a successful generic function type instantiation with
the same actual type arguments for f1 and f2, yielding the non-generic function
objects o′

1 respectively o′
2. In this case identical(o′

1, o′
2) shall evaluate to

true.
That is, constant expressions whose evaluation is a generic function instanti-

ation are canonicalized, based on the underlying function and on the actual type
arguments. As a consequence, they are also equal according to operator ‘==’.

Let g1 and g2 be two expressions (which may or may not be constant) that
are subject to generic function instantiation. Assume that g1 and g2 without

Dart Programming Language Specification 151

a context type evaluate to o1 respectively o2 such that o1 == o2) is true. As-
sume that the given context types give rise to a successful generic function
type instantiation with the same actual type arguments for g1 and g2, yielding
the non-generic function objects o′

1 respectively o′
2. In this case o′

1 == o′
2 shall

evaluate to true.
When one or both of the expressions is not constant, it is unspecified whether

identical(o1, o2) evaluates to true or false, but operator ‘==’ yields true for
equal function objects instantiated with the same actual type arguments.

No notion of equality is appropriate when the type arguments differ, even
if the resulting function objects turn out to have exactly the same type at run
time, because execution of two function objects that differ in these ways can
have different side-effects and return different results when executed starting
from exactly the same state.

17.18 Lookup lookup

A lookup is a procedure which selects a concrete instance member declaration △

based on a traversal of a sequence of classes, starting with a given class C and
proceeding with the superclass of the current class at each step. A lookup may
be part of the static analysis, and it may be performed at run time. It may
succeed or fail.

We define several kinds of lookup with a very similar structure. We spell out
each of them in spite of the redundancy, in order to avoid introducing meta-level
abstraction mechanisms just for this purpose. The point is that we must indicate
for each lookup which kind of member it is looking for, because, e.g., a ‘method
lookup’ and a ‘getter lookup’ are used in different situations.

Let m be an identifier, o an object, L a library, and C a class which is the
class of o or a superclass thereof.

The result of a method lookup for m in o with respect to L starting in class
C is the result of a method lookup for m in C with respect to L. The result of a
method lookup for m in C with respect to L is: If C declares a concrete instance
method named m that is accessible to L, then that method declaration is the
result of the method lookup, and we say that the method was looked up in C.
Otherwise, if C has a superclass S, the result of the method lookup is the result
of a method lookup for m in S with respect to L. Otherwise, we say that the
method lookup has failed.

The result of a getter lookup for m in o with respect to L starting in class
C is the result of a getter lookup for m in C with respect to L. The result of a
getter lookup for m in C with respect to L is: If C declares a concrete instance
getter named m that is accessible to L, then that getter declaration is the result
of the getter lookup, and we say that the getter was looked up in C. Otherwise,
if C has a superclass S, the result of the getter lookup is the result of a getter
lookup for m in S with respect to L. Otherwise, we say that the getter lookup
has failed.

The result of a setter lookup for m in o with respect to L starting in class
C is the result of a setter lookup for m in C with respect to L. The result of a

Dart Programming Language Specification 152

setter lookup for m in C with respect to L is: If C declares a concrete instance
setter named m that is accessible to L, then that setter declaration is the result
of the setter lookup, and we say that the setter was looked up in C. Otherwise,
if C has a superclass S, the result of the setter lookup is the result of a setter
lookup for m in S with respect to L. Otherwise, we say that the setter lookup
has failed.

Let m be an identifier, o an object, and L a library. The result of a method
lookup for m in o with respect to L is the result of a method lookup for m in o
with respect to L starting with the class of o. The result of a getter lookup for
m in o with respect to L is the result of a getter lookup for m in o with respect
to L starting with the class of o. The result of a setter lookup for m in o with
respect to L is the result of a setter lookup for m in o with respect to L starting
with the class of o.

Note that for getter (setter) lookup, the result may be a getter (setter) which
has been induced by an instance variable declaration.

Note that we sometimes use phrases like ‘looking up method m’ to indicate that
a method lookup is performed, and similarly for setter lookups and getter lookups.

The motivation for ignoring abstract members during lookup is largely to
allow smoother mixin composition.

17.19 Top level Getter Invocation topLevelGetterInvocation

Evaluation of a top-level getter invocation i of the form m, where m is an
identifier, proceeds as follows:

The getter function m is invoked. The value of i is the result returned by
the call to the getter function. Note that the invocation is always defined. Per the
rules for identifier references, an identifier will not be treated as a top-level getter
invocation unless the getter i is defined.

The static type of i is the declared return type of m.

17.20 Member Invocations memberInvocations

A member invocation is an expression with a specific syntactic form whose △

dynamic semantics involves invocation of one or two instance members of a
given receiver, or invocation of extension members. This section specifies which
syntactic forms are member invocations, and defines some terminology which is
needed in order to denote specific parts of several syntactic forms collectively.

The static analysis and dynamic semantics of each of the syntactic forms that
are member invocations is specified separately, this section is only concerned
with the syntactic classification and terminology.

For example, one kind of member invocation is an ordinary method invocation
(17.21.1).

A simple member invocation respectively composite member invocation on △

△a syntactic receiver expression r is an expression of one of the forms shown in
△Fig. 2. Each member invocation has a corresponding member name as shown in
△

the figure.

Dart Programming Language Specification 153

Simple member
invocation

Corresponding
member name

r.id, r?.id id
r.id = e, r?.id = e id=
r.id(args), r?.id(args) id
r.id<types>(args) id
r?.id<types>(args) id
-r unary-
~r ~
r ⊕ e ⊕
r[e] []
r[e1] = e2 []=
r(args) call
r<types>(args) call

Composite member
invocation

Corresponding
member name

r.id ⊗= e id
r?.id ⊗= e id
r[e1] ⊗= e2 []
++r.id, --r.id id
r.id++, r.id-- id
++r[e], --r[e] []
r[e]++, r[e]-- []

In the tables above, r, e, e1, e2 are expressions; args is derived from ⟨arguments⟩; types
is derived from ⟨typeArguments⟩; ‘⊕’ is an ⟨operator⟩ which is not ‘==’; and ‘⊗=’ is a
⟨compoundAssignmentOperator⟩.

Figure 2: Member invocations with syntactic receiver r.

Each member invocation in Fig. 2 that contains ‘?’ is a conditional member △

invocation. An unconditional member invocation is a member invocation which △

is not conditional.
For a simple member invocation the corresponding member name is the name

of the member which is invoked in the case where the member invocation invokes
an instance member. For a composite member invocation it is the name of the
getter and the basename of both the getter and the setter.

Note that r cannot be super even though super.m() invokes an instance
method. This is because the semantics of a superinvocation is different from that
of other invocations. Among the binary operators, ‘==’ is not included. This is
because evaluation of e1 == e2 involves more steps than an instance member
invocation. Similarly, ‘&&’, and ‘||’ are not included because their evaluation
does not involve method invocation.

A composite member invocation is an abbreviated form whose meaning is
reduced to simple member invocations as shown in Fig. 3. This step is known as
a desugaring transformation, and we say that the resulting expression has been △

desugared. Fig. 3 contains several occurrences of r′ which is the replacement △

△receiver of the composite method invocation. The meaning of each occurrence
of r′ is determined as follows:

When the receiver r is an extension application (13.1) of the form E<T1, . . . , Tk>(er)
(where k = 0 means that the type argument list is absent): Let vr be a fresh vari-
able bound to the value of er and with the same static type as er, then r′ is
E<T1, . . . , Tk>(vr) when it occurs as the receiver of a member invocation, and
otherwise r′ is vr.

Dart Programming Language Specification 154

Source Desugared form
r?.id r′ == null ? null : r′.id
r?.id = e r′ == null ? null : r′.id = e
r?.id(args) r′ == null ? null : r′.id(args)
r?.id<types>(args) r′ == null ? null : r.id<types>(args)
r?[e] r′ == null ? null : r′[e]
r?[e1] = e2 r′ == null ? null : r′[e1] = e2
r.id ??= e let v = r′.id in v == null ? r′.id = e : v
r.id ⊗= e r′.id = r′.id ⊗ e
r?.id ⊗= e r′ == null ? null : r′.id ⊗= e
r[e1] ??= e2 let v = e1, v′ = r′[v] in v′ == null ? r′[v] = e2 : v′

r[e1] ⊗= e2 let v = e1 in r′[v] = r′[v] ⊗ e2
++r.id r.id += 1
--r.id r.id -= 1
r.id++ let v = r′.id, v′ = r′.id = v + 1 in v
r.id-- let v = r′.id, v′ = r′.id = v - 1 in v
++r[e] r[e] += 1
--r[e] r[e] -= 1
r[e]++ let v = e, v′ = r′[v], v′′ = r′[v] = v′ + 1 in v′

r[e]-- let v = e, v′ = r′[v], v′′ = r′[v] = v′ - 1 in v′

Figure 3: Desugaring of member invocations. ‘⊗=’ is a
⟨compoundAssignmentOperator⟩. The first applicable rule is used. In
particular, ‘⊗=’ cannot be ‘??=’ when an earlier rule with ‘??=’ matches. r′ is
known as the replacement receiver of the composite member invocation, and it
is specified in the main text (17.20).

When r is not an extension application, r′ is a fresh variable bound to the
value of r, with the same static type as r.

This corresponds to an extra outermost let in each rule in Fig. 3 where r′

occurs, and an explicit distinction between the two forms of r, but the figure would
be considerably more verbose if it had been specified in that manner.

17.21 Method Invocation methodInvocation

Method invocation can take several forms as specified below.

17.21.1 Ordinary Invocation ordinaryInvocation

An ordinary method invocation can be conditional or unconditional.
Case ⟨e?.m<· · · >(· · ·)⟩. Consider a conditional ordinary method invoca- △

tion i of the form e?.m<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k:
an+k).

Note that non-generic invocations arise as the special case where the number
of type arguments is zero, in which case the type argument list is omitted, and

Dart Programming Language Specification 155

similarly for formal type parameter lists (15).
The static type of i is the same as the static type of

e.m<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k).
Exactly the same compile-time errors that would be caused by
e.m<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k)
are also generated in the case of i.

Evaluation of i proceeds as follows:
If e is a type literal or denotes an extension, i is treated as

e.m<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k).
Otherwise, evaluate e to an object o. If o is the null object, i evaluates

to the null object (17.4). Otherwise let v be a fresh variable bound to o and
evaluate v.m<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k) to
an object r. Then e evaluates to r. □

Case ⟨C.m<· · · >(· · ·)⟩. A static member invocation i is an invocation △

of the form C.m<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k),
where C is a type literal, or C denotes an extension.

Non-generic invocations arise as the special case where the number of type
arguments is zero (15).

A compile-time error occurs unless C denotes a class, a mixin, or an extension
that declares a static member named m, which we will call the denoted member △

of i. When the denoted member is a static method, let F be its function type;
when the denoted member is a static getter, let F be its return type; when the
denoted member is neither, a compile-time error occurs.

The static analysis of i is then performed as specified in Section 17.15.3,
considering F to be the static type of the function to call, and the static type
of i is as specified there.

Evaluation of a static method invocation i of the form
C.m<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k)
proceeds as follows:

If the denoted member of i is a static method, let f be the function declared
by that member. The binding of actual arguments to formal parameters is
performed as specified in Section 17.15.3. The body of f is then executed with
respect to the bindings that resulted from the evaluation of the argument part.
The value of i is the object returned by the execution of f ’s body.

If the denoted member of i is a static getter, invoke said getter and let vf be
a fresh variable bound to the returned object. Then the value of i is the value
of vf <A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k). □

Case ⟨e.m<· · · >(· · ·)⟩. An unconditional ordinary method invocation i has △

the form e.m<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k), where
e is an expression that is not a type literal, and does not denote an extension.

Non-generic invocations arise as the special case where the number of type
arguments is zero (15).

Let T be the static type of e.
If T is dynamic bounded (17.15.3) and m is one of hashCode, noSuchMethod,

runtimeType, or toString then we say that i is a dynamic Object member △

invocation, whose static analysis is specified separately below.

Dart Programming Language Specification 156

Otherwise, it is a compile-time error if T does not have an accessible (6.2)
instance member named m, unless either:

• T is dynamic bounded; in this case no further static checks are performed
on i (apart from separate static checks on subterms like arguments) and the
static type of i is dynamic. Or

• T is Function bounded (17.15.3) and m is call; in this case no further
static checks are performed on i (apart from separate static checks on sub-
terms like arguments) and the static type of i is dynamic. This means
that for invocations of an instance method named call, a receiver of type
Function is treated like a receiver of type dynamic. The expectation is
that any concrete subclass of Function will implement call, but there is
no method signature which can be assumed for call in Function because
every signature will conflict with some potential overriding declarations.

If T did not have an accessible member named m the static type of i is
dynamic, and no further static checks are performed on i (except that subex-
pressions of i are subject to their own static analysis).

If i is a dynamic Object member invocation (17.21.1) then the static type
of the member is specified in Section 20.7. In this case, if m is hashCode or
runtimeType then let F be the return type of said getter; if m is noSuchMethod
or toString then let F be the type of said method.

Note that it is always a compile-time error if m is hashCode or runtimeType.
Otherwise, T.m denotes an instance member. Let L be the library that

contains i. Let d be the result of method lookup for m in T with respect to L,
and if the method lookup succeeded then let F be the static type of d.

Otherwise, let d be the result of getter lookup for m in T with respect to L,
and let F be the return type of d. Since T.m exists we cannot have a failure in
both lookups. If the getter return type F is an interface type that has a method
named call, i is treated as (5) the ordinary invocation
e.m.call<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k),
which determines any further static analysis.

Otherwise, the static analysis of i is performed as specified in Section 17.15.3,
considering F to be the static type of the function to call, and the static type
of i is as specified there, except that invocations of methods named remainder
or clamp on subtypes of num that are not subtypes of Never have special rules
similar to those for additive (17.31) and multipliative (17.32) operators.

Let i be an invocation of the form e.remainder(e2) and let C be the context
type of i. The context type of e2 is then determined as follows: If T <: num
and not T <: Never, then:

• If int <: C and not num <: C, and T <: int then the context type of
e2 is int.

• If double <: C and not num <: C, and not T <: double then the
context type of e2 is double.

Dart Programming Language Specification 157

• Otherwise the context type of e2 is num.

Let further S be the static type of e2. If T <: num and not T <: Never and
S is assignable to num, then the static type of i is determined as follows:

• If T <: double then the static type of i is T .

• Otherwise, if S <: double and not S <: Never, then the static type of i
is double.

• Otherwise, if T <: int, S <: int and not S <: Never, then the static
type of i is int.

• Otherwise the static type of i is num.

Let i be an invocation of the form e.clamp(e2, e3), where T <: num and
not T <: Never, and let C be the context type of i. The context type of e2
and e3 is then determined as follows:

• If T <: int, int <: S and not num <: S, then the context type of e2
and e3 is int.

• If T <: double, double <: S and not num <: S, then the context type
of e2 and e3 is double.

• Otherwise the context type of e2 and e3 is num.

Let further T2 be the static type of e2 and T3 be the static type of e3.

• If all of T , T2 and T3 are subtypes of int, but not subtypes of Never,
then the static type of i is int.

• If all of T , T2 and T3 are subtypes of double, but not subtypes of Never,
then the static type of i is double.

• Otherwise the static type of i is num.

It is a compile-time error to invoke an instance method on a type literal that
is immediately followed by the token ‘.’ (a period). For instance, int.toString()
is an error.

The reason for this rule is that member access on a type literal is reserved for
invocation of static members. Invocation of a static member of a class, mixin,
enum, or extension uses said entity as a namespace, not as an actual class,
mixin, enum, or extension. In particular, the syntactic receiver is not evaluated
to an object—that would not even be possible for an extension.

A member access on a type literal (e.g., C.id(), C.id, or C?.id()), always
treats the declaration denoted by the literal as a namespace for accessing static
members or constructors. For instance, int.toString() is an error because int
does not declare a static member named toString. It will not evaluate int to a
Type object and then call its toString instance method. To do that, you can use

Dart Programming Language Specification 158

(int).toString(). Note that cascades are different: they always evaluate their
receiver to an object first.

As a natural consequence, a type literal cannot be the receiver in an implicit
invocation of an extension method (13.2).

Evaluation of an unconditional ordinary method invocation i of the form
e.m<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k) proceeds as
follows:

First, the expression e is evaluated to an object o. Let f be the result of
looking up (17.18) method m in o with respect to the current library L.

If the method lookup succeeded, the binding of actual arguments to formal
parameters is performed as specified in Section 17.15.3. The body of f is then
executed with respect to the bindings that resulted from the evaluation of the
argument list, and with this bound to o. The value of i is the object returned
by the execution of f ’s body.

If the method lookup failed, then let g be the result of looking up getter
(17.18) m in o with respect to L.

If the getter lookup succeeded then invoke the getter o.m and let vg be the
returned object. Then the value of i is the value of
vg<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k).

If getter lookup has also failed, then a new instance im of the predefined
class Invocation is created, such that:

• im.isMethod evaluates to true.

• im.memberName evaluates to the symbol m.

• im.positionalArguments evaluates to an unmodifiable list whose dy-
namic type implements List<Object>, containing the objects resulting
from the evaluation of <Object>[a1, . . . , an].

• im.namedArguments evaluates to an unmodifiable map whose dynamic
type implements Map<Symbol, Object>, with the keys and values result-
ing from the evaluation of
<Symbol, Object>{#xn+1: an+1, . . . , #xn+k: an+k}.

• im.typeArguments evaluates to an unmodifiable list whose dynamic type
implements List<Type>, containing the objects resulting from the evalu-
ation of <Type>[A1, . . . , Ar].

Then the method noSuchMethod() is looked up in o and invoked with argu-
ment im, and the result of this invocation is the result of evaluating i.

The situation where noSuchMethod is invoked can only arise when the static
type of e is dynamic. Notice that the wording avoids re-evaluating the receiver o
and the arguments ai. □

Dart Programming Language Specification 159

17.21.2 Cascades cascades

A cascade is a kind of expression that allows for performing multiple oper- △

ations on a given object without storing it in a variable and accessing it via a
name. In general, a cascade can be recognized by the use of exactly two periods,
‘..’.

⟨cascade⟩ ::= ⟨cascade⟩ ‘..’ ⟨cascadeSection⟩
| ⟨conditionalExpression⟩ (‘?..’ | ‘..’) ⟨cascadeSection⟩

⟨cascadeSection⟩ ::= ⟨cascadeSelector⟩ ⟨cascadeSectionTail⟩

⟨cascadeSelector⟩ ::= ‘[’ ⟨expression⟩ ‘]’
| ⟨identifier⟩

⟨cascadeSectionTail⟩ ::= ⟨cascadeAssignment⟩
| ⟨selector⟩* (⟨assignableSelector⟩ ⟨cascadeAssignment⟩)?

⟨cascadeAssignment⟩ ::= ⟨assignmentOperator⟩ ⟨expressionWithoutCascade⟩

A cascaded member access is an expression derived from ⟨cascade⟩. △

A ⟨cascadeSection⟩ allows for accessing members, including setters. The
motivation for having a cascaded member access is that it allows for performing
a chain of operations based on an object while preserving a reference to that
object for further processing.

Let e0 be an extension application (13). Note that it is then a compile-time error
to have a ⟨cascade⟩ of the form e0..c or e0?..c, where c is a ⟨cascadeSection⟩.

For example, C()..foo.bar = 2 allows us to obtain a reference to the object
o which is the result of evaluating C(), and at the same time use o to invoke the
getter foo and the setter bar= on the value returned by that getter.

An expression of the form e0?..s where e0 is a ⟨conditionalExpression⟩ and
s is a ⟨cascadeSection⟩ is an initially conditional cascaded member access. More- △

over, if e0 is an initially conditional cascaded member access and s is derived
from ⟨cascadeSection⟩ then e0..s is also initially conditional.

In short, a cascade is initially conditional if the “innermost dots” are ‘?..’ rather
than ‘..’. Note that only the innermost dots can have the ‘?’. All the non-innermost
ones are implicitly skipped if the receiver is null, so any ‘?’ on a non-innermost ‘..’
would be useless.

The static analysis and dynamic semantics of a cascaded member access is
specified in terms of the following desugaring step.

Let e be a cascaded member access which is not initially conditional. This
implies that there exist terms c1, . . . , ck derived from ⟨cascadeSection⟩ and
a ⟨conditionalExpression⟩ e0 which is not an extension application, and e is
e0..c1 · · · ..ck. In this case, e is desugared to
let v = e0, v1 = v.c1, · · · , vk = v.ck in v.

Let e be a cascaded member access which is initially conditional. This
implies that there exist terms c1, . . . , ck derived from ⟨cascadeSection⟩ and

Dart Programming Language Specification 160

a ⟨conditionalExpression⟩ e0 which is not an extension application, and e is
e0?..c1 · · · ..ck. In this case, e is desugared to
let v = e0 in v == null ? null : let v1 = v.c1, · · · , vk = v.ck in v.

Note that the grammar is such that v.cj is a syntactically correct expression for
all j.

17.21.3 Superinvocations superInvocations

A method superinvocation i has the form △

i, m, Aj , aj , xjsuper.m<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k).
Note that non-generic invocations arise as the special case where the number

of type arguments is zero, in which case the type argument list is omitted, and
similarly for formal type parameter lists (15).

It is a compile-time error if a method superinvocation occurs in a top-level
function or variable initializer, in an instance variable initializer or initializer
list, in class Object, in a factory constructor, or in a static method or variable
initializer.

Let Ssuper be the superclass (10.9) of the immediately enclosing class for i, Ssuper, L
and let L be the library that contains i. Let the declaration D be the result D, F
of looking up the method m in Ssuper with respect to L (17.18), and let F be
the static type of D. Otherwise, if the method lookup failed, let the declaration
D be the result of looking up the getter m with respect to L in Ssuper (17.18),
and let F be the return type of D. If both lookups failed, a compile-time error
occurs.

Otherwise (when one of the lookups succeeded), the static analysis of i is
performed as specified in Section 17.15.3, considering the function to have static
type F , and the static type of i is as specified there.

Note that member lookups ignore abstract declarations, which means that there
will be a compile-time error if the targeted member m is abstract, as well as when
it does not exist at all.

An implicit call superinvocation has the form △

super<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k),
and it is treated as
super.call<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k).

The type argument list is again omitted when r = 0.
Evaluation of i proceeds as follows: Let o be the current binding of this, o, C, Ssuper

let C be the enclosing class for i, and let Ssuper be the superclass (10.9) of C.
Let L be the library that contains C. Let the declaration D be the result of L

D, flooking up the method m with respect to L in o starting with Ssuper (17.18). If
the lookup succeeded, let f denote the function associated with D. Otherwise
(when method lookup failed), let the declaration D be the result of looking up
the getter m with respect to L in o starting with Ssuper (17.18). If the getter
lookup succeeded, invoke said getter with this bound to o, and let f denote the
returned object.

It cannot occur that both lookups fail, because the corresponding lookups would
then have failed at compile-time, in which case the program has a compile-time error.

Dart Programming Language Specification 161

Otherwise perform the binding of actual arguments to formal parameters for
f<A1, . . . , Ar>(a1, . . . , an, xn+1: an+1, . . . , xn+k: an+k) as specified in
Section 17.15.3, and execute the body of f with said bindings plus a binding of
this to o. The result returned by f is then the result of evaluating i.

17.21.4 Sending Messages sendingMessages

Messages are the sole means of communication among isolates. Messages
are sent by invoking specific methods in the Dart libraries; there is no specific
syntax for sending a message.

In other words, the methods supporting sending messages embody primitives of
Dart that are not accessible to ordinary code, much like the methods that spawn
isolates.

17.22 Property Extraction propertyExtraction

Property extraction allows for a member to be accessed as a property rather △

than a function. A property extraction can be either:

1. An instance method closurization, which converts a method into a function
object (17.22.3). Or

2. A getter invocation, which returns the result of invoking of a getter method
(17.22.1).

Function objects derived from members via closurization are colloquially known
as tear-offs.

Property extraction comes in several forms, as described below.
Case ⟨Conditional⟩. Consider a conditional property extraction expression △

i of the form e?.id.
If e is a type literal, i is treated as e.id.
Otherwise, the static type of i is the same as the static type of e.id. Let T

be the static type of e, and let y be a fresh variable of type T . Except for errors
inside e and references to the name y, exactly the same compile-time errors that
would be caused by y.id are also generated in the case of e?.id.

Evaluation of a conditional property extraction expression i of the form e?.id
proceeds as follows:

If e is a type literal or e denotes an extension, evaluation of i amounts to
evaluation of e.id.

Otherwise evaluate e to an object o. If o is the null object, i evaluates to the
null object (17.4). Otherwise let x be a fresh variable bound to o and evaluate
x.id to an object r. Then i evaluates to r. □

Case ⟨Static⟩. Let id be an identifier; a static property extraction i is an △

expression of the form C.id, where C is a type literal or C denotes an extension.
A compile-time error occurs unless C denotes a class, a mixin, or an extension

that declares a static member named m, which we will call the denoted member △

of i. If the denoted member is a static getter, the static type of i is the return

Dart Programming Language Specification 162

type of said getter; if the denoted member is a static method, the static type
of i is the function type of said method; if the denoted member is neither, a
compile-time error occurs.

Evaluation of a static property extraction i of the form C.id proceeds as
follows: If the denoted member of i is a static getter, said getter is invoked,
yielding an object o, and i then evaluates to o. If the denoted member of i is a
static method, i evaluates to a function object by function closurization (17.16)
applied to said static method. □

Case ⟨Unconditional⟩. Let id be an identifier; an unconditional property △

extraction is an expression of the form e.id where e is an expression that is not
a type literal, and does not denote an extension (17.22.1); or it is an expression
of the form super.id (17.22.2). □

Case ⟨Implicit⟩. Let e be an expression whose static type is an interface
type that has a method named call. In the case where the context type for e
is a function type or the type Function, e is treated as e.call.

This means that a “callable object” may be treated as a function that supports
a mechanism similar to function closurization (17.16) by desugaring it to a method
closurization on call. This only occurs when it is statically known that it is a
callable object, and when the context type requires a function. □

17.22.1 Getter Access and Method Extraction getterAccessAndMethodExtraction

Consider an unconditional property extraction i (17.22) of the form e.id. It
is a compile-time error if id is the name of an instance member of the built-in
class Object and e is a type literal.

This means that we cannot use int.toString to obtain a function object for the
toString method of the Type object for int. But we can use (int).toString:
e is then not a type literal, but a parenthesized expression.

This is a pragmatic trade-off. The ability to tear off instance methods on
instances of Type was considered less useful, and it was considered more useful
to insist on the simple rule that a method tear-off on a type literal is always a
tear-off of a static method on the denoted class.

Let T be the static type of e.
If T is dynamic bounded (17.15.3) and m is one of hashCode, noSuchMethod,

runtimeType, or toString then we say that i is a dynamic Object property △

extraction, whose static analysis is specified separately below.
Otherwise, it is a compile-time error if T does not have a method or getter

named id unless T is dynamic bounded, or T is Function bounded (17.15.3)
and id is call. The static type of i is:

• The return type as specified in Section 20.7 if i is a dynamic Object
property extraction and id is hashCode or runtimeType.

• The static type as specified in Section 20.7 if i is a dynamic Object prop-
erty extraction and id is noSuchMethod or toString.

Dart Programming Language Specification 163

• The declared return type of T.id, if T has an accessible instance getter
named id.

• The function type of the method signature T.id, if T has an accessible
instance method named id.

• Function if T is Function bounded and id is call.

• The type dynamic otherwise. This only occurs when T is dynamic bounded.

Note that the type of a method tear-off ignores whether any given parameter is
covariant. However, the dynamic type of a function object thus obtained does take
parameter covariance into account.

Evaluation of a property extraction i of the form e.id proceeds as follows:
First, the expression e is evaluated to an object o. Let f be the result of

looking up (17.18) method (10.2) id in o with respect to the current library L.
If method lookup succeeds then i evaluates to the closurization of method f on
object o (17.22.3).

Note that f is never an abstract method, because method lookup skips abstract
methods. If the method lookup failed, e.g., because there is an abstract declaration
of id, but no concrete declaration, we will continue to the next step. However, since
methods and getters never override each other, getter lookup will necessarily fail as
well, and noSuchMethod() will ultimately be invoked. The regrettable implication
is that the error will refer to a missing getter rather than an attempt to closurize
an abstract method.

Otherwise, i is a getter invocation. Let f be the result of looking up (17.18)
getter (10.3) id in o with respect to L. Otherwise, the body of f is executed
with this bound to o. The value of i is the result returned by the call to the
getter function.

If the getter lookup has failed, then a new instance im of the predefined
class Invocation is created, such that:

• im.isGetter evaluates to true.

• im.memberName evaluates to the symbol m.

• im.positionalArguments evaluates to an object whose dynamic type
implements List<Object>, and which is empty and unmodifiable.

• im.namedArguments evaluates to an object whose dynamic type imple-
ments Map<Symbol, Object>, and which is empty and unmodifiable.

• im.typeArguments evaluates to an object whose dynamic type imple-
ments List<Type>, and which is empty and unmodifiable.

Then the method noSuchMethod() is looked up in o and invoked with argu-
ment im, and the result of this invocation is the result of evaluating i.

The situation where noSuchMethod is invoked can only arise when the static
type of e is dynamic.

Dart Programming Language Specification 164

17.22.2 Super Getter Access and Method Closurization superGetterAccessAndMethodClosurization

Consider a property extraction i of the form super.id.
Let S be the superclass of the immediately enclosing class. It is a compile-

time error if S does not have an accessible instance method or getter named id.
The static type of i is:

• The declared return type of S.id, if S has an accessible instance getter
named id.

• The function type of the method signature S.id, if S has an accessible
instance method named id.

• The type dynamic otherwise. This only occurs when T is dynamic or
Function.

Note that the type of a method tear-off ignores whether any given parameter is
covariant. However, the dynamic type of a function object thus obtained does take
parameter covariance into account.

Evaluation of a property extraction i of the form super.m proceeds as follows:
Let g be the method implementation currently executing, and let C be the

class in which g is declared. Let S be the superclass of C. Let f be the result
of looking up method id in S with respect to the current library L. If method
lookup succeeds then i evaluates to the closurization of method f with respect
to superclass S (17.22.4).

Otherwise, i is a getter invocation. Let f be the result of looking up getter
id in S with respect to L. The body of f is executed with this bound to the
current value of this. The value of i is the result returned by the call to the
getter function.

The getter lookup will not fail, because it is a compile-time error to have a super
property extraction of a member id when the superclass S does not have a concrete
member named id.

17.22.3 Instance Method Closurization instanceMethodClosurization

This section specifies the dynamic semantics of instance method closuriza-
tions.

Note that the non-generic case is covered implicitly using s = 0, in which case
the type parameter declaration lists and the actual type argument lists passed in
invocations are omitted (15).

An instance method closurization is a closurization of some method on some △

object, defined below, or a super closurization (17.22.4).
Let o be an object, and let u be a fresh final variable bound to o. The

closurization of method f on object o is defined to be equivalent (except for △

equality, as noted below) to:

• <X1 extends B′
1, . . . , Xs extends B′

s>

Dart Programming Language Specification 165

(T1 p1, . . . , Tn pn, {Tn+1 pn+1 = d1, . . . , Tn+k pn+k = dk}) =>

u.m<X1, . . . , Xs>(p1, . . . , pn, pn+1: pn+1, . . . , pn+k: pn+k);

where f is an instance method named m which has type parameter declara-
tions X1 extends B1, . . . , Xs extends Bs, required parameters p1, . . . , pn,
and named parameters pn+1, . . . , pn+k with defaults d1, . . . , dk, using
null for parameters whose default value is not specified.

