
Political Bias in News: A Feature-Weighted Classifier

DSM140 NLP Coursework: Text Classification

Johannes Van Cauwenberghe
University of London

johannes.vc@hotmail.com

2024-12-25

Table of contents
I Introduction .. 1

I. 1 Domain-Specific Area ... 1
I. 2 Objectives ... 2
I. 3 Dataset .. 3
I. 4 Evaluation Methodology .. 4

II Implementation .. 5
II. 1 Imports .. 5
II. 2 Data Preparation ... 6
II. 3 Preprocessing ... 20
II. 4 Baseline Performance .. 24
II. 5 Classification .. 26

III Conclusions .. 53
III. 1 Evaluation ... 53
III. 2 Summary and Conclusions .. 56

Bibliography .. 57

I Introduction
I. 1 Domain-Specific Area
The classification of political bias in news media is a pressing challenge in today’s information-
driven world. As news consumption increasingly shifts online, concerns about influence of per-
sonalised news recommendations grow. Social media platforms and news aggregators, such as
Google News and Apple News, have struggled to navigate the balance between providing relevant
content and avoiding ideological echo chambers (Helberger, 2019). This highlights the pressing
need for systematic approaches to detect and understand political bias in journalism.

While the study of “media bias” is well-trodden, natural language processing (NLP) techniques
continue to offer novel contributions. A systematic method for identifying political bias can ben-
efit citizens as well as researchers. It can improve transparency in journalism and enable more
informed news consumption.

1

Central to the classification task are textual features such as word choice and frequency. These will
serve as markers of political orientation. Building on prior research in text classification, such as
Jurafsky and Martin (2024) and Monroe et al. (2017), this project employs a Bayesian approach to
feature selection and ranking. Specifically, the Log Odds Ratio (LOR) adjusted with the Informa-
tive Dirichlet Prior (IDP). This adjustment accounts for word frequencies in a larger background
corpus and smoothes local fluctuations in bias and variance. While implementation details will
be covered in Section II. 5, LOR-IDP provides a robust foundation for identifying discriminative
features.

This project benefits from the AllSides dataset, which provides a substantial corpus of labelled
news headlines categorised by political bias. Complementing this is the NewsCatcher API, with
a background corpus as well as a large volume of additional content. Together, these resources
enable the development of a sophisticated classifier that combines labelled and unlabelled data to
uncover ideological leanings in news content.

I. 2 Objectives
The primary goal of this project is to develop a text classifier capable of identifying political bias
in news articles. By leveraging a large labelled dataset, the objective is to create a model that
significantly outperforms baseline accuracy, achieving at least a 5-10% improvement. To this end,
the project will train and evaluate three classic classification algorithms: Naive Bayes, Logistic
Regression, and Random Forest.

Furthermore, in Chapter 22, “Lexicons for Sentiment, Affect, and Connotation”, Jurafsky and Mar-
tin (2024) sets out several advanced feature selection techniques. This project aims to implement
one of these, the Log Odds Ratio Informative Dirichlet Prior (LOR-IDP). As a feature extraction,
selection and ranking technique, it complements the Bag-of-Words (BoW) representations out-
lined in earlier chapters. The method provides a transparent and interpretable selection process.
This is hugely beneficial for applications where explanatory descriptions are essential, such as is
the case with political bias in media.

Leveraging this word-level insight in what constitutes political bias in news, this project ulti-
mately aims to help inform impartiality rules and their application to the news domain. Stake-
holders include publishers as well as aggregation platforms and social media. The ultimate aim
is to help bridge divides and differentiate real concerns from tribal politics and divisive rhetoric.
This work also aligns with the author’s Final Project on creating balanced news recommendation
systems.¹ Identifying and mitigating divisive language ultimately is of great societal benefit.

¹For reference, the full title reads: “Evaluating Normative Metrics in Transformer-Based News Recommendation
Systems”

While this project aims to build a basic binary classifier, future iterations could explore more fine-
grained dimensions of political bias. For example, binary ‘left’ and ‘right’ classes can be refined
into subcategories, such as extreme left, moderate left, centre-left, and so on. Furthermore, topical
modelling could allow further refinements such as pro- vs. anti-establishment, as well as economic
and social policy dimensions.

2

The project also investigates the potential for transfer learning—assessing whether a model
trained on American data can generalise to UK news. This exploration into transfer learning is
to provide insight into the robustness of the feature selection process and the adaptability of the
classifier across different cultural and geographical contexts.

To summarise, the project pursues these core objectives:

• Develop a classifier that categorises news articles as left- or right-leaning.
• Evaluate the efficacy of LOR-IDP in feature selection for text classification.
• Compare the performance of Naive Bayes, Logistic Regression, and Random Forest classifiers.
• Investigate transferability across cultural and linguistic contexts.

Ethical considerations are central to this project, particularly given the nature of political dis-
course and the potential for encountering sensitive or offensive content in the dataset. To mitigate
risks, any content deemed excessively inflammatory or irrelevant to the research objectives will
be excluded from the analysis. While acknowledging the possibility of offence, the project priori-
tises advancing research in media transparency and public discourse over such risks, ensuring
that findings are communicated sensitively and responsibly.

I. 3 Dataset
The dataset comprises two main components:

1. AllSides Dataset: The AllSides dataset includes 22,000 hand-annotated news headlines and
snippets, categorised by political bias as left, right, or centre. Originating from AllSides, this
dataset is curated to expose political bias in how major news stories are covered across ideo-
logical spectrums. Political bias labels are determined at the publication level and are accom-
panied by numerical ratings ranging from −5 to +5. The dataset consists of carefully curated
side-by-side comparisons of the coverage on major news stories (as illustrated below).

Source: allsides.com.

This data is partly scraped and partly repurposed from previous work by Haak and Schaer
(2023). Put together, it ranges from 2022 to today, and consists of headlines and snippets in
terms of textual content. Word-length distributions are discussed in Section II. 2.5. All labelled

3

https://www.allsides.com/about
https://www.allsides.com/story/donald-trump-trump-says-he-wants-us-control-panama-canal-greenland-and-canada

content is attributed to AllSides under their Creative Commons License, as outlined in their
Terms of Use.

Finally, it should be noted that similar ratings are provided by Media Bias / Fact Check in the
US. Side-by-side comparisons in the UK are done (without labels) in The Week (a magazine).

2. NewsCatcher API Background Corpus: To enhance the classifier’s ability to generalise,
the NewsCatcher API² provides 10,000 unlabelled news articles from diverse publications. This
background corpus is filtered based on “centre”-labelled sources and ranges from 15 to 25th of
December 2024, offering a broad and current representation of news content. These are (mostly)
full-length articles and will be used for smoothing probabilities in the LOR-IDP approach and
addressing sparsity in the labelled dataset.

Additionally, 23,000 full-length articles were fetched from NewsCatcher API. Given a disap-
pointing early performance, and the fact that AllSides labels are at the level of each publication,
a search query with ‘politics’ as topic filter and ‘October to December’ as date range dramat-
ically increased the size and average word count per article, enriching the feature space and
addressing class imbalances within the dataset.

²NewsCatcher Api has sponsored this project with 6000 free API calls. See: newscatcherapi.com

Together, the AllSides dataset and NewsCatcher API form a complementary resource set: the All-
Sides dataset provides high-quality labels for training and testing, while the NewsCatcher corpus
offers the contextual background needed for effective feature selection. These datasets also allow
us to evaluate the generalisability of the classifier, including its application to UK publications.

I. 4 Evaluation Methodology
Given efforts to balance the dataset, accuracy will serve as the primary metric for evaluating the
classifier’s overall performance. Precision and recall scores will also be examined to assess how
well the model manages the trade-offs between the two.

Throughout the project we will focus on identifying systematic errors in “falsely predicted ‘left’
articles” and “falsely predicted ‘right’ articles.” Adopting the iterative methodology outlined in
Bird et al. (2009), we will focus on the evaluation of feature ranking. This will ensure that discrim-
inative features are effectively identified and optimally weighted. As demonstrated below in its
implementation, the classifier will be evaluated and fine-tuned using a cycle of feature extraction,
error analysis, and refinement. Misclassified samples will be analysed to trace errors back to the
feature selection process.

For instance, recurring errors may lead to the inclusion of additional stopwords or highlight issues
with the scaling factor (𝛼0). In particular, as we will see below, the evaluation of class imbalance
will eventually lead to fetching supplementary data.