• <X1 extends B′
1, . . . , Xs extends B′

s>

(T1 p1, . . . , Tn pn, [Tn+1 pn+1 = d1, . . . , Tn+k pn+k = dk]) =>

u.m<X1, . . . , Xs>(p1, . . . , pn+k);

where f is an instance method named m which has type parameter declara-
tions X1 extends B1, . . . , Xs extends Bs, required parameters p1, . . . , pn,
and optional positional parameters pn+1, . . . , pn+k with defaults d1, . . . , dk,
using null for parameters whose default value is not specified.

B′
j , j ∈ 1..s, are determined as follows: If o is an instance of a non-generic

class, B′
j = Bj , j ∈ 1..s. Otherwise, let X ′

1, . . . , X ′
s′ be the formal type pa-

rameters of the class of o, and t′
1, . . . , t′

s′ be the actual type arguments. Then
B′

j = [t′
1/X ′

1, . . . , t′
s′/X ′

s′]Bj , j ∈ 1..s.
That is, we replace the formal type parameters of the enclosing class, if any, by

the corresponding actual type arguments.
The parameter types Tj , j ∈ 1..n + k, are determined as follows: Let the

method declaration D be the implementation of m which is invoked by the
expression in the body. Let T be the class that contains D.

Note that T is the dynamic type of o, or a superclass thereof.
For each parameter pj , j ∈ 1..n + k, if pj is covariant (9.2.3) then Tj is the

built-in class Object.
This is concerned with the dynamic type of the function object obtained by

the member closurization. The static type of the expression that gives rise to the
member closurization is specified elsewhere (17.22, 17.22.1). Note that for the
static type it is ignored whether a parameter is covariant.

If T is a non-generic class then for j ∈ 1..n + k, Tj is a type annotation that
denotes the same type as that which is denoted by the type annotation on the
corresponding parameter declaration in D. If that parameter declaration has
no type annotation then Tj is dynamic.

Otherwise T is a generic instantiation of a generic class G. Let X ′′
1 , . . . , X ′′

s′′

be the formal type parameters of G, and t′′
1 , . . . , t′′

s′′ be the actual type arguments
of o at T . Then Tj is a type annotation that denotes [t′′

1/X ′′
1 , . . . , t′′

s′′/X ′′
s′′]Sj ,

where Sj is the type annotation of the corresponding parameter in D. If that
parameter declaration has no type annotation then Tj is dynamic.

There is one way in which the function object yielded by the instance method
closurization differs from the function object obtained by function closurization

Dart Programming Language Specification 166

on the above mentioned function literal: Assume that o1 and o2 are objects, m
is an identifier, and c1 and c2 are function objects obtained by closurization of
m on o1 respectively o2. Then c1 == c2 evaluates to true if and only if o1 and
o2 is the same object.

In particular, two closurizations of a method m from the same object are equal,
and two closurizations of a method m from non-identical objects are not equal.
Assuming that vi is a fresh variable bound to an object, i ∈ 1..2, it also follows that
identical(v1.m, v2.m) must be false when v1 and v2 are not bound to the same
object. However, Dart implementations are not required to canonicalize function
objects, which means that identical(v1.m, v2.m) is not guaranteed to be true,
even when it is known that v1 and v2 are bound to the same object.

The special treatment of equality in this case facilitates the use of extracted
property functions in APIs where callbacks such as event listeners must often be
registered and later unregistered. A common example is the DOM API in web
browsers.

17.22.4 Super Closurization superClosurization

This section specifies the dynamic semantics of super closurizations.
Note that the non-generic case is covered implicitly using s = 0, in which case

the type parameter declarations are omitted (15).
Consider expressions in the body of a class T which is a subclass of a given

class S, where a method declaration that implements f exists in S, and there is
no class U which is a subclass of S and a superclass of T which implements f .

In short, consider a situation where a superinvocation of f will execute f as
declared in S.

A super closurization is a closurization of a method with respect to a class, △

as defined next. The closurization of a method f with respect to the class S is △

defined to be equivalent (except for equality, as noted below) to:

• <X1 extends B′
1, . . . , Xs extends B′

s>

(T1 p1, . . . , Tn pn, {Tn+1 pn+1 = d1, . . . , Tn+k pn+k = dk}) =>

super.m<X1, . . . , Xs>(p1, . . . , pn, pn+1: pn+1, . . . , pn+k: pn+k);

where f is an instance method named m which has type parameter declara-
tions X1 extends B1, . . . , Xs extends Bs, required parameters p1, . . . , pn,
and named parameters pn+1, . . . , pn+k with defaults d1, . . . , dk.

• <X1 extends B′
1, . . . , Xs extends B′

s>

(T1 p1, . . . , Tn pn, [Tn+1 pn+1 = d1, . . . , Tn+k pn+k = dk]) =>

super.m<X1, . . . , Xs>(p1, . . . , pn+k);

Dart Programming Language Specification 167

where f is an instance method named m which has type parameter declara-
tions X1 extends B1, . . . , Xs extends Bs, required parameters p1, . . . , pn,
and optional positional parameters pn+1, . . . , pn+k with defaults d1, . . . , dk.

Note that a super closurization is an instance method closurization, as defined
in (17.22.3).

B′
j , j ∈ 1..s, are determined as follows: If S is a non-generic class then

B′
j = Bj , j ∈ 1..s. Otherwise, let X ′

1, . . . , X ′
s′ be the formal type parameters

of S, and t′
1, . . . , t′

s′ be the actual type arguments of this at S. Then B′
j =

[t′
1/X ′

1, . . . , t′
s′/X ′

s′]Bj , j ∈ 1..s.
That is, we replace the formal type parameters of the enclosing class, if any, by

the corresponding actual type arguments. We need to consider the type arguments
with respect to a specific class because it is possible for a class to pass different
type arguments to its superclass than the ones it receives itself.

The parameter types Tj , j ∈ 1..n + k, are determined as follows: Let the
method declaration D be the implementation of m in S.

For each parameter pj , j ∈ 1..n + k, if pj is covariant (9.2.3) then Tj is the
built-in class Object.

This is concerned with the dynamic type of the function object obtained by the
super closurization. The static type of the expression that gives rise to the super
closurization is specified elsewhere (17.22, 17.22.2). Note that for the static type
it is ignored whether a parameter is covariant.

If S is a non-generic class then for j ∈ 1..n + k, Tj is a type annotation that
denotes the same type as that which is denoted by the type annotation on the
corresponding parameter declaration in D. If that parameter declaration has
no type annotation then Tj is dynamic.

Otherwise S is a generic instantiation of a generic class G. Let X ′′
1 , . . . , X ′′

s′′

be the formal type parameters of G, and t′′
1 , . . . , t′′

s′′ be the actual type arguments
of o at S. Then Tj is a type annotation that denotes [t′′

1/X ′′
1 , . . . , t′′

s′′/X ′′
s′′]Sj ,

where Sj is the type annotation of the corresponding parameter in D. If that
parameter declaration has no type annotation then Tj is dynamic.

There is one way in which the function object yielded by the super closuriza-
tion differs from the function object obtained by function closurization on the
above mentioned function literal: Assume that an occurrence of the expression
super.m in a given class is evaluated on two occasions where this is bound to
o1 respectively o2, and the resulting function objects are c1 respectively c2: c1
== c2 is then true if and only if o1 and o2 is the same object.

17.22.5 Generic Method Instantiation genericMethodInstantiation

Generic method instantiation is a mechanism that yields a non-generic func-
tion object, based on a property extraction which denotes an instance method
closurization (17.22.3, 17.22.4).

It is a mechanism which is very similar to instance method closurization, but it
only occurs in situations where a compile-time error would otherwise occur.

Dart Programming Language Specification 168

The essence of generic method instantiation is to allow for “curried” invo-
cations, in the sense that a generic instance method can receive its actual type
arguments separately during closurization (it must then receive all type argu-
ments, not just some of them), and that yields a non-generic function object.
The type arguments are passed implicitly, based on type inference; a future ver-
sion of Dart may allow for passing them explicitly. Here is an example:

class A {
X fi<X extends num>(X x) => x;

}

class B extends /* or implements */ A {
X fi<X extends num>(X x, [List<X> xs]) => x;

}

void main() {
A a = B();
int Function(int) f = a.fi;

}

The function object which is stored in f at the end of main has dynamic type
int Function(int, [List<int>]), and it is obtained by implicitly “passing the
actual type argument int” to the denoted generic instance method, thus obtaining
a non-generic function object of the specified type. Note that this function object
accepts an optional positional argument, even though this is not part of the statically
known type of the corresponding instance method, nor of the context type.

In other words, generic method instantiation yields a function whose signa-
ture matches the context type as far as possible, but with respect to its parameter
list shape (that is, the number of positional parameters and their optionality, or
the set of names of named parameters), it will be determined by the method
signature of the actual instance method of the given receiver. Of course, the
difference can only be such that the actual type is a subtype of the given con-
text type, otherwise the declaration of that instance method would have been a
compile-time error.

Let i be a property extraction expression of the form e?.id, e.id, or super.id
(17.22, 17.22.2), which is statically resolved to denote an instance method named
id, and let G be the static type of i. Consider the situation where G is a function
type of the form T0 Function<X1 ◁ B1, . . . , Xs ◁ Bs>(parameters) with s > 0
(that is, G is a generic function type), and the context type is a non-generic
function type F . In this situation a compile-time error occurs (8, 9, 10.7.1,
10.7.1, 10.7.1, 17.13.1, 17.13.2, 17.15.3, 17.23, 18.3, 18.9, 18.12, 18.17), except
when generic function type instantiation (17.17) succeeds, that is:

Type inference is applied to G with context type F , and it succeeds, yielding
the actual type argument list T1, . . . , Ts.

Consider the situation where generic function type instantiation succeeded.
Let gmiNameid be a fresh name which is associated with id, which is private

Dart Programming Language Specification 169

if and only if id is private. An implementation could use, say, foo_* when id is
foo, which is known to be fresh because user-written identifiers cannot contain ‘*’.
The program is then modified as follows:

• When i is e?.id: Replace i by e?.gmiNameid<T1, . . . , Ts>().

• When i is e.id: Replace i by e.gmiNameid<T1, . . . , Ts>().

• When i is super.id: Replace i by super.gmiNameid<T1, . . . , Ts>().

The inserted expressions have no compile-time error and can be executed,
because the corresponding generic method is induced implicitly. We use the
phrase generic instantiation method to denote these implicitly induced methods, △

and designate the method that induced it as its target. △

Assume that a class C declares a generic instance method named id, with
a method signature corresponding to a generic function type G, formal type
parameters X1 extends B1, . . . , Xs extends Bs, and formal parameter declara-
tions parameters. Let arguments denote the corresponding actual argument list,
passing these parameters.

For instance, parameters could be
T1 p1, . . . , Tn pn, {Tn+1 pn+1 = d1, . . . , Tn+k pn+k = dk}
in which case arguments would be p1, . . . , pn, pn+1: pn+1, pn+k: pn+k.

Let G′ be the same function type as G, except that it omits the formal type
parameter declarations. For instance, if G is void Function<X, Y extends
num>(X x, List<Y> ys) then G′ is void Function(X x, List<Y> ys). Note
that G′ will typically contain free type variables.

An instance method with the name gmiNameid is then implicitly induced,
with the same behavior as the following declaration (except for equality of the
returned function object, which is specified below):

G′ gmiNameid<X1 extends B1, . . . , Xs extends Bs>() {
return (parameters) => this.id<X1, . . . , Xs>(arguments);

}

Let o be an instance of a class which contains an implicitly induced dec-
laration of gmiNameid as described above. Consider the situation where the
program evaluates two invocations of this method with the same receiver o, and
with actual type arguments whose actual values are the same types t1, . . . , ts

for both invocations, and assume that the invocations returned the instances
o1 respectively o2. It is then guaranteed that o1 and o2 are equal according to
operator ‘==’. It is unspecified whether identical(o1, o2) evaluates to true
or false.

No notion of equality is appropriate with different receivers, nor when differ-
ent type arguments are provided, because execution of two function objects that
differ in these ways can have different side-effects and return different results
when executed starting from exactly the same state.

Dart Programming Language Specification 170

17.23 Assignment assignment

An assignment changes the value associated with a variable, or invokes a
setter.

⟨assignmentOperator⟩ ::= ‘=’
| ⟨compoundAssignmentOperator⟩

⟨compoundAssignmentOperator⟩ ::= ‘*=’
| ‘/=’
| ‘~/=’
| ‘%=’
| ‘+=’
| ‘-=’
| ‘<<=’
| ‘>>>=’
| ‘>>=’
| ‘&=’
| ‘^=’
| ‘|=’
| ‘??=’

Case ⟨ id = e⟩. Consider an assignment a of the form id = e, where id is
an identifier. Perform a lexical lookup of id= from the location of id.

• When the lexical lookup yields a declaration D of a local variable v (which
may be a formal parameter), a compile-time error occurs if v is final or if
the static type of e is not assignable to the declared type of v.

• When the lexical lookup yields a declaration D which is not a local vari-
able, it is guaranteed to be a setter (that may be explicit or induced implicitly
by a variable) because other declarations do not have a name of the form
id=.
If D is the declaration of a static setter in class or mixin C then a is
treated as (5) the assignment C.id = e.
Further analysis as well as evaluation of C.id = e proceeds as specified else-
where.
Otherwise, a compile-time error occurs, unless the static type of e is
assignable to the parameter type of D.

• When the lexical lookup yields nothing, a is treated as (5) this.id = e.
In this case it is known that a has access to this (10), and the interface of the
enclosing class has a member named id=, or there is an applicable extension
with a member named id=. Both the static analysis and evaluation proceeds
with this.id = e, so there is no need to further specify the treatment of a.

Dart Programming Language Specification 171

• The lexical lookup can never yield an import prefix, because they never have
a name of the form id=.

In all cases (whether or not id is a local variable, etc.), the static type of a is
the static type of e.

Evaluation of an assignment a of the form id = e proceeds as follows. Per-
form a lexical lookup of id= from the location of id.

• In the case where the lexical lookup yields a declaration D of a local
variable v, (which may be a formal parameter), the expression e is evaluated
to an object o, and the variable v is bound to o. Then a evaluates to the
object o (17.1).

• In the case where the lexical lookup of id= from the location of id yields
a declaration D, D is necessarily a top level setter s (possibly implicitly
induced by a variable).
The expression e is evaluated to an object o. Then the setter s is invoked
with its formal parameter bound to o. Then a evaluates to the object o.
D cannot be a static setter in a class C, because a is then treated as C.id
= e, which is specified elsewhere.

• The case where the lexical lookup of id= yields nothing cannot occur, because
that case is treated as this.id = e, whose evaluation is specified elsewhere.

□

Case ⟨p.id = e⟩. Consider an assignment a of the form p.id = e, where p
is an import prefix and id is an identifier.

A compile-time error occurs, unless p has a member which is a setter s named
id= (which may be implicitly induced by a variable declaration) such that the static
type of e is assignable to the parameter type of s.

The static type of a is the static type of e.
Evaluation of an assignment a of the form p.id = e proceeds as follows:

The expression e is evaluated to an object o. Then the setter denoted by p.id is
invoked with its formal parameter bound to o. Then a evaluates to the object
o. □

Case ⟨e1?.v = e2 ⟩. Consider an assignment a of the form e1?.v = e2.
Exactly the same compile-time errors that would be caused by e1.v = e2 are
also generated in the case of a. The static type of a is the static type of e2.

Evaluation of an assignment a of the form e1?.v = e2 proceeds as follows:
If e1 is a type literal, a is equivalent to e1.v = e2. Otherwise evaluate e1 to an
object o. If o is the null object, a evaluates to the null object (17.4). Otherwise
let x be a fresh variable bound to o and evaluate x.v = e2 to an object r. Then
a evaluates to r. □

Case ⟨e1.v = e2 ⟩. Consider an assignment a of the form e1.v = e2. Let
T be the static type of e1. If T is dynamic, no further checks are performed.
Otherwise, it is a compile-time error unless T has an accessible instance setter

Dart Programming Language Specification 172

named v=. It is a compile-time error unless the static type of e2 may be assigned
to the declared type of the formal parameter of said setter. Whether or not T
is dynamic, the static type of a is the static type of e2.

Evaluation of an assignment of the form e1.v = e2 proceeds as follows: The
expression e1 is evaluated to an object o1. Then, the expression e2 is evaluated
to an object o2. Then, the setter v= is looked up (17.18) in o1 with respect to
the current library. It is a dynamic type error if the dynamic type of o2 is not
a subtype of the actual parameter type of said setter (20.10.1). Otherwise, the
body of the setter is executed with its formal parameter bound to o2 and this
bound to o1.

If the setter lookup has failed, then a new instance im of the predefined class
Invocation is created, such that:

• im.isSetter evaluates to true.

• im.memberName evaluates to the symbol v=.

• im.positionalArguments evaluates to an object whose dynamic type
implements List<Object>, which is unmodifiable, and which contains the
same objects as <Object>[o2].

• im.namedArguments evaluates to an object whose dynamic type imple-
ments Map<Symbol, Object>, and which is empty and unmodifiable.

• im.typeArguments evaluates to an object whose dynamic type imple-
ments List<Type>, and which is empty and unmodifiable.

Then the method noSuchMethod() is looked up in o1 and invoked with
argument im.

The situation where noSuchMethod is invoked can only arise when the static
type of e1 is dynamic.

The value of the assignment expression is o2 irrespective of whether setter
lookup has failed or succeeded. □

Case ⟨super.v = e⟩. Consider an assignment a of the form super.v = e.
Let Sstatic be the superclass of the immediately enclosing class. It is a compile-
time error if Sstatic does not have a concrete accessible instance setter named
v=. Otherwise, it is a compile-time error if the static type of e may not be
assigned to the static type of the formal parameter of said setter. The static
type of a is the static type of e.

Evaluation of an assignment of the form super.v = e proceeds as follows:
Let g be the currently executing method, and let C be the class in which g was
looked up. Let Sdynamic be the superclass of C. The expression e is evaluated
to an object o. Then, the setter v= is looked up (17.18) in Sdynamic with respect
to the current library. The body of v= is executed with its formal parameter
bound to o and this bound to the current value of this.

The setter lookup will not fail, because it is a compile-time error when no
concrete setter named v= exists in Sstatic.

The value of the assignment expression is o.

Dart Programming Language Specification 173

It is a dynamic type error if o is not the null object (17.4) and the dynamic
type of o is not a subtype of the actual type of the formal parameter of v=
(20.10.1) in Sstatic. □

Case ⟨e1[e2] = e3 ⟩. Consider an assignment a of the form e1[e2] = e3.
Let T be the static type of e1. If T is dynamic, no further checks are performed.
Otherwise, it is a compile-time error unless T has a method named []=. Let
S2 be the static type of the first formal parameter of the method []=, and S3
the static type of the second. It is a compile-time error unless the static type of
e2 respectively e3 may be assigned to S2 respectively S3. Whether or not T is
dynamic, the static type of a is the static type of e3.

Evaluation of an assignment a of the form e1[e2] = e3 proceeds as follows:
Evaluate e1 to an object o, then evaluate e2 to an object i, and finally evaluate
e3 to an object v. Call the method []= on o with i as first argument and v as
second argument. Then a evaluates to v. □

Case ⟨super[e1] = e2 ⟩. Consider an assignment a of the form super[e1]
= e2. Let Sstatic be the superclass of the immediately enclosing class. It is a
compile-time error if Sstatic does not have a method []=. Otherwise, let S1 be
the static type of the first formal parameter of the method []=, and S2 the static
type of the second. It is a compile-time error if the static type of e1 respectively
e2 may not be assigned to S1 respectively S2. The static type of a is the static
type of e2.

For evaluation, an assignment of the form super[e1] = e2 is equivalent to
the expression super.[e1] = e2. □

17.23.1 Compound Assignment compoundAssignment

Case ⟨v ??= e⟩. Consider a compound assignment a of the form v ??= e
where v is an identifier or an identifier qualified by an import prefix. Exactly
the same compile-time errors that would be caused by v = e are also generated
in the case of a. The static type of a is the least upper bound of the static type
of v and the static type of e.

Evaluation of a compound assignment a of the form v ??= e proceeds as
follows: Evaluate v to an object o. If o is not the null object (17.4), a evaluates
to o. Otherwise evaluate v = e to an object r, and then a evaluates to r. □

Case ⟨C.v ??= e⟩. Consider a compound assignment a of the form C.v
??= e where C is a type literal that may or may not be qualified by an import
prefix. Exactly the same compile-time errors that would be caused by C.v =
e are also generated in the case of a. The static type of a is the least upper
bound of the static type of C.v and the static type of e.

Evaluation of a compound assignment a of the form C.v ??= e where C is
a type literal proceeds as follow: Evaluate C.v to an object o. If o is not the
null object (17.4), a evaluates to o. Otherwise evaluate C.v = e to an object
r, and then a evaluates to r. □

Case ⟨e1.v ??= e2 ⟩. Consider a compound assignment a of the form e1.v
??= e2. Let T be the static type of e1 and let x be a fresh variable of type
T . Except for errors inside e1 and references to the name x, exactly the same

Dart Programming Language Specification 174

compile-time errors that would be caused by x.v = e2 are also generated in the
case of a. Moreover, it is a compile-time error if T does not have a getter named
v. The static type of a is the least upper bound of the static type of e1.v and
the static type of e2.

Evaluation of a compound assignment a of the form e1.v ??= e2 proceeds
as follows: Evaluate e1 to an object u. Let x be a fresh variable bound to u.
Evaluate x.v to an object o. If o is not the null object (17.4), a evaluates to o.
Otherwise evaluate x.v = e2 to an object r, and then a evaluates to r. □

Case ⟨e1[e2] ??= e3 ⟩. Consider a compound assignment a of the form
e1[e2] ??= e3. Exactly the same compile-time errors that would be caused by
e1[e2] = e3 are also generated in the case of a. Moreover, it is a compile-time
error if the static type of e1 does not have an ‘operator []’. The static type of
a is the least upper bound of the static type of e1[e2] and the static type of e3.

Evaluation of a compound assignment a of the form e1[e2] ??= e3 proceeds
as follows: Evaluate e1 to an object u and then evaluate e2 to an object i. Call
the [] method on u with argument i, and let o be the returned object. If o is
not the null object (17.4), a evaluates to o. Otherwise evaluate e3 to an object
v and then call the []= method on u with i as first argument and v as second
argument. Then a evaluates to v. □

Case ⟨super.v ??= e⟩. Consider a compound assignment a of the form
super.v ??= e. Exactly the same compile-time errors that would be caused
by super.v = e are also generated in the case of a. Moreover, exactly the
same compile-time errors that would be caused by evaluation of the expression
super.v are also generated in the case of a. The static type of a is the least
upper bound of the static type of super.v and the static type of e.

Evaluation of a compound assignment a of the form super.v ??= e proceeds
as follows: Evaluate super.v to an object o. If o is not the null object (17.4)
then a evaluates to o. Otherwise evaluate super.v = e to an object r, and then
a evaluates to r. □

Case ⟨e1?.v ??= e2 ⟩. Consider a compound assignment a of the form
e1?.v ??= e2. Exactly the same compile-time errors that would be caused by
e1.v ??= e2 are also generated in the case of a. The static type of a is the least
upper bound of the static type of e1?.v and the static type of e2.

Evaluation of a compound assignment a of the form e1?.v ??= e2 proceeds
as follows: Evaluate e1 to an object u. If u is the null object (17.4) then a
evaluates to the null object. Otherwise, let x be a fresh variable bound to u.
Evaluate x.v to an object o. If o is not the null object (17.4) then a evaluates
to o. Otherwise evaluate x.v = e2 to an object r, and then a evaluates to r. □

Case ⟨C?.v ??= e2 ⟩. A compound assignment of the form C?.v ??= e2
where C is a type literal that may or may not be qualified by an import prefix
is equivalent to the expression C.v ??= e. □

Case ⟨v op= e⟩. For any other valid operator op, a compound assignment
of the form v op= e is equivalent to v = v op e, where v is an identifier or an
identifier qualified by an import prefix. □

Case ⟨C.v op= e⟩. A compound assignment of the form C.v op= e where
C is a type literal that may or may not be qualified by an import prefix is

Dart Programming Language Specification 175

equivalent to C.v = C.v op e. □

Case ⟨e1.v op= e2 ⟩. Consider a compound assignment a of the form e1.v
op= e2. Let x be a fresh variable whose static type is the static type of e1.
Except for errors inside e1 and references to the name x, exactly the same
compile-time errors that would be caused by x.v = x.v op e2 are also gener-
ated in the case of a. The static type of a is the static type of e1.v op e2.

Evaluation of a compound assignment a of the form e1.v op= e2 proceeds
as follows: Evaluate e1 to an object u and let x be a fresh variable bound to u.
Evaluate x.v = x.v op e2 to an object r and then a evaluates to r. □

Case ⟨e1[e2] op= e3 ⟩. Consider a compound assignment a of the form
e1[e2] op= e3. Let x and i be fresh variables where the static type of the
former is the static type of e1 and the static type of the latter is the static type
of e2. Except for errors inside e1 and e2 and references to the names x and i,
exactly the same compile-time errors that would be caused by x[i] = x[i] op
e3 are also generated in the case of a. The static type of a is the static type of
x[i] op e3.

Evaluation of s compound assignment a of the form e1[e2] op= e3 proceeds
as follows: Evaluate e1 to an object u and evaluate e2 to an object v. Let x
and i be fresh variables bound to u and v respectively. Evaluate x[i] = x[i]
op e3 to an object r, and then a evaluates to r. □

Case ⟨e1?.v op= e2 ⟩. Consider a compound assignment a of the form
e1?.v op= e2. Exactly the same compile-time errors that would be caused by
e1.v op= e2 are also generated in the case of a. The static type of a is the
static type of e1.v op= e2.

Evaluation of a compound assignment a of the form e1?.v op= e2 proceeds
as follows: Evaluate e1 to an object u. If u is the null object, then a evaluates to
the null object (17.4). Otherwise let x be a fresh variable bound to u. Evaluate
x.v op= e2 to an object r. Then a evaluates to r. □

Case ⟨C?.v op = e2 ⟩. A compound assignment of the form C?.v op =
e2 where C is a type literal is equivalent to the expression C.v op = e2. □

17.24 Conditional conditional

A conditional expression evaluates one of two expressions based on a boolean △

condition.

⟨conditionalExpression⟩ ::= ⟨ifNullExpression⟩
(‘?’ ⟨expressionWithoutCascade⟩ ‘:’ ⟨expressionWithoutCascade⟩)?

Evaluation of a conditional expression c of the form e1?e2 : e3 proceeds as
follows:

First, e1 is evaluated to an object o1. It is a dynamic error if the run-
time type of o1 is not bool. If r is true, then the value of c is the result of
evaluating the expression e2. Otherwise the value of c is the result of evaluating
the expression e3.

If e1 shows that a local variable v has type T , then the type of v is known
to be T in e2, unless any of the following are true:

Dart Programming Language Specification 176

• v is potentially mutated in e2,

• v is potentially mutated within a function other than the one where v is
declared, or

• v is accessed by a function defined in e2 and v is potentially mutated
anywhere in the scope of v.

It is a compile-time error if the static type of e1 may not be assigned to
bool. The static type of c is the least upper bound (20.10.2) of the static type
of e2 and the static type of e3.

17.25 If-null Expressions ifNull

An if-null expression evaluates an expression and if the result is the null △

object (17.4), evaluates another.
⟨ifNullExpression⟩ ::= ⟨logicalOrExpression⟩ (‘??’ ⟨logicalOrExpression⟩)*

Evaluation of an if-null expression e of the form e1 ?? e2 proceeds as fol-
lows:

Evaluate e1 to an object o. If o is not the null object (17.4), then e evaluates
to o. Otherwise evaluate e2 to an object r, and then e evaluates to r.

The static type of e is the least upper bound (20.10.2) of the static type of
e1 and the static type of e2.

17.26 Logical Boolean Expressions logicalBooleanExpressions

The logical boolean expressions combine boolean objects using the boolean
conjunction and disjunction operators.
⟨logicalOrExpression⟩ ::=

⟨logicalAndExpression⟩ (‘||’ ⟨logicalAndExpression⟩)*

⟨logicalAndExpression⟩ ::= ⟨equalityExpression⟩ (‘&&’ ⟨equalityExpression⟩)*

A logical boolean expression is either an equality expression (17.27), or an △

invocation of a logical boolean operator on an expression e1 with argument e2.
Evaluation of a logical boolean expression b of the form e1||e2 causes the

evaluation of e1 to an object o1. It is a dynamic error if the run-time type of
o1 is not bool. If o1 is true, the result of evaluating b is true, otherwise e2 is
evaluated to an object o2. It is a dynamic error if the run-time type of o2 is not
bool. Otherwise the result of evaluating b is o2.

Evaluation of a logical boolean expression b of the form e1&&e2 causes the
evaluation of e1 producing an object o1. It is a dynamic error if the run-time
type of o1 is not bool. If o1 is false, the result of evaluating b is false, otherwise
e2 is evaluated to an object o2. It is a dynamic error if the run-time type of o2
is not bool. Otherwise the result of evaluating b is o2.

A logical boolean expression b of the form e1&&e2 shows that a local variable
v has type T if both of the following conditions hold:

Dart Programming Language Specification 177

• Either e1 shows that v has type T or e2 shows that v has type T .

• v is not mutated in e2 or within a function other than the one where v is
declared.

If e1 shows that a local variable v has type T , then the type of v is known
to be T in e2, unless any of the following are true:

• v is potentially mutated in e1,

• v is potentially mutated in e2,

• v is potentially mutated within a function other than the one where v is
declared, or

• v is accessed by a function defined in e2 and v is potentially mutated
anywhere in the scope of v.

It is a compile-time error if the static type of e1 may not be assigned to bool
or if the static type of e2 may not be assigned to bool. The static type of a
logical boolean expression is bool.

17.27 Equality equality

Equality expressions test objects for equality.

⟨equalityExpression⟩ ::=
⟨relationalExpression⟩ (⟨equalityOperator⟩ ⟨relationalExpression⟩)?

| super ⟨equalityOperator⟩ ⟨relationalExpression⟩

⟨equalityOperator⟩ ::= ‘==’
| ‘!=’

An equality expression is either a relational expression (17.28), or an invoca- △

tion of an equality operator on either super or an expression e1, with argument
e2.

Evaluation of an equality expression ee of the form e1 == e2 proceeds as
follows:

• The expression e1 is evaluated to an object o1.

• The expression e2 is evaluated to an object o2.

• If either o1 or o2 is the null object (17.4), then ee evaluates to true if both
o1 and o2 are the null object and to false otherwise. Otherwise,

• evaluation of ee is equivalent to the method invocation o1.==(o2).

Evaluation of an equality expression ee of the form super == e proceeds as
follows:

Dart Programming Language Specification 178

• The expression e is evaluated to an object o.

• If either this or o is the null object (17.4), then ee evaluates to evaluates
to true if both this and o are the null object and to false otherwise.
Otherwise,

• evaluation of ee is equivalent to the method invocation super.==(o).

As a result of the above definition, user defined ‘==’ methods can assume that
their argument is non-null, and avoid the standard boiler-plate prelude:

if (identical(null, arg)) return false;
Another implication is that there is never a need to use identical() to test

against null, nor should anyone ever worry about whether to write null == e or e
== null.

An equality expression of the form e1 != e2 is equivalent to the expression
!(e1 == e2). An equality expression of the form super != e is equivalent to
the expression !(super == e).

The static type of an equality expression is bool.

17.28 Relational Expressions relationalExpressions

Relational expressions invoke the relational operators on objects.

⟨relationalExpression⟩ ::= ⟨bitwiseOrExpression⟩
(⟨typeTest⟩ | ⟨typeCast⟩ | ⟨relationalOperator⟩ ⟨bitwiseOrExpression⟩)?

| super ⟨relationalOperator⟩ ⟨bitwiseOrExpression⟩

⟨relationalOperator⟩ ::= ‘>=’
| ‘>’
| ‘<=’
| ‘<’

A relational expression is either a bitwise expression (17.29), or an invocation △

of a relational operator on either super or an expression e1, with argument e2.
A relational expression of the form e1 op e2 is equivalent to the method invo-

cation e1.op(e2). A relational expression of the form super op e2 is equivalent
to the method invocation super.op(e2).

17.29 Bitwise Expressions bitwiseExpressions

Bitwise expressions invoke the bitwise operators on objects.

⟨bitwiseOrExpression⟩ ::=
⟨bitwiseXorExpression⟩ (‘|’ ⟨bitwiseXorExpression⟩)*

| super (‘|’ ⟨bitwiseXorExpression⟩)+

Dart Programming Language Specification 179

⟨bitwiseXorExpression⟩ ::=
⟨bitwiseAndExpression⟩ (‘^’ ⟨bitwiseAndExpression⟩)*

| super (‘^’ ⟨bitwiseAndExpression⟩)+

⟨bitwiseAndExpression⟩ ::= ⟨shiftExpression⟩ (‘&’ ⟨shiftExpression⟩)*
| super (‘&’ ⟨shiftExpression⟩)+

⟨bitwiseOperator⟩ ::= ‘&’
| ‘^’
| ‘|’

A bitwise expression is either a shift expression (17.30), or an invocation of △

a bitwise operator on either super or an expression e1, with argument e2.
A bitwise expression of the form e1 op e2 is equivalent to the method invo-

cation e1.op(e2). A bitwise expression of the form super op e2 is equivalent to
the method invocation super.op(e2).

It should be obvious that the static type rules for these expressions are defined
by the equivalence above—ergo, by the type rules for method invocation and the
signatures of the operators on the type e1. The same holds in similar situations
throughout this specification.

17.30 Shift shift

Shift expressions invoke the shift operators on objects.

⟨shiftExpression⟩ ::=
⟨additiveExpression⟩ (⟨shiftOperator⟩ ⟨additiveExpression⟩)*

| super (⟨shiftOperator⟩ ⟨additiveExpression⟩)+

⟨shiftOperator⟩ ::= ‘<<’
| ‘>>>’
| ‘>>’

A shift expression is either an additive expression (17.31), or an invocation △

of a shift operator on either super or an expression e1, with argument e2.
A shift expression of the form e1 op e2 is equivalent to the method invocation

e1.op(e2). A shift expression of the form super op e2 is equivalent to the method
invocation super.op(e2).

Note that this definition implies left-to-right evaluation order among shift ex-
pressions: e1 << e2 << e3 is evaluated as (e1 << e2).<< (e3) which is equivalent to
(e1 << e2) << e3. The same holds for additive and multiplicative expressions.

17.31 Additive Expressions additiveExpressions

Additive expressions invoke the addition operators on objects.

Dart Programming Language Specification 180

⟨additiveExpression⟩ ::= ⟨multiplicativeExpression⟩
(⟨additiveOperator⟩ ⟨multiplicativeExpression⟩)*

| super (⟨additiveOperator⟩ ⟨multiplicativeExpression⟩)+

⟨additiveOperator⟩ ::= ‘+’
| ‘-’

An additive expression is either a multiplicative expression (17.32), or an △

invocation of an additive operator on either super or an expression e1, with
argument e2.

An additive expression of the form e1 op e2 is equivalent to the method invo-
cation e1.op(e2). An additive expression of the form super op e2 is equivalent
to the method invocation super.op(e2).

The static type of an additive expression is usually determined by the sig-
nature given in the declaration of the operator used. However, invocations of
the operators + and - of class int, double and num are treated specially by the
typechecker.

Let e be an additive expression of the form e1 op e2, let T be the static
type of e1, and let C be the context type of e.

If T <: num and not T <: Never, then the context type of e2 is determined
as follows:

• If int <: C and not num <: C, and T <: int then the context type of
e2 is int.

• If double <: C and not num <: C, and not T <: double then the
context type of e2 is double.

• Otherwise the context type of e2 is num.

Let further S be the static type of e2. If T <: num and not T <: Never and
S is assignable to num, then the static type of e is determined as follows:

• If T <: double then the static type of e is T .

• Otherwise, if S <: double and not S <: Never, then the static type of e
is double.

• Otherwise, if T <: int, S <: int and not S <: Never, then the static
type of e is int.

• Otherwise the static type of e is num.

17.32 Multiplicative Expressions multiplicativeExpressions

Multiplicative expressions invoke the multiplication operators on objects.

⟨multiplicativeExpression⟩ ::=
⟨unaryExpression⟩ (⟨multiplicativeOperator⟩ ⟨unaryExpression⟩)*

| super (⟨multiplicativeOperator⟩ ⟨unaryExpression⟩)+

Dart Programming Language Specification 181

⟨multiplicativeOperator⟩ ::= ‘*’
| ‘/’
| ‘%’
| ‘~/’

A multiplicative expression is either a unary expression (17.33), or an in- △

vocation of a multiplicative operator on either super or an expression e1, with
argument e2.

A multiplicative expression of the form e1 op e2 is equivalent to the method
invocation e1.op(e2). A multiplicative expression of the form super op e2 is
equivalent to the method invocation super.op(e2).

The static type of an multiplicative expression is usually determined by the
signature given in the declaration of the operator used. However, invocations
of the operators * and % of class int, double and num are treated specially by
the typechecker.

Let e be a multiplicative expression of the form e1 op e2 where op is one of
* or %, let T be the static type of e1, and let C be the context type of e.

If T <: num and not T <: Never, then the context type of e2 is determined
as follows:

• If int <: C and not num <: C, and T <: int then the context type of
e2 is int.

• If double <: C and not num <: C, and not T <: double then the
context type of e2 is double.

• Otherwise the context type of e2 is num.

Let further S be the static type of e2. If T <: num and not T <: Never and
S is assignable to num, then the static type of e is determined as follows:

• If T <: double then the static type of e is T .

• Otherwise, if S <: double and not S <: Never, then the static type of e
is double.

• Otherwise, if T <: int, S <: int and not S <: Never, then the static
type of e is int.

• Otherwise the static type of e is num.

17.33 Unary Expressions unaryExpressions

Unary expressions invoke unary operators on objects.

⟨unaryExpression⟩ ::= ⟨prefixOperator⟩ ⟨unaryExpression⟩
| ⟨awaitExpression⟩
| ⟨postfixExpression⟩
| (⟨minusOperator⟩ | ⟨tildeOperator⟩) super
| ⟨incrementOperator⟩ ⟨assignableExpression⟩

Dart Programming Language Specification 182

⟨prefixOperator⟩ ::= ⟨minusOperator⟩
| ⟨negationOperator⟩
| ⟨tildeOperator⟩

⟨minusOperator⟩ ::= ‘-’

⟨negationOperator⟩ ::= ‘!’

⟨tildeOperator⟩ ::= ‘~’

A unary expression is either a postfix expression (17.35), an await expression △

(17.34) or an invocation of a prefix operator on an expression or an invocation
of a unary operator on either super or an expression e.

The expression !e is treated as (5) (e ? false : true).
An expression of the form ++e is treated as (e += 1). An expression of the

form --e is treated as (e -= 1).
Let e be an expression of the form -l where l is an integer literal (17.5) with

numeric integer value i, and with static context type T . If double is assignable
to T and int is not assignable to T , then the static type of e is double; otherwise
the static type of e is int.

If the static type of e is int then e evaluates to an instance of the int class
representing the numeric value −i. If i is zero and the int class can represent a
negative zero value, then the resulting instance instead represents that negative
zero value. It is a compile-time error if the integer −i cannot be represented
exactly by an instance of int.

If the static type of e is double then e evaluates to to an instance of the
double class representing the numeric value −i. If i is zero, the resulting in-
stance instead represents the negative zero double value, -0.0. It is a compile-
time error if the integer −i cannot be represented exactly by an instance of
double. We treat -l as if it is a single integer literal with a negative numeric value.
We do not evaluate l individually as an expression, or concern ourselves with its
static type.

Any other expression of the form op e is equivalent to the method invoca-
tion e.op(). An expression of the form op super is equivalent to the method
invocation (17.21.3) super.op().

17.34 Await Expressions awaitExpressions

An await expression allows code to yield control until an asynchronous op- △

eration (9) completes.

⟨awaitExpression⟩ ::= await ⟨unaryExpression⟩

Let a be an expression of the form await e. Let S be the static type of e. a, e, S
The static type of a is then flatten(S) (17.11).

Evaluation of a proceeds as follows: First, the expression e is evaluated to
an object o. Let T be flatten(S). If the run-time type of o is a subtype of T

Dart Programming Language Specification 183

Future<T>, then let f be o; otherwise let f be the result of creating a new f
object using the constructor Future<T>.value() with o as its argument.

Next, the stream associated with the innermost enclosing asynchronous for
loop (18.6.3), if any, is paused. The current invocation of the function body
immediately enclosing a is suspended until after f completes. At some time after
f is completed, control returns to the current invocation. If f has completed
with an error x and stack trace t, a throws x and t (17.1). If f completes with
an object v, a evaluates to v.

The use of flatten to find T and hence determine the dynamic type test
implies that we await a future in every case where this choice is sound.

An interesting case on the edge of this trade-off is when e has the static type
FutureOr<Object>?. You could say that the intention behind this type is that the
value of e is a Future<Object>, or it is an Object which is not a future, or it is null.
So, presumably, we should await the first kind, and we should pass on the second
and third kind unchanged. However, the second kind could be a Future<Object?>.
This object isn’t a Future<Object>, and it isn’t null, so it must be considered to
be in the second group. Nevertheless, flatten(FutureOr<Object>?) is Object?, so
we will await a Future<Object?>. We have chosen this semantics because it was
the smallest breaking change relative to the semantics in earlier versions of Dart,
and also because it allows for a simple rule: The type of await e is used to decide
whether or not the future (if any) is awaited, and there are no exceptions—even in
cases like this example, where the type seems to imply that a Future<Object?>
should not be awaited. In summary, we await every future that we can soundly
await.

An await expression can only occur in a function which is declared asynchronous.
The await identifier has has no special meaning in the context of a normal function,
so occurrences of await in those functions does not introduce an await expression.
However, await(e) can be a valid function invocation in non-asynchronous func-
tions.

An await expression could not meaningfully occur in a synchronous function.
If such a function were to suspend waiting for a future, it would no longer be
synchronous.

It is not a compile-time error if the type of e is not a supertype or subtype of
Future. Tools may choose to give a hint in such cases.

17.35 Postfix Expressions postfixExpressions

Postfix expressions invoke the postfix operators on objects.

⟨postfixExpression⟩ ::= ⟨assignableExpression⟩ ⟨postfixOperator⟩
| ⟨primary⟩ ⟨selector⟩*

⟨postfixOperator⟩ ::= ⟨incrementOperator⟩

⟨constructorInvocation⟩ ::=
⟨typeName⟩ ⟨typeArguments⟩ ‘.’ ⟨identifier⟩ ⟨arguments⟩

Dart Programming Language Specification 184

⟨selector⟩ ::= ‘!’
| ⟨assignableSelector⟩
| ⟨argumentPart⟩

⟨argumentPart⟩ ::= ⟨typeArguments⟩? ⟨arguments⟩

⟨incrementOperator⟩ ::= ‘++’
| ‘--’

A postfix expression is either a primary expression; a function, method or △

getter invocation; an invocation of a named constructor; or an invocation of
a postfix operator on an expression e. All but the latter two are specified
elsewhere.

Case ⟨Constructor Invocations⟩. Consider a ⟨constructorInvocation⟩ e of
the form n<typeArguments>.id(arguments). If n does not denote a class C
that declares a constructor named C.id, a compile-time error occurs.

Otherwise, if e occurs in a constant context (17.3.2) then e is treated as
const e, and if e does not occur in a constant context then e is treated as
new e.

Note that e cannot be anything other than an instance creation (constant or
not) because e provides actual type arguments to n, which is not supported if n
denotes a library prefix, nor if e is a static method invocation. □

Case ⟨v++, v--⟩. Consider a postfix expression e of the form v op, where v
is an identifier and op is either ‘++’ or ‘--’. A compile-time error occurs unless
v denotes a variable, or v denotes a getter and there is an associated setter v=.
Let T be the static type of the variable v or the return type of the getter. A
compile-time error occurs if T is not dynamic and T does not have an operator
‘+’ (when op is ‘++’) or operator ‘-’ (when op is ‘--’), or if the return type of
this operator is not assignable to the variable respectively the argument type of
the setter. A compile-time error occurs if int is not assignable to the parameter
type of said operator. The static type of e is T .

Evaluation of a postfix expression e of the form v++ respectively v--, where
v is an identifier, proceeds as follows: Evaluate v to an object r and let y be a
fresh variable bound to r. Evaluate v = y + 1 respectively v = y - 1. Then
e evaluates to r.

The above ensures that if the evaluation involves a getter, it gets called ex-
actly once. Likewise in the cases below. □

Case ⟨C.v++, C.v--⟩. Consider a postfix expression e of the form C.v op,
where C is a type literal and op is either ‘++’ or ‘--’. A compile-time error
occurs unless C.v denotes a static getter and there is an associated static setter
v= (possibly implicitly induced by a static variable). Let T be the return type of
said getter. A compile-time error occurs if T is not dynamic and T does not
have an operator ‘+’ (when op is ‘++’) or operator ‘-’ (when op is ‘--’), or if
the return type of this operator is not assignable to the argument type of the
setter. A compile-time error occurs if int is not assignable to the parameter
type of said operator. The static type of e is T .

Dart Programming Language Specification 185

Evaluation of a postfix expression e of the form C.v++ respectively C.v--
where C is a type literal proceeds as follows: Evaluate C.v to an object r and
let y be a fresh variable bound to r. Evaluate C.v = y + 1 respectively C.v
= y - 1. Then e evaluates to r. □

Case ⟨e1.v++, e1.v--⟩. Consider a postfix expression e of the form e1.v op
where op is either ‘++’ or ‘--’. Let S be the static type of e1. A compile-time
error occurs unless S has a getter named v and a setter named v= (possibly
implicitly induced by an instance variable). Let T be the return type of said
getter. A compile-time error occurs if T is not dynamic and T does not have an
operator ‘+’ (when op is ‘++’) or operator ‘-’ (when op is ‘--’), or if the return
type of this operator is not assignable to the argument type of the setter. A
compile-time error occurs if int is not assignable to the parameter type of said
operator. The static type of e is T .

Evaluation of a postfix expression e of the form e1.v++ respectively e1.v--
proceeds as follows: Evaluate e1 to an object u and let x be a fresh variable
bound to u. Evaluate x.v to an object r and let y be a fresh variable bound to
r. Evaluate x.v = y + 1 respectively x.v = y - 1. Then e evaluates to r. □

Case ⟨e1[e2]++, e1[e2]--⟩. Consider a postfix expression e of the form
e1[e2] op where op is either ‘++’ or ‘--’. Let S1 be the static type of e1 and S2
be the static type of e2. A compile-time error occurs unless S1 has an operator
‘[]’ and an operator ‘[]=’. Let T be the return type of the former. A compile-
time error occurs unless S2 is assignable to the first parameter type of said
operator ‘[]=’. A compile-time error occurs if T is not dynamic and T does not
have an operator ‘+’ (when op is ‘++’) or operator ‘-’ (when op is ‘--’), or if
the return type of this operator is not assignable to the second argument type
of said operator ‘[]=’. A compile-time error occurs if passing the integer literal
1 as an argument to said operator ‘+’ or ‘-’ would be an error. The static type
of e is T .

Evaluation of a postfix expression e of the form e1[e2]++ respectively e1[e2]--
proceeds as follows: Evaluate e1 to an object u and e2 to an object v. Let a and
i be fresh variables bound to u and v respectively. Evaluate a[i] to an object
r and let y be a fresh variable bound to r. Evaluate a[i] = y + 1 respectively
a[i] = y - 1. Then e evaluates to r. □

Case ⟨e1?.v++, e1?.v--⟩. Consider a postfix expression e of the form
e1?.v op where op is either ‘++’ or ‘--’. Exactly the same compile-time errors
that would be caused by e1.v op are also generated in the case of e1?.v op. The
static type of e is the static type of e1.v.

Evaluation of a postfix expression e of the form e1?.v++ respectively e1?.v--
proceeds as follows: If e1 is a type literal, evaluation of e is equivalent to eval-
uation of e1.v++ respectively e1.v--. Otherwise evaluate e1 to an object u. if
u is the null object, e evaluates to the null object (17.4). Otherwise let x be a
fresh variable bound to u. Evaluate x.v++ respectively x.v-- to an object o.
Then e evaluates to o. □

17.36 Assignable Expressions assignableExpressions

Dart Programming Language Specification 186

Assignable expressions are terms that can appear on the left hand side of △

an assignment. This section describes how to evaluate subterms of these terms
when needed. The semantics of an assignment as a whole is described elsewhere
(17.23).

The grammar of assignable expressions includes very general forms like an iden-
tifier id or a qualified identifier id1.id2. Hence, an assignable expression can have
many different meanings, depending on the binding of those identifiers in the con-
text.

For example, the term x.y.z is an assignable expression. x.y may refer to a
getter y on an object referenced by a variable x, in which case x.y will be evaluated
to an object before accessing the z member of that object. The term x.y could
also denote a class y referenced through an import prefix x, with z denoting a static
variable of that class. In this case x.y will not be evaluated to a value.

⟨assignableExpression⟩ ::= ⟨primary⟩ ⟨assignableSelectorPart⟩
| super ⟨unconditionalAssignableSelector⟩
| ⟨identifier⟩

⟨assignableSelectorPart⟩ ::= ⟨selector⟩* ⟨assignableSelector⟩

⟨unconditionalAssignableSelector⟩ ::= ‘[’ ⟨expression⟩ ‘]’
| ‘.’ ⟨identifier⟩

⟨assignableSelector⟩ ::= ⟨unconditionalAssignableSelector⟩
| ‘?.’ ⟨identifier⟩
| ‘?’ ‘[’ ⟨expression⟩ ‘]’

The section about assignments (17.23) specifies the static analysis and dy-
namic semantics of various forms of assignment. Each of those cases is applicable
when the specified subterms satisfy the given side conditions (e.g., one case of
the form e1.v ??= e2 requires e1 to be an expression, whereas C.v ??= e requires
C to be a type literal). The cases requiring subterms to be expressions are con-
sidered least specific, that is, they are only used if no other case matches (so the
case containing C is used if the corresponding term is a type literal).

Syntactically, these expressions are not derived from ⟨expression⟩, but they are
derivable from ⟨expression⟩, e.g., because an ⟨assignableExpression⟩ may contain
a ⟨primary⟩ which is derivable from ⟨expression⟩. We use the following rule to find
such expressions:

Let e be an ⟨assignableExpression⟩. Assume that t is a term such that e can e, t
be derived from t ⟨assignableSelector⟩. In this case we say that t is the receiver △

term of e. When t is an expression, we say that t is the receiver expression of e. △

In short, we obtain t by cutting off an assignable selector from the end of e. It
is easy to see that only some ⟨assignableExpression⟩s have a receiver term. For
instance, a plain ⟨identifier⟩ does not.

Let e be an assignable expression. Assume that e has a receiver expression t.
Evaluation of t proceeds in the same way as evaluation of any other expression.

Dart Programming Language Specification 187

17.37 Lexical Lookup lexicalLookup

This section specifies how to look up a name based on the enclosing lexical
scopes. This is known as a lexical lookup. When id is an identifier, it may look △

up a name n of the form id as well as of the form id=.
A lexical lookup can yield a declaration or an import prefix, and it can yield

nothing.
It is not a compile-time error when the lexical lookup yields nothing. In this

situation the given name n will be transformed into this.n, and the static analysis
of the resulting expression may or may not have any compile-time errors.

A lexical lookup may incur a compile-time error, as specified below. How-
ever, that is different from a result yielded by the lexical lookup, because this
specification never specifies the propagation of errors.

In other words, when other parts of this specification indicate that a lexical
lookup is performed, they need to consider the further steps taken when the lookup
yields a declaration, when it yields an import prefix, and when it yields nothing. But
they do not mention that, e.g., id.m is an error because the lexical lookup for id
incurred an error.

A lexical lookup differs from a lookup of an instance member (17.18) because
that operation searches through a sequence of superclasses, whereas a lexical lookup
searches through a sequence of enclosing scopes. A lexical lookup differs from a
straightforward lookup in the enclosing scopes because the lexical lookup “bundles”
getters and setters, as detailed below.

Consider the situation where a name n has basename id (10.11) where id is n, id
an identifier, and a lexical lookup of n is performed from a given location ℓ. ℓ

We specify a name and a location from where a lexical lookup is performed.
The location is not always redundant: In some situations we perform a lookup for
a setter named id=, but the token id= does not occur in the program. To handle
such situations we must specify both the name which is being looked up, and the
location that determines which scopes are the enclosing ones.

When we say that a lexical lookup of the identifier id is performed, it is un-
derstood that the lookup is performed from the location of the given occurrence
of id.

Let S be the innermost lexical scope containing ℓ which has a declaration
with basename id. In the case where S has a declaration named id as well as a
declaration named id=, let D be the declaration named n. In the situation where D
S has exactly one declaration with basename id, let D be that declaration.

A non-local variable declaration named id will implicitly induce a getter id and
possibly a setter id= into the current scope. This means that D may denote an
implicitly induced getter or setter rather than the underlying variable declaration.
That is significant in the case where an error must arise because the lookup was for
one kind, but only the other kind exists.

If we are looking up a name n with basename id, we stop searching if we find
any declaration named id or id=. If, in that scope, there are declarations for both
id and id=, we return the one which has the requested name n. In the case where
only one declaration is present, we return it, even though it may have the name id

Dart Programming Language Specification 188

when n is id=, or vice versa. That situation may cause an error, as specified below.
In the first step, we check for several potential errors.
Case ⟨D exists⟩. In this case, at least one declaration with basename id is

in scope at the location ℓ. It is a compile-time error if the name of D is not
n, unless D is an instance member or a local variable (which may be a formal
parameter).

That is, it is an error if we look for a setter and find a getter, or vice versa, but
not an error if we look for a setter and find a local variable. If we look for a setter
and find an instance getter, or vice versa, it is not an error, because the setter could
be inherited. That is checked after yielding nothing (which implies that this will be
prepended).

If D is an instance member, it is a compile-time error if ℓ does not have
access to this. □

Case ⟨D does not exist⟩. It is a compile-time error if ℓ does not have access
to this (10). □

We are always looking up both id and id=, no matter whether n is id or
id=. This approach creates a tighter connection between a pair of declarations
where one is a getter named id and the other is a setter named id=. This allows
developers to think about a getter and setter that are declared together as a single
entity, rather than two independent declarations.

For example, if a term refers to id and needs a setter, and the innermost dec-
laration named id or id= is a getter g and there is no corresponding setter, it is a
compile-time error. This error occurs even in the case where a more remote enclos-
ing scope has a declaration of a setter s named id=, because we already committed
to using g (so that’s actually “a setter/getter pair where the setter is missing”),
and we could say that this “pair” shadows s:

set id(int value) {} // This is s

class A {
int get id => 42; // This is g
user() {

id = 0; // Compile-time error
}

}

In the second and last step, if no error occurred, proceed as described in the
first applicable case from the following list:

• When D does not exist, the lexical lookup yields nothing. In this case it
is guaranteed that ℓ has access to this, and n will be treated as this.n. But
errors may still occur, e.g., because there is no member of the interface of
this named n, and also no accessible and applicable extension method.

• Consider the case where D is a formal type parameter declaration of a
class or a mixin. It is a compile-time error if ℓ occurs inside a static

Dart Programming Language Specification 189

method, static getter, or static setter, or inside a static variable initializer.
Otherwise, the lexical lookup yields D.

• Consider the case where D is an instance member declaration in a class
or mixin A. The lexical lookup then yields nothing. In this case it is
guaranteed that ℓ has access to this.

• Otherwise, the lexical lookup yields D.

Note that a lexical lookup will never yield a declaration of an instance mem-
ber. In each case where it is determined that there is no error, and an instance
member is the result of the lookup, the lexical lookup yields nothing.

The reason for this is that there may not be a declaration in scope, but the
interface of the class could have the required member, or an extension method
could be applicable. So, for uniformity, in these situations we always report that
nothing was found, which implies that this should be added.

17.38 Identifier Reference identifierReference

An identifier expression consists of a single identifier; it provides access to △

an object via an unqualified name. A ⟨typeIdentifier⟩ is an identifier which can
be used as the name of a type declaration.

A ⟨qualifiedName⟩ is not an identifier expression, but we specify its syntax here
because it is used in several different contexts, and it is more closely related to the
plain identifier than it is to any single one of those grammar rules where it is used.

⟨identifier⟩ ::= ⟨IDENTIFIER⟩
| ⟨BUILT_IN_IDENTIFIER⟩
| ⟨OTHER_IDENTIFIER⟩

⟨typeIdentifierNotType⟩ ::= ⟨IDENTIFIER⟩
| ⟨OTHER_IDENTIFIER_NOT_TYPE⟩
| dynamic

⟨typeIdentifier⟩ ::= ⟨typeIdentifierNotType⟩
| type

⟨qualifiedName⟩ ::= ⟨typeIdentifier⟩ ‘.’ ⟨identifier⟩
| ⟨typeIdentifier⟩ ‘.’ ⟨typeIdentifier⟩ ‘.’ ⟨identifier⟩

⟨BUILT_IN_IDENTIFIER⟩ ::= abstract | as | covariant | deferred
| dynamic | export | external | extension | factory | Function | get
| implements | import | interface | late | library | mixin | operator
| part | required | set | static | typedef

⟨OTHER_IDENTIFIER_NOT_TYPE⟩ ::=
async | hide | of | on | show | sync | await | yield

Dart Programming Language Specification 190

⟨OTHER_IDENTIFIER⟩ ::=
⟨OTHER_IDENTIFIER_NOT_TYPE⟩ | type

⟨IDENTIFIER_NO_DOLLAR⟩ ::= ⟨IDENTIFIER_START_NO_DOLLAR⟩
⟨IDENTIFIER_PART_NO_DOLLAR⟩*

⟨IDENTIFIER_START_NO_DOLLAR⟩ ::= ⟨LETTER⟩ | ‘_’

⟨IDENTIFIER_PART_NO_DOLLAR⟩ ::=
⟨IDENTIFIER_START_NO_DOLLAR⟩ | ⟨DIGIT ⟩

⟨IDENTIFIER⟩ ::= ⟨IDENTIFIER_START ⟩ ⟨IDENTIFIER_PART ⟩*

⟨IDENTIFIER_START ⟩ ::= ⟨IDENTIFIER_START_NO_DOLLAR⟩ | ‘$’

⟨IDENTIFIER_PART ⟩ ::= ⟨IDENTIFIER_START ⟩ | ⟨DIGIT ⟩

⟨LETTER⟩ ::= ‘a’ .. ‘z’ | ‘A’ .. ‘Z’

⟨DIGIT ⟩ ::= ‘0’ .. ‘9’

⟨WHITESPACE⟩ ::= (‘\t’ | ‘ ’ | ⟨LINE_BREAK ⟩)+

The ordering of the lexical rules above ensure that ⟨IDENTIFIER⟩ and
⟨IDENTIFIER_NO_DOLLAR⟩ do not derive any built-in identifiers. Simi-
larly, the lexical rule for reserved words (21.1.1) must be considered to come
before the rule for ⟨BUILT_IN_IDENTIFIER⟩, such that ⟨IDENTIFIER⟩ and
⟨IDENTIFIER_NO_DOLLAR⟩ also do not derive any reserved words.

A built-in identifier is one of the identifiers produced by the production △

⟨BUILT_IN_IDENTIFIER⟩.
Note that it is a syntax error if a built-in identifier is used as the declared name

of a prefix, class, mixin, enum, type parameter, type alias, or extension. Similarly,
it is a syntax error to use a built-in identifier other than dynamic or Function as
an identifier in a type annotation or a type parameter bound.

Built-in identifiers are identifiers that are used as keywords in Dart, but are
not reserved words. A built-in identifier may not be used to name a class or
type. In other words, they are treated as reserved words when used as types.
This eliminates many confusing situations, both for human readers and during
parsing.

It is a compile-time error if either of the identifiers await or yield is used as
an ⟨identifier⟩ in a function body marked with either async, async*, or sync*.

This makes the identifiers await and yield behave like reserved words in a
limited context. This approach was chosen because it was less breaking than it
would have been to make await and yield reserved words or built-in identifiers,
at the time where these features were added to the language.

A qualified name is two or three identifiers separated by ‘.’. All but the △

last one must be a ⟨typeIdentifier⟩. It is used to denote a declaration which

Dart Programming Language Specification 191

is imported with a prefix, or a static declaration in a class, mixin, enum, or
extension, or both.

The static type of an identifier expression e which is an identifier id is de-
termined as follows. Perform a lexical lookup of id (17.37) from the location of
e.

Case ⟨Lexical lookup yields a declaration⟩. Let D be the declaration yielded
by the lexical lookup of id.

• If D declares a class, mixin, enum, type alias, an enumerated type, or a
type parameter, the static type of e is Type.

• If D is the declaration of a library getter (which may be implicitly induced
by a library variable), the static type of e is the static type of the library
getter invocation id (17.19).

• If D is a static method, library function, or local function, the static type
of e is the function type of D.
Note that e may subsequently be subjected to generic function instantiation
(17.17).

• If D is the declaration of a static getter (which may be implicitly induced
by a static variable) and D occurs in the class C, the static type of e is the
return type of the getter C.id.

• If D is a local variable declaration (which can be a formal parameter) the
static type of e is the type of the variable v declared by D, unless v is
known to have some type T , where T is a subtype of any other type S
such that v is known to have type S, in which case the static type of e is
T .

• If D is a declaration of an instance getter in an extension declaration E,
then the static type of e is the return type of D.

• If D is a declaration of an instance method in an extension declaration E,
then the static type of e is the function type of D.

• A lexical lookup will never yield a declaration which is an instance member of
a class.

□

Case ⟨Lexical lookup yields an import prefix⟩. In this case the lexical
lookup (17.37) for id yields an import prefix p. In this case a compile-time
error occurs, unless the token immediately following e is ‘.’. No static type is
associated with e in this case.

No such type is needed, because every construct where an import prefix p is
used and followed by ‘.’ is specified in such a way that the type of p is not used. □

Case ⟨Lexical lookup yields nothing⟩. When the lexical lookup (17.37) for
id yields nothing, e is treated as (5) this.id.

Dart Programming Language Specification 192

In this case it is known that e has access to this (10). Both the static analysis
and evaluation proceeds with this.id, so there is no need to further specify the
treatment of e. □

Evaluation of an identifier expression e of the form id proceeds as follows:
Case ⟨Lexical lookup yields a declaration⟩. In this case the lexical lookup

(17.37) for id yields a declaration D. The evaluation of e proceeds as follows:

• If D is a class, mixin, enum, or type alias, the value of e is an object
implementing the class Type which reifies the corresponding type.

• If D is a type parameter X then the value of e is the value of the ac-
tual type argument corresponding to X that was passed to the generative
constructor that created the current binding of this.