For parameter selection, cross-validation will be employed. This ensures that the model gener-
alises effectively without repeatedly probing the test set with different parameter sets, inadver-
tently exposing the unseen data to the model’s hyperparameters.

4

https://www.allsides.com/terms-of-use
https://mediabiasfactcheck.com/
https://www.newscatcherapi.com/

Furthermore, the evaluation will include an assessment of the classifier’s generalisability. We will
investigate the extent to which the model trained on a predominantly American dataset can ef-
fectively classify political bias in UK publications.

II Implementation
The notebook can organised in two parts:

• In Section II. 2 the data is collected and prepared (combining a csv-file, a scrape, and an API call),
• In part two we pre-process this data and model it for predictions.

It is organised so that it can be run from Section II. 3 onwards – granted all dependencies are
installed.

II. 1 Imports

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.text import TextPath
from scipy.sparse import hstack, csr_matrix
import seaborn as sns

Standard library
from tqdm.notebook import tqdm, trange
from collections import Counter
from urllib.parse import urlparse
import re, random, asyncio, os, string
from multiprocessing import Pool
from IPython.display import Markdown
from typing import Literal

Scraping tools
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.support.ui import WebDriverWait
from selenium.common.exceptions import *
from fake_useragent import UserAgent

Api
from newscatcherapi import NewsCatcherApiClient

NLP Packages
import nltk
from nltk.corpus import stopwords

5

from nltk.text import Text
from nltk import pos_tag, word_tokenize

ML Packages
from sklearn.preprocessing import LabelEncoder
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.feature_extraction import DictVectorizer
from sklearn.naive_bayes import BernoulliNB
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier, plot_tree
from sklearn.utils.class_weight import compute_class_weight
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.metrics import (ConfusionMatrixDisplay,
 accuracy_score,
 classification_report)

Global settings
tqdm.pandas()
np.random.seed(42)
plt.rcParams['text.usetex'] = True
pd.options.display.max_colwidth = 80

II. 2 Data Preparation
We will now collect and prepare the datasets. We first repurpose the dataset from 𝑄𝑏𝑖𝑎𝑠.³ Next,
we will extend it with a crawl of AllSides website with updated data as well as a numerical rating,

³Haak and Schaer (2023) analyse media bias in search queries and query suggestions. The authors fine-tuned a
generative model in an experiment to reproduce political bias. This is an objective very different from our own.
Available here https://github.com/irgroup/Qbias

from extreme left to extreme right on a scale from −5 to +5. Finally, we will prepare an unlabelled
dataset as a background corpus.

II. 2.1 𝑄𝐵𝑖𝑎𝑠 dataset
We begin the preparation simply by loading the existing scrape of the AllSides headline-roundups.

The existing scrape of the AllSides headline-roundups
Q_bias_df = pd.read_csv('./allsides_balanced_news_headlines-texts.csv',
 index_col=0)
Q_bias_df = Q_bias_df[['source', 'heading', 'text', 'bias_rating']]
Q_bias_df.set_index('source').head()

6

heading text bias_rating

source

New York Times (News)

Chicago Gun Violence
Spikes and Increasingly
Finds the Youngest Vic-
tims

As Yasmin Miller drove
home from a laundromat
in Chicago’s Englewood
neighbo…

left

Chicago Tribune

‘Bullets just came from
nowhere’: Fourth of July
weekend gun violence
kills …

As many Chicagoans
were celebrating the
Fourth of July with bar-
becues and af…

center

New York Post (News)

Dozens of shootings
across US mark bloody
July 4th weekend

The nation’s 4th of July
weekend was marred by
the wrong kind of fire-
works.\…

right

The Epoch Times

Federal Government Will
Run Out of Cash on Oct.
18 If Debt Ceiling Isn’t
Rai…

Treasury Secretary Janet
Yellen on Tuesday
warned members of Con-
gress that t…

right

Washington Post

Yellen tells Congress that
U.S. will run out of debt
ceiling flexibility on …

Treasury Secretary Janet
Yellen on Tuesday told
Congress that the U.S.
will …

left

II. 2.2 Crawl data
As news is a rapidly changing medium, it is justified to extend the dataset with up-to-date news
and labels.

ua = UserAgent()

def get_selenium_driver():
 """Returns the driver"""

 # Run in background
 chrome_options = Options()
 chrome_options.add_argument("--headless") # Uncomment this for insight

 # Rotate user-agents
 chrome_options.add_argument(f"user-agent={ua.random}")
 return webdriver.Chrome(service=Service('/usr/bin/chromedriver'),
options=chrome_options)

7

retrieve number of pages
using the pager button at the bottom
driver = get_selenium_driver()
driver.get('https://www.allsides.com/headline-roundups')
url_to_last_page = driver.find_element(By.CLASS_NAME, "pager-
last").find_element(By.TAG_NAME, "a").get_attribute("href")
last_page_index = int(url_to_last_page.split('=')[-1])
last_page_index

202

retrieve links
links = []
for page in trange(1, last_page_index + 1):
 driver.get("https://www.allsides.com/headline-roundups?page=" + str(page))
 main_table = driver.find_element(By.TAG_NAME, "tbody")
 rows = main_table.find_elements(By.TAG_NAME, "tr")
 for i in rows:
 entry = i.find_elements(By.TAG_NAME, "td")
 link = entry[0].find_element(By.TAG_NAME, "a")
 links.append(link.get_attribute("href"))

100%|██████████| 201/201 [08:22<00:00, 2.50s/it]

Save links as csv
with open("allsides_links.csv", "w") as f:
 for line in links:
 print(line, file=f)

Scraper function for multi-threaded scraping
def scraper(from_idx, to_idx):
 driver = get_selenium_driver()

 WebDriverWait(driver, 20).until(EC.presence_of_element_located((By.TAG_NAME,
'body')))
 articles = []
 for link in tqdm(links[from_idx:to_idx]):

 driver.get(link)
 try:
 timestamp = driver.find_element(By.CLASS_NAME, "date-display-
single").get_attribute('content')
 except Exception as e:
 # print(e.msg)

8

 continue

 for news in driver.find_elements(By.CLASS_NAME, "news-item"):
 # only the 3 first `news-items` have the following tags
 # we try until we find a NoSuchElementException
 try:
 bias = news.find_element(By.TAG_NAME, "h3").get_attribute('class')
 source = news.find_element(By.TAG_NAME, "a").get_attribute("href")

 title = news.find_element(By.TAG_NAME, "a").text
 snippet = news.find_element(By.CLASS_NAME, "body-contents").text
 link_to_score = news.find_element(By.CLASS_NAME, "source-
area").get_attribute('href')

 articles.append({"title": title,
 "snippet": snippet,
 "bias": bias,
 "bias_score": link_to_score,
 "date": timestamp,
 "url": link,
 "source": source})

 except NoSuchElementException as e:
 # print(e.msg)
 continue
 return articles

Execute crawl (this takes some time)
(Use multiple threads to allow for waiting in each thread)
batch_size = 500
future = asyncio.gather(*[asyncio.create_task(
 asyncio.to_thread(scraper, batch, batch+batch_size))
 for batch in range(1, len(links), batch_size)])

driver.close()

Save results
flattened = [res for fut in future.result() for res in fut]
allsides_updated = pd.DataFrame(flattened)

allsides_updated.to_csv("allsides_updated.csv")

II. 2.3 Scrape Numerical Ratings
We add the numerical ratings as a column. These originate from AllSides ‘news-source’ profiles.
Whereas the Headline Roundups give ‘left’ and ‘right’ labels, for the numerical ratings we need
to scrape the profile pages. Here, only sources with more than 2 articles are scraped.