• If D is the declaration of a library getter (which may be implicitly induced
by a library variable), evaluation of e is equivalent to evaluation of an invo-
cation of the library getter id (17.19).

• If D is a library, class, or local constant variable of one of the forms const
v = e′; or const T v = e′; then the value of e is the value of the constant
expression e′.

• If D is a declaration of a top-level function, static method, or local func-
tion, then e evaluates to the function object obtained by closurization
(17.16) of D.

• If D is an instance getter declaration in an extension declaration E, then
e evaluates to the result of invoking said getter with the current binding
of this, and the current bindings of the type parameters declared by D.

• If D is an instance method declaration in an extension declaration E
with type parameters X1, . . . , Xs, then e evaluates to the result of the
extension method closurization E<X1, . . . , Xs>(this).id (13.4).

• If D is a local variable v (which can be a formal parameter) then e evaluates
to the current binding of v.

Note that D cannot be the declaration of a static variable, static getter or static
setter declared in a class C, because in that case e is treated as (5) the property
extraction (17.22) C.id, which also determines the evaluation of e. □

Case ⟨Lexical lookup yields an import prefix⟩. This situation cannot arise,
because it is a compile-time error to evaluate an import prefix as an expression,
and no constructs involving an import prefix (e.g., such as a property extraction
p.m) will evaluate the import prefix. □

Case ⟨Lexical lookup yields nothing⟩. This situation cannot arise, because
this only occurs when e is treated as this.id, whose evaluation is specified
elsewhere (17.22). □

Dart Programming Language Specification 193

17.39 Type Test typeTest

The is-expression tests if an object is a member of a type. △

⟨typeTest⟩ ::= ⟨isOperator⟩ ⟨typeNotVoid⟩

⟨isOperator⟩ ::= is ‘!’?

Evaluation of the is-expression e is T proceeds as follows:
The expression e is evaluated to an object v. If the dynamic type of v is

a subtype of T , the is-expression evaluates to true. Otherwise it evaluates to
false.

It follows that e is Object is always true. This makes sense in a language
where everything is an object.

Also note that null is T is false unless T = Object, T = dynamic or T =
Null. The former two are useless, as is anything of the form e is Object or e is
dynamic. Users should test for the null object (17.4) directly rather than via type
tests.

The is-expression e is! T is equivalent to !(e is T).
Let v be a local variable (which can be a formal parameter). An is-expression

of the form v is T shows that v has type T if T is a subtype of the type of the
expression v. Otherwise, if the declared type of v is the type variable X, and
T is a subtype of the bound of X, and X&T is a subtype of the type of the
expression v, then e shows that v has type X&T . Otherwise e does not show
that v has type T for any T .

The motivation for the “shows that v has type T” relation is to reduce spuri-
ous errors thereby enabling a more natural coding style. The rules in the current
specification are deliberately kept simple. It would be upwardly compatible to re-
fine these rules in the future; such a refinement would accept more code without
errors, but not reject any code now error-free.

The rule only applies to locals and parameters, as non-local variables could
be modified via side-effecting functions or methods that are not accessible to a
local analysis.

It is pointless to deduce a weaker type than what is already known. Further-
more, this would lead to a situation where multiple types are associated with a
variable at a given point, which complicates the specification. Hence the require-
ment that the promoted type is a subtype of the current type.

In any case, it is not an error when a type test does not show that a given
variable does not have a “better” type than previously known, but tools may
choose to give a hint in such cases, if suitable heuristics indicate that a promo-
tion is likely to be intended.

The static type of an is-expression is bool.

17.40 Type Cast typeCast

The cast expression ensures that an object is a member of a type. △

Dart Programming Language Specification 194

⟨typeCast⟩ ::= ⟨asOperator⟩ ⟨typeNotVoid⟩

⟨asOperator⟩ ::= as

Evaluation of the cast expression e as T proceeds as follows:
The expression e is evaluated to an object v. It is a dynamic type error if o

is not the null object (17.4), and the dynamic type of o is not a subtype of T .
Otherwise e evaluates to v.

The static type of a cast expression e as T is T .

18 Statements statements

A statement is a fragment of Dart code that can be executed at run time. △

Statements, unlike expressions, do not evaluate to an object, but are instead
executed for their effect on the program state and control flow.

⟨statements⟩ ::= ⟨statement⟩*

⟨statement⟩ ::= ⟨label⟩* ⟨nonLabelledStatement⟩

⟨nonLabelledStatement⟩ ::= ⟨block⟩
| ⟨localVariableDeclaration⟩
| ⟨forStatement⟩
| ⟨whileStatement⟩
| ⟨doStatement⟩
| ⟨switchStatement⟩
| ⟨ifStatement⟩
| ⟨rethrowStatement⟩
| ⟨tryStatement⟩
| ⟨breakStatement⟩
| ⟨continueStatement⟩
| ⟨returnStatement⟩
| ⟨yieldStatement⟩
| ⟨yieldEachStatement⟩
| ⟨expressionStatement⟩
| ⟨assertStatement⟩
| ⟨localFunctionDeclaration⟩

18.0.1 Statement Completion statementCompletion

Execution of a statement completes in one of five ways: either it completes △

△normally, it breaks or it continues (either to a label or without a label), it
△

△
returns (with or without an object), or it throws an exception object and an

△

△

associated stack trace.
In descriptions of statement execution the default is that the execution com-

pletes normally unless otherwise stated.

Dart Programming Language Specification 195

If the execution of a statement, s, is defined in terms of executing another
statement, and the execution of that other statement does not complete nor-
mally, then, unless otherwise stated, the execution of s stops at that point and
completes in the same way. For example, if execution of the body of a do loop
returns an object, so does execution of the do loop statement itself.

If the execution of a statement is defined in terms of evaluating an expression
and the evaluation of that expression throws, then, unless otherwise stated, the
execution of the statement stops at that point and throws the same exception
object and stack trace. For example, if evaluation of the condition expression of
an if statement throws, then so does execution of the if statement. Likewise, if
evaluation of the expression of a return statement throws, so does execution of the
return statement.

18.1 Blocks blocks

A block statement supports sequencing of code. △

Execution of a block statement {s1, . . . , sn} proceeds as follows:
For i ∈ 1..n, si is executed.
A block statement introduces a new scope, whose enclosing scope is the

current scope of the block statement.

18.2 Expression Statements expressionStatements

An expression statement consists of an expression that does not begin with △

a ‘{’ character.

⟨expressionStatement⟩ ::= ⟨expression⟩? ‘;’

The expression of an expression statement is not allowed to begin with a
‘{’. This means that if some source text could otherwise be parsed as an expression
followed by a ‘;’, then this grammar production does not apply when the expression
starts with a ‘{’. The restriction resolves an ambiguity while parsing where a
‘{’ can start either a block (18.1) or a map literal (17.9.8). By disallowing the
latter from starting an expression statement, the parser does not need to look
further ahead before deciding that it is parsing a block statement.

Execution of an expression statement e; proceeds by evaluating e. If the
expression evaluates to an object, then the object is ignored and the execution
completes normally.

18.3 Local Variable Declaration localVariableDeclaration

A variable declaration statement, also known as a local variable declaration, △

△has the following form:

⟨localVariableDeclaration⟩ ::= ⟨metadata⟩ ⟨initializedVariableDeclaration⟩ ‘;’

Dart Programming Language Specification 196

Each local variable declaration introduces a local variable into the current △

scope.
Local variables do not induce getters and setters. Note that a formal parameter

declaration also introduces a local variable into the associated formal parameter
scope (9.2).

The properties of being initialized or constant apply to local variables with △

△the same definitions as for other variables (8).
We say that a local variable v is potentially mutated in some scope s if v is △

not final, and an assignment to v occurs in s.
A local variable declaration of the form var v; is equivalent to var v =

null;. If T is a nullable type (??) then a local variable declaration of the form
T v; is equivalent to T v = null;.

If T is a potentially non-nullable type then a local variable declaration of the
form T v; is allowed, but an expression that gives rise to evaluation of v is a
compile-time error unless flow analysis (??) shows that the variable is guaranteed
to have been initialized.

A local variable has an associated declared type which is determined from its △

declaration. A local variable also has an associated type which is determined by △

flow analysis (??) via a process known as type promotion (20.1.1).
The declared type of a local variable with a declaration of one of the forms

late? T v = e; late? final T v = e; const T v = e; is T .
The declared type of a local variable with a declaration of one of the forms

late? var v = e; late? final v = e; const v = e; is determined as follows:

• If the static type of e is Null then the declared type of v is dynamic.

• If the static type of e is of the form X & T where X is a type variable (??),
the declared type of v is X. In this case v is immediately promoted to X & T
(20.1.1).

• Otherwise, the declared type of v is the static type of e.

Let v be a local variable declared by an initializing variable declaration, and
let e be the associated initializing expression. It is a compile-time error if the ⊖

static type of e is not assignable to the declared type of v.
If a local variable v is final and not late, it is not a compile-time error if the

declaration of v is not an initializing variable declaration, but an expression that
gives rise to evaluation of v is a compile-time error unless flow analysis shows that
the variable is guaranteed to have been initialized. Similarly, an expression that
gives rise to an assignment to v is a compile-time error unless flow analysis shows
that it is guaranteed that the variable has not been initialized.

In every situation which is not covered by the previous paragraph, it is a compile-
time error to assign to a local variable which is final and not late (17.23).

Assume that D is a local variable declaration with the modifier late that
declares a variable v, which has an initializing expression e. It is a compile-time ⊖

error if e contains an await expression a (17.34), unless there is a function f

Dart Programming Language Specification 197

which is the immediately enclosing function for a, and f is not the immediately
enclosing function for D.

In other words, the initializing expression cannot await an expression directly,
any await expressions must be syntactically nested inside some other function, that
is, a function literal.

It is a compile-time error if a local variable is referenced at a source code ⊖

location that is before the end of its initializing expression, if any, and otherwise
before the declaring occurrence of the identifier which names the variable.

The example below illustrates the expected behavior. A variable ‘x’ is declared
at the library level, and another ‘x’ is declared inside the function ‘f’.

var x = 0;

f(y) {
var z = x; // compile-time error
if (y) {

x = x + 1; // two compile-time errors
print(x); // compile-time error

}
var x = x++; // compile-time error
print(x);

}

The declaration inside ‘f’ hides the enclosing one. So all references to ‘x’ inside
‘f’ refer to the inner declaration of ‘x’. However, many of these references are illegal,
because they appear before the declaration. The assignment to ‘z’ is one such case.
The assignment to ‘x’ in the if statement suffers from multiple problems. The right
hand side reads ‘x’ before its declaration, and the left hand side assigns to ‘x’ before
its declaration. Each of these are, independently, compile-time errors. The print
statement inside the if is also illegal.

The inner declaration of ‘x’ is itself erroneous because its right hand side at-
tempts to read ‘x’ before the declaration has terminated. The occurrence of ‘x’
that declares and names the variable (that is, the one to the left of ‘=’ in the inner
declaration) is not a reference, and so is legal. The last print statement is perfectly
legal as well.

As another example var x = 3, y = x; is legal, because x is referenced after
its initializer.

A particularly perverse example involves a local variable name shadowing a type.
This is possible because Dart has a single namespace for types, functions and vari-
ables.

class C {}
perverse() {

var v = new C(); // compile-time error
C aC; // compile-time error
var C = 10;

Dart Programming Language Specification 198

}

Inside perverse(), ‘C’ denotes a local variable. The type ‘C’ is hidden by the
variable of the same name. The attempt to instantiate ‘C’ causes a compile-time
error because it references a local variable prior to its declaration. Similarly, for the
declaration of ‘aC’.

Execution of a variable declaration statement of one of the forms var v =
e; T v = e; const v = e; const T v = e; final v = e; or final T v = e;
proceeds as follows:

The expression e is evaluated to an object o. A dynamic type error occurs
if the dynamic type of o is not a subtype of the actual declared type (20.10.1)
of v. Otherwise, the variable v is bound to o.

Note that e could have been transformed due to implicit coercions. For example,
myFunction could be transformed into myFunction<int> due to generic function
instantiation (17.17). Such transformations are assumed to have taken place already
in the declarations above.

Let D be a late and final local variable declaration that declares a variable
v. If an object o is assigned to v in a situation where v is unbound then v is
bound to o. If an object o is assigned to v in a situation where v is bound to an
object o′ then a dynamic error occurs (it does not matter whether o is the same
object as o′).

18.4 Local Function Declaration localFunctionDeclaration

A function declaration statement declares a new local function (9.1).

⟨localFunctionDeclaration⟩ ::= ⟨metadata⟩ ⟨functionSignature⟩ ⟨functionBody⟩

A function declaration statement of one of the forms id signature { statements
} or T id signature { statements } causes a new function named id to be
added to the current scope. It is a compile-time error to reference a local func-
tion before its declaration.

This implies that local functions can be directly recursive, but not mutually
recursive. Consider these examples:

f(x) => x++; // a top level function

top() { // another top level function
f(3); // illegal
f(x) => x > 0? x*f(x-1): 1; // recursion is legal
g1(x) => h(x, 1); // error: h is not declared yet
h(x, n) => x > 1? h(x-1, n*x): n; // again, recursion is fine
g2(x) => h(x, 1); // legal

p1(x) => q(x,x); // illegal
q1(a, b) ⇒ a > 0 ? p1(a-1): b; // fine

Dart Programming Language Specification 199

q2(a, b) => a > 0 ? p2(a-1): b; // illegal
p1(x) => q2(x,x); // fine

}

There is no way to write a pair of mutually recursive local functions, because
one always has to come before the other is declared. These cases are quite rare,
and can always be managed by defining a pair of variables first, then assigning them
appropriate function literals:

top2() { // a top level function
var p, q;
p = (x) => q(x,x);
q = (a, b) => a > 0 ? p(a-1): b;

}

The rules for local functions differ slightly from those for local variables in
that a function can be accessed within its declaration but a variable can only
be accessed after its declaration. This is because recursive functions are use-
ful whereas recursively defined variables are almost always errors. It therefore
makes sense to harmonize the rules for local functions with those for functions
in general rather than with the rules for local variables.

18.5 If if

The if statement allows for conditional execution of statements. △

⟨ifStatement⟩ ::= if ‘(’ ⟨expression⟩ ‘)’ ⟨statement⟩ (else ⟨statement⟩)?

An if statement of the form if (e) s1 else s2 where s1 is not a block state-
ment is equivalent to the statement if (e) {s1} else s2. An if statement of
the form if (e) s1 else s2 where s2 is not a block statement is equivalent to
the statement if (e) s1 else {s2}.

The reason for this equivalence is to catch errors such as

void main() {
if (somePredicate)

var v = 2;
print(v);

}

Under reasonable scope rules such code is problematic. If we assume that
v is declared in the scope of the method main(), then when somePredicate is
false, v will be uninitialized when accessed. The cleanest approach would be to
require a block following the test, rather than an arbitrary statement. However,
this goes against long standing custom, undermining Dart’s goal of familiarity.
Instead, we choose to insert a block, introducing a scope, around the statement
following the predicate (and similarly for else and loops). This will cause a

Dart Programming Language Specification 200

compile-time error in the case above. Of course, if there is a declaration of v in
the surrounding scope, programmers might still be surprised. We expect tools to
highlight cases of shadowing to help avoid such situations.

Execution of an if statement of the form if (b) s1 else s2 where s1 and s2
are block statements, proceeds as follows:

First, the expression b is evaluated to an object o. It is a dynamic error if
the run-time type of o is not bool. If o is true, then the block statement s1 is
executed, otherwise the block statement s2 is executed.

It is a compile-time error if the type of the expression b may not be assigned
to bool.

If b shows that a local variable v has type T , then the type of v is known to
be T in s1, unless any of the following are true

• v is potentially mutated in s1,

• v is potentially mutated within a function other than the one where v is
declared, or

• v is accessed by a function defined in s1 and v is potentially mutated
anywhere in the scope of v.

An if statement of the form if (e) s is equivalent to the if statement if (e)
s else {}.

18.6 For for

The for statement supports iteration. △

⟨forStatement⟩ ::= await? for ‘(’ ⟨forLoopParts⟩ ‘)’ ⟨statement⟩

⟨forLoopParts⟩ ::= ⟨forInitializerStatement⟩ ⟨expression⟩? ‘;’ ⟨expressionList⟩?
| ⟨forInLoopPrefix⟩ in ⟨expression⟩

⟨forInLoopPrefix⟩ ::= ⟨metadata⟩ ⟨declaredIdentifier⟩
| ⟨identifier⟩

⟨forInitializerStatement⟩ ::= ⟨localVariableDeclaration⟩
| ⟨expression⟩? ‘;’

The for statement has three forms - the traditional for loop and two forms
of the for-in statement - synchronous and asynchronous.

18.6.1 For Loop forLoop

Execution of a for statement of the form for (var v = e0; c; e) s proceeds
as follows:

If c is empty then let c′ be true otherwise let c′ be c.
First the variable declaration statement var v = e0 is executed. Then:

Dart Programming Language Specification 201

1. If this is the first iteration of the for loop, let v′ be v. Otherwise, let v′ be
the variable v′′ created in the previous execution of step 3.

2. The expression [v′/v]c is evaluated to an object o. It is a dynamic error
if the run-time type of o is not bool. If o is false, the for loop completes
normally. Otherwise, execution continues at step 3.

3. The statement [v′/v]{s} is executed.
If this execution completes normally, continues without a label, or con-
tinues to a label (18.13) that prefixes this for statement (18.0.1), then
execution of the statement is treated as if it had completed normally.
Let v′′ be a fresh variable. v′′ is bound to the value of v′.

4. The expression [v′′/v]e is evaluated, and the process recurses at step 1.

The definition above is intended to prevent the common error where users
create a function object inside a for loop, intending to close over the current
binding of the loop variable, and find (usually after a painful process of debugging
and learning) that all the created function objects have captured the same value—
the one current in the last iteration executed.

Instead, each iteration has its own distinct variable. The first iteration uses
the variable created by the initial declaration. The expression executed at the
end of each iteration uses a fresh variable v′′, bound to the value of the current
iteration variable, and then modifies v′′ as required for the next iteration.

It is a compile-time error if the static type of c may not be assigned to bool.

18.6.2 For-in for-in

Let D be derived from ⟨finalConstVarOrType⟩?. A for statement of the form
for (D id in e) S is then treated as the following code, where id1 and id2 are
fresh identifiers:

T id1 = e;
var id2 = id1.iterator;
while (id2.moveNext()) {

D id = id2.current;
{ S }

}

If the static type of e is a top type (15.2) then T is Iterable<dynamic>,
otherwise T is the static type of e. It is a compile-time error if T is not assignable
to Iterable<dynamic>.

It follows that it is a compile-time error if D is empty and id is a final variable.
Also, it is a dynamic error if e has type dynamic, but e evaluates to an instance of
a type which is not a subtype of Iterable<dynamic>.

Dart Programming Language Specification 202

18.6.3 Asynchronous For-in asynchronousFor-in

A for-in statement may be asynchronous. The asynchronous form is de-
signed to iterate over streams. An asynchronous for loop is distinguished by the
keyword await immediately preceding the keyword for.

Let D be derived from ⟨finalConstVarOrType⟩?. Execution of a for-in state-
ment, f , of the form await for (D id in e) s proceeds as follows:

The expression e is evaluated to an object o. It is a dynamic type error if o
is not an instance of a class that implements Stream. It is a compile-time error
if D is empty and id is a final or constant variable.

The stream associated with the innermost enclosing asynchronous for loop,
if any, is paused. The stream o is listened to, producing a stream subscription
u, and execution of the asynchronous for-in loop is suspended until a stream
event is available. This allows other asynchronous events to execute while this loop
is waiting for stream events.

Pausing an asynchronous for loop means pausing the associated stream sub-
scription. A stream subscription is paused by calling its pause method. If the
subscription is already paused, an implementation may omit further calls to
pause.

The pause call can throw, although that should never happen for a correctly
implemented stream.

For each data event from u, the statement s is executed with id bound to △

the value of the current data event.
Either execution of s is completely synchronous, or it contains an asynchronous

construct (await, await for, yield, or yield*) which will pause the stream subscrip-
tion of its surrounding asynchronous loop. This ensures that no other event of u
occurs before execution of s is complete, if o is a correctly implemented stream. If
o doesn’t act as a valid stream, for example by not respecting pause requests, the
behavior of the asynchronous loop may become unpredictable.

If execution of s continues without a label, or to a label (18.13) that prefixes
the asynchronous for statement (18.0.1), then the execution of s is treated as if
it had completed normally.

If execution of s otherwise does not complete normally, the subscription u is
canceled by evaluating await v.cancel() where v is a fresh variable referencing
the stream subscription u. If that evaluation throws, execution of f throws the
same exception and stack trace. Otherwise execution of f completes in the
same way as the execution of s. Otherwise the execution of f is suspended
again, waiting for the next stream subscription event, and u is resumed if it has
been paused. The resume call can throw, in which case the asynchronous for loop
also throws. That should never happen for a correctly implemented stream.

On an error event from u, with error object e and stack trace st, the subscrip- △

tion u is canceled by evaluating await v.cancel() where v is a fresh variable
referencing the stream subscription u. If that evaluation throws, execution of
f throws the same exception object and stack trace. Otherwise execution of f
throws with e as exception object and st as stack trace.

When u is done, execution of f completes normally.

Dart Programming Language Specification 203

It is a compile-time error if an asynchronous for-in statement appears inside
a synchronous function (9). It is a compile-time error if a traditional for loop
(18.6.1) is prefixed by the await keyword.

An asynchronous loop would make no sense within a synchronous function,
for the same reasons that an await expression makes no sense in a synchronous
function.

18.7 While while

The while statement supports conditional iteration, where the condition is
evaluated prior to the loop.

⟨whileStatement⟩ ::= while ‘(’ ⟨expression⟩ ‘)’ ⟨statement⟩

Execution of a while statement of the form while (e) s; proceeds as follows:
The expression e is evaluated to an object o. It is a dynamic error if the

run-time type of o is not bool.
If o is false, then execution of the while statement completes normally

(18.0.1).
Otherwise o is true and then the statement {s} is executed. If that execution

completes normally or it continues with no label or to a label (18.13) that
prefixes the while statement (18.0.1), then the while statement is re-executed. If
the execution breaks without a label, execution of the while statement completes
normally. If the execution breaks with a label that prefixes the while statement, it
does end execution of the loop, but the break itself is handled by the surrounding
labeled statement (18.13).

It is a compile-time error if the static type of e may not be assigned to bool.

18.8 Do do

The do statement supports conditional iteration, where the condition is eval-
uated after the loop.

⟨doStatement⟩ ::= do ⟨statement⟩ while ‘(’ ⟨expression⟩ ‘)’ ‘;’

Execution of a do statement of the form do s while (e); proceeds as fol-
lows:

The statement {s} is executed. If that execution continues with no label, or
to a label (18.13) that prefixes the do statement (18.0.1), then the execution of
s is treated as if it had completed normally.

Then, the expression e is evaluated to an object o. It is a dynamic error if
the run-time type of o is not bool. If o is false, execution of the do statement
completes normally (18.0.1). If o is true, then the do statement is re-executed.

It is a compile-time error if the static type of e may not be assigned to bool.

Dart Programming Language Specification 204

18.9 Switch switch

The switch statement supports dispatching control among a large number of △

cases.

⟨switchStatement⟩ ::=
switch ‘(’ ⟨expression⟩ ‘)’ ‘{’ ⟨switchCase⟩* ⟨defaultCase⟩? ‘}’

⟨switchCase⟩ ::= ⟨label⟩* case ⟨expression⟩ ‘:’ ⟨statements⟩

⟨defaultCase⟩ ::= ⟨label⟩* default ‘:’ ⟨statements⟩

Consider a switch statement of the form

switch (e) {
label11 . . . label1j1 case e1 : s1
. . .
labeln1 . . . labelnjn

case en : sn

label(n+1)1 . . . label(n+1)jn+1 default: sn+1
}

or the form

switch (e) {
label11 . . . label1j1 case e1 : s1
. . .
labeln1 . . . labelnjn

case en : sn

}

Note that each expression ej , j ∈ 1..n occurs in a constant context (17.3.2),
which means that const modifiers need not be specified explicitly.

It is a compile-time error unless each expression ej , j ∈ 1..n is constant. It
is a compile-time error if the value of the expressions ej , j ∈ 1..n are not either:

• instances of the same class C, for all j ∈ 1..n, or

• instances of a class that implements int, for all j ∈ 1..n, or

• instances of a class that implements String, for all j ∈ 1..n.

In other words, all the expressions in the cases evaluate to constants of the
exact same user defined class or are of certain known types. Note that the values
of the expressions are known at compile time, and are independent of any type
annotations.

It is a compile-time error if one or more of said instances of the class C do
not have primitive equality (10.2.3).

The prohibition on user defined equality allows us to implement the switch
efficiently for user defined types. We could formulate matching in terms of

Dart Programming Language Specification 205

identity instead, with the same efficiency. However, if a type defines an equality
operator, programmers would presumably find it quite surprising if equal objects
did not match.

The switch statement should only be used in very limited situations (e.g., in-
terpreters or scanners).

Execution of a switch statement of the form

switch (e) {
label11 . . . label1j1 case e1 : s1
. . .
labeln1 . . . labelnjn

case en : sn

label(n+1)1 . . . label(n+1)jn+1 default: sn+1
}

or the form

switch (e) {
label11 . . . label1j1 case e1 : s1
. . .
labeln1 . . . labelnjn case en : sn

}

proceeds as follows:
The statement var id = e; is evaluated, where id is a fresh variable. It is

a dynamic error if the value of e is not an instance of the same class as the
constants e1, . . . , en.

Note that if there are no case clauses (n = 0), the type of e does not matter.
Next, the case clause case e1: s1 is matched against id, if n > 0. Otherwise

if there is a default clause, the case statements sn+1 are executed (18.9.1).
Matching of a case clause case ek : sk of a switch statement

switch (e) {
label11 . . . label1j1 case e1 : s1
. . .
labeln1 . . . labelnjn case en : sn

label(n+1)1 . . . label(n+1)jn+1 default: sn+1
}

against the value of a variable id proceeds as follows:
The expression ek == id is evaluated to an object o. It is a dynamic error

if the run-time type of o is not bool. If o is false the following case, case
ek+1 : sk+1 is matched against id if k < n, and if k = n, then the default
clause’s statements are executed (18.9.1). If o is true, let h be the smallest
number such that h ≥ k and sh is non-empty. If no such h exists, let h = n + 1.
The case statements sh are then executed (18.9.1).

Matching of a case clause case ek : sk of a switch statement

Dart Programming Language Specification 206

switch (e) {
label11 . . . label1j1 case e1 : s1
. . .
labeln1 . . . labelnjn

case en : sn

}

against the value of a variable id proceeds as follows:
The expression ek == id is evaluated to an object o. It is a dynamic error

if the run-time type of o is not bool. If o is false the following case, case
ek+1 : sk+1 is matched against id if k < n. If o is true, let h be the smallest
integer such that h ≥ k and sh is non-empty. If such a h exists, the case
statements sh are executed (18.9.1). Otherwise the switch statement completes
normally (18.0.1).

It is a compile-time error if the type of e may not be assigned to the type of
ek. Let s be the last statement of the statement sequence sk. If s is a non-empty
block statement, let s instead be the last statement of the block statement. It is
a compile-time error if s is not a break, continue, rethrow, or return statement,
or an expression statement where the expression is a throw expression.

The behavior of switch cases intentionally differs from the C tradition. Im-
plicit fall through is a known cause of programming errors and therefore disal-
lowed. Why not simply break the flow implicitly at the end of every case, rather
than requiring explicit code to do so? This would indeed be cleaner. It would also
be cleaner to insist that each case have a single (possibly compound) statement.
We have chosen not to do so in order to facilitate porting of switch statements
from other languages. Implicitly breaking the control flow at the end of a case
would silently alter the meaning of ported code that relied on fall-through, poten-
tially forcing the programmer to deal with subtle bugs. Our design ensures that
the difference is immediately brought to the coder’s attention. The programmer
will be notified at compile time if they forget to end a case with a statement that
terminates the straight-line control flow.

The sophistication of the analysis of fall-through is another issue. For now,
we have opted for a very straightforward syntactic requirement. There are obvi-
ously situations where code does not fall through, and yet does not conform to
these simple rules, e.g.:

switch (x) {
case 1: try { . . . return; } finally { . . . return; }

}

Very elaborate code in a case clause is probably bad style in any case, and
such code can always be refactored.

It is a static warning if all of the following conditions hold:

• The switch statement does not have a default clause.

• The static type of e is an enumerated type with elements id1, . . . , idn.

Dart Programming Language Specification 207

• The sets {e1, . . . , ek} and {id1, . . . , idn} are not the same.

In other words, a static warning will be emitted if a switch statement over an
enum is not exhaustive.

18.9.1 Switch case statements case-execute

Execution of the case statements sh of a switch statement

switch (e) {
label11 . . . label1j1 case e1 : s1
. . .
labeln1 . . . labelnjn

case en : sn

}

or a switch statement

switch (e) {
label11 . . . label1j1 case e1 : s1
. . .
labeln1 . . . labelnjn case en : sn

label(n+1)1 . . . label(n+1)jn+1 default: sn+1
}

proceeds as follows:
Execute {sh}. If this execution completes normally, and if sh is not the

statements of the last case of the switch (h = n if there is no default clause,
h = n + 1 if there is a default clause), then the execution of the switch case
throws an error. Otherwise sh are the last statements of the switch case, and
execution of the switch case completes normally.

In other words, there is no implicit fall-through between non-empty cases. The
last case in a switch (default or otherwise) can ‘fall-through’ to the end of the
statement.

If execution of {sh} breaks with no label (18.0.1), then the execution of the
switch statement completes normally.

If execution of {sh} continues to a label (18.0.1), and the label is labelij ,
where 1 ≤ i ≤ n + 1 if the switch statement has a default, or 1 ≤ i ≤ n if there
is no default, and where 1 ≤ j ≤ ji, then let h be the smallest number such
that h ≥ i and sh is non-empty. If no such h exists, let h = n + 1 if the switch
statement has a default, otherwise let h = n. The case statements sh are then
executed (18.9.1).

If execution of {sh} completes in any other way, execution of the switch
statement completes in the same way.

18.10 Rethrow rethrow

The rethrow statement is used to re-throw an exception and its associated △

Dart Programming Language Specification 208

stack trace.

⟨rethrowStatement⟩ ::= rethrow ‘;’

Consider a rethrow statement S. Let f be the immediately enclosing func-
tion of S. A compile-time error occurs unless S is located in an on-catch clause
whose immediately enclosing function is f .

Execution of a rethrow statement proceeds as follows:
Let f be the immediately enclosing function, and let on T catch (p1, p2)

be the immediately enclosing catch clause (18.11).
A rethrow statement always appears inside a catch clause, and every catch

clause is treated as some catch clause of the form on T catch (p1, p2). So
we can consider the rethrow statement to be enclosed in a catch clause of that
form.

The rethrow statement then throws (18.0.1) with the value of p1 as the
exception object, and the value of p2 as the stack trace.

18.11 Try try

The try statement supports the definition of exception handling code in a
structured way.