9

Focus on common sources (with more than two articles)
sources = allsides_updated.bias_score.value_counts()
sources_idx = sources[sources > 2].index
source_list = list(sources_idx)
len(source_list)

187

Lookup table for ratings
numerical_ratings_scrape = []
for url in tqdm(source_list[128:]):
 driver.get(url)
 WebDriverWait(driver, 20).until(EC.presence_of_element_located((By.TAG_NAME,
'body')))
 try:
 numerical_ratings_scrape.append({
 'bias_score': url,
 'source': driver.find_element(By.TAG_NAME, "h1").text,
 'num_rating': driver.find_element(By.CLASS_NAME, "numerical-bias-
rating").text})
 except NoSuchElementException as e:
 print(e.msg, url)

lookup = pd.DataFrame(numerical_ratings_scrape)
lookup.to_csv('rating_lookup.csv')
lookup.set_index('source').head()

bias_score numerical_rating

source

Fox News Digital https://www.allsides.com/news-source/fox-
news-…

3.88

CNN Digital https://www.allsides.com/news-source/cnn--
media…

−1.30

New York Times (News) https://www.allsides.com/news-source/new-y-
ork-…

−2.20

Washington Post https://www.allsides.com/news-source/wash-
ingto…

−2.20

The Hill https://www.allsides.com/news-source/hill-
medi…

−0.80

10

Saved here
lookup = pd.read_csv('rating_lookup.csv')

Use lookup to add ``numerical_rating`` column
Q_bias_df_joined = Q_bias_df.join(lookup, on='source')

Our main df also missed the ``source`` column
This will be useful for concatenation later on
df_joined = allsides_updated.join(lookup.reset_index().set_index('bias_score'),
on='bias_score', lsuffix='_l')

FYI, our lookup contains many UK newspapers
all(uk_paper in lookup.index for uk_paper
 in ['BBC News' ,'The Economist', 'Daily Mail'])

True

Brief inspection
lookup_viz = lookup.sort_values('numerical_rating', ascending=False).dropna()
lookup_viz = lookup_viz[lookup_viz.index % 3 == 0]

Plot
ax = lookup_viz.plot.scatter(x='num_rating',
 y='source',
 marker='|',
 s=150,
 c=['b' if b > 0 else 'r' for b in lookup_viz.num_rating],
 figsize=(6, 9),
 title='A Selection of Numerical Ratings on AllSides',
 ylabel='',
)

ax.grid(visible=True, which='major')
ax.text(x=-2.4, y=40, s=r'\leftarrow LEFT v. RIGHT \rightarrow',
fontsize=18)
ax.
plt.show()

11

Figure 1: Numerical Ratings on AllSides

II. 2.4 NewsCatcher API Dataset

II. 2.4.1 Background data
Log-odds informative dirichlet prior relies on a vast background corpus. The prior word frequen-
cies serve as a snoothing to help differentiate the politically biased news from the center. To
achieve this, the ‘center’ headlines and snippets from AllSides are extended with a corpus of full-
length articles obtained using the NewsCatcher API. 10,000 articles are fetched from publications
labelled ‘center’ by AllSides. However, whereas the 𝑄𝑏𝑖𝑎𝑠 dataset contains the sources in plain

12

text, NewsCatcher expects a url of the shape wired.com. This requires some parsing of source
names.

newscatcherapi = NewsCatcherApiClient(
 x_api_key=os.getenv('NEWSCATCHER_API_KEY'))

Extract center `sources`
def parse_source(bias='center'):
 parsed_sources = df_joined[df_joined.bias == bias].source.dropna().unique()
 parsed_sources_df = pd.DataFrame(parsed_sources, columns=['source'])

 # Prepare a list of sources of the shape `wired.com`
 parsed_sources_df = (parsed_sources_df

 # Filter using a join
 .join(df_joined.set_index('source'), on='source')
 .drop_duplicates(subset='source')

 # Parse `source_l` links
 .source_l
 .map(lambda x: urlparse(x).netloc.replace('www.', '') if
isinstance(x,str) else ''))

 # Remove duplicates and NaNs, and return
 return list({c for c in parsed_sources_df if c})

Inspect all sources (long list)
center_sources = parse_source(bias='center')
center_sources
-> Too long to print

Selected sources (redacted)
center_sources = ['wired.com', 'cnbc.com', 'euronews.com', 'dw.com',
'bbc.com', 'fortune.com', 'thedispatch.com', 'allsides.com', 'pewresearch.org',
'cnet.com', 'wsj.com', 'csmonitor.com', 'realclearinvestigations.com',
'techcrunch.com', 'ft.com', 'forbes.com', 'thehill.com', 'thedailybeast.com',
'washingtonpost.com', 'newsweek.com', 'unherd.com', 'reuters.com', 'qz.com',
'factcheck.org']

Fetch API call (recursively)
all_articles = newscatcherapi.get_search_all_pages(
 q='*',
 from_='10 days ago',
 topic='politics',
 lang='en',
 sources=center_sources)

13

print(all_articles['total_hits']) # 10,000

Save
pd.DataFrame(all_articles['articles']).to_csv('background_articles.csv',
index=False)

II. 2.4.2 Merge the 𝑄𝑏𝑖𝑎𝑠 data with the Crawl Data

Selecting columns for concatenation
df_joined = df_joined[['title', 'snippet', 'bias', 'date', 'url', 'source_l',
'source', 'numerical_rating']]

Renaming columns for concatenation
Q_bias_df_joined.columns = Q_bias_df_joined.columns.map(
 {'heading': 'title',
 'source': 'source',
 'text': 'snippet',
 'bias_rating': 'bias',
 'bias_score': 'bias_score',
 'numerical_rating':'num_rating'})

Selecting columns for concatenation
Q_bias_df_joined = Q_bias_df_joined[['title', 'source', 'snippet', 'bias',
'num_rating']]

Execute concat and clean up overlap
pd.concat([df_joined, Q_bias_df_joined]).drop_duplicates(subset='title',
keep='first').to_csv('allsides_combined.csv', index=False)

allsides_combined = pd.read_csv('allsides_combined.csv')
allsides_combined.dropna(subset=['title', 'bias', 'numerical_rating'],
inplace=True)

print(f'We now have {allsides_combined.shape[0]} labeled news articles.')

We now have 22101 labeled news articles.

allsides_combined.bias.value_counts().plot.barh(title='The AllSides Labels are
Predominantly Left', xlabel='Frequency', figsize=(4,2))
plt.show()

14

Figure 2: Visualising class imbalance in the combined AllSides dataset

II. 2.4.3 Rebalance and More Data
Given the class imbalance we saw in Figure 2, we add 3000 ‘politics’ articles from publications
labelled ‘right’ by AllSides. Futhermore, we also add 10,000 articles of ‘left’ and ‘right’ sources
respectively.

right_sources = parse_source(bias='right')

Fetch API call (recursively)
all_articles = newscatcherapi.get_search_all_pages(q='*',
 from_='3 months ago',
 topic='politics',
 lang='en',
 sources=right_sources,
 # max_page=30 # We added another 3,000
to rebalance
)
pd.DataFrame(all_articles['articles']).to_csv('right_articles.csv',
index=False)

A sample of sources
right_sources[:10]

['freebeacon.com',
 'justthenews.com',
 'zerohedge.com',
 'wsj.com',
 'newsmax.com',
 'nypost.com',
 'dailymail.co.uk',
 'washingtontimes.com',

15

 'telegraph.co.uk',
 'hotair.com']

left_sources = parse_source(bias='left')

all_articles = newscatcherapi.get_search_all_pages(q='*',
 from_='3 months ago',
 topic='politics',
 lang='en',
 sources=left_sources,
)
pd.DataFrame(all_articles['articles']).to_csv('left_articles.csv',
index=False)

left_sources[:10]

['theroot.com',
 'mashable.com',
 'lgbtqnation.com',
 'usnews.com',
 'slate.com',
 'miamiherald.com',
 'bostonglobe.com',
 'economist.com',
 'theguardian.com',
 'theverge.com']

Label the articles with a bias label, and concatenate them.
df_left = pd.read_csv('left_articles.csv')
df_left['bias'] = 'left'
df_right = pd.read_csv('right_articles.csv')
df_right['bias'] = 'right'

Combine and prepare for lookup
df_comb = pd.concat([df_left, df_right])
df_comb.drop_duplicates(subset='title', inplace=True)
df_comb.dropna(subset='title', inplace=True)
df_comb.rename(columns={'excerpt':'snippet',
 'clean_url': 'source_api'}, inplace=True)
df_comb.shape

(21407, 20)

16

Add the AllSides' `numerical_rating` to the NewsCatcher articles
allsides_combined['source_api'] = allsides_combined\
 .source_l\
 .map(lambda x: urlparse(x).netloc.replace('www.', '') if isinstance(x,str)
else '')

Create a new lookup table based on the
lookup = allsides_combined[['numerical_rating', 'source_api']]
lookup = lookup.drop_duplicates('source_api').dropna(subset='source_api')
#.set_index('source_api')

Join `numerical_rating` and save
df_comb_ = df_comb.join(lookup.set_index('source_api'), on='source_api')
df_comb_.to_csv('rebalance_and_added.csv')

II. 2.5 Summary Statistics

II. 2.5.1 Summary of the Labelled Data

Load biased data into `AllSides_df` dataframe
AllSides_df = pd.read_csv('allsides_combined.csv', usecols=['title', 'snippet',
'bias', 'numerical_rating', 'source_l'])
AllSides_df['source_api'] = AllSides_df.source_l\
 .map(lambda x: urlparse(x).netloc.replace('www.', '') if isinstance(x,str)
else '')
AllSides_df.dropna(subset=['title', 'bias', 'numerical_rating'], inplace=True)
AllSides_df.rename(columns=dict(numerical_rating='num_rating'), inplace=True)
AllSides_df = AllSides_df[AllSides_df.bias != 'center']

Extend the AllSides dataset and concat
more_articles = pd.read_csv('rebalance_and_added.csv', usecols=['title',
'snippet', 'summary', 'bias', 'numerical_rating', 'source_api'])
more_articles.dropna(subset=['title', 'bias', 'numerical_rating'],
inplace=True)
more_articles.rename(columns=dict(numerical_rating='num_rating'),
inplace=True)
AllSides_df = pd.concat([AllSides_df, more_articles])

Distribution of lengths or article titles and snippets

AllSides_df.info()

<class 'pandas.core.frame.DataFrame'>
Index: 38756 entries, 0 to 21406
Data columns (total 7 columns):
 # Column Non-Null Count Dtype

17

--- ------ -------------- -----
 0 title 38756 non-null object
 1 snippet 38669 non-null object
 2 bias 38756 non-null object
 3 source_l 10907 non-null object
 4 num_rating 38756 non-null float64
 5 source_api 38756 non-null object
 6 summary 21407 non-null object
dtypes: float64(1), object(6)
memory usage: 2.4+ MB

_, axs = plt.subplots(1,3, figsize=(14,4))
AllSides_df.title.str.len().plot.hist(ax=axs[0], title='Distribution of title
lengths')
AllSides_df.snippet.str.len().plot.hist(ax=axs[1], title='Distribution of
snippet lengths')
AllSides_df.summary.str.len().plot.hist(ax=axs[2],
 title='Distribution of summary lengths',
 ylabel='Frequency (log scale)',
 logy=True)

print(f'The {AllSides_df.shape[0]} labelled articles contain on average
{round(AllSides_df.summary.str.len().mean(), -2)} words; the median is around
{round(AllSides_df.summary.str.len().median(), -2)}.')
plt.suptitle('Summary of Labelled Dataset Statistics', fontsize=18, y=1.1)
plt.show()

The 38756 labelled articles contain on average 3800.0 words; the median is
around 3000.0.

Figure 3: Distribution of lengths or article titles, excerpts, and summaries - these summaries are
much longer than the snippets and excerpts, hence the log scale.

18

AllSides_df.bias.value_counts().plot.barh(title='Class Imbalance After Adding
Data', xlabel='Frequency', figsize=(4,2))
plt.show()

Figure 4: The class imbalance is largely mitigated after adding data

The 'left' and 'right' article are of similar lengths
sent_lens = (AllSides_df.title.fillna('').str.split() +
 AllSides_df.snippet.fillna('').str.split() +
 AllSides_df.summary.fillna('').str.split())\
 .map(lambda x: len(x))

sent_lens[AllSides_df.bias == 'left'].mean(), sent_lens[AllSides_df.bias ==
'right'].mean()

(401.3508290002943, 377.2154599891127)

II. 2.5.2 Summary of the Background Data

Load and preprocess background data (from NewsCatcher API)
bg_df = pd.read_csv('background_articles.csv', usecols=['title', 'excerpt',
'summary'])
bg_df.drop_duplicates(subset='title', inplace=True)
bg_df.dropna(subset='title', inplace=True)
bg_df.rename(columns={'excerpt':'snippet'}, inplace=True)

Append `center`-labeled data from AllSides
AllSides_bg = AllSides_df[AllSides_df.bias == 'center']
bg_all = pd.concat([bg_df, AllSides_bg])
assert bg_all.duplicated().sum() == 0

19

_, axs = plt.subplots(1,3, figsize=(14,4))
bg_df.title.str.len().plot.hist(ax=axs[0], title='Distribution of title
lengths')
bg_df.snippet.str.len().plot.hist(ax=axs[1], title='Distribution of snippet
lengths')
bg_df.summary.str.len().plot.hist(ax=axs[2],
 title='Distribution of summary lengths',
 ylabel='Frequency (log scale)',
 logy=True)

print(f'The {bg_df.shape[0]} background articles contain on average
{round(bg_df.summary.str.len().mean(), -2)} words; the median is
{round(bg_df.summary.str.len().median(), -2)}.')
plt.suptitle('Summary of Background Dataset Statistics', fontsize=18, y=1.1)
plt.show()

The 8191 background articles contain on average 2700.0 words; the median is
1800.0.

Figure 5: Distribution of lengths or article titles, excerpts, and summaries - these summaries are
much longer than the snippets and excerpts, hence the log scale.

II. 3 Preprocessing
Preprocessing is a critical step to transform raw textual data into a format for classification. As
we saw in Figure 2, there was some class imbalance. Fortunately, we obtained additional data,
which will have a noticable impact on the performance of our classifiers. To enable us to reuse
the preprocessing pipeline with varying features, we will contain the steps in a function called
apply_preprocessing().

The following steps will be applied:

• Tokenisation: Breaking down articles and headlines into individual words.

20

• Lowercasing: Ensuring uniformity by converting all text to lowercase.
• Stopword Removal: Filtering out common words (e.g., “and”, “the”) that do not contribute

meaningfully to classification.
• Lemmatisation: Reducing words to their base forms (e.g., “running” to “run”) to standardise

vocabulary.

Core datasets are stored in CSV format, with each row representing an article and its correspond-
ing AllSides label.The preprocessed text fields are populated in the first steps of preprocessing.

II. 3.1 Preprocessing as a Function
We begin by specifying the preprocessing functionality in a modular and easily reproduceable
fashion.

from nltk.corpus import stopwords
Stopwords (nltk.download('stopwords'))

stop_words = stopwords.words('english') + \
 list(string.punctuation + "’”“`'—") + \
 ["'d", "'ll", "'re", "'s", "'ve", 'could',
 'might', 'must', "n't", 'nt', 'need',
 'sha', 'wo', 'would', '``', '...']

Lemmatiser
wn_lem = nltk.WordNetLemmatizer()

def apply_preprocessing(sent):

 # Replace em dash with space
 sent = sent.replace('—', ' ')

 # Tokenize and return pos_tags
 token_sent = []
 for word,tag in pos_tag(word_tokenize(sent)):

 # Filter out non-ascii characters
 word = ''.join(char.lower() for char in word if char in
string.ascii_letters)

 # Filter stopwords
 if word and word.lower() not in stop_words:

 # Lemmatise based on tag
 if tag[0] in ['A','N','V']:

 # print(word,tag[0])
 token_sent.append(wn_lem.lemmatize(word,tag[0].lower()))

 else:

21

 token_sent.append(wn_lem.lemmatize(word))
 return token_sent

II. 3.2 Implementing the Preprocessing
Edit: We must remove the noisy features discovered in Section II. 5.4. These were:

['width', 'byline', 'maxwidthpx', 'px', 'marginleft', 'marginright']

First remove some bad scrapes with html tags in the text
pattern = r'max-?widthpx|margin-?left|margin-?right'

mask = AllSides_df.summary.fillna('').str.contains(pattern, case=False,
regex=True)
AllSides_df.loc[mask, 'summary'] = ''

Construct X and y for baseline
AllSides_df['sents'] = AllSides_df.title + ' ' + AllSides_df.snippet.fillna('')
+ ' ' + AllSides_df.summary.str[:10000].fillna('')

AllSides_df['pre_sents'] =
AllSides_df.sents.progress_apply(apply_preprocessing)
labels = AllSides_df.bias

assert AllSides_df.sents.isna().sum() == 0
assert len(labels) == len(AllSides_df.pre_sents), 'labels and data are not
aligned'

 0%| | 0/38756 [00:00<?, ?it/s]