⟨tryStatement⟩ ::= try ⟨block⟩ (⟨onPart⟩+ ⟨finallyPart⟩? | ⟨finallyPart⟩)

⟨onPart⟩ ::= ⟨catchPart⟩ ⟨block⟩
| on ⟨typeNotVoid⟩ ⟨catchPart⟩? ⟨block⟩

⟨catchPart⟩ ::= catch ‘(’ ⟨identifier⟩ (‘,’ ⟨identifier⟩)? ‘)’

⟨finallyPart⟩ ::= finally ⟨block⟩

A try statement consists of a block statement, followed by at least one of:

1. A set of on-catch clauses, each of which specifies (either explicitly or
implicitly) the type of exception object to be handled, one or two exception
parameters, and a block statement.

2. A finally clause, which consists of a block statement.

The syntax is designed to be upward compatible with existing Javascript pro-
grams. The on clause can be omitted, leaving what looks like a Javascript catch
clause.

A try statement of the form try s1 on−catch1 . . . on−catchn; is equivalent
to the statement try s1 on − catch1 . . . on − catchn finally {}.

An on-catch clause of the form on T catch (p1) s is equivalent to an on-
catch clause on T catch (p1, p2) s where p2 is a fresh identifier.

An on-catch clause of the form on T s is equivalent to an on-catch clause
on T catch (p1, p2) s where p1 and p2 are fresh identifiers.

Dart Programming Language Specification 209

An on-catch clause of the form catch (p) s is equivalent to an on-catch
clause on dynamic catch (p, p2) s where p2 is a fresh identifier.

An on-catch clause of the form catch (p1, p2) s is equivalent to an on-
catch clause on dynamic catch (p1, p2) s.

An on-catch clause of the form on T catch (p1, p2) s introduces a new
scope CS in which final local variables specified by p1 and p2 are defined. The
statement s is enclosed within CS. The static type of p1 is T and the static
type of p2 is StackTrace.

Execution of a try statement s of the form:

try b
on T1 catch (e1, t1) c1
...
on Tn catch (en, tn) cn

finally f

proceeds as follows:
First b is executed. If execution of b throws (18.0.1) with exception object

e and stack trace t, then e and t are matched against the on-catch clauses to
yield a new completion (18.11.1).

Then, even if execution of b did not complete normally or matching against
the on-catch clauses did not complete normally, the f block is executed.

If execution of f does not complete normally, execution of the try statement
completes in the same way. Otherwise if execution of b threw (18.0.1), the
try statement completes in the same way as the matching against the on-catch
clauses. Otherwise the try statement completes in the same way as the execution
of b.

It is a compile-time error if Ti, 1 ≤ i ≤ n is a deferred type.

18.11.1 on-catch clauses on-catch

Matching an exception object e and stack trace t against a (potentially
empty) sequence of on-catch clauses of the form

on T1 catch (e1, st1) { s1 }
...
on Tn catch (en, stn) { sn }

proceeds as follows:
If there are no on-catch clauses (n = 0), matching throws the exception

object e and stack trace t (18.0.1).
Otherwise the exception is matched against the first clause.
Otherwise, if the type of e is a subtype of T1, then the first clause matches,

and then e1 is bound to the exception object e and t1 is bound to the stack
trace t, and s1 is executed in this scope. The matching completes in the same
way as this execution.

Dart Programming Language Specification 210

Otherwise, if the first clause did not match e, e and t are recursively matched
against the remaining on-catch clauses:

on T2 catch (e2, t2) { s2 }
...
on Tn catch (en, tn) { sn }

18.12 Return return

The return statement returns a result to the caller of a synchronous function, △

completes the future associated with an asynchronous function, or terminates
the stream or iterable associated with a generator (9).

⟨returnStatement⟩ ::= return ⟨expression⟩? ‘;’

Consider a return statement s of the form return e?;. Let S be the static
type of e, if e is present, let f be the immediately enclosing function, and let T
be the declared return type of f .

Case ⟨Synchronous non-generator functions⟩. Consider the case where f
is a synchronous non-generator function (9). It is a compile-time error if s is
return;, unless T is void, dynamic, or Null. It is a compile-time error if s is
return e;, T is void, and S is neither void, dynamic, nor Null. It is a compile-
time error if s is return e;, T is neither void, dynamic, nor Null, and S is void.
It is a compile-time error if s is return e;, S is not void, and S is not assignable
to T .

Note that T cannot be void, dynamic, or Null in the last case, because all types
are assignable to those types. An error will not be raised if f has no declared return
type, since the return type would be dynamic, to which every type is assignable.
However, a synchronous non-generator function that declares a return type which is
not “voidy” must return an expression explicitly. This helps catch situations where
users forget to return an object in a return statement. □

Case ⟨Asynchronous non-generator functions⟩. Consider the case where f
is an asynchronous non-generator function (9). It is a compile-time error if s is
return;, unless flatten(T) (17.11) is void, dynamic, or Null. An asynchronous
non-generator always returns a future of some sort. If no expression is given, the
future will be completed with the null object (17.4) which motivates this rule. It is
a compile-time error if s is return e;, flatten(T) is void, and flatten(S) is neither
void, dynamic, nor Null. It is a compile-time error if s is return e;, flatten(T)
is neither void, dynamic, nor Null, and flatten(S) is void. It is a compile-time
error if s is return e;, flatten(S) is not void, and Future<flatten(S)> is not
assignable to T .

Note that flatten(T) cannot be void, dynamic, or Null in the last case, be-
cause then Future<U> is assignable to T for all U . In particular, when T is
FutureOr<Null> (which is equivalent to Future<Null>), Future<flatten(S)> is
assignable to T for all S. This means that no compile-time error is raised, but
only the null object (17.4) or an instance of Future<Null> can successfully be

Dart Programming Language Specification 211

returned at run time. This is not an anomaly, it corresponds to the treatment of a
synchronous function with return type Null; but tools may choose to give a hint
that a downcast is unlikely to succeed.

An error will not be raised if f has no declared return type, since the return type
would be dynamic, and Future<flatten(S)> is assignable to dynamic for all S.
However, an asynchronous non-generator function that declares a return type which
is not “voidy” must return an expression explicitly. This helps catch situations
where users forget to return an object in a return statement of an asynchronous
function. □

Case ⟨Generator functions⟩. It is a compile-time error if a return statement
of the form return e; appears in a generator function.

In the case of a generator function, the object returned by the function is the
iterable or stream associated with it, and individual elements are added to that
iterable using yield statements, and so returning an object makes no sense. □

Case ⟨Generative constructors⟩. It is a compile-time error if a return state-
ment of the form return e; appears in a generative constructor (10.7.1).

It is quite easy to forget to add the factory modifier for a constructor, acci-
dentally converting a factory into a generative constructor. The static checker
may detect a type mismatch in some, but not all, of these cases. The rule above
helps catch such errors, which can otherwise be very hard to recognize. There is
no real downside to it, as returning an object from a generative constructor is
meaningless. □

Executing a return statement return e; proceeds as follows:
First the expression e is evaluated, producing an object o. Let S be the

run-time type of o and let T be the actual return type of f (20.10.1). If the
body of f is marked async (9) and S is a subtype of Future<flatten(T)> then
let r be the result of evaluating await v where v is a fresh variable bound to o.
Otherwise let r be o. Then the return statement returns the object r (18.0.1).

Let U be the run-time type of r.

• If the body of f is marked async (9) it is a dynamic type error if Future<U>
is not a subtype of T .

• Otherwise, it is a dynamic type error if U is not a subtype of T .

Executing a return statement with no expression, return; returns without
an object (18.0.1).

18.13 Labels labels

A label is an identifier followed by a colon. A labeled statement is a statement △

△prefixed by a label L. A labeled case clause is a case clause within a switch
△statement (18.9) prefixed by a label L.

The sole role of labels is to provide targets for the break (18.14) and continue
(18.15) statements.

⟨label⟩ ::= ⟨identifier⟩ ‘:’

Dart Programming Language Specification 212

Execution a labeled statement s, label : sl, consists of executing sl. If
execution of sl breaks to the label label (18.0.1), then execution of s completes
normally, otherwise execution of s completes in the same ways as the execution
of sl.

The namespace of labels is distinct from the one used for types, functions
and variables.

The scope of a label that labels a statement s is s. The scope of a label that
labels a case clause of a switch statement s is s.

Labels should be avoided by programmers at all costs. The motivation for
including labels in the language is primarily making Dart a better target for
code generation.

18.14 Break break

The break statement consists of the reserved word break and an optional △

label (18.13).

⟨breakStatement⟩ ::= break ⟨identifier⟩? ‘;’

Let sb be a break statement. If sb is of the form break L;, then it is a
compile-time error if sb is not enclosed in a labeled statement with the label L
within the innermost function in which sb occurs. If sb is of the form break;,
then it is a compile-time error if sb is not enclosed in an await for (18.6.3), do
(18.8), for (18.6), switch (18.9) or while (18.7) statement within the innermost
function in which sb occurs.

Execution of a break statement break L; breaks to the label L (18.0.1).
Execution of a break statement break; breaks without a label (18.0.1).

18.15 Continue continue

The continue statement consists of the reserved word continue and an op- △

tional label (18.13).

⟨continueStatement⟩ ::= continue ⟨identifier⟩? ‘;’

Let sc be a continue statement. If sc is of the form continue L;, then it is a
compile-time error if sc is not enclosed in either an await for (18.6.3), do (18.8),
for (18.6), or while (18.7) statement labeled with L, or in a switch statement
with a case clause labeled with L, within the innermost function in which sc

occurs. If sc is of the form continue; then it is a compile-time error if sc is not
enclosed in an await for (18.6.3) do (18.8), for (18.6), or while (18.7) statement
within the innermost function in which sc occurs.

Execution of a continue statement continue L; continues to the label L
(18.0.1). Execution of a continue statement continue; continues without a
label (18.0.1).

Dart Programming Language Specification 213

18.16 Yield yield

The yield statement adds an object to the result of a generator function (9). △

⟨yieldStatement⟩ ::= yield ⟨expression⟩ ‘;’

Let s be a yield statement of the form yield e;. Let f be the immediately
enclosing function of s. It is a compile-time error if there is no such function, or
it is not a generator. It is a compile-time error if the static type of e may not
be assigned to the element type of f (9).

Execution of a statement s of the form yield e; proceeds as follows:
First, the expression e is evaluated to an object o. If the enclosing function

m is marked async* (9) and the stream u associated with m has been paused,
then the nearest enclosing asynchronous for loop (18.6.3), if any, is paused and
execution of m is suspended until u is resumed or canceled.

Next, o is added to the iterable or stream associated with the immediately
enclosing function.

Note that a dynamic error occurs if the dynamic type of o is not a subtype of
the element type of said iterable or stream.

If the enclosing function m is marked async* and the stream u associated
with m has been canceled, then the yield statement returns without an object
(18.0.1), otherwise it completes normally.

The stream associated with an asynchronous generator could be canceled by
any code with a reference to that stream at any point where the generator was
passivated. Such a cancellation constitutes an irretrievable error for the genera-
tor. At this point, the only plausible action for the generator is to clean up after
itself via its finally clauses.

Otherwise, if the enclosing function m is marked async* (9) then the enclos-
ing function may suspend, in which case the nearest enclosing asynchronous for
loop (18.6.3), if any, is paused first.

If a yield occurred inside an infinite loop and the enclosing function never
suspended, there might not be an opportunity for consumers of the enclosing
stream to run and access the data in the stream. The stream might then ac-
cumulate an unbounded number of elements. Such a situation is untenable.
Therefore, we allow the enclosing function to be suspended when a new object is
added to its associated stream. However, it is not essential (and in fact, can be
quite costly) to suspend the function on every yield. The implementation is free
to decide how often to suspend the enclosing function. The only requirement is
that consumers are not blocked indefinitely.

If the enclosing function m is marked sync* (9) then:

• Execution of the function m immediately enclosing s is suspended until the
nullary method moveNext() is invoked upon the iterator used to initiate
the current invocation of m.

• The current call to moveNext() returns true.

Dart Programming Language Specification 214

18.17 Yield-Each yieldEach

The yield-each statement adds a series of objects to the result of a generator △

function (9).

⟨yieldEachStatement⟩ ::= yield ‘*’ ⟨expression⟩ ‘;’

Let s be a yield-each statement of the form ‘yield* e;’. Let f be the im-
mediately enclosing function of s. It is a compile-time error if there is no such
function, or it is not a generator.

Let Tf be the element type of f (9), and let T be the static type of e. If f is
a synchronous generator, it is a compile-time error if T may not be assigned to
Iterable<Tf >. Otherwise f is an asynchronous generator, and it is a compile-
time error if T may not be assigned to Stream<Tf >.

Execution of a statement s of the form ‘yield* e;’ proceeds as follows:
First, the expression e is evaluated to an object o.
If the immediately enclosing function m is marked sync* (9), then:

1. It is a dynamic type error if the class of o is not a subtype of Iterable<Tf >.
Otherwise

2. The method iterator is invoked upon o returning an object i.

3. The moveNext method of i is invoked on it with no arguments. If moveNext
returns false execution of s is complete. Otherwise

4. The getter current is invoked on i. If the invocation throws (17.1), ex-
ecution of s throws the same exception object and stack trace (18.0.1).
Otherwise, the result x of the getter invocation is added to the iterable
associated with m. Note that a dynamic error occurs if the dynamic type
of x is not a subtype of the element type of said iterable. Execution of the
function m immediately enclosing s is suspended until the nullary method
moveNext() is invoked upon the iterator used to initiate the current invo-
cation of m, at which point execution of s continues at 3.

5. The current call to moveNext() returns true.

If m is marked async* (9), then:

• It is a dynamic type error if the class of o is not a subtype of Stream<Tf >.
Otherwise

• The nearest enclosing asynchronous for loop (18.6.3), if any, is paused.

• If the stream subscription u associated with this execution of m has been
paused, suspend execution of m until u has been resumed or cancelled.

• If u has been cancelled, execution of s returns without a value.

• The o stream is listened to by calling its listen method, creating a sub-
scription r.

Dart Programming Language Specification 215

• Execution of m is suspended. Until execution of s completes in one of the
ways specified below, execution of m occurs in the following cases:

– If u is cancelled, whether while waiting for an event from r, to deliver
an event to u or to be resumed from pause: Cancel r by invoking its
cancel method with no arguments, returning a future d. A stream
cannot become paused or resumed after being cancelled, and a stream
subscription must not emit events after its cancel function has been
called, so no items below may apply after this. Execution of m is
suspended until d completes. If d completed with an error err and a
stack trace st, execution of s throws the error err and stack trace st.
Otherwise execution of s completes by returning without a value.

– If u becomes paused, then r is paused. If r is not already paused,
then pause r by invoking its pause method with no arguments. If
r is already paused, then invoking pause again is allowed, but not
required. Then suspend execution of m again. A stream must not
emit events while it’s paused, so no event from r may occur until r is
resumed. The r subscription may already be paused if it’s delivering an
event asynchronously.

– If u resumes from being paused, and r is not currently paused while
asynchronously delivering an event to u, then resume r by invoking
its resume method with no arguments. If r is also paused while
delivering an event, then calling resume is allowed, as long as that call
does not make r stop being paused. Stream subscriptions remember
how many times they have been paused by calling their pause method,
and requires as many calls to their resume method before they stop
being paused. Then suspend execution of m again.

– If r emits a value event with value v, then u emits a value event with
value v, and if r emits an error event with error err and stack trace
st, then u emits an error event with error err and stack trace st.
If the event of u is not delivered synchronously to the listener of u,
immediately when it is received from r, then:

∗ r is paused by invoking its pause method with no arguments.
∗ Execution of m is suspended until the event has been delivered

or u is cancelled.
∗ When that event has been delievered, if u is not paused or can-

celled then r is resumed by invoking its resume method with no
arguments. If the event is never delivered, then u is cancelled or
perpetually paused, in which case this.

Then suspend execution of m again.
– If r emits a done event then s completes normally.

The semantics here propagates pause and cancel requests directly to the nested
stream subscription of the yield*. That ensures that a pause or cancel request is

Dart Programming Language Specification 216

responded to as soon as possible, to avoid the inner stream doing a larger compu-
tation to create a value that the outer stream already knows it doesn’t need, or if
paused, that it may not need.

18.18 Assert assert

An assert statement is used to disrupt normal execution if a given boolean △

condition does not hold.

⟨assertStatement⟩ ::= ⟨assertion⟩ ‘;’

⟨assertion⟩ ::= assert ‘(’ ⟨expression⟩ (‘,’ ⟨expression⟩)? ‘,’? ‘)’

The grammar allows a trailing comma before the closing parenthesis, simi-
larly to an argument list. That comma, if present, has no effect. An assertion
with a trailing comma is equivalent to one with that comma removed.

An assertion of the form assert(e) is equivalent to an assertion of the form
assert(e, null).

Execution of an assert statement executes the assertion as described below
and completes in the same way as the assertion.

When assertions are not enabled, execution of an assertion immediately com-
pletes normally (18.0.1). That is, no subexpressions of the assertion are evaluated.
When assertions are enabled, execution of an assertion assert(c, e) proceeds
as follows:

The expression c is evaluated to an object r. It is a dynamic type error if r
is not of type bool. Hence it is a compile-time error if that situation arises during
evaluation of an assertion in a const constructor invocation. If r is true then
execution of the assert statement completes normally (18.0.1). Otherwise, e is
evaluated to an object m and then the execution of the assert statement throws
(18.0.1) an AssertionError containing m and with a stack trace corresponding
to the current execution state at the assertion.

It is a compile-time error if the type of c may not be assigned to bool.
Why is this a statement, not a built in function call? Because it is handled

magically so it has no effect and no overhead when assertions are disabled. Also,
in the absence of final methods, one could not prevent it being overridden (though
there is no real harm in that). It cannot be viewed as a function call that is being
optimized away because the arguments might have side effects.

19 Libraries and Scripts librariesAndScripts

A Dart program consists of one or more libraries, and may be built out of
one or more compilation units. A compilation unit may be a library or a part △

(19.5).
A library consists of (a possibly empty) set of imports, a set of exports, and

a set of top-level declarations. A top-level declaration is either a class (10), a

Dart Programming Language Specification 217

type alias declaration (20.3), a function (9) or a variable declaration (8). The
members of a library L are those top level declarations given within L.

⟨topLevelDeclaration⟩ ::= ⟨classDeclaration⟩
| ⟨mixinDeclaration⟩
| ⟨extensionDeclaration⟩
| ⟨enumType⟩
| ⟨typeAlias⟩
| external ⟨functionSignature⟩ ‘;’
| external ⟨getterSignature⟩ ‘;’
| external ⟨setterSignature⟩ ‘;’
| ⟨functionSignature⟩ ⟨functionBody⟩
| ⟨getterSignature⟩ ⟨functionBody⟩
| ⟨setterSignature⟩ ⟨functionBody⟩
| (final | const) ⟨type⟩? ⟨staticFinalDeclarationList⟩ ‘;’
| late final ⟨type⟩? ⟨initializedIdentifierList⟩ ‘;’
| late? ⟨varOrType⟩ ⟨initializedIdentifierList⟩ ‘;’

⟨libraryDeclaration⟩ ::=
⟨scriptTag⟩? ⟨libraryName⟩? ⟨importOrExport⟩* ⟨partDirective⟩*
(⟨metadata⟩ ⟨topLevelDeclaration⟩)* ⟨EOF⟩

⟨scriptTag⟩ ::= ‘#!’ (~(‘\r’ | ‘\n’))* ⟨LINE_BREAK ⟩

⟨libraryName⟩ ::= ⟨metadata⟩ library ⟨dottedIdentifierList⟩ ‘;’

⟨importOrExport⟩ ::= ⟨libraryImport⟩
| ⟨libraryExport⟩

⟨dottedIdentifierList⟩ ::= ⟨identifier⟩ (‘.’ ⟨identifier⟩)*

A library contains a string which is derived from ⟨libraryDeclaration⟩.
We could say that ⟨libraryDeclaration⟩ is a start symbol of the grammar, be- △

cause the syntactic derivation of any library starts from there. Unlike a traditional
context free grammar, the Dart grammar does not have exactly one start symbol.
In particular, ⟨partDeclaration⟩ (19.5) is used in the same manner to derive the
contents of a part. There could be more, e.g., a hypothetical Dart REPL (read-
eval-print loop) could use ⟨expression⟩ or ⟨statement⟩ as a start symbol. So there
is no grammar for Dart programs as such, only for some building blocks that are
used to construct Dart programs.

Libraries may be explicitly named or implicitly named. An explicitly named △

library begins with the word library (possibly prefaced with any applicable meta-
data annotations), followed by a qualified identifier that gives the name of the
library.

Technically, each dot and identifier is a separate token and so spaces between
them are acceptable. However, the actual library name is the concatenation of the
simple identifiers and dots and contains no spaces.

Dart Programming Language Specification 218

An implicitly named library has the empty string as its name.
The name of a library is used to tie it to separately compiled parts of the

library (called parts) and can be used for printing and, more generally, reflection.
The name may be relevant for further language evolution.

Libraries intended for widespread use should avoid name collisions. Dart’s pub
package management system provides a mechanism for doing so. Each pub package
is guaranteed a unique name, effectively enforcing a global namespace.

A library may optionally begin with a script tag. Script tags are intended △

for use with scripts (19.6). A script tag can be used to identify the interpreter of
the script to whatever computing environment the script is embedded in. The
script tag must appear before any whitespace or comments. A script tag begins
with ‘#!’ and ends at the end of the line. Any characters that follow ‘#!’ in the
script tag are ignored by the Dart implementation.

Libraries are units of privacy. A private declaration declared within a library
L can only be accessed by code within L.

Since top level privates are not imported, using the top level privates of another
library is never possible.

The public namespace of library L is the namespace that maps the name of △

each public top-level member declaration m of L to m. The local namespace of △

library L is the namespace that maps the names introduced by each top-level
declaration of L to the corresponding declaration. The library scope of library △

L is the outermost scope in L, and its namespace is the library namespace of L
(19.1.1).

It is a compile-time error if the local namespace of library L has two decla-
rations with the same basename, except when they are a getter and a setter.

Two distinct names n1 and n2 can only have the same basename when they are
of the form id and id=, so this kind of conflict always involves a setter. But the
other declaration could be a function, a class, etc.

19.1 Imports imports

An import specifies a library whose exported namespace (or a subset of its △

mappings) is made available in the current library.

⟨libraryImport⟩ ::= ⟨metadata⟩ ⟨importSpecification⟩

⟨importSpecification⟩ ::=
import ⟨configurableUri⟩ (deferred? as ⟨typeIdentifier⟩)? ⟨combinator⟩*
‘;’

The interpretation of configurable URIs is described elsewhere (19.7). An
import specifies a URI s where the declaration of an imported library is to be
found. It is a compile-time error if the specified URI of an import does not refer
to a library declaration.

The current library is the library currently being compiled. The import △

modifies the namespace of the current library in a manner that is determined
by the imported library and by the optional elements of the import.

Dart Programming Language Specification 219

Imports may be deferred or immediate. A deferred import is distinguished △

by the occurrence of the built-in identifier deferred after the URI. An immediate △

import is an import that is not deferred.
An immediate import directive I may optionally include a prefix clause of △

the form ‘as id’ used to prefix names imported by I. In this case we say that
id is an import prefix, or simply a prefix. △

△Note that the grammar enforces that a deferred import includes a prefix clause,
so we can refer to the prefix clause of a deferred import.

It is a compile-time error if the prefix used in a deferred import is also used as
the prefix of another import clause. It is a compile-time error if id is an import
prefix, and the current library declares a top-level member with basename id.

An import directive I may optionally include namespace combinator clauses
used to restrict the set of names imported by I. Their syntax, usage, and effect
on namespaces is described elsewhere (19.3, 19.1.1, 19.2).

The dart core library dart:core is implicitly imported into every dart library
other than itself via an import clause of the form import ’dart:core’; unless
the importing library explicitly imports dart:core. Any import of dart:core,
even if restricted via show, hide, or as, preempts the automatic import.

It would be nice if there was nothing special about dart:core. However,
its use is pervasive, which leads to the decision to import it automatically. On
the other hand, some library L may wish to define entities with names used
by dart:core (which it can easily do, as the names declared by a library take
precedence). Other libraries may wish to use L, and may want to use members
of L that conflict with the core library without having to use a prefix and without
encountering errors. The above rule makes this possible, essentially canceling
dart:core’s special treatment by means of yet another special rule.

19.1.1 The Imported Namespace theImportedNamespace

In the following, we specify the imported namespace of a library L, NS import ,
and use that to define the namespace that defines the library scope of L.

We need to introduce system libraries because they have special rules. A
system library is a library that is part of the Dart implementation. Any other △

library is a non-system library. △

A system library can generally be recognized by having a URI that starts with
‘dart:’.

The special rules for system libraries exist for the following reason. Normal
conflicts are resolved at deployment time, but the functionality of a system li-
brary is injected into an application at run time, and may vary over time as
the platform is upgraded. Thus, conflicts with a system library can arise outside
the developer’s control. To avoid breaking deployed applications in this way,
conflicts with the system libraries are treated specially.

Let I be an import directive and let L be the library imported by I. The
namespace provided by by the import directive I is the namespace obtained △

from applying the namespace combinators of I to the exported namespace of L
(19.3).

Dart Programming Language Specification 220

Note that the namespace provided by an import directive I is not the same
as the namespace imported from I. The latter includes conflict resolution, and is
defined later in this section.

Let NS local be the local namespace of L (19). Let I1, . . . , Im be the import
directives of L, and let L1, . . . , Lm be libraries such that Ii refers to Li for all
i ∈ 1..m. It is not an error to have multiple imports of the same library.

Let i ∈ 1..m.
Step one. In the first step we compute the namespace obtained from each

imported library, respectively by each group of libraries imported with the same
prefix, NSone,i.

Case ⟨Step one for imports without a prefix⟩. When Ii has no prefix,
NSone,i is obtained from the namespace provided by the import directive Ii

by eliminating every binding for a name whose basename is the same as the
basename of a top-level declaration in L, or whose basename is the prefix of an
import directive in L.

This step ensures that show and hide directives are taken into account, and
that an import prefix as well as a local declaration will shadow an imported name.

□

Case ⟨Step one for prefixed imports⟩. In this step we resolve name con-
flicts among names imported with the same prefix. When Ii has prefix pi, let
I ′

1, . . . , I ′
k be the sublist of I1, . . . , Im that have prefix pi, and let L′

1, . . . , L′
k

be the corresponding libraries (which is a sublist of L1, . . . , Lm). Let NSexported,j ,
j ∈ 1..k, be the namespace provided by the import directive I ′

j (which takes show
and hide into account).

When Ii is a non-deferred import: Let NSprefix,i be the namespace obtained
from applying conflict merging to NSexported,1, . . . , NSexported,k (19.4).

When Ii is a deferred import: In this case k is 1 (otherwise a compile-time
error would occur), and NSprefix,i is the namespace obtained by adding a binding
of the name loadLibrary to an implicitly induced declaration of a function with
signature Future<void> loadLibrary() to NSexported,1.

Then NSone,i is a namespace that has a single binding that maps pi to
NSprefix,i.

In this situation we say that NSone,i is a prefix namespace, because it maps △

a library prefix to a namespace.
A prefix namespace is not a Dart object, it is merely a device which is used

to manage expressions of the form ⟨qualifiedName⟩ and what they refer to during
static analysis. Consequently, any attempt to use a prefix namespace as an object
is a compile-time error, e.g., it cannot be the result of an expression evaluation.

Note that if l and q are such that Il and Iq both have the same prefix p then
NSone,l = NSone,q = NSone,l ∪ NSone,q. □

Step two. In the second step we resolve top level conflicts among the
namespaces obtained in the first step.

The imported namespace of L, NS import , is then the result of applying conflict △

merging to the namespaces NSone,1, . . . , NSone,m.
Let E be a set of extension declarations (13) with the following members:

An extension declaration E is a member of E if there is an i ∈ 1..m such that

Dart Programming Language Specification 221

E is in the namespace provided by the import directive Ii (note that this takes
show and hide into account, and it includes extensions imported both without and
with a prefix), and E is not declared in the current library (which could be the
case if it imports itself). Let NSextensions be a namespace that for each extension
E in E maps a fresh name to E.

NSextensions provides a fresh name allowing implicit access to each extension
exported by an imported library and not removed by hide or show, even the ones
that cannot be accessed using their declared name, because of a name clash.

The library namespace of L is then NS local ∪ NS import ∪ NSextensions. △

Let i ∈ 1..m. If Li is imported without a prefix, the namespace imported △

from Li is the conflict narrowed namespace (19.4) of NSone,i. Otherwise Li is
imported with a prefix p, in which case the namespace imported from Li is the △

conflict narrowed namespace of NSexported,i.
So the namespace imported by Li contains the bindings exported by Li, except

the ones removed by namespace combinators, and except the ones removed by
conflict merging.

Let L be a library with imported namespace NS . We say that a name is
imported by L if the name is a key of NS . We say that a declaration is imported △

△by L if the declaration is a value of NS . We say that a name is imported by L
△with prefix p if the name is a key of NS (p). We say that a declaration is imported
△

by L with prefix p if the declaration is a value of NS (p).

19.1.2 Semantics of Imports semanticsOfImports

Let Ii be an import directive that refers to a URI via the string si. The
semantics of Ii is specified as follows:

Case ⟨Semantics of deferred imports⟩. If Ii is a deferred import with prefix
p, a binding of p to a deferred prefix run-time namespace NSdeferred is present △

in the library namespace of the current library L. Let NS import,i be the names-
pace imported from the library specified by Ii, as defined previously (19.1.1).
NSdeferred then has the following bindings:

• The name loadLibrary is bound to a function with signature Future<void>
loadLibrary(). This function returns a future f . When called, the func-
tion causes an immediate import I ′ to be executed at some future time,
where I ′ is derived from Ii by eliding the word deferred and adding a hide
loadLibrary combinator clause. The execution of the immediate import
may fail for implementation specific reasons. For instance, I ′ imports a
different library than the one that the specified URI referred to at compile-
time; or an OS level file read error occurs; etc. We say that the invocation of
loadLibrary succeeds if f completes with a value, and that the invocation △

fails if f completes with an error. △

• For every top level function f named id in NS import,i, a corresponding
function named id with the same signature as f . Calling the function
results in a dynamic error that occurs before any actual arguments are
evaluated. Closurizing the function (17.16) also results in a dynamic error.

Dart Programming Language Specification 222

• For every top level getter g named id in NS import,i, a corresponding getter
named id with the same signature as g. Calling the getter results in a
dynamic error.

• For every top level setter s named id= in NS import,i, a corresponding setter
named id= with the same signature as s. Calling the setter results in a
dynamic error that occurs before the actual argument is evaluated.

• For every class, mixin, enum, and type alias declaration named id in
NS import,i, a corresponding getter named id with return type Type. Call-
ing the getter results in a dynamic error.

The purpose of having members of the imported library in NSdeferred is to
ensure that usages of members that have not yet been loaded can be resolved
normally and has a well-defined behavior, which will raise errors.

When an invocation of p.loadLibrary() succeeds, the name p is mapped
to a non-deferred prefix run-time namespace NS loaded , with bindings as de-
scribed below for immediate imports. In addition, NS loaded maps loadLibrary
to a function with the same signature as before, and so it is possible to invoke
p.loadLibrary() again, which will always succeed. If a call fails, the library
has not been loaded, and one has the option to invoke p.loadLibrary() again.
Whether a repeated call to p.loadLibrary() succeeds will vary, as described
below.

Note that it is a compile-time error for a deferred prefix to be used in more than
one import, which means that the update of the binding of p does not interfere
with other imports.

The effect of a repeated invocation of p.loadLibrary() is as follows:

• If another invocation of p.loadLibrary() has already succeeded, the re-
peated invocation also succeeds. Otherwise,

• If another invocation of p.loadLibrary() has failed:

– If the failure is due to a compilation error, the repeated invocation
fails for the same reason.

– If the failure is due to other causes, the repeated invocation behaves
as if no previous call had been made.

In other words, a successful loadLibrary() guarantees that the import can be
successfully accessed through the import prefix. If an invocation of loadLibrary()
is initiated after another invocation has completed successfully, it is guaranteed to
also complete successfully (success is idempotent). We do not specify which object
the returned future resolves to. □

Case ⟨Semantics of immediate imports⟩. When Ii is an immediate import
with a library URI, ui, represented by the string si: Let Li be the library
obtained from the source code denoted by si. We then say that the URI ui

denotes the library Li. All imports and exports of the same URI in a Dart

Dart Programming Language Specification 223

program denotes the same library, and imports or exports of different URIs
denote distinct libraries.

Let NS import,i be the namespace imported from Li. The run-time namespace
NS i will then have the following bindings:

• For every top level function, getter, or setter m named n in NS import,i, a
binding from n to said function, getter, or setter.

• For every name id in NS import,i that is bound to a class, mixin, enum,
or type alias declaration introducing a type T , a binding from id to the
compiled representation of T .

If Ii has prefix p, the run-time namespace of the current library maps p to a
non-deferred prefix run-time namespace NSp containing the mappings of NS i.

NSp may have additional mappings because there can be several imports with
the same prefix as long as they are all immediate.

Otherwise, when Ii does not have a prefix, the run-time library namespace
of the current library contains each mapping in NS i. □

19.2 Exports exports

A library L exports a namespace (6.1), meaning that the declarations in
the namespace are made available to other libraries if they choose to import L
(19.1). The namespace that L exports is known as its exported namespace. △

A library always exports all names and all declarations in its public names-
pace. In addition, a library may choose to re-export additional libraries via
export directives, often referred to simply as exports: △

△

⟨libraryExport⟩ ::= ⟨metadata⟩ export ⟨configurableUri⟩ ⟨combinator⟩* ‘;’

The interpretation of configurable URIs is described elsewhere (19.7). An
export specifies a URI s where the declaration of an exported library is to be
found. It is a compile-time error if the specified URI does not refer to a library
declaration.

The exported namespace of a library is determined as follows, in two steps. △

Let L be a library, let E1, . . . , Em be the export directives of L, and let
L1, . . . , Lm be libraries such that Ei refers to Li for all i ∈ 1..m. Let NSpublic
be the public namespace of L (19).

Note that private names and import prefixes are not present in NSpublic.
In the first step we compute the namespace provided by each exported li-

brary: For each i ∈ 1..m, NSexported,i is the namespace obtained from applying
the namespace combinators of Ei to the exported namespace of Li (19.3), and
removing each binding of a name n such that NSpublic is defined at n′, and n and
n′ have the same basename. Because local declarations will shadow re-exported
ones.

The namespace re-exported from Li is NSexported,i. △

In the second step we compute the exported namespace of L. Let NSmerged

Dart Programming Language Specification 224

be the result of applying conflict merging (19.4) to NSexported,1, . . . , NSexported,m.
A compile-time error occurs if any name in NSmerged is conflicted (19.4).

This rule is more strict than the corresponding rule for imports: When two
imported declarations have a name clash, it is only an error to use the conflicted
name, it is not an error that the name clash exists. With exported names, it is
an error that the name clash exists. The reason for this difference is that the
conflict could silently break importers of the current library L, if we were to use
the same approach for exports as for imports: If a library L′ imports L and uses
a name n which is re-exported by L from Ln then the addition of a declaration
named n to some other re-exported library will make the use of n in L′ an error,
and the maintainers of L′ may not be in a position to change L.

The exported namespace of L is NSpublic ∪ NSmerged . △

We say that a name is exported by a library if the name is in the library’s △

exported namespace. We say that a declaration is exported by a library if the △

declaration is in the library’s exported namespace.
For a given i, we say that L re-exports library Li, and also that L re-exports △

△namespace NSexported,i. When no confusion can arise, we may simply state that
L re-exports Li, or that L re-exports NSexported,i. △

△

19.3 Namespace Combinators namespaceCombinators

Imports (19.1) and exports (19.2) rely on namespace combinators in order to △

adjust namespaces (6.1) and manage name clashes. The supported namespace
combinators are show and hide.

⟨combinator⟩ ::= show ⟨identifierList⟩ | hide ⟨identifierList⟩

⟨identifierList⟩ ::= ⟨identifier⟩ (‘,’ ⟨identifier⟩)*

We define several operations that compute namespaces. The union of two △

namespaces, NSa ∪ NSb, is defined when every key where both are defined is △

mapped to the same value. This union is the namespace that maps each key n
of NSa to the corresponding value NSa(n), and each key n of NSb to NSb(n).

Note that this is a namespace because the union is only defined when the
mapping of any given key is unambiguous.

The function hide(l, NSa) takes a list of identifiers l and a namespace NSa, △

and produces a namespace NSb that is identical to NSa except that for each
identifier id in l, NSb is undefined at id and at id=.

The function show(l, NSa) takes a list of identifiers l and a namespace NSa, △

and produces a namespace NSb that maps each identifier id in l where NSa is
defined to NSa(n). Furthermore, for each identifier id in l where NSa is defined
at id=, NSb maps id= to NSa(id=). Finally, NSb is undefined at all other names.

Let C1, . . . , Cn be a sequence of combinator clauses. They would come from
an import or export directive. The result of applying the combinator clauses to a △

given namespace NSstart is a namespace NSend , which is computed as follows.
Let NS0 be NSstart . For each combinator clause Cj , j ∈ 1..n: If Cj is of the

Dart Programming Language Specification 225

form show id1, . . . , idk then let NSj = show([id1, . . . , idk], NSj−1). If Ci is of
the form hide id1, . . . , idk then let NSj = hide([id1, . . . , idk], NSj−1). Then
NSend is NSn.

NSend will always agree with NSstart wherever both are defined, and the set of
names where NSend is defined is always a subset of that of NSstart . In that sense,
this is a narrowing procedure.

Note that it is possible to use hide or show on an identifier which is not in
the given namespace. Allowing this prevents situations where, e.g., removing a
declaration from a library L would cause breakage in a library that imports L.

19.4 Conflict Merging of Namespaces conflictMergingOfNamespaces

In this section we define an operation on namespaces which eliminates certain
bindings of names in case of name clashes, and keeps track of such name clashes
using a special value, NAME_CONFLICT. △

When a name n is mapped to NAME_CONFLICT by a namespace, we say
that n is conflicted. A lookup for a conflicted name will succeed according to △

the normal rules for namespaces and lexical scoping, but it is a compile-time
error at the location where the name is used that this name is conflicted.

Let NS1, . . . , NSm be a list of namespaces (the list may or may not con-
tain duplicates). The conflict merging of NS1, . . . , NSm is then NSconflict ∪ △

NSnarrowed,1∪ . . . NSnarrowed,m, where the namespaces NSconflict and NSnarrowed,i,
i ∈ 1..m, are specified as follows:

NSconflict is empty except for the bindings mentioned below. For each i ∈
1..m, NSnarrowed,i is identical to NS i, except that the former is undefined at
each name n where the latter is defined, and one of the following conditions
holds:

• There exists a j ∈ 1..m and name n′ such that NSj is defined at n′, n and
n′ have the same basename, NS i(n) is a declaration in a system library,
and NSj(n′) is a declaration in a non-system library. So a declaration from
a non-system library shadows declarations from system libraries.

• Otherwise, there exists a j ∈ 1..m and name n′ such that NSj is defined
at n′, n and n′ have the same basename, NS i(n) and NSj(n′) are not
the same declaration and not the same namespace and not a getter and
a setter declared in the same library, and either none or both of NS i(n)
and NSj(n′) are declarations in a system library. So with two distinct
declarations with the same basename, both are eliminated, except when it is
a getter and a setter from the same library. Note that NS i(n) and NSj(n′)
must both be declarations or must both be namespaces, because conflict
merging is applied to namespaces where imported declarations that conflict
with an import prefix have already been eliminated. When they are both
namespaces there is no conflict, because it is then the same namespace.
In this situation n is mapped to NAME_CONFLICT by NSconflict . We
can swap all names and use the rule again, so n′ is also conflicted.

Dart Programming Language Specification 226

In short, conflict merging takes a list of namespaces and produces a namespace
that is the union of several disjoint namespaces (because all name clashes have
been eliminated): A conflict namespace that records all unresolved name clashes,
and a list of namespaces where clashing names have been removed. Some name
clashes have been resolved by preferring declarations from non-system libraries over
declarations from system libraries.

It is useful to be able to refer to the result of narrowing. Let NS1, . . . , NSm

be a list of namespaces, i ∈ 1..m, and consider the conflict merging as specified
above. The conflict narrowed namespace of NS i is then NSnarrowed,i. △

19.5 Parts parts

A library may be divided into parts, each of which can be stored in a separate △

location. A library identifies its parts by listing them via part directives.
A part directive specifies a URI where a Dart compilation unit that should △

be incorporated into the current library may be found.

⟨partDirective⟩ ::= ⟨metadata⟩ part ⟨uri⟩ ‘;’

⟨partHeader⟩ ::= ⟨metadata⟩ part of (⟨dottedIdentifierList⟩ | ⟨uri⟩) ‘;’

⟨partDeclaration⟩ ::= ⟨partHeader⟩ (⟨metadata⟩ ⟨topLevelDeclaration⟩)* ⟨EOF⟩

A part contains a string which is derived from ⟨partDeclaration⟩.
So we could say that ⟨partDeclaration⟩ is a start symbol of the grammar, as

discussed in Sect. 19.
A part header begins with part of followed by the name of the library the △

part belongs to, or a ⟨uri⟩ denoting said library. A part declaration consists of
a part header followed by a sequence of top-level declarations.

Compiling a part directive of the form part s; causes the Dart system to
attempt to compile the contents of the URI that is the value of s. The top-level
declarations at that URI are then compiled by the Dart compiler in the scope
of the current library. It is a compile-time error if the contents of the URI are
not a valid part declaration. It is a compile-time error if the referenced part
declaration p names a library other than the current library as the library to
which p belongs.

It is a compile-time error if a library contains two part directives with the
same URI.

We say that a library L1 is reachable from a library L if any of the following △

is true (19.1, 19.2):

• L and L1 is the same library.

• L imports or exports a library L2, and L1 is reachable from L2.

Let L be a library, let u be a URI, and let L1 and L2 be distinct libraries
which are reachable from L. It is a compile-time error if L1 and L2 both contain
a part directive with URI u.

Dart Programming Language Specification 227

In particular, it is an error to use the same part twice in the same program (19.6).
Note that a relative URI is interpreted as relative to the location of the enclosing
library (19.7), which means that L1 and L2 may both have a part identified by
’myPart.dart’, but they are not the same URI unless L1 and L2 have the same
location.

19.6 Scripts scripts

A script is a library whose exported namespace (19.2) includes a top-level △

function declaration named main that has either zero, one or two required ar-
guments.

A script S is executed as follows:
First, S is compiled as a library as specified above. Then, the top-level

function defined by main in the exported namespace of S is invoked (17.15) as
follows: If main can be called with with two positional arguments, it is invoked
with the following two actual arguments:

1. An object whose run-time type implements List<String>.

2. An object specified when the current isolate i was created, for example
through the invocation of Isolate.spawnUri that spawned i, or the null
object (17.4) if no such object was supplied.

If main cannot be called with two positional arguments, but it can be called
with one positional argument, it is invoked with an object whose run-time type
implements List<String> as the only argument. If main cannot be called with
one or two positional arguments, it is invoked with no arguments.

Note that if main requires more than two positional arguments, the library is
not considered a script.

A Dart program will typically be executed by executing a script.
It is a compile-time error if a library’s export scope contains a declaration

named main, and the library is not a script. This restriction ensures that all
top-level main declarations introduce a script main-function, so there cannot be a
top-level getter or field named main, nor can it be a function that requires more than
two arguments. The restriction allows tools to fail early on invalid main methods,
without needing to know whether a library will be used as the entry point of a Dart
program. It is possible that this restriction will be removed in the future.

19.7 URIs uris

URIs are specified by means of string literals:

⟨uri⟩ ::= ⟨stringLiteral⟩

⟨configurableUri⟩ ::= ⟨uri⟩ ⟨configurationUri⟩*

⟨configurationUri⟩ ::= if ‘(’ ⟨uriTest⟩ ‘)’ ⟨uri⟩

Dart Programming Language Specification 228

⟨uriTest⟩ ::= ⟨dottedIdentifierList⟩ (‘==’ ⟨stringLiteral⟩)?

It is a compile-time error if a string literal that describes a URI or a string
literal that is used in a ⟨uriTest⟩ contains a string interpolation.

A configurable URI c of the form uri configurationUri1 ...configurationUrin △

specifies a URI as follows: △

• Let u be uri.

• For each of the following configuration URIs of the form if (testi) urii,
in source order, do the following.

– If testi is ids with no ‘==’ clause, it is equivalent to ids == "true".
– If testi is ids == string, then create a string, key, from ids by con-

catenating the identfiers and dots, omitting any spaces between them
that may occur in the source.

– Look up key in the available compilation environment. The compila- △

tion environment is provided by the platform. It maps some string keys
to string values, and can be accessed programmatically using the const
String.fromEnvironment constructor. Tools may choose to only make
some parts of the compilation environment available for choosing con-
figuration URIs.

– If the environment contains an entry for key and the associated value
is equal, as a constant string value, to the value of the string literal
string, then let u be urii and stop iterating the configuration URIs.

– Otherwise proceed to the next configuration URI.

• The URI specified by c is u.

This specification does not discuss the interpretation of URIs, with the fol-
lowing exceptions.

The interpretation of URIs is mostly left to the surrounding computing en-
vironment. For example, if Dart is running in a web browser, that browser will
likely interpret some URIs. While it might seem attractive to specify, say, that
URIs are interpreted with respect to a standard such as IETF RFC 3986, in
practice this will usually depend on the browser and cannot be relied upon.

A URI of the form dart:s is interpreted as a reference to a system library
(19.1) s.

A URI of the form package:s is interpreted in an implementation specific
manner.

The intent is that, during development, Dart programmers can rely on a
package manager to find elements of their program.

Otherwise, any relative URI is interpreted as relative to the location of the
current library. All further interpretation of URIs is implementation dependent.

This means it is dependent on the runtime.

Dart Programming Language Specification 229

20 Types types

Dart supports static typing based on interface types.
The type system is sound in the sense that if a variable of type T refers to

an object of type S at run time, then S is a subtype of T . In other words, the
contents of the heap satisfies the expectations expressed by static typing.

However, type parameters are covariant (e.g., List<int> <: List<num>)
and this implies that certain operations are subject to dynamic type checks (such
as myList.add(1.5), which will throw at run time if myList has declared type
List<num>, but it is actually a List<int>). Hence, a program can be free of
compile-time errors, and it may still incur a type error at run time.

This choice was made deliberately during the early days of Dart (and it is
undoubtedly controversial). It represents a trade-off where the potential for run-
time type errors is the cost, and the benefit is simpler programs. In recent years,
Dart has evolved to have more and more static type safety, e.g., null safety, and
this trend is likely to continue.

20.1 Static Types staticTypes

Type annotations can occur in variable declarations (8), including formal
parameters (9.2), in the return types of functions (9), and in the bounds of
type variables (15). Type annotations are used during static checking and when
running programs. Types are specified using the following grammar rules.

A ⟨typeIdentifier⟩ is an identifier which can be the name of a type, that is, it
denotes an ⟨IDENTIFIER⟩ which is not a ⟨BUILT_IN_IDENTIFIER⟩ (17.38).

Non-terminals with names of the form ⟨. . . NotFunction⟩ derive terms which
are types that are not function types. Note that it does derive the type Function,
which is not itself a function type, but it is the least upper bound of all function
types.

⟨type⟩ ::= ⟨functionType⟩ ‘?’?
| ⟨typeNotFunction⟩

⟨typeNotVoid⟩ ::= ⟨functionType⟩ ‘?’?
| ⟨typeNotVoidNotFunction⟩ ‘?’?

⟨typeNotFunction⟩ ::= void
| ⟨typeNotVoidNotFunction⟩ ‘?’?

⟨typeNotVoidNotFunction⟩ ::= ⟨typeName⟩ ⟨typeArguments⟩?
| (⟨typeIdentifier⟩ ’.’)? Function

⟨typeName⟩ ::= ⟨typeIdentifier⟩ (‘.’ ⟨typeIdentifier⟩)?

⟨typeArguments⟩ ::= ‘<’ ⟨typeList⟩ ‘>’

Dart Programming Language Specification 230

⟨typeList⟩ ::= ⟨type⟩ (‘,’ ⟨type⟩)*

⟨typeNotVoidNotFunctionList⟩ ::=
⟨typeNotVoidNotFunction⟩ (‘,’ ⟨typeNotVoidNotFunction⟩)*

⟨functionType⟩ ::= ⟨functionTypeTails⟩
| ⟨typeNotFunction⟩ ⟨functionTypeTails⟩

⟨functionTypeTails⟩ ::= ⟨functionTypeTail⟩ ‘?’? ⟨functionTypeTails⟩
| ⟨functionTypeTail⟩

⟨functionTypeTail⟩ ::= Function ⟨typeParameters⟩? ⟨parameterTypeList⟩

⟨parameterTypeList⟩ ::= ‘(’ ‘)’
| ‘(’ ⟨normalParameterTypes⟩ ‘,’ ⟨optionalParameterTypes⟩ ‘)’
| ‘(’ ⟨normalParameterTypes⟩ ‘,’? ‘)’
| ‘(’ ⟨optionalParameterTypes⟩ ‘)’

⟨normalParameterTypes⟩ ::=
⟨normalParameterType⟩ (‘,’ ⟨normalParameterType⟩)*

⟨normalParameterType⟩ ::= ⟨metadata⟩ ⟨typedIdentifier⟩
| ⟨metadata⟩ ⟨type⟩

⟨optionalParameterTypes⟩ ::= ⟨optionalPositionalParameterTypes⟩
| ⟨namedParameterTypes⟩

⟨optionalPositionalParameterTypes⟩ ::= ‘[’ ⟨normalParameterTypes⟩ ‘,’? ‘]’

⟨namedParameterTypes⟩ ::= ‘{’ ⟨namedParameterType⟩ (‘,’ ⟨namedParameterType⟩)*
‘,’? ‘}’

⟨namedParameterType⟩ ::= ⟨metadata⟩ required? ⟨typedIdentifier⟩

⟨typedIdentifier⟩ ::= ⟨type⟩ ⟨identifier⟩

A Dart implementation must provide a static checker that detects and re-
ports exactly those situations this specification identifies as compile-time errors,
and only those situations. Similarly, the static checker must emit static warnings
for at least the situations specified as such in this specification.

Nothing precludes additional tools that implement alternative static analyses
(e.g., interpreting the existing type annotations in a sound manner such as either
non-variant generics, or inferring declaration based variance from the actual decla-
rations). However, using these tools must not preclude successful compilation and
execution of Dart code.

A type T is malformed iff: △

Dart Programming Language Specification 231

• T has the form id or the form prefix.id, and it does not denote a decla-
ration of a type.

• T denotes a type variable, but it occurs in the signature or body of a static
member.

• T is a parameterized type of the form G<S1, . . . , Sn>, and G is malformed,
or G is not a generic type, or G is a generic type, but it declares n′ type
parameters and n′ ̸= n, or Sj is malformed for some j ∈ 1..n.

• T is a function type of the form
T0 Function<X1 extends B1, . . . , Xm extends Bm>

(T1 x1, . . . , Tk xk, [Tk+1 xk+1, . . . , Tn xn])

or of the form
T0 Function<X1 extends B1, . . . , Xm extends Bm>

(T1 x1, . . . , Tk xk, {Tk+1 xk+1, . . . , Tn xn})

where each xj which is not a named parameter may be omitted, and Tj is
malformed for some j ∈ 0..n, or Bj is malformed for some j ∈ 1..m.

• T denotes declarations that were imported from multiple imports clauses.

Any occurrence of a malformed type in a library is a compile-time error.
A type T is deferred iff it is of the form p.T where p is a deferred prefix. It △

is a compile-time error to use a deferred type in a type annotation, type test,
type cast or as a type parameter. However, all other compile-time errors must
be issued under the assumption that all deferred libraries have successfully been
loaded.

20.1.1 Type Promotion typePromotion

The static type system ascribes a static type to every expression. In some
cases, the type of a local variable (which can be a formal parameter) may be
promoted from the declared type, based on control flow.

We say that a variable v is known to have type T whenever we allow the
type of v to be promoted. The exact circumstances when type promotion is
allowed are given in the relevant sections of the specification (17.26, 17.24 and
18.5).

Type promotion for a variable v is allowed only when we can deduce that
such promotion is valid based on an analysis of certain boolean expressions. In
such cases, we say that the boolean expression b shows that v has type T . As
a rule, for all variables v and types T , a boolean expression does not show that
v has type T . Those situations where an expression does show that a variable
has a type are mentioned explicitly in the relevant sections of this specification
(17.39 and 17.26).

Dart Programming Language Specification 232

20.2 Dynamic Type System dynamicTypeSystem

Let o be an instance. The dynamic type of o is the class which is specified △

for the situation where o was obtained as a fresh instance (10.7.2, 17.9.4, 17.9.8,
17.13.1, 17.15).

In particular, the dynamic type of an instance never changes. It is at times only
specified that the given class implements a certain type, e.g., for a list literal. In
these cases the dynamic type is implementation dependent, except of course that
said superinterface constraint must be satisfied.

The dynamic types of a running Dart program are equivalent to the static
types with regard to subtyping.

Certain dynamic type checks are performed during execution (8, 10.7.1, 10.7.1,
10.7.2, 10.7.2, 17.9.4, 17.13.1, 17.15.3, 17.21.1, 17.23, 17.40, 18.3, 18.6.3, 18.12,
18.17, 18.18). As specified in those locations, these dynamic checks are based on
the dynamic types of instances, and the actual types of declarations (20.10.1).

When types are reified as instances of the built-in class Type, those objects
override the ‘==’ operator inherited from the Object class, so that two Type
objects are equal according to operator ‘==’ iff the corresponding types are
subtypes of each other.

For example, the Type objects for the types dynamic and Object are equal to
each other and hence dynamic == Object must evaluate to true. No constraints are
imposed on the built-in function identical, so identical(dynamic, Object)
may be true or false.

Similarly, Type instances for distinct type alias declarations declaring a name for
the same function type are equal:

typedef F = void Function<X>(X);
typedef G = void Function<Y>(Y);

void main() {
assert(F == G);

}

Instances of Type can be obtained in various ways, for example by using re-
flection, by reading the runtimeType of an object, or by evaluating a type literal
expression.

An expression is a type literal if it is an identifier, or a qualified identifier,
which denotes a class, mixin, enum, or type alias declaration, or it is an identifier
denoting a type parameter of a generic class or function. It is a constant type
literal if it does not denote a type parameter, and it is not qualified by a deferred
prefix. A constant type literal is a constant expression (17.3).

20.3 Type Aliases typedef

A type alias declares a name for a type, or for a mapping from type arguments △

to types.

Dart Programming Language Specification 233

It is common to use the phrase “a typedef” for such a declaration, because of
the prominent occurrence of the token typedef.

⟨typeAlias⟩ ::=
typedef ⟨typeIdentifier⟩ ⟨typeParameters⟩? ‘=’ ⟨type⟩ ‘;’

| typedef ⟨functionTypeAlias⟩

⟨functionTypeAlias⟩ ::= ⟨functionPrefix⟩ ⟨formalParameterPart⟩ ‘;’

⟨functionPrefix⟩ ::= ⟨type⟩? ⟨identifier⟩

Consider a type alias declaration D of the form
typedef id<X1 extends B1, . . . , Xs extends Bs> = T;
declared in a library L. The effect of D is to introduce id into the library scope
of L. When s = 0 (where the type alias is non-generic) id is bound to T . When
s > 0 (where the type alias is generic) id is bound to a mapping from a type
argument list U1, . . . , Us to the type [U1/X1, . . . , Us/Xs]T .

Under the assumption that X1, . . . , Xs are types such that Xj <: Bj , for
all j ∈ 1..s, it is a compile-time error if T is not regular-bounded, and it is a
compile-time error if any type occurring in T is not well-bounded.

This means that the bounds declared for the formal type parameters of a generic
type alias must be such that when they are satisfied, the bounds that pertain to the
body are also satisfied, and a type occurring as a subterm of the body can violate
its bounds, but only if it is a correct super-bounded type.

Moreover, let T1, . . . , Tl be types and let U be the parameterized type
id<T1, . . . , Tl> in a location where id denotes D. It is a compile-time error if
l ̸= s. It is a compile-time error if U is not well-bounded (15.2).

For historic reasons, a type alias can have two more forms, derived using
⟨functionTypeAlias⟩. Let S? be a term which is empty or derived from ⟨type⟩, S?
and similarly for Tj? for any j. The two older forms are then defined as follows: Tj?

A type alias of the form
typedef S? id<X1 extends B1, . . . , Xs extends Bs>(

T1? p1, . . . , Tn? pn, [Tn+1? pn+1, . . . , Tn+k? pn+k]);
is treated as
typedef id<X1 extends B1, . . . , Xs extends Bs> =

S? Function(T1 p1, . . . , Tn pn, [Tn+1 pn+1, . . . , Tn+k pn+k]);
A type alias of the form

typedef S? id<X1 extends B1, . . . , Xs extends Bs>(
T1? p1, . . . , Tn? pn, {Tn+1? pn+1, . . . , Tn+k? pn+k});

is treated as
typedef id<X1 extends B1, . . . , Xs extends Bs> =

S? Function(T1 p1, . . . , Tn pn, {Tn+1 pn+1, . . . , Tn+k pn+k});
In these rules, for each j, if Tj? is empty then Tj is dynamic, otherwise Tj Tj

is Tj?.
This means that the older forms allow for a parameter type to be omitted, in

which case it is taken to be dynamic, but the parameter name cannot be omitted.

Dart Programming Language Specification 234

This behavior is error prone, and hence the newer form (with ‘=’) is recommended.
For instance, the declaration typedef F(int); specifies that F denotes the type
dynamic Function(dynamic), and it is documented, but technically ignored, that
the parameter has the name int. It is extremely likely that a reader will misread
this, and assume that int is the parameter type.

It is a compile-time error if a default value is specified for a formal parameter
in these older forms, or if a formal parameter has the modifier covariant.

Note that the old forms can only define function types, and they cannot denote
the type of a generic function. When such a type alias has type parameters, it
always expresses a family of non-generic function types. These restrictions exist
because that syntax was defined before generic functions were added to Dart.

Let DF be a type alias declaration of the form
typedef F<X1 extends B1, . . . , Xs extends Bs> = T;
If T or Bj for some j ∈ 1..s is or contains a ⟨typeName⟩ G denoting a type alias
declaration DG, then we say that DF depends on DG. △

Let D be a type alias declaration, and let M be the transitive closure of
the type alias declarations that D depends on. A compile-time error occurs if
D ∈ M .

In other words, it is an error for a type alias declaration to depend on itself,
directly or indirectly.

This kind of error may also arise when type arguments have been omitted in the
program, but are added during static analysis via instantiation to bound (15.3) or
via type inference, which will be specified later (6).

When D is a type alias declaration of the form
typedef F<X1 extends B1, . . . , Xs extends Bs> = T;
we say that the parameterized type U of the form F<U1, . . . , Us> in a scope
where F resolves to D alias expands in one step to [U1/X1, . . . , Us/Xs]T . △

Note that s can be zero, in which case F is non-generic, and we are just replacing
the type alias name by its body.

If U is a type we may repeatedly replace each subterm of U which is a
parameterized type applying a type alias to some type arguments by its alias
expansion in one step (including the non-generic case where there are no type
arguments). When no further steps are possible we say that the resulting type
is the transitive alias expansion of U . △

Note that the transitive alias expansion exists, because it is an error for a
type alias declaration to depend on itself. However, it may be large. For in-
stance, typedef F<X> = Map<X, X>; yields an exponential size increase for
F<F<...F<int>...>>.

Let D be a type alias declaration of the form D, F, T
typedef F<X1 extends B1, . . . , Xs extends Bs> = T;
and let U be a type of the form F or p.F in a scope where this term denotes D. U
Assume that the transitive alias expansion of F<X1, . . . , Xs> is a type of the C, q
form C or q.C, optionally followed by ⟨typeArguments⟩, where q is an identifier
denoting an import prefix, and C respectively q.C denotes a class or mixin (in
particular, C can not be a type variable). Assume that U occurs in an expression
e of the form ‘U.id args’ where args is derived from ⟨argumentPart⟩?, such that

Dart Programming Language Specification 235

id is the name of a static member of C respectively q.C. The expression e is
then treated as ‘C.id args’ respectively ‘q.C.id args’.

This means that it is possible to use a type alias to invoke a static member of
a class or a mixin. For example:

class C<X> {
static void staticMethod() {}

}

typedef F = C<int>;

void main() {
F.staticMethod(); // OK.

}

Note that the type arguments passed to C respectively p.C are erased, such
that the resulting expression can be a correct static member invocation. If a
future version of Dart allows type arguments to be passed via the class in an
invocation of a static member, it may be preferable to preserve these type argu-
ments. At that time, existing invocations where type arguments are passed in
this manner will not break, because it is currently an error for a static member
to depend on the value of a formal type parameter of the enclosing class.

Let D be a type alias declaration of the form D, F, Xj , Bj

typedef F<X1 extends B1, . . . , Xs extends Bs> = T;
where s > 0. Let Y1, . . . , Ys be fresh type variables, assumed to satisfy the Yj

bounds of D. We say that D expands to a type variable if the transitive alias △

expansion of F<Y1, . . . , Ys> is Yj for some j ∈ 1..s.
Let T be a parameterized type F<T1, . . . , Ts> (where s can be zero) in a T, F, D

scope where F denotes a type alias declaration D. We say that T uses D as a △

class when T occurs in one of the following ways:

• T occurs in an instance creation expression of the form nc T(...) or
the form nc T.id(...), where nc is either new or const (17.13). Note
that, e.g., T(42) may be an instance creation, but it is then treated as new
T(42) or const T(42), which means that it is included here (17.15.4).

• T or T.id is the redirectee in a redirecting factory constructor, (10.7.2).

• T is used as a superclass, a mixin, or a superinterface in a class declara-
tion (10.9, 12.3, 10.10), or as an on type or a superinterface in a mixin
declaration (12.2).

• T is used to invoke a static member of a class or mixin, as described above.

A compile-time error occurs if D expands to a type variable, and T uses D
as a class. A compile-time error occurs if T uses D as a class, and T is not
regular-bounded. For example:

Dart Programming Language Specification 236

class C<X extends num> {}
typedef F<Y extends int> = C<Y>;
typedef G<Z> = Z;

void main() {
F<int>(); // OK.
C<num>(); // OK.
F<num>(); // Error.
G<C<int>>(); // Error.

}

When we use phrases like ‘let S be a class’ or ‘assume that S is a mixin’, it is
understood that this includes the case where S is a ⟨typeName⟩ denoting a type
alias, or S is a parameterized type of the form ⟨typeName⟩ ⟨typeArguments⟩
where the type name denotes a type alias, and the transitive alias expansion of
S denotes a class respectively a mixin.

20.4 Subtypes subtypes

This section defines when a type is a subtype of another type. The core of △

this section is the set of rules defined in Figure 4, but we will need to introduce
a few concepts first, in order to clarify what those rules mean.