Unique words in extend AllSides dataset
unique_words = {pre for row in AllSides_df.pre_sents for pre in row}
len(unique_words)

104181

Concat strings and truncate summary to 1000 chars
bg_all['sents'] = bg_all.title + ' ' + bg_df.snippet.fillna(' ') + ' ' +
bg_df.summary.str[:10000].fillna(' ')
bg_all['pre_sents'] = bg_all.sents.progress_apply(apply_preprocessing)

 0%| | 0/8191 [00:00<?, ?it/s]

22

Unique words in background dataset
unique_bg = {pre for row in bg_all.pre_sents for pre in row}
len(unique_bg)

82208

Inspect sample

Print example
for l, b in zip(labels[:2], AllSides_df.pre_sents[:2]):
 print(l)
 print(b)

left
['social', 'security', 'fairness', 'act', 'restore', 'benefit', 'million',
'policy', 'still', 'cause', 'hardship', 'year', 'old', 'evelyn', 'paternostro',
'spend', 'day', 'work', 'part', 'time', 'cashier', 'dollar', 'tree', 'decade',
'dedicate', 'life', 'education', 'serve', 'teacher', 'principal', 'louisiana',
'despite', 'year', 'public', 'service', 'struggle', 'make', 'end', 'meet']
right
['washington', 'giveaway', 'government', 'worker', 'congress', 'rend',
'government', 'funding', 'deadline', 'entire', 'political', 'press', 'focus',
'spectacle', 'lawmaker', 'pass', 'different', 'bill', 'communicate',
'fundamental', 'unseriousness', 'elect', 'leader', 'approach', 'government',
'spending']

Type-Token Ratio

An indicator of preprocessing success, here we show all_tokens vs unique tokens. A low type-
token ratio (TTR) indicates a high reuse of words.

Type-Token Ratio (TTR)
all_tokens = [pre for row in AllSides_df.pre_sents for pre in row]
ttr = round(len(set(all_tokens))/len(all_tokens), 3)
assert '' not in all_tokens
print(f"The total tokens are {len(all_tokens)}, \n\
the unique tokens are {len(set(all_tokens))}, \n\
 -> TTR = {ttr}")

The total tokens are 8251278,
the unique tokens are 104455,
 -> TTR = 0.013

23

II. 3.3 Train-Test Split
To ensure a robust evaluation of the classifier, the data is split into training and test sets. This
ensuring that the classifier does not have access to the test labels during training, thereby main-
taining the integrity of the evaluation process.

X_train, X_test, y_train, y_test = train_test_split(AllSides_df, # before
preprocessing
 labels,
 test_size=0.1,
 random_state=123)

X_train.sents.shape, X_test.sents.shape

((34880,), (3876,))

II. 4 Baseline Performance
The literature contains various candidates for a baseline. hajare et al. (n.d.) trained a model on
political speeches in US congress and predicted political bias on social media platforms based on
the word features. The authors achieve a top accuracy of 70.5% and 65.1% in Twitter and Gab data
respectively.

D’Alonzo and Tegmark (2022) extracted phrases for news media to predict political bias on a topic-
by-topic basis. While no concrete figures are presented, a visual comparison with the AllSides
classification suggests that there is significant variability across topics. Other sources present bet-
ter figures (e.g. here) but lack details on the dataset used.

For a simple, non-ML baseline, we will predict the majority label. Next, we will train a Naive Bayes
classifier on raw word counts using Bag-of-Words (BOW). This provides a simple yet effective
benchmark.

Performance metrics for this baseline includes a confusion matrix, showing the False Positives
and False Negatives in a way that benefits insight and iterative refinenents. These results serve as
a benchmark for evaluating improvements achieved through algorithms like Logistic Regression
and Random Forest.

II. 4.1 A Simple non-ML Baseline
For a simple analytical baseline, we predict the majority label:

Predict the majority label
top_label = y_train.value_counts().idxmax()
(y_test == top_label).mean()

0.5255417956656346

24

https://medium.com/@danilo.najkov/detecting-political-bias-in-online-articles-using-nlp-and-classification-models-c1a40ec3989b

II. 4.2 A Basic Model
We now train a simple classifier on raw word counts. Naive Bayes is a competent parametric
model, widely used for text classification tasks.

count_vectorizer = CountVectorizer(tokenizer=apply_preprocessing, #
Preprocessing is reapplied here
 token_pattern=None, max_features=10000)

base_train = count_vectorizer.fit_transform(X_train.sents)
base_test = count_vectorizer.transform(X_test.sents)

Train model
model = BernoulliNB()
model.fit(base_train, y_train)

Predict and print accuracy
base_pred = model.predict(base_test)
print("Baseline accuracy:", accuracy_score(y_test, base_pred))

Plot Confusion Matrix
cmd = ConfusionMatrixDisplay.from_estimator(model, base_test, y_test,
cmap='viridis')
cmd.ax_.set_title('Confusion Matrix for Baseline')
plt.show()

Baseline accuracy: 0.7169762641898865

25

Figure 6: Confusion Matrix for Baseline

II. 5 Classification
The classification section of this project is structured to guide the reader through the essential
steps of feature extraction and selection, model training, and evaluation. It begins with an in-depth
exploration of the Log Odds Ratio with Informative Dirichlet Prior (LOR-IDP) method,
highlighting its use in identifying and ranking informative features. The next section focuses
on Training the Classifier, where three classic models—Naive Bayes, Logistic Regression, and
Random Forest—are compared. A range of feature extraction approaches, including TF-IDF, is
discussed, alongside the optimisation of feature sets and scaling factors to enhance performance.
Finally, the Evaluating Feature Importance section delves into how different classifiers inter-
pret and utilise features, with a specific emphasis on understanding feature importance in Naive
Bayes and Random Forest. This iterative process integrates error analysis to identify and address
weaknesses in the model.

II. 5.1 Using LOR-IDP to Determine Informative Features
For the feature representation we will use a Bag-of-Words (BoW) approach with LOR-IDP for fea-
ture weighting. LOR-IDP will select words with high discriminative power (based on LOR scores)
as features.

26

The Log Odds Ratio (LOR) quantifies the likelihood of a word 𝑤 being more associated with one
class compared to another. It is defined as (Jurafsky and Martin, 2024, p.494):

LOR (𝑤, 𝑐𝑙𝑒𝑓𝑡) = log(
𝑃(𝑤 | 𝑐𝑙𝑒𝑓𝑡)

(1 − 𝑃(𝑤 | 𝑐𝑙𝑒𝑓𝑡))
) − log(

𝑃(𝑤 | 𝑐𝑟𝑖𝑔ℎ𝑡)
(1 − 𝑃(𝑤 | 𝑐𝑟𝑖𝑔ℎ𝑡))

)

This gives a measure of how much more likely a word is to appear in class 𝑐𝑙𝑒𝑓𝑡 compared to
other classes.

To make LOR robust to small sample sizes, we apply the Informative Dirichlet Prior (IDP),
resulting in the adjusted log odds ratio:

𝛿(𝑖−𝑗)𝑤 = log(
𝑓 𝑖𝑤 + 𝛼𝑤

𝑛𝑖 + 𝛼0 − (𝑓 𝑖𝑤 + 𝛼𝑤)
) − log(

𝑓𝑗𝑤 + 𝛼𝑤
𝑛𝑗 + 𝛼0 − (𝑓𝑗𝑤 + 𝛼𝑤)

)

Here:

• 𝑓 𝑖𝑤: The raw count of word 𝑤 in corpus 𝑖 (e.g., left-leaning articles).
• 𝑛𝑖: The total size (token count) of corpus 𝑖.
• 𝛼𝑤: The scaled count of word 𝑤 in the background corpus, derived from 𝑃(𝑤 | bg).
• 𝛼0: The total scaled size of the background corpus, providing proper smoothing.⁴

⁴K. (2020) suggests to take the union of all features for in the absense of a background corpus.

This gives a measure of how much more frequent 𝑤 is in corpus 𝑖 compared to 𝑗, adjusted for both
the background corpus and the relative sizes of 𝑖 and 𝑗.

II. 5.1.1 Implementating the Feature Selection Method
We are now ready to implement the feature extraction technique. We will document this process
step by step:

1. The word count per class, 𝑓 𝑖𝑤.

To calculate 𝑓 𝑖𝑤 for each class, we write a function freq_word_c() that takes the bias as an
argument and returns a Counter object.