A reader who has read many research papers about object-oriented type systems
may find the meaning of the given notation obvious, but we still need to clarify a
few details about how to handle syntactically different denotations of the same type,
and how to choose the right initial environment, ∆. For a reader who is not familiar
with the notation used in this section, the explanations given here should suffice to
clarify what it means, with reference to the natural language explanations given at
the end of the section for obtaining an intuition about the meaning.

This section is concerned with subtype relationships between types during
static analysis as well as subtype relationships as queried in dynamic checks,
type tests (17.39), and type casts (17.40).

A variant of the rules described here is shown in an appendix (21.2), demon-
strating that Dart subtyping can be decided efficiently.

Types of the form X&S arise during static analysis due to type promotion △

(20.1.1). They never occur during execution, they are never a type argument
of another type, nor a return type or a formal parameter type, and it is always
the case that S is a subtype of the bound of X. The motivation for X&S is that
it represents the type of a local variable v whose type is declared to be the type
variable X, and which is known to have type S due to promotion. Similarly, X&S
may be seen as an intersection type, which is a subtype of X and also a subtype of
S. Intersection types are not supported in general, only in this special case. Every
other form of type may occur during static analysis as well as during execution,
and the subtype relationship is always determined in the same way.

Dart Programming Language Specification 237

1 ∆ ⊢ S <: S

3 ∆ ⊢ ⊥ <: T

2
T ∈ {Object, dynamic, void}

∆ ⊢ S <: T

4
T ̸= ⊥

∆ ⊢ Null <: T

5
typedef F<X1 extends . . . , . . . , Xs extends . . .> = U ∆ ⊢ [S1/X1, . . . , Ss/Xs]U <: T

∆ ⊢ F<S1, . . . , Ss> <: T

6
typedef F<X1 extends . . . , . . . , Xs extends . . .> = U ∆ ⊢ S <: [T1/X1, . . . , Ts/Xs]U

∆ ⊢ S <: F<T1, . . . , Ts>

7 ∆ ⊢ S <: T ∆ ⊢ Future<S> <: T
∆ ⊢ FutureOr<S> <: T

9 ∆ ⊢ S <: X ∆ ⊢ S <: T
∆ ⊢ S <: X&T

11 ∆ ⊢ S <: T
∆ ⊢ S <: FutureOr<T>

13
∆ ⊢ ∆(X) <: T

∆ ⊢ X <: T

8 ∆ ⊢ X&S <: X

10 ∆ ⊢ S <: Future<T>
∆ ⊢ S <: FutureOr<T>

12 ∆ ⊢ S <: T
∆ ⊢ X&S <: T

14
T is a function type
∆ ⊢ T <: Function

15

∆′ = ∆ ⊎ {Xi 7→ Bi | 1 ≤ i ≤ s} ∆′ ⊢ S0 <: T0
n1 ≤ n2 n1 + k1 ≥ n2 + k2 ∀j ∈ 1..n2 + k2 : ∆′ ⊢ Tj <: Sj

∆ ⊢ S0 Function<X1 ◁ B1, . . . , Xs ◁ Bs>(S1, . . . , Sn1, [Sn1+1, . . . , Sn1+k1]) <:
T0 Function<X1 ◁ B1, . . . , Xs ◁ Bs>(T1, . . . , Tn2, [Tn2+1, . . . , Tn2+k2])

16

∆′ = ∆ ⊎ {Xi 7→ Bi | 1 ≤ i ≤ s} ∆′ ⊢ S0 <: T0 ∀j ∈ 1..n : ∆′ ⊢ Tj <: Sj

{ yn+1, . . . , yn+k2 } ⊆ { xn+1, . . . , xn+k1 }
∀p ∈ 1..k2, q ∈ 1..k1 : yn+p = xn+q ⇒ ∆′ ⊢ Tn+p <: Sn+q

∆ ⊢ S0 Function<X1 ◁ B1, . . . , Xs ◁ Bs>(S1, . . . , Sn, {rn+1 Sn+1 xn+1, . . . , rn+k1 Sn+k1 xn+k1})r <:
T0 Function<X1 ◁ B1, . . . , Xs ◁ Bs>(T1, . . . , Tn, {rn+1 Tn+1 yn+1, . . . , rn+k2 Tn+k2 yn+k2})r

17
class C<X1 extends . . . , . . . , Xs extends . . .> ... {} ∀j ∈ 1..s : ∆ ⊢ Sj <: Tj

∆ ⊢ C<S1, . . . , Ss> <: C<T1, . . . , Ts>

18

class C<X1 extends . . . , . . . , Xs extends . . .> ... {}
D<T1, . . . , Tm> ∈ Superinterfaces(C) ∆ ⊢ [S1/X1, . . . , Ss/Xs]D<T1, . . . , Tm> <: T

∆ ⊢ C<S1, . . . , Ss> <: T

Figure 4: Subtype rules.

Dart Programming Language Specification 238

20.4.1 Meta-Variables metaVariables

A meta-variable is a symbol which stands for a syntactic construct that △

satisfies some static semantic requirements.
For instance, X is a meta-variable standing for an identifier W, but only if W

denotes a type variable declared in an enclosing scope. In the definitions below, we
specify this by saying that ‘X ranges over type variables’. Similarly, C is a meta-
variable standing for a ⟨typeName⟩, for instance, p.D, but only if p.D denotes a
class in the given scope. We specify this as ‘C ranges over classes’.

In this section we use the following meta-variables:

• X ranges over type variables.

• C ranges over classes,

• F ranges over type aliases.

• T and S range over types, possibly with an index like T1 or Sj .

• B ranges over types, again possibly with an index; it is only used as a
type variable bound.

20.4.2 Subtype Rules subtypeRules

We define several rules about subtyping in this section. Whenever a rule
contains one or more meta-variables, that rule can be used by instantiating it, △

that is, by consistently replacing each occurrence of a given meta-variable by
concrete syntax denoting the same type.

In general, this means that two or more occurrences of a given meta-variable in
a rule stands for identical pieces of syntax, and the instantiation of the rule proceeds
as a simple search-and-replace operation. For instance, rule 1 in Figure 4 can be
used to conclude ∅ ⊢ int <: int, where ∅ denotes the empty environment (any
environment would suffice because no type variables occur).

However, the wording ‘denoting the same type’ above covers additional situa-
tions as well: For instance, we may use rule 1 to show that p1.C is a subtype of
p2.C when C is a class declared in a library L which is imported by libraries L1 and
L2 and used in declarations there, when L1 and L2 are imported with prefixes p1
respectively p2 by the current library. The important point is that all occurrences
of the same meta-variable in a given rule instantiation stands for the same type,
even in the case where that type is not denoted by the same syntax in both cases.

Conversely, we can not use the same rule to conclude that C is a subtype of C
in the case where the former denotes a class declared in library L1 and the latter
denotes a class declared in L2, with L1 ̸= L2. This situation can arise without
compile-time errors, e.g., if L1 and L2 are imported indirectly into the current library
and the two “meanings” of C are used as type annotations on variables or formal
parameters of functions declared in intermediate libraries importing L1 respectively
L2. The failure to prove “∅ ⊢ C <: C” will then occur, e.g., in a situation where

Dart Programming Language Specification 239

we check whether such a variable can be passed as an actual argument to such a
function, because the two occurrences of C do not denote the same type.

Every ⟨typeName⟩ used in a type mentioned in this section is assumed to
have no compile-time error and denote a type.

That is, no subtyping relationship can be proven for a type that is or contains an
undefined name or a name that denotes something other than a type. Note that it is
not necessary in order to determine a subtyping relationship that every type satisfies
the declared bounds, the subtyping relation does not depend on bounds. However,
if an attempt is made to prove a subtype relationship and one or more ⟨typeName⟩s
receives an actual type argument list whose length does not match the declaration
(including the case where some type arguments are given to a non-generic class,
and the case where a generic class occurs, but no type arguments are given) then
the attempt to prove the relationship simply fails.

The rules in Figure 4 use the symbol ∆ to denote the given knowledge △

about the bounds of type variables. ∆ is a partial function that maps type
variables to types. At a given location where the type variables in scope are
X1 extends B1, . . . , Xs extends Bs (as declared by enclosing classes and/or func-
tions), we define the environment as follows: ∆ = { X1 7→ B1, . . . Xs 7→ Bs }.
That is, ∆(X1) = B1, and so on, and ∆ is undefined when applied to a type vari-
able Y which is not in { X1, . . . , Xs }. When the rules are used to show that a
given subtype relationship exists, this is the initial value of ∆.

If a generic function type is encountered, an extension of ∆ is used, as shown
in the rules 15 and 16 of Figure 4. Extension of environments uses the operator
⊎, which is the operator that produces the union of disjoint sets, and gives △

priority to the right hand operand in case of conflicts.
So {X 7→ int, Y 7→ double} ⊎ {Z 7→ Object} = {X 7→ int, Y 7→ double, Z 7→

Object} and {X 7→ int, Y 7→ FutureOr<List<double>>} ⊎ {Y 7→ int} = {X 7→
int, Y 7→ int}. Note that operator ⊎ is concerned with scopes and shadowing,
with no connection to, e.g., subtypes or instance method overriding.

In this specification we frequently refer to subtype relationships and assignabil-
ity without mentioning the environment explicitly, as in S <: T . This is only △

done when a specific location in code is in focus, and it means that the environ-
ment is that which is obtained by mapping each type variable in scope at that
location to its declared bound.

Each rule in Figure 4 has a horizontal line, to the left of which the rule △

number is indicated; under the horizontal line there is a judgment which is the
conclusion of the rule, and above the horizontal line there are zero or more △

premises of the rule, which are typically also subtype judgments. When that is △

not the case for a given premise, we specify the meaning explicitly.
Instantiation of a rule, mentioned above, denotes the consistent replacement of

meta-variables by actual syntactic terms denoting types everywhere in the rule, that
is, in the premises as well as in the conclusion, simultaneously.

20.4.3 Being a subtype beingASubtype

A type S is shown to be a subtype of another type T in an environment ∆ by △

Dart Programming Language Specification 240

providing an instantiation of a rule R whose conclusion is ∆ ⊢ S <: T , along △

with rule instantiations showing each of the premises of R, continuing until a
rule with no premises is reached.

For rule 4, note that the Null type is a subtype of all non-⊥ types, even though
it doesn’t actually extend or implement those types. The other types are effectively
treated as if they were nullable, which makes the null object (17.4) assignable to
them.

The first premise in the rules 5 and 6 is a type alias declaration. This premise
is satisfied in each of the following situations:

• A non-generic type alias named F is declared. In this case s is zero, no
assumptions are made about the existence of any formal type parameters,
and actual type argument lists are omitted everywhere in the rule.

• We may choose s and X1, . . . , Xs such that the following holds: A generic
type alias named F is declared, with formal type parameters X1, . . . , Xs.
Each formal type parameter Xj may have a bound, but the bounds are never
used in this context, so we do not introduce metavariables for them.

Rule 14 has as a premise that ‘T is a function type’. This means that T is a
type of one of the forms introduced in section 9.3. This is the same as the forms
of type that occur at top level in the conclusions of rule 15 and rule 16.

In rules 17 and 18, the first premise is a class declaration. This premise is
satisfied in each of the following situations:

• A non-generic class named C is declared. In this case s is zero, no as-
sumptions are made about the existence of any formal type parameters,
and actual type argument lists are omitted everywhere in the rule.

• We may choose s and X1, . . . , Xs such that the following holds: A generic
class named C is declared, with formal type parameters X1, . . . , Xs. Each
formal type parameter Xj may have a bound, but the bounds are never used
in this context, so we do not introduce metavariables for them.

The second premise of rule 18 specifies that a parameterized type D<...>
belongs to Superinterfaces(C). The semantic function Superinterfaces(_) ap- △

plied to a generic class C yields the set of direct superinterfaces of C (10.10).
Note that one of the direct superinterfaces of C is the interface of the superclass

of C, and that may be a mixin application (12.3), in which case D in the rule is
the synthetic class which specifies the semantics of that mixin application.

The last premise of rule 18 substitutes the actual type arguments S1, . . . , Ss for
the formal type parameters X1, . . . , Xs, because T1, . . . , Tm may contain those
formal type parameters.

The rules 17 and 18 are applicable to interfaces, but they can be used with
classes as well, because a non-generic class C which is used as a type denotes the
interface of C, and similarly for a parameterized type C<T1, . . . , Tk> where C
denotes a generic class.

Dart Programming Language Specification 241

20.4.4 Informal Subtype Rule Descriptions informalSubtypeRuleDescriptions

This section gives an informal and non-normative natural language description
of each rule in Figure 4.

The descriptions use the rule numbers to make the connection explicit, and also
adds names to the rules that may be helpful in order to understand the role played
by each rule.

In the following, many rules contain meta-variables (20.4.1) like S and T , and
it is always the case that they can stand for arbitrary types. For example, rule 10
says that “The type S is a . . . of FutureOr<T> . . . ”, and this is taken to mean
that for any arbitrary types S and T , showing that S is a subtype of T is sufficient
to show that S is a subtype of FutureOr<T>.

Another example is the wording in rule 1: “. . . in any environment ∆”, which
indicates that the rule can be applied no matter which bindings of type variables
to bounds there exist in the environment. It should be noted that the environment
matters even with rules where it is simply stated as a plain ∆ in the conclusion
and in one or more premises, because the proof of those premises could, directly or
indirectly, include the application of a rule where the environment is used.

1 Reflexivity: Every type is a subtype of itself, in any environment ∆. In the
following rules except for a few, the rule is also valid in any environment and
the environment is never used explicitly, so we will not repeat that.

2 Top: Every type is a subtype of Object, every type is a subtype of dynamic,
and every type is a subtype of void. Note that this implies that these types
are equivalent according to the subtype relation. We denote these types, and
others with the same property (such as FutureOr<Object>), as top types
(15.2).

3 Bottom: Every type is a supertype of ⊥.

4 Null: Every type other than ⊥ is a supertype of Null.

5 Type Alias Left: An application of a type alias to some actual type arguments
is a subtype of another type T if the expansion of the type alias to the type
that it denotes is a subtype of T . Note that a non-generic type alias is handled
by letting s = 0.

6 Type Alias Right: A type S is a subtype of an application of a type alias if
S is a subtype of the expansion of the type alias to the type that it denotes.
Note that a non-generic type alias is handled by letting s = 0.

7 Left FutureOr: The type FutureOr<S> is a subtype of a given type T if S
is a subtype of T and Future<S> is a subtype of T , for every type S and T .

8 Left Promoted Variable: The type X&S is a subtype of X.

9 Right Promoted Variable A: The type S is a subtype of X&T if S is a
subtype of both X and T .

Dart Programming Language Specification 242

10 Right FutureOr A: The type S is a subtype of FutureOr<T> if S is a
subtype of Future<T>.

11 Right FutureOr B: The type S is a subtype of FutureOr<T> if S is a
subtype of T .

12 Left Promoted Variable B: The type X&S is a subtype of T if S is a
subtype of T .

13 Left Variable Bound: The type variable X is a subtype of a type T if the
bound of X (as specified in the current environment ∆) is a subtype of T .

14 Right Function: Every function type is a subtype of the type Function.

15 Positional Function Type: A function type F1 with positional optional pa-
rameters is a subtype of another function type F2 with positional optional
parameters if the former has at most the same number of required param-
eters as the latter, and the latter has at least the same total number of
parameters as the former; the return type of F1 is a subtype of that of F2;
and each parameter type of F1 is a supertype of the corresponding parame-
ter type of F2, if any. Note that the relationship to function types with no
optional parameters, and the relationship between function types with no op-
tional parameters, is covered by letting k2 = 0 respectively k1 = k2 = 0. For
every subtype relation considered in this rule, the formal type parameters of
F1 and F2 must be taken into account (as reflected in the use of the extended
environment ∆′). We can assume without loss of generality that the names
of type variables are pairwise identical, because we consider types of generic
functions to be equivalent under consistent renaming (9.3). In short, “during
the proof, we will rename them as needed”. Finally, note that the relationship
between non-generic function types is covered by letting s = 0.

16 Named Function Type: A function type F1 with named optional parameters
is a subtype of another function type F2 with named optional parameters if
they have the same number of required parameters, and the set of names of
named parameters for the latter is a subset of that for the former; the return
type of F1 is a subtype of that of F2; and each parameter type of F1 is a
supertype of the corresponding parameter type of F2, if any. Note that the
relationship to function types with no optional parameters, and the relation-
ship between function types with no optional parameters, is covered by letting
k2 = 0 respectively k1 = k2 = 0, and also that the latter case is identical
to the rule obtained from rule 15 concerning subtyping among function types
with no optional parameters. As in rule 15, we can assume without loss of
generality that the names of type variables are pairwise identical. Similarly,
non-generic functions are covered by letting s = 0.

17 Class Covariance: A parameterized type based on a generic class C is a
subtype of a parameterized type based on the same class C if each actual
type argument of the former is a subtype of the corresponding actual type

Dart Programming Language Specification 243

argument of the latter. This rule may have s = 0 and cover a non-generic
class as well, but that is redundant because this is already covered by rule 1.

18 Superinterface: Considering the case where s = 0 and m = 0 first, a param-
eterized type based on a non-generic class C is a subtype of a parameterized
type based on a different non-generic class D if D is a direct superinterface
of C. When s > 0 or m > 0, this rule describes a subtype relationship which
includes one or more generic classes, in which case we need to give names to
the formal type parameters of C, and specify how they are used in the speci-
fication of the superinterface based on D. With those pieces in place, we can
specify the subtype relationship that exists between two parameterized types
based on C and D. The case where the superclass is a mixin application is
covered via the equivalence with a declaration of a regular (possibly generic)
superclass (12.3), and this means that there may be multiple subtype steps
from a given class declaration to the class specified in an extends clause.

20.4.5 Additional Subtyping Concepts additionalSubtypingConcepts

S is a supertype of T in a given environment ∆, written ∆ ⊢ S :> T , iff △

∆ ⊢ T <: S.
A type T may be assigned to a type S in an environment ∆, written Γ ⊢ △

S ⇐⇒ T , iff either ∆ ⊢ S <: T or ∆ ⊢ T <: S. In this case we say that the
types S and T are assignable. △

This rule may surprise readers accustomed to conventional typechecking. The
intent of the ⇐⇒ relation is not to ensure that an assignment is guaranteed to
succeed dynamically. Instead, it aims to only flag assignments that are almost
certain to be erroneous, without precluding assignments that may work.

For example, assigning an object of static type Object to a variable with
static type String, while not guaranteed to be correct, might be fine if the run-
time value happens to be a string.

A static analyzer or compiler may support more strict static checks as an
option.

20.5 Function Types functionTypes

Function types come in two variants: △

1. The types of functions that only have positional parameters. These have
the general form
T Function<X1 ◁ B1, . . . , Xs ◁ Bs>(T1, . . . , Tn, [Tn+1, . . . , Tn+k]).

2. The types of functions with named parameters. These have the general
form
T Function<X1 ◁ B1, . . . , Xs ◁ Bs>(

T1, . . . , Tn, {rn+1 Tn+1 xn+1, . . . , rn+k Tn+k xn+k}).

Dart Programming Language Specification 244

Note that the non-generic case is covered by having s = 0, in which case the
type parameter declarations are omitted (15). The case with no optional parameters
is covered by having k = 0; note that all rules involving function types of the two
kinds coincide in this case.

Two function types are considered equal if consistent renaming of type pa-
rameters can make them identical.

A common way to say this is that we do not distinguish function types which
are alpha-equivalent. For the subtyping rule below this means we can assume that
a suitable renaming has already taken place. In cases where this is not possible
because the number of type parameters in the two types differ or the bounds are
different, no subtype relationship exists.

A function object is always an instance of some class C that implements the
class Function (20.6), and which has a method named call, whose signature
is the function type C itself. Consequently, all function types are subtypes of
Function (20.4).

20.6 Type Function functionType

The built-in class Function is a supertype of all function types (20.5). It is
impossible to extend, implement, or mix in the class Function.

If a class declaration or mixin application has Function as superclass, it
instead uses Object as superclass.

If a class or mixin declaration implements Function, it has no effect. It is
as if the Function was removed from the implements clause (and if it’s the
only implemented interface, the entire clause is removed). The resulting class
or mixin interface does not have Function as a superinterface.

If a mixin application mixes Function onto a superclass, it follows the normal
rules for mixin-application, but since the result of that mixin application is
equivalent to a class with implements Function, and that clause has no effect,
the resulting class also does not implement Function. The Function class declares
no concrete instance members, so the mixin application creates a sub-class of the
superclass with no new members and no new interfaces.

Since using Function in these ways has no effect, it would be reasonable to
disallow it completely, like we do extending, implementing or mixing in types like
int or String. For backwards compatibility with Dart 1 programs, the syntax
is allowed to remain, even if it has no effect. Tools may choose to warn users
that their code has no effect.

20.7 Type dynamic typeDynamic

The type dynamic is a static type which is a supertype of all other types, just
like Object, but it differs from other types in that the static analysis assumes
that every member access has a corresponding member with a signature that
admits the given access.

For instance, when the receiver in an ordinary method invocation has type dy-
namic, any method name can be invoked, with any number of type arguments or

Dart Programming Language Specification 245

none, with any number of positional arguments, and any set of named arguments,
of any type, without error. Note that the invocation will still cause a compile-time
error if there is an error in one or more arguments or other subterms.

If no static type annotation has been provided, the type system considers
declarations to have type dynamic. If a generic type is used but type arguments
are not provided, the type arguments default to type dynamic.

This means that given a generic declaration G<P1, . . . , Pn>. . ., where Pi is a
formal type parameter declaration, i ∈ 1..n, the type G is equivalent to
G<dynamic, . . . , dynamic>.

The built-in type declaration dynamic, which is declared in the library
dart:core, denotes the dynamic type. When the name dynamic exported by
dart:core is evaluated as an expression, it evaluates to a Type object repre-
senting the dynamic type, even though dynamic is not a class.

This Type object must compare equal to the corresponding Type objects for
Object and void according to operator ‘==’ (20.2).

To improve the precision of static types, member accesses on a receiver of
type dynamic that refer to declarations of the built-in class Object are given
the static type corresponding to those declarations whenever doing so is sound.

• Let e be an expression of the form d.id, which is not followed by an
argument part, where the static type of d is dynamic, and id is the name
of a getter declared in Object; if the return type of Object.id is T then
the static type of e is T . For instance, d.hashCode has type int and
d.runtimeType has type Type.

• Let e be an expression of the form d.id, which is not followed by an
argument part, where the static type of d is dynamic, and id is the name
of a method declared in Object whose method signature has type F (which
is a function type). The static type of e is then F . For instance, d.toString
has type String Function().

• Let e be an expression which is of the form d.id(arguments) or the
form d.id<typeArguments>(arguments), where the static type of d is dy-
namic, id is the name of a getter declared in Object with return type F ,
arguments are derived from ⟨arguments⟩, and typeArguments are derived
from ⟨typeArguments⟩, if present. Static analysis will then process e as a
function expression invocation where an object of static type F is applied
to the given argument part. So this is always a compile-time error. For
instance, d.runtimeType(42) is a compile-time error, because it is checked
as a function expression invocation where an entity of static type Type is
invoked. Note that it could actually succeed: An overriding implementation
of runtimeType could return an instance whose dynamic type is a subtype
of Type that has a call method. We decided to make it an error because
it is likely to be a mistake, especially in cases like d.hashCode() where a
developer might have forgotten that hashCode is a getter.

• Let e be an expression of the form d.id(arguments) where the static
type of d is dynamic, arguments is an actual argument list derived from

Dart Programming Language Specification 246

⟨arguments⟩, and id is the name of a method declared in Object whose
method signature has type F . If the number of positional actual arguments
in arguments is less than the number of required positional arguments of F
or greater than the number of positional arguments in F , or if arguments
includes any named arguments with a name that is not declared in F , the
type of e is dynamic. Otherwise, the type of e is the return type in F .
So d.toString(bazzle: 42) has type dynamic whereas d.toString() has
type String. Note that invocations which "do not fit" the statically known
declaration are not errors, they just get return type dynamic.

• Let e be an expression of the form d.id<typeArguments>(arguments)
where the static type of d is dynamic, typeArguments is a list of actual
type arguments derived from ⟨typeArguments⟩, and arguments is an actual
argument list derived from ⟨arguments⟩. It is a compile-time error if id is
the name of a non-generic method declared in Object. No generic meth-
ods are declared in Object. Hence, we do not specify that there must be the
statically required number of actual type arguments, and they must satisfy
the bounds. That would otherwise be the consistent approach, because the
invocation is guaranteed to fail when any of those requirements are violated,
but generalizations of this mechanism would need to include such rules.

• For an instance method invocation e (including invocations of getters,
setters, and operators) where the receiver has static type dynamic and e
does not match any of the above cases, the static type of e is dynamic.
When an expression derived from ⟨cascadeSection⟩ performs a getter or
method invocation that corresponds to one of the cases above, the cor-
responding static analysis and compile-time errors apply. For instance,
d..foobar(16)..hashCode() is an error.

Note that only very few forms of instance method invocation with a receiver
of type dynamic can be a compile-time error. Of course, some expressions like
x[1, 2] are syntax errors even though they could also be considered "invocations",
and subexpressions are checked separately so any given actual argument could be a
compile-time error. But almost any given argument list shape could be handled via
noSuchMethod, and an argument of any type could be accepted because any formal
parameter in an overriding declaration could have its type annotation contravariantly
changed to Object. So it is a natural consequence of the principle of that a dynamic
receiver admits almost all instance method invocations. The few cases where an
instance method invocation with a receiver of type dynamic is an error are either
guaranteed to fail at run time, or they are very, very likely to be developer mistakes.

20.8 Type FutureOr typeFutureOr

The built-in type declaration FutureOr, which is exported by the library
dart:async, defines a generic type with one type parameter (15). The type
FutureOr<T> is a non-class type which is regular-bounded for all T .

Dart Programming Language Specification 247

The subtype relations involving FutureOr are specified elsewhere (20.4.2). Note,
however, that they entail certain useful properties:

• T <: FutureOr<T>.

• Future<T> <: FutureOr<T>.

• If T <: S and Future<T> <: S, then FutureOr<T> <: S.

That is, FutureOr is in a sense the union of T and the corresponding future
type. The last point guarantees that FutureOr<T> <: Object, and also that
FutureOr is covariant in its type parameter, just like class types: if S <: T then
FutureOr<S> <: FutureOr<T>.

If the type arguments passed to FutureOr would incur compile-time errors
if applied to a normal generic class with one type parameter, the same compile-
time errors are issued for FutureOr. The name FutureOr as an expression
denotes a Type object representing the type FutureOr<dynamic>.

The FutureOr<T> type represents a case where an object can be either an
instance of the type T or the type Future<T>. Such cases occur naturally in
asynchronous code. The available alternative would be to use a top type (e.g.,
dynamic), but FutureOr allows some tools to provide a more precise type anal-
ysis.

The type FutureOr<T> has an interface that is identical to that of Object.
That is, only members that Object has can be invoked on an object with static
type FutureOr<T>.

We only want to allow invocations of members that are inherited from a
common supertype of both T and Future<T>. In most cases the only common
supertype is Object. The exceptions, like FutureOr<Future<Object>> which
has Future<Object> as common supertype, are few and not practically useful, so
for now we choose to only allow invocations of members inherited from Object.

We define the auxiliary function futureOrBase(T) as follows: △

• If T is FutureOr<S> for some S then futureOrBase(T) = futureOrBase(S).

• Otherwise futureOrBase(T) = T .

20.9 Type Void typeVoid

The special type void is used to indicate that the value of an expression is
meaningless and intended to be discarded.

A typical case is that the type void is used as the return type of a function that
“does not return anything”. Technically, there will always be some object which is
returned (9). But it is perfectly meaningful to have a function whose sole purpose is
to create side-effects, such that any use of the returned object would be misguided.
This does not mean that there is anything wrong with the returned object as such.
It could be any object whatsoever. But the developer who chose the return type
void did that to indicate that it is a misunderstanding to ascribe any meaning to
that object, or to use it for any purpose.

Dart Programming Language Specification 248

The type void is a top type (15.2), so void and Object are subtypes of each
other (20.4), which also implies that any object can be the value of an expression
of type void. Consequently, any instance of type Type which reifies the type void
must compare equal (according to the ‘==’ operator 17.27) to any instance of Type
which reifies the type Object (20.2). It is not guaranteed that identical(void,
Object) evaluates to true. In fact, it is not recommended that implementations
strive to achieve this, because it may be more important to ensure that diagnostic
messages (including stack traces and dynamic error messages) preserve enough
information to use the word ‘void’ when referring to types which are specified as
such in source code.

In support of the notion that the value of an expression with static type
void should be discarded, such objects can only be used in specific situations:
The occurrence of an expression of type void is a compile-time error unless it is
permitted according to one of the following rules.

• In an ⟨expressionStatement⟩ e;, e may have type void. The value of e is
discarded.

• In the initialization and increment expressions of a for-loop, for (e1; e2;
e3) ..., e1 may have type void, and each of the expressions in the ex-
pression list e3 may have type void. The values of e1 and e3 are discarded.

• In a type cast e as T , e may have type void. Developers thus obtain the
ability to override the constraints on usages of values with static type void.
This means that it is not enforced that such values are discarded, but they
can only be used when the wish to do so has been indicated explicitly.

• In a parenthesized expression (e), e may have type void. Note that (e)
itself has type void, which implies that it must occur in some context where
it is not an error to have it.

• In a conditional expression e ? e1 : e2, e1 and e2 may have type void. The
static type of the conditional expression is then void, even if one of the
branches has a different type, which means that the conditional expression
must again occur in some context where it is not an error to have it.

• In a null coalescing expression e1 ?? e2, e2 may have type void. The static
type of the null coalescing expression is then void, which in turn restricts
where it can occur.

• In an expression of the form await e, e may have type void. This rule was
adopted because it was a substantial breaking change to turn this situation
into an error at the time where the treatment of void was changed. Tools
may choose to give a hint in such cases.

• In a return statement return e;, e may have type void in a number of situa-
tions (18.12).

Dart Programming Language Specification 249

• In an arrow function body => e, the returned expression e may have type
void in a number of situations (9).

• An initializing expression for a variable of type void may have type void.
Usages of that variable are constrained.

• An actual argument expression corresponding to a formal parameter whose
statically known type annotation is void may have type void. Usages
of that parameter in the body of the callee are statically expected to be
constrained by having type void. See the discussion about soundness below
(20.9.1). This rule also applies to the operators [] and []=. For example,
e1 and e2 may have type void in an expression of the form e0[e1] = e2 when
the parameters of the statically known operator []= both have type void.
Finally, this rule also applies to setters. For example, with an expression of
the form e1 = e2 which denotes a setter invocation whose statically known
parameter type is void, e2 may have type void.

• In an expression of the form e1 = e2 where e1 is an ⟨assignableExpression⟩
denoting a local variable (which can also be a formal parameter) of type void,
e2 may have type void. Usages of that variable are constrained because it
has type void. See the discussion about soundness below (20.9.1).

• Let e be an expression ending in a ⟨cascadeSection⟩ of the form .. S s = e1,
where S is of the form
(⟨cascadeSelector⟩ ⟨argumentPart⟩*) (⟨assignableSelector⟩ ⟨argumentPart⟩*)*
and e1 is of the form ⟨expressionWithoutCascade⟩.
If s is an ⟨assignableSelector⟩ of the form .id or ?.id where the static
type of the identifier id is void, e1 may have type void. Otherwise, if s is
an ⟨assignableSelector⟩ of the form [e0] where the static type of the first
formal parameter in the statically known declaration of operator []= is
void, e0 may have type void. Also, if the static type of the second formal
parameter is void, e1 may have type void.