Compute frequency of each word in the chosen class.
preprocessed_left = X_train.query("bias == 'left'").pre_sents
preprocessed_right = X_train.query("bias == 'right'").pre_sents

freq_left = Counter([pre for row in preprocessed_left for pre in row])
freq_right = Counter([pre for row in preprocessed_right for pre in row])

2. The total word count for each class, 𝑛𝑖.

To calculate the total word count for each class, 𝑛𝑙𝑒𝑓𝑡 and 𝑛𝑟𝑖𝑔ℎ𝑡, we call the total() method
an the Counter object.

27

total word count in each class corpus (n_i and n_j)
n_left = freq_left.total()
n_right = freq_right.total()

n_left, n_right

(3866201, 3455440)

3. The total word count in the background dataset, 𝛼0.

Using the preprocessed background text in `bg_all`
alpha = Counter(row for pre in bg_all.pre_sents for row in pre)

Lower the effect of the prior to reduce the background scaling
alpha_0 = alpha.total() * 1 # Scaling factor

4. The word frequency in the background corpus, 𝛼𝑤.
This will serve as the prior probabilities for each words. First, we normalise 𝑃(𝑤 | 𝑏𝑔). Then,
we multply 𝑃(𝑤 | 𝑏𝑔) by its total.

Normalise P(w|bg)
P_bg = {word: count / sum(alpha.values()) for word, count in alpha.items()}

Calculate alpha_w using scaled alpha_0
alpha_w = {word: P_bg[word] * alpha_0 for word in alpha}

Inspect prior probabilities
pd.Series(alpha_w).sort_values(ascending=False, key=abs).head(10)

say 23011.0
year 11369.0
new 10363.0
make 8334.0
one 8055.0
also 7401.0
u 7074.0
time 6588.0
game 6532.0
go 6130.0
dtype: float64

5. The 𝛿(𝑖−𝑗)𝑤 formula:
Finally, we can insert the variables and calculate the delta values for each word.

Using the formula given in (Jurafsky and Martin, 2024, p. 494), transcribed here:

28

𝛿(𝑖−𝑗)𝑤 = log(
𝑓 𝑖𝑤 + 𝛼𝑤

𝑛𝑖 + 𝛼0 − (𝑓 𝑖𝑤 + 𝛼𝑤)
) − log(

𝑓𝑗𝑤 + 𝛼𝑤
𝑛𝑗 + 𝛼0 − (𝑓𝑗𝑤 + 𝛼𝑤)

)

We can write the following function:

def delta_w(freq_w_i, freq_w_j, n_i, n_j, alpha_w, alpha_0):

 # Numerator and denominator for class j
 num_i = freq_w_i + alpha_w
 denom_i = n_i + alpha_0 - num_i

 # Idem for class j
 num_j = freq_w_j + alpha_w
 denom_j = n_j + alpha_0 - num_j

 # logs
 log_i = np.log(num_i / denom_i)
 log_j = np.log(num_j / denom_j)

 # Return the difference
 return log_i - log_j

Apply calculation to all train_tokens
train_tokens = [pre for row in X_train.pre_sents for pre in row]

missing = []
delta_values = {}
for token in train_tokens:
 freq_w_i = freq_left.get(token, 0)
 freq_w_j = freq_right.get(token, 0)
 alpha_w_ = alpha_w.get(token, 0)

 if alpha_w_ == 0:
 missing.append(token)

 # Skip sentences with zero words
 if freq_w_i and freq_w_j: # 1
 delta_values[token] = -delta_w(freq_w_i, freq_w_j, n_left, n_right,
alpha_w_, alpha_0) # 2

delta_series = pd.Series(delta_values).sort_values(ascending=False, key=abs)

Notes for the code above:

1 This is but one of two approaches. Monroe, Colaresi, and Quinn (2017) suggests to add an 𝜖 to
smoothen probabilities whilst concluding that ‘the semantic validity of this measure is limited’.

29

2 We change the sign to align with numerical ratings; −5 to +5 corresponds to left-to-right vi-
sually.

6. Z-Score

To account for the variance in word frequencies, features can be selected by their z-scores instead
of the raw deltas. This ensures that high LOR values are meaningful and not just due to rare or
noisy words (Jurafsky and Martin, 2024, Monroe, Colaresi, and Quinn, 2017). Words with higher
z-scores are more reliable and discriminative. This makes classifier less prone to overfitting and
more robust.

def calculate_variance(freq_w_i, freq_w_j, alpha_w):
 return 1 / (freq_w_i + alpha_w) + 1 / (freq_w_j + alpha_w)

def calculate_z_score(delta_w, freq_w_i, freq_w_j, alpha_w):
 variance = calculate_variance(freq_w_i, freq_w_j, alpha_w)
 return delta_w / np.sqrt(variance)

z_scores_values = {}
for token, delta in delta_series.items():
 freq_w_i = freq_left.get(token, 0)
 freq_w_j = freq_right.get(token, 0)
 alpha_w_ = alpha_w.get(token, 0)
 if freq_w_i and freq_w_j:
 z_scores_values[token] = calculate_z_score(delta,
freq_w_i,freq_w_j,alpha_w_)

7. Summary

Top z-scores
z_scores_series = pd.Series(z_scores_values)\
 .sort_values(key=abs, ascending=False)
z_scores_series.head()

trump -65.658070
election -45.343162
daily 43.426299
republican -41.927946
related 41.027048
dtype: float64

print('Key Statistics:')
z_scores_series.describe()

Key Statistics:

30

count 37683.000000
mean -0.114393
std 2.362731
min -42.277933
25% -0.930462
50% -0.079956
75% 0.601118
max 66.151071
dtype: float64

A histogram
ax = sns.histplot(z_scores_series, kde=True, bins=50, log_scale=0)
ax.set_title('z_scores histogram')
plt.show()

Figure 7: A histogram of z_scores

pre_text_left = Text(pre for row in preprocessed_left for pre in row)
pre_text_right = Text(pre for row in preprocessed_right for pre in row)

ax = nltk.draw.dispersion_plot(pre_text_left, z_scores_series.index[:30])

31

ax.set_title('Top differentiating words in left articles')
ax_ = nltk.draw.dispersion_plot(pre_text_right, z_scores_series.index[:30])
ax_.set_title('As above, but in right articles')
plt.show()

Figure 8: Inspecting the top words with the highest differentiation strength in left and right ar-
ticles reveals that the z-scores’ differentiation strength may still be influenced by a weak back-

ground prior.

32

To compute the optimal scaling factor below,
we contain the entire LOR-IDP z-score calculation (steps 3-6) in one function
def z_score_scaling(scaling_factor = 0.5):
 """Compute the z-score with scaling."""

 # Vary the dirichlet prior
 alpha_0 = alpha.total() * scaling_factor
 alpha_w = {word: P_bg[word] * alpha_0 for word in alpha}

 # Recalculate delta
 delta_values = {}
 for token in train_tokens:
 freq_w_i = freq_left.get(token, 0)
 freq_w_j = freq_right.get(token, 0)
 alpha_w_ = alpha_w.get(token, 0)

 if freq_w_i and freq_w_j:
 delta_values[token] = delta_w(
 freq_w_i, freq_w_j, n_left, n_right, alpha_w_, alpha_0)

 delta_series = pd.Series(delta_values).sort_values(ascending=False, key=abs)

33

 z_scores_values = {}
 for token, delta in delta_series.items():
 freq_w_i = freq_left.get(token, 0)
 freq_w_j = freq_right.get(token, 0)
 alpha_w_ = alpha_w.get(token, 0)
 if freq_w_i and freq_w_j:
 z_scores_values[token] = calculate_z_score(delta,
freq_w_i,freq_w_j,alpha_w_)

 return pd.Series(z_scores_values).sort_values(key=abs, ascending=False)

Convert to df and invert the sign for consistency
z_scores_df = z_scores_series.to_frame('d')

Visualise ~1% of bias words
plt.figure(figsize=(12,8))
for i, row in enumerate(list(z_scores_df.itertuples())):
 if i % 1000 == 0:

 # Adding some random spread to reduce overlap
 path1 = TextPath((random.normalvariate(0,5),
 random.normalvariate(0,5)), row[0])

 # Note the log scale on the y-axis
 # This to compress the extreme values
 plt.plot(row[1], np.log(abs(row[1])), '.',color='k')

 # Adding a horizontal spread on the x-axis, and a log scale on the y
 plt.plot(row[1]*1.4, np.log(abs(row[1])), marker=path1, markersize=100)

plt.xlim(-np.log(max(z_scores_df.d))-2, np.log(max(z_scores_df.d))+2)
plt.ylim(-np.log(max(z_scores_df.d))+0.5, np.log(max(z_scores_df.d))-2)
plt.title('Bias Words by Z-Scores')
plt.gca().get_yaxis().set_visible(False)
plt.grid(visible=True, which='major', axis='x')
plt.text(x=-1.5, y=1.5, s=r'\leftarrow LEFT v. RIGHT \rightarrow',
fontsize=18)
plt.show()

34

Figure 9: A random sample of 0.1% of words of to visualise bias words

II. 5.1.2 Implementing the raw Statistical Method
While intended for feature ranking and selection, the LOR-IDP can also be implemented as a raw
statistical tool. We simply compute the sum of z-scores for each sentence in the test set. If the
total is positive, we assign ‘left’, if it’s negative we assign ‘right’. To compute the accuracy we
then take the mean of these assigned labels, or simply use the accuracy_score function.

Classify based on aggregated z-scores:

def add_z_scores(sent):
 """Compute z-scores per sentence"""
 sent_score = sum(z_scores_series.loc[token]
 for token in sent if token in z_scores_series.index)
 return sent_score / len(sent) if len(sent) > 0 else 0

X_test['z_scores'] = X_test.pre_sents.apply(add_z_scores)
X_train['z_scores'] = X_train.pre_sents.apply(add_z_scores)

Calculate prediction
y_pred = X_test.z_scores.map(lambda score: 'left' if score < 0 else 'right')

accuracy_score(y_test,y_pred)

35

0.6308049535603715

Classify based on aggregate delta scores:

We can equally compute the sum of $ _w^{(i-j)} $ values for each sentence in the test set.

def add_delta_scores(sent):
 """compute the delta per token for each sentence."""

 sent_score = sum(delta_series.loc[token]
 for token in sent if token in delta_series.index)
 return sent_score / len(sent) if len(sent) > 0 else 0

X_test['delta'] = X_test.pre_sents.apply(add_delta_scores)
X_train['delta'] = X_train.pre_sents.apply(add_delta_scores)

Map the calculation to labels
y_pred = X_test.delta.map(lambda score: 'left' if score < 0 else 'right')

accuracy_score(y_test, y_pred)

0.6940144478844169

II. 5.2 The Feature Extractor
For greater modularity and access to the vocabulary attribute inside each vectoriser, we encapsu-
late the feature extraction logic in a class. It includes the DictVectorizer, the CountVectorizer
and the TfidfVectorizer. The latter two benefit from the ability to set ngram_range. This mit-
igates some of the sideeffects of Naive Bayes’ conditional independence assumption. However,
due to the feature selection, the number of words in the vocabulary is so small that 2- and 3-word
patterns are rare.

For a starting point
n_top_words = 20000

class FeatureExtractor:
 def __init__(self, n_top_words, z_scores_series=z_scores_series):
 """
 Initialise instance by choosing vectorizer type, and
 Preprocess the chosen number of features.
 """
 self._z_scores_series = z_scores_series
 self._voc_list = self._z_scores_series.iloc[:n_top_words].index
 # print('FeatureExtractor is using', len(self._voc_list), 'words')

36

 def extract_features(self, X_train, X_test):
 """Extract BOW features."""
 X_train_pre = X_train.pre_sents.apply(lambda tokens:
 {token: 1 for token in tokens
 if token in self._voc_list})
 X_test_pre = X_test.pre_sents.apply(lambda tokens:
 {token: 1 for token in tokens
 if token in self._voc_list})

 self._vectorizer = DictVectorizer()
 X_train_v = self._vectorizer.fit_transform(X_train_pre)
 X_test_v = self._vectorizer.transform(X_test_pre)
 return X_train_v, X_test_v

 def preprocess_and_extract_count_features(self, X_train, X_test):
 """
 Preprocess and extract BOW features
 with `CountVectorizer`.
 """
 self._vectorizer = CountVectorizer(vocabulary=self._voc_list,
 tokenizer = apply_preprocessing,
 token_pattern = None,
 # ngram_range = (1,3), # For Naive Bayes
)
 X_train_v = self._vectorizer.fit_transform(X_train.sents)
 X_test_v = self._vectorizer.transform(X_test.sents)
 return X_train_v, X_test_v

 def preprocess_and_extract_Tfidf_features(self, X_train, X_test):
 """
 Preprocess and extract BOW features
 with `TfidfVectorizer`.
 """
 self._vectorizer = TfidfVectorizer(vocabulary=self._voc_list,
 tokenizer = apply_preprocessing,
 token_pattern = None,
 # ngram_range = (1,3), # For Naive Bayes
)
 X_train_v = self._vectorizer.fit_transform(X_train.sents)
 X_test_v = self._vectorizer.transform(X_test.sents)
 return X_train_v, X_test_v

 @property
 def get_vocab(self):
 """Return vocabulary from instance"""
 return self._vectorizer.vocabulary_

37

Preprocess and extract features
vectorizer = FeatureExtractor(n_top_words)
train_vectors, test_vectors = vectorizer.extract_features(X_train, X_test)

We now have access to:
vectorizer.get_vocab

II. 5.3 Training the Classifier
We now arrive at the core of our task: training and evaluating the classifiers. Each algorithm is
trained using features selected through the LOR-IDP methodology, ensuring a robust and inter-
pretable feature set. To ensure comparability, all classifiers are evaluated on the same test set.
Alongside LOR-IDP, we also explore two alternative feature extraction methods: Scikit-learn’s
CountVectorizer and TfidfVectorizer, allowing us to assess the broader applicability of these
approaches.

To optimise model performance, a grid search is conducted to fine-tune hyperparameters. This
focuses on identifying the optimal number of features (n_top_words) to include in the model, en-
suring that the feature set is neither too sparse nor overly broad. Additionally, the scaling_factor
is adjusted to re-rank features as discussed in Monroe, Colaresi, and Quinn (2017), striking a bal-
ance between the influence of the background corpus and the discriminative power of individual
features.

II. 5.3.1 Three Classic Models
We evaluate three widely used classifiers from Scikit-learn: BernoulliNB, LogisticRegression,
and RandomForestClassifier, each selected for its strengths in text classification.

Naive Bayes (BernoulliNB) serves as our baseline model. Its probabilistic nature makes it simple
yet effective for tasks like text classification, especially when paired with binary feature represen-
tations. However, its assumption of feature independence may limit its ability to capture complex
word relationships, though this can be mitigated through the inclusion of n-grams.

Logistic Regression stands out as a robust linear model for binary classification. Its ability to han-
dle sparse, high-dimensional feature spaces makes it particularly suited for text data. The inclusion
of L2 regularisation further mitigates the influence of extreme feature weights, ensuring stability
and reliability.

Random Forest is an ensemble method that combines multiple decision trees to improve predic-
tive performance. Its capacity to assess feature importance makes it invaluable for understanding
the contributions of individual features. However, its complexity requires careful tuning to avoid
overfitting, particularly when applied to sparse datasets like text.

By comparing these models, we aim to understand the relative strengths of each approach and
evaluate the impact of LOR-IDP and other feature extraction techniques on classification perfor-
mance. This comprehensive evaluation ensures that the final results are both meaningful and ac-
tionable.

38

clf = BernoulliNB()
clf.fit(train_vectors, y_train)
clf.score(test_vectors, y_test)

0.7180082559339526

LogisticRegression(max_iter = 1000)\
 .fit(train_vectors, y_train).score(test_vectors, y_test)

0.7484520123839009

rf = RandomForestClassifier(
 # max_depth=30,
 # min_samples_split=5
 n_jobs=-1
)
rf.fit(train_vectors, y_train)
rf.score(test_vectors, y_test)

0.7466460268317854

II. 5.3.2 Error Analysis
In keeping with the methodology set out in (Bird, Klein, and Loper, 2009, p. 225), we will now
analyse the errors and attempt to retrace them through the feature selection process and mitigate
them. We use the Naive Bayes classifier, extract the predicted probabilities, and show them.