Finally, we need to address situations involving implicit usage of an object
whose static type can be void. It is a compile-time error for a for-in statement
to have an iterator expression of type T such that Iterator<void> is the most
specific instantiation of Iterator that is a superinterface of T , unless the it-
eration variable has type void. It is a compile-time error for an asynchronous
for-in statement to have a stream expression of type T such that Stream<void>
is the most specific instantiation of Stream that is a superinterface of T , unless
the iteration variable has type void.

Here are some examples:

for (Object x in <void>[]) {} // Error.
await for (int x in new Stream<void>.empty()) {} // Error.
for (void x in <void>[]) {...} // OK.
for (var x in <void>[]) {...} // OK, type of x inferred.

Dart Programming Language Specification 250

However, in the examples that are not errors the usage of x in the loop body is
constrained, because it has type void.

20.9.1 Void Soundness voidSoundness

The constraints on usage of an object obtained from the evaluation of an
expression with static type void are not strictly enforced.

The usage of a “void value” is not a soundness issue, that is, no invariants
needed for correct execution of a Dart program can be violated because of such a
usage.

It could be said that the type void is used to help developers maintain a certain
self-imposed discipline about the fact that certain objects are not intended to be
used. Because of the fact that enforcement is not necessary, and because of the
treatment of void in earlier versions of Dart, the language uses a best effort
approach to ensure that the value of an expression of type void will not be used.

In fact, there are numerous ways in addition to the type cast in which a developer
can get access to such an object:

abstract class A<X> {
final X x;
A(this.x);
Object foo(X x);

}

class B<X> extends A<X> {
B(X x): super(x);
Object foo(Object x) => x;

}

Object f<X>(X x) => x;

void main() {
void x = 42;
print(f(x)); // (1)

A<void> a = B<void>(x);
A<Object> aObject = a;
print(aObject.x); // (2)
print(a.foo(x)); // (3)

}

At (1), a variable x of type void is passed to a generic function f, which is
allowed because the actual type argument void is inferred, and it is allowed to
pass an actual argument of type void to a formal parameter with the same type.
However, no special treatment is given when an expression has a type which is or
contains a type variable whose value could be void, so we are allowed to return x

Dart Programming Language Specification 251

in the body of f, even though this means that we indirectly get access to the value
of an expression of type void, under the static type Object.

At (2), we indirectly obtain access to the value of the variable x with type void,
because we use an assignment to get access to the instance of B which was created
with type argument void under the type A<Object>. Note that A<Object> and
A<void> are subtypes of each other, that is, they are equivalent according to the
subtype rules, so neither static nor dynamic type checks will fail.

At (3), we indirectly obtain access to the value of the variable x with type void
under the static type Object, because the statically known method signature of foo
has parameter type void, but the actual implementation of foo which is invoked is
an override whose parameter type is Object, which is allowed because Object and
void are both top types.

Obviously, the support for preventing developers from using objects obtained
from expressions of type void is far from sound, in the sense that there are many
ways to circumvent the rule that such an object should be discarded.

However, we have chosen to focus on the simple, first-order usage (where an
expression has type void, and the value is used), and we have left higher-order
cases largely unchecked, relying on additional tools such as linters to perform an
analysis which covers indirect data flows.

It would certainly have been possible to define sound rules, such that the value
of an expression of type void would be guaranteed to be discarded after some
number of transfers from one variable or parameter to the next one, all with
type void, explicitly, or as the value of a type parameter. In particular, we could
require that method overrides should never override return type Object by return
type void, or parameter types in the opposite direction; parameterized types with
type argument void could not be assigned to variables where the corresponding
type argument is anything other than void, etc. etc.

But this would be quite impractical. In particular, the need to either prevent
a large number of type variables from ever having the value void, or preventing
certain usages of values whose type is such a type variable, or whose type con-
tains such a type variable, that would be severely constraining on a very large
part of all Dart code.

So we have chosen to help developers maintain this self-imposed discipline
in simple and direct cases, and leave it to ad-hoc reasoning or separate tools to
ensure that the indirect cases are covered as closely as needed in practice.

20.10 Parameterized Types parameterizedTypes

A parameterized type is a syntactic construct where the name of a generic
type declaration is applied to a list of actual type arguments. A generic instan-
tiation is the operation where a generic type is applied to actual type arguments.

So a parameterized type is the syntactic concept that corresponds to the seman-
tic concept of a generic instantiation. When using the former, we will often leave
the latter implicit.

Let T be a parameterized type G<S1, . . . , Sn>.
It is a compile-time error if G is not a generic type, or G is a generic type,

Dart Programming Language Specification 252

but the number of formal type parameters in the declaration of G is not n. Oth-
erwise, let X1, . . . , Xn be the formal type parameters of G, and let B1, . . . , Bn

be the corresponding upper bounds, using dynamic when no bound is declared.
T is malbounded iff either Si is malbounded for one or more i ∈ 1..n, or T △

is not well-bounded (15.2).
It is a compile-time error if T is malbounded.
T is evaluated as follows. Let ti be the result of evaluating Si, for i ∈ 1..n.

T then evaluates to the generic instantiation where G is applied to t1, . . . , tn.
Let T be a parameterized type of the form G<A1, . . . , An> and assume

that T is not malformed and not malbounded. If S is the static type of a
member m of G, then the static type of the member m of an expression of type
G<A1, . . . , An> is [A1/X1, . . . , An/Xn]S, where X1, . . . , Xn are the formal type
parameters of G.

20.10.1 Actual Types actualTypes

Let T be a term derived from ⟨type⟩. Let X1, . . . , Xs be the formal type
parameters in scope at the location where T occurs. In a context where the
actual type arguments corresponding to X1, . . . , Xs are t1, . . . , ts, the actual △

value of the type T is then [t1/X1, . . . , ts/Xs]T .
Let D be a declaration with name n and type annotation T . The actual type △

of D and of n in a given context is then the actual value of T in that context.
In the non-generic case where s = 0, the actual type is equal to the declared

type, in the sense that we use simple terms like int to denote both. Note that
X1, . . . , Xs may be declared by multiple entities, e.g., one or more enclosing generic
functions and an enclosing generic class.

Let X extends B be a formal type parameter declaration. The actual bound △

of X in a given context is the actual value of B in that context.
Note that even though X may occur in B it does not occur in the actual value

of B, because no type has an actual value that includes a type variable.

20.10.2 Least Upper Bounds leastUpperBounds

Given two interfaces I and J , let SI be the set of superinterfaces of I, let
SJ be the set of superinterfaces of J and let S = ({I} ∪ SI) ∩ ({J} ∪ SJ).
Furthermore, we define Sn = {T |T ∈ S ∧ depth(T) = n} for any finite n where
depth(T) is the number of steps in the longest inheritance path from T to
Object. Let q be the largest number such that Sq has cardinality one, which
must exist because S0 is {Object}. The least upper bound of I and J is the
sole element of Sq.

The least upper bound of dynamic and any type T is dynamic. The least
upper bound of void and any type T ̸= dynamic is void. The least upper bound
of ⊥ and any type T is T . Let U be a type variable with upper bound B. The
least upper bound of U and a type T ̸= ⊥ is the least upper bound of B and T .

The least upper bound operation is commutative and idempotent, but it is
not associative.

Dart Programming Language Specification 253

The least upper bound of a function type and an interface type T is the least
upper bound of Function and T . Let F and G be function types. If F and G
differ in their number of required parameters, then the least upper bound of F
and G is Function. Otherwise:

• If
F = <X1 B1, . . . , Xs Bs>(T1, . . . , Tr, [Tr+1, . . . , Tn]) → T0 and
G = <X1 B1, . . . , Xs Bs>(S1, . . . , Sr, [Sr+1, . . . , Sk]) → S0

where k ≤ n then the least upper bound of F and G is
<X1 B1, . . . , Xs Bs>(L1, . . . , Lr, [Lr+1, . . . , Lk]) → L0

where Li is the least upper bound of Ti and Si, i ∈ 0..k.

• If
F = <X1 B1, . . . , Xs Bs>(T1, . . . , Tr, [Tr+1, . . . , Tn]) → T0,
G = <X1 B1, . . . , Xs Bs>(S1, . . . , Sr, { ... }) → S0

then the least upper bound of F and G is
<X1 B1, . . . , Xs Bs>(L1, . . . , Lr) → L0

where Li is the least upper bound of Ti and Si, i ∈ 0..r.

• If
F = <X1 B1, . . . , Xs Bs>(T1, . . . , Tr, {Tr+1 pr+1, . . . , Tf pf }) → T0,
G = <X1 B1, . . . , Xs Bs>(S1, . . . , Sr, {Sr+1 qr+1, . . . , Sg qg}) → S0

then let {xm, . . . , xn} = {pr+1, . . . , pf } ∩ {qr+1, . . . , qg} and let Xj be the
least upper bound of the types of xj in F and G, j ∈ m..n. Then the least
upper bound of F and G is
<X1 B1, . . . , Xs Bs>(L1, . . . , Lr, {Xm xm, . . . , Xn xn}) → L0

where Li is the least upper bound of Ti and Si, i ∈ 0..r

Note that the non-generic case is covered by using s = 0, in which case the type
parameter declarations are omitted (15).

21 Reference reference

21.1 Lexical Rules lexicalRules

Dart source text is represented as a sequence of Unicode code points. This
sequence is first converted into a sequence of tokens according to the lexical
rules given in this specification. At any point in the tokenization process, the
longest possible token is recognized.

Dart Programming Language Specification 254

21.1.1 Reserved Words reservedWords

A reserved word can only be used in the syntactic positions specified by the △

grammar. In particular, a compile-time error occurs if a reserved word is used
where an identifier is expected.

Note that reserved words occur bold and unquoted in grammar rules (e.g.,
assert) even though the consistent notation would use quotes (e.g., ‘assert’).
This notational abuse occurs because we believe it makes the grammar rules more
readable.

⟨RESERVED_WORD⟩ ::= assert | break | case | catch | class | const
| continue | default | do | else | enum | extends | false | final | finally | for
| if | in | is | new | null | rethrow | return | super | switch | this | throw
| true | try | var | void | while | with

In the grammar, the rule for reserved words above must occur before the
rule for ⟨BUILT_IN_IDENTIFIER⟩ (17.38).

This ensures that ⟨IDENTIFIER⟩ and ⟨IDENTIFIER_NO_DOLLAR⟩ do
not derive any reserved words, and they do not derive any built-in identifiers.

21.1.2 Comments comments

Comments are sections of program text that are used for documentation. △

⟨SINGLE_LINE_COMMENT ⟩ ::=
‘//’ ~(⟨LINE_BREAK ⟩)* (⟨LINE_BREAK ⟩)?

⟨MULTI_LINE_COMMENT ⟩ ::=
‘/*’ (⟨MULTI_LINE_COMMENT ⟩ | ~ ‘*/’)* ‘*/’

Dart supports both single-line and multi-line comments. A single line com- △

ment begins with the token //. Everything between // and the end of line must
be ignored by the Dart compiler.

A multi-line comment begins with the token /* and ends with the token △

/. Everything between / and */ must be ignored by the Dart compiler.
Comments may nest.

21.2 Operator Precedence operatorPrecedence

Operator precedence is given implicitly by the grammar.
The following non-normative table may be helpful

Dart Programming Language Specification 255

Description Operator Associativity Precedence
Unary postfix e., e?., e++, e--, e1[e2], e() None 16
Unary prefix -e, !e, ~e, ++e, --e, await e None 15

Multiplicative *, /, ~/, % Left 14
Additive +, - Left 13

Shift <<, >>, >>> Left 12
Bitwise AND & Left 11
Bitwise XOR ˆ Left 10

Bitwise Or | Left 9
Relational <, >, <=, >=, as, is, is! None 8

Equality ==, != None 7
Logical AND && Left 6

Logical Or || Left 5
If-null ?? Left 4

Conditional e1 ? e2 : e3 Right 3
Cascade .. Left 2

Assignment =, *=, /=, +=, -=, &=, ˆ=, etc. Right 1

Appendix: Algorithmic Subtyping algorithmicSubtyping

1algo
S not composite

∆ ⊢ S <: S

8.2 ∆ ⊢ X <: T
∆ ⊢ X <: X&T

11.1
∆ ⊢ ∆(X) <: FutureOr<T>

∆ ⊢ X <: FutureOr<T>

8.1 ∆ ⊢ X <: X

8.3 ∆ ⊢ X&S <: T
∆ ⊢ X&S <: X&T

11.2 ∆ ⊢ S <: FutureOr<T>
∆ ⊢ X&S <: FutureOr<T>

Figure 5: Algorithmic subtype rules. Rules 2–18 are unchanged and hence
omitted here.

The text in this appendix is not part of the specification of the Dart language.
However, we still use the notation where precise information uses the style
associated with normative text in the specification (this style), whereas examples
and explanations use commentary style (like this).

This appendix presents a variant of the subtype rules given in Figure 4 on
page 237.

The rules will prove the same set of subtype relationships, but the rules given
here show that there is an efficient implementation that will determine whether
∆ ⊢ S <: T holds, for any given types S and T . It is easy to see that the
algorithmic rules will prove at most the same subtype relationships, because all
rules given here can be proven by means of rules in Figure 4. It is also relatively
straightforward to sketch out proofs that the algorithmic rules can prove at least
the same subtype relationships, also when the following ordering and termination

Dart Programming Language Specification 256

constraints are observed.
The only rule which is modified is number 1, which is modified to 1algo. This

only changes the applicability of the rule: This rule is only used for types which
are not atomic. An atomic type is a type which is not a type variable, not a △

promoted type variable, not a function type, and not a parameterized type.
In other words, rule 1algo is used for special types like dynamic, void, and

Function, and it is used for non-generic classes, but it is not used for any type
where it is an operation that takes more than one comparison to detect whether it
is the same as some other type. The point is that the remaining rules will force a
structural traversal anyway, as far as needed, and we may hence just as well omit
the initial structural traversal which might take many steps only to report that two
large type terms are not quite identical.

The rules are ordered by means of their rule numbers: A rule given here
numbered N.1 is inserted immediately after rule N , followed by rule N.2, and
so on, followed by the rule whose number is N + 1. So the order is 1algo, 2–8,
8.1, 8.2, 8.3, 9, and so on.

We now specify the procedure which is used to determine whether ∆ ⊢ S <:
T holds, for some specific types S and T : Select the first rule R whose syntactic
constraints are satisfied by the given types S and T , and proceed to show that
its premises hold. If so, we terminate and conclude that the subtype relationship
holds. Otherwise we terminate and conclude that the subtype relationship does
not hold, except if R is 10, 11, 11.1, or 11.2. In particular, for the original query
∆ ⊢ S <: T , we do not backtrack into trying to use a rule that has a higher rule
number than that of R, except that we may try all of the rules with FutureOr<T>
to the right.

Apart from the fact that the full complexity of subtyping is potentially incurred
each time it is checked whether a premise holds, the checks applied for each rule
is associated with an amount of work which is constant for all rules except the
following: First, the group of rules 10, 11, 11.1, and 11.2 may cause backtracking
to take place. Next, rules 15–17 require work proportional to the size of S and T ,
due to the number of premises that must be checked. Finally, rule 18 requires work
proportional to the size of S, and it may also incur the cost of searching up to the
entire set of direct and indirect superinterfaces of the candidate subtype S, until
the corresponding premise for one of them is shown to hold, if any.

Additional optimizations are applicable. For instance, we can immediately con-
clude that the subtype relationship does not hold when we are about to check
rule 18 if T is a type variable or a function type. For several other forms of type,
e.g., a promoted type variable, Object, dynamic, void, FutureOr<T> for any T ,
or Function, it is known that it will never occur as T for rule 18, which means that
this seemingly expensive step can be confined to some extent.

Appendix: Integer Implementations integerImplementations

The int type represents integers. The specification is written with 64-bit two’s
complement integers as the intended implementation. But when Dart is compiled to

Dart Programming Language Specification 257

JavaScript, the implementation of int will instead use the JavaScript number type
and the corresponding JavaScript operations, except for bit operations as explained
below.

This introduces a number of differences:

• Valid values of JavaScript int are any IEEE-754 64-bit floating point number
with no fractional part. This includes positive and negative infinity , which △

can be reached by overflowing (integer division by zero is still a dynamic
error). Otherwise valid integer literals (including any leading minus sign)
that represent invalid JavaScript int values are compile-time errors when
compiling to JavaScript. Operations on integers may lose precision, because
the operands and the result are represented as 64-bit floating point numbers
that are limited to 53 significant bits.

• JavaScript int instances also implement double, and integer-valued double
instances also implement int. The int and double class are still separate
subclasses of the class num, but instances of either class that represent an in-
teger act as if they are actually instances of a common subclass implementing
both int and double. Fractional numbers only implement double.

• Bitwise operations on integers (‘&’, ‘|’, ‘ˆ’, ‘~’, ‘<<’, and ‘>>’) all trun-
cate the operands to 32-bit two’s complement integers, perform 32-bit op-
erations on those, and the resulting 32 bits are interpreted as a 32-bit un-
signed integer. For example, -1 << 1 evaluates to 4294967294 (also known as
(-2).toUnsigned(32)). The right shift operator, ‘>>’, performs a signed
right shift on the 32 bits when the original number is negative, and an un-
signed right shift when the original number is non-negative. Both kinds of
shift writes bit k + 1 into position k, 0 ≤ k < 31; but the signed shift leaves
bit 31 unchanged, and the unsigned shift writes a 0 as bit 31. For example:
0x80000002 >> 1 == 0x40000001, but -0x7FFFFFFE >> 1 == 0xC0000001.
In this example we note that both 0x80000002 and -0x7FFFFFFE yield the
32-bit two’s complement representation 0x80000002, but they have different
values for the IEEE 754 sign bit.

• The identical method cannot distinguish the values 0.0 and −0.0, and it
cannot recognize any NaN value as identical to itself. For efficiency, the △

identical operation uses the JavaScript === operator.

Index
∆, 239
∆ ⊢ S <: T , 240
NSa ∪ NSb, 224
⊎, 239
[[. . .]], 114
?□, 121
[x/y . . .]E, 9
X&S, 236
S <: T , 239
NAME_CONFLICT, 225

dynamic Object member invocation, 155
dynamic Object property extraction, 162

accessible to a library, 14
actual bound, 252
actual type, 252
actual value of the type, 252
additive expression, 180
assert statement, 216
assignable, 243
assignable expression, 186

receiver expression, 186
receiver term, 186

assignable match, 142
associated function type, 144
available in scope, 13
await expression, 182

basename, 59
bitwise expression, 179
block statement, 195
break statement, 212
built-in identifier, 190

cascade, 159
cascaded member access, 159

initially conditional, 159
cast expression, 193
class, 32

abstract, 34
concrete, 34
generic, 82

class declaration

abstract, 34
concrete, 34
generic, 82

class interface, 60
closurization, 149
closurization of a method, 166
closurization of method, 164
collection literal, 113

elements, 113
object sequence, 114

collection literal element
can be a map, 123
can be a set, 123
constant, 113
evaluation, 115
evaluation of sequence, 115
must be a map, 123
must be a set, 123
potentially constant, 113

combinator clauses
application to namespace, 224

combined interface, 61
combined member signature, 62
comment, 254
compilation environment, 228
compilation units, 216
compile-time error, 15
completion, 194

breaks, 194
continues, 194
normally, 194
returns, 194
throws, 194

conditional expression, 175
configurable URI, 228
conflicted name, 225
constant context, 103
constant expression, 96
constant object expression, 137
constant type expression, 100
constructor, 45

constant, 54
factory, 51

258

Dart Programming Language Specification 259

generative, 46
redirectee, 47, 52
redirecting, 47
redirecting factory, 52

constructor name, 45
context type, 121

unconstrained, 121
continue statement, 212
contravariant position, 84
correct override, 65
covariant position, 84
current library, 218

data event, 202
declaration

introduces an entity into a scope,
12

declares member, 34
declaring identifier, 17
declaring occurrence, 17
deferred prefix run-time namespace, 221
desugared, 153
desugaring, 153
direct superinterfaces, 58, 61
dynamic error, 16
dynamic type, 232
dynamic type error, 16

elements, 113
enum, 81
enumerated type, 81
equality expression, 177
error event, 202
evaluateElement(ℓ), 115
explicitly named library, 217
export directives, 223
exported by a library, 224
exported namespace, 223
exports, 223
expression, 94

produces an object, 95
throws, 95

expression statement, 195
extension, 69

on type, 70
accessibility, 74

application, 71
declaration, 69
declared name, 69
fresh name, 69
instance member, 71
instance method closurization, 78
instantiated on type, 72
instantiation-to-bound on type, 72
invocation member signature, 73
is applicable, 74
property extraction, 78
specificity, 75
static member, 71

false, the object, 105
flatten(T), 131
for statement, 200
formal parameter list, 26
formal parameter part, 26
formal type parameter list, 26
forwards, 25
fresh instance, 47
function

asynchronous, 23
external, 31
generator, 23

element type, 25
generic, 26
library, 25
local, 25
non-generic, 26
synchronous, 23

function closurization, 149
function declaration, 25

generic, 82
function type, 30

of a constructor, 45
futureOrBase(T), 247

generic, 82
generic function

does not have default type argu-
ments, 93

instantiation to bound, 92
generic function type instantiation, 150
generic instantiation method, 169

Dart Programming Language Specification 260

target, 169
getter

abstract, 43
concrete, 43
late-initialized, 21
late-uninitialized, 21

has a non-trivial noSuchMethod, 38
has access to this, 33
has member, 34
hide(l, NS), 224
hides, 13

identifier expression, 189
if statement, 199
if-null expression, 176
immediate subterm, 8
import, 218

deferred, 219
immediate, 219

import prefix, 219
imported

declaration, 221
declaration, with prefix, 221
name, 221
name, with prefix, 221

imported namespace, 220
in scope, 13
index marker ⋄, 11
infinity, 257
inherits, 56, 64
initializers, 48
initializing expression, 17
initializing formal parameter, 46
initializing variable declaration, 17
instance, 32
instance getters of a class, 43
instance method closurization, 164
instance methods of a class, 36
instance setters of a class, 43
instance variable initializers, 49
instance variables of a class, 44
instantiation

subtype rule, 238
instantiation to bound, 90
interface, 60

class, 60
combined, 60

invariant position, 85
is equivalent to, 9
is exported by a library, 224
is in, 12
is-expression, 193
isolates, 15

key, 128

label, 211
labeled case clause, 211
labeled statement, 211
leaf elements, 113
let expression, 10
lexical lookup, 187
library

exported namespace of, 223, 224
namespace imported from, 221
namespace re-exported from, 223

library namespace, 221
library scope, 218
list literal

element type, 118
literal

boolean, 105
decimal integer, 104
double, 104
function, 130

declared return type, 130
hexadecimal integer, 104
integer, 104
list, 119

constant, 119
run-time, 119

map, 128
constant, 129
run-time, 129

numeric, 104
set, 126

constant, 127
run-time, 127

symbol, 111
loadLibrary

fails, 221

Dart Programming Language Specification 261

succeeds, 221
local namespace, 218
local variable

declared type, 196
type, 196

local variable declaration, 195
logical boolean expression, 176
lookup, 151

malbounded, 252
malformed, 230
map

binds, 128
maps, 128
unambiguously, 121

may be assigned, 243
member declaration, 33, 66
member declarations, 68
member invocation, 152

composite, 152
conditional, 153
corresponding member name, 152
simple, 152
static, 155
syntactic receiver, 152
unconditional, 153

member signature, 59
member signature equality, 62
members, 33

instance, 33
static, 33

meta-variable, 238
method

abstract, 43
concrete, 43
instance, 36
static, 55

method invocation
conditional ordinary, 154
replacement receiver, 153
unconditional ordinary, 155

method signature
function type, 60

method superinvocation, 160
implicit call, 160

mixin

combined superinterface, 66
implemented interface, 66
required superinterface, 66

multi-line comment, 254
multiplicative expression, 181

name, 12
namespace, 12

compile-time, 12
conflict merging, 225
conflict narrowed, 226
has a binding, 12
key, 12
maps a key to a value, 12
provided by an import directive,

219
union, 224
value, 12

namespace combinators, 224
namespace value, 12
NaN, 257
new expression, 135
non-system library, 219
noSuchMethod forwarded, 39
noSuchMethod forwarder, 39
null object, 103

occurs contravariantly, 83
occurs covariantly, 83
occurs invariantly, 84
operators, 37
overrides, 64

parameter
covariant, 30
covariant-by-class, 29
covariant-by-declaration, 29

parameter corresponds to parameter,
29

part directive, 226
part header, 226
parts, 226
postfix expression, 184
potentially constant expression, 96
potentially mutated, 196
prefix, 219

Dart Programming Language Specification 262

prefix clause, 219
prefix namespace, 220
primitive equality, 42

does not have, 42
privacy, 14
private

declaration, 14
identifier, 14
name, 14

property extraction, 161
conditional, 161
static, 161
unconditional, 162

public
declaration, 14
identifier, 14
name, 14

public namespace, 218

qualified name, 190

raw string, 110
raw type, 88
raw type expression, 88
raw-depends on

type, 89
re-exports library, 224
re-exports namespace, 224
reachable from, 226
redirection-reachable, 48, 52
referencing identifier, 17
referencing occurrence, 17
regular-bounded, 86
relational expression, 178
required formal parameter, 27
reserved word, 254
rethrow statement, 207
return statement, 210
rule

conclusion, 239
premise, 239

rule number, 239
run-time namespace, 13
runtime, 16

scope

class body, 33
extension body, 70
formal parameter, 26
formal parameter initializer, 46
function body, 26
type parameter, 26, 33, 70

script, 227
script tag, 218
set

unambiguously, 121
set or map literal

element type, 121
key and value type pair, 121

setter
abstract, 43
concrete, 43

shift expression, 179
show(l, NS), 224
simple bound, 89
single line comment, 254
specify a URI, 228
start symbol, 217
statement, 194
static argument list type, 142
static getters of a class, 43
static member invocation

denoted member, 155
static property extraction

denoted member, 161
static setters of a class, 43
static warning, 16
string, 105
string interpolation, 110
string interpolation state stack, 107
substitution, 9
subterm, 8
subtype, 236, 239
subtype match, 142
super closurization, 166
super-bounded, 86
superclass, 56
superinitializer, 49
superinterface, 63
Superinterfaces(C), 240
superinvocation interface, 67
supertype, 243

Dart Programming Language Specification 263

switch statement, 204
symbol

non-private, based on, 111
system library, 219

term, 8
throw expression, 130
throwing a class, 16
throwing an exception, 16
top type, 86
treated as, 10
true, the object, 105
type

atomic, 256
deferred, 231
derives a future type, 130
dynamic bounded, 144
function, 243
function bounded, 144
function-type bounded, 144
generic, 82
generic, has simple bounds, 90
implements a raw type, 63
implements a type, 63
mixin of, 66
of the form X&S, 236
T0 bounded, 144

type alias, 232
alias expands in one step, 234
dependency, 234
transitive alias expansion, 234
used as a class, 235

type arguments
of a type at a raw type, 64
of a type at a raw type, jth, 64

type inference
collection literal element, 123
list literal, 119
set or map literal, 125

type parameter
contravariant, 85
covariant, 85
invariant, 85

UI-as-code, 113
unary expression, 182

union-free type derived from, 25
upper bound, 82

value, 128
variable

constant, 17, 196
fresh, 9
initialized, 196
library, 17
local, 196
non-local, 17
static, 17
top-level, 17

variable declaration statement, 195
variables

instance, 44

well-bounded, 86

x.op(y), 9

yield statement, 213
yield-each statement, 214

	Scope
	Conformance
	Normative References
	Terms and Definitions
	Notation
	Overview
	Scoping
	Privacy
	Concurrency

	Errors and Warnings
	Variables
	Implicitly Induced Getters and Setters
	Evaluation of Implicit Variable Getters

	Functions
	Function Declarations
	Formal Parameters
	Required Formals
	Optional Formals
	Covariant Parameters

	Type of a Function
	External Functions

	Classes
	Fully Implementing an Interface
	Instance Methods
	Operators
	The Method noSuchMethod
	The Operator `==' and Primitive Equality

	Getters
	Setters
	Abstract Instance Members
	Instance Variables
	Constructors
	Generative Constructors
	Factories
	Constant Constructors

	Static Methods
	Superclasses
	Inheritance and Overriding

	Superinterfaces
	Class Member Conflicts

	Interfaces
	Combined Member Signatures
	Superinterfaces
	Inheritance and Overriding
	Correct Member Overrides

	Mixins
	Mixin Classes
	Mixin Declaration
	Mixin Application

	Extensions
	Explicit Invocation of an Instance Member of an Extension
	Implicit Invocation of an Instance Member of an Extension
	Accessibility of an Extension
	Applicability of an Extension
	Specificity of an Extension

	Static analysis of Members of an Extension
	Extension Method Closurization
	The call Member of an Extension

	Enums
	Generics
	Variance
	Super-Bounded Types
	Instantiation to Bound
	Auxiliary Concepts for Instantiation to Bound
	The Instantiation to Bound Algorithm

	Metadata
	Expressions
	Expression Evaluation
	Object Identity
	Constants
	Further Remarks on Constants and Potential Constants
	Constant Contexts

	Null
	Numbers
	Booleans
	Strings
	String Interpolation

	Symbols
	Collection Literals
	Type Promotion
	Collection Literal Element Evaluation
	List Literal Inference
	Lists
	Set and Map Literal Disambiguation
	Set and Map Literal Inference
	Sets
	Maps

	Throw
	Function Expressions
	This
	Instance Creation
	New
	Const

	Spawning an Isolate
	Function Invocation
	Actual Argument Lists
	Actual Argument List Evaluation
	Binding Actuals to Formals
	Unqualified Invocation
	Function Expression Invocation

	Function Closurization
	Generic Function Instantiation
	Lookup
	Top level Getter Invocation
	Member Invocations
	Method Invocation
	Ordinary Invocation
	Cascades
	Superinvocations
	Sending Messages

	Property Extraction
	Getter Access and Method Extraction
	Super Getter Access and Method Closurization
	Instance Method Closurization
	Super Closurization
	Generic Method Instantiation

	Assignment
	Compound Assignment

	Conditional
	If-null Expressions
	Logical Boolean Expressions
	Equality
	Relational Expressions
	Bitwise Expressions
	Shift
	Additive Expressions
	Multiplicative Expressions
	Unary Expressions
	Await Expressions
	Postfix Expressions
	Assignable Expressions
	Lexical Lookup
	Identifier Reference
	Type Test
	Type Cast

	Statements
	Statement Completion
	Blocks
	Expression Statements
	Local Variable Declaration
	Local Function Declaration
	If
	For
	For Loop
	For-in
	Asynchronous For-in

	While
	Do
	Switch
	Switch case statements

	Rethrow
	Try
	on-catch clauses

	Return
	Labels
	Break
	Continue
	Yield
	Yield-Each
	Assert

	Libraries and Scripts
	Imports
	The Imported Namespace
	Semantics of Imports

	Exports
	Namespace Combinators
	Conflict Merging of Namespaces
	Parts
	Scripts
	URIs

	Types
	Static Types
	Type Promotion

	Dynamic Type System
	Type Aliases
	Subtypes
	Meta-Variables
	Subtype Rules
	Being a subtype
	Informal Subtype Rule Descriptions
	Additional Subtyping Concepts

	Function Types
	Type Function
	Type dynamic
	Type FutureOr
	Type Void
	Void Soundness

	Parameterized Types
	Actual Types
	Least Upper Bounds

	Reference
	Lexical Rules
	Reserved Words
	Comments

	Operator Precedence