Showing the biggest classification errors

def analyse_sorted_errors(y_pred, worst=5,
 by_score: Literal['delta',
 'z_scores',
 'pred_proba']='z_scores'
):
 """Analyse error rate by z-score"""

 X_test['pred'] = y_pred

 # 'Left' articles predicted as 'Right'
 display(Markdown(f"**{worst} 'Left' articles falsely predicted as
'Right':**"))
 right_but_left = X_test.loc[(X_test.bias == 'left') & (X_test.pred ==
'right')]\
 .sort_values(by=by_score, key=abs,ascending=False)

39

 display(right_but_left[['bias', 'pred', 'title', by_score,
'num_rating']].head(worst))

 # The key features contribution to misclassification
 display(Markdown("**Top word scores for falsely predicted 'Left' article:**"))
 display(pd.Series({w:z_scores_series[w] for w in
right_but_left.pre_sents.iloc[0] if w in z_scores_series})\
 .sort_values(key=abs,ascending=False).head(10))

 # Same for 'Right' articles predicted as 'Left'
 display(Markdown(f"**{worst} 'Right' articles falsely predicted as
'Left':**"))
 left_but_right = X_test.loc[(X_test.bias == 'left') & (X_test.pred ==
'right')]\
 .sort_values(by=by_score, key=abs,ascending=False)
 display(left_but_right[['bias', 'pred','title', by_score,
'num_rating']].head(worst))

 # The key features contribution to misclassification
 display(Markdown("**Top word scores for falsely predicted 'Right'
article:**"))
 display(pd.Series({w:z_scores_series[w] for w in
left_but_right.pre_sents.iloc[0] if w in z_scores_series})\
 .sort_values(key=abs,ascending=False).head(10))

Extracted the predicted probabilities
pred_proba = clf.predict_proba(test_vectors)
X_test['pred_proba'] = [l-r for l,r in pred_proba]
y_pred = ['left' if np.argmax(proba) == 0 else 'right' for proba in pred_proba]

analyse_sorted_errors(y_pred, 5, by_score='pred_proba')

5 ‘Left’ articles falsely predicted as ‘Right’:

bias pred title pred_proba num_rating

9657 left right Elon Musk, Taylor Swift, Antony Blinken,
China, and the Idiocy of Tom Friedman

−1.0 −4.0

9635
left right Report from Damascus: Relief Mixed with

Sadness. Syrians Search for Loved Ones in
Prisons & Morgues

−1.0 −4.0

5280
left right Biden Is Making a Big Change to Ukraine

Strategy Before Trump Takes Office. That's
No Accident.

−1.0 −4.0

40

bias pred title pred_proba num_rating

5336
left right The Moment Is Ripe to Push the Middle East

in the Direction of Peace. What Will Trump
Do?

−1.0 −4.0

1530 left right Who is the leader of Syria's rebels and what
does he want?

−1.0 −1.3

Top word scores for falsely predicted ‘Left’ article:

trump 66.151071
article -28.768007
party 21.500262
week 19.236183
china -18.287785
outlet -17.792616
without -17.426342
chinese -16.850581
drop -16.808655
care 16.652367
dtype: float64

5 ‘Right’ articles falsely predicted as ‘Left’:

bias pred title pred_proba num_rating

9657 left right Elon Musk, Taylor Swift, Antony Blinken,
China, and the Idiocy of Tom Friedman

−1.0 −4.0

9635
left right Report from Damascus: Relief Mixed with

Sadness. Syrians Search for Loved Ones in
Prisons & Morgues

−1.0 −4.0

5280
left right Biden Is Making a Big Change to Ukraine

Strategy Before Trump Takes Office. That's
No Accident.

−1.0 −4.0

5336
left right The Moment Is Ripe to Push the Middle East

in the Direction of Peace. What Will Trump
Do?

−1.0 −4.0

1530 left right Who is the leader of Syria's rebels and what
does he want?

−1.0 −1.3

Top word scores for falsely predicted ‘Right’ article:

41

trump 66.151071
article -28.768007
party 21.500262
week 19.236183
china -18.287785
outlet -17.792616
without -17.426342
chinese -16.850581
drop -16.808655
care 16.652367
dtype: float64

Some edge cases
print("'Right' articles predicted as 'left':")
by_score = 'pred_proba'
X_test.loc[(X_test.bias == 'right') & (X_test.pred == 'left')]\
 .sort_values(by=by_score, key=abs,ascending=True)\
 [['title', 'snippet', by_score, 'num_rating']].head(2)

'Right' articles predicted as 'left':

title snippet pred_proba num_rating

21173

US Appeals Court Upholds
TikTok Law Forcing Its
Sale

A U.S. federal appeals
court on Friday upheld
a law requiring Chinese-
based ByteDance to divest
…

−0.001902 3.50

9641

John Kerry jets off to China
to talk climate again amid
questions over plane use

Special Climate Envoy
John Kerry arrived in
China Sunday ahead of
planned "in-depth" talks on
cl…

−0.002902 3.88

Analysing the top edge cases
print("The features that contribute most towards classifying the 'right' article
'left':")
left_cases = pd.Series(
 {w:z_scores_series[w] for w in X_test.loc[(X_test.bias == 'left') &
(X_test.pred == 'right')]\
 .sort_values(by=by_score, key=abs,ascending=False)\
 .pre_sents.iloc[0] if w in z_scores_series and z_scores_series[w] <
0})\

42

 .sort_values(key=abs,ascending=False)
left_cases.head(5)

The features that contribute most towards classifying the 'right' article 'left':

article -28.768007
china -18.287785
outlet -17.792616
without -17.426342
chinese -16.850581
dtype: float64

Inspect suspicious features in context
all_tokens_ = Text(all_tokens)
all_tokens_.concordance('china', lines=5, width=75)

Displaying 5 of 5154 matches:
stration take first step retaliate china hack biden administration take fir
stration take first step retaliate china broad hack american telecommunicat
ion firm move ban remain operation china telecom united state notice issue
nited state notice issue last week china telecom america u read trump sue d
vow massive tax good mexico canada china day presidentelect donald trump mo

II. 5.3.3 Tf-idf as a Feature Extraction Method
Whereas the LOR-IDP technique scales words with background priors, TF-IDF uses inverse doc-
ument frequencies. In short, both techniques introduce some kind of feature scaling, ranking and
selection. Both have their rationales. This is discussed in detail in Monroe, Colaresi, and Quinn
(2017), and we will briefly verify what can be assumed analytically. We will see that idf is redun-
dant given that we selected features based on background priors.

Compare sci-learn's Count and TF-IDF vectorisers
train_vectors, test_vectors = FeatureExtractor(n_top_words)\
 .preprocess_and_extract_Tfidf_features(X_train, X_test)
count_score = BernoulliNB().fit(train_vectors, y_train)\
 .score(test_vectors, y_test)

train_vectors, test_vectors = FeatureExtractor(n_top_words)\
 .preprocess_and_extract_Tfidf_features(X_train, X_test)
tfidf_score = BernoulliNB().fit(train_vectors, y_train)\
 .score(test_vectors, y_test)

print(f"With CountVectorizer the accuracy is {count_score}.",
 f"With TFIDFVectorizer the accuracy is {tfidf_score}.")

43

With CountVectorizer the accuracy is 0.7174922600619195. With TFIDFVectorizer
the accuracy is 0.7174922600619195.

These results indicate that incorporating Tf-idf as an additional regularisation technique has min-
imal impact on performance. However, a Naive Bayes classifier using a Bag-of-Words (BoW) rep-
resentation generally benefits from the inclusion of bigrams and trigrams. Although Naive Bayes
is limited by its reliance on feature independence, the automatic generation of n-grams is a no-
table advantage of Scikit-Learn’s CountVectorizer compared to the more straightforward and
faster DictVectorizer, which lacks this functionality. This is a consideration worth keeping in
mind when balancing efficiency and performance.

II. 5.3.4 Optimise the number of features

params = range(1500, 17001, 1000)
print("Training with parameters:", list(params))

def optimise_top_words(n_top_words):
 """Determine optimal n_top_words with cross validation"""

 X_train_v, X_test_v = FeatureExtractor(n_top_words,
 z_scores_series=z_scores_series)\
 .extract_features(X_train, X_test)
 clf = BernoulliNB()
 cv_score = cross_val_score(clf, X_train_v, y_train, cv=5)
 score = np.mean(cv_score)
 return n_top_words, score

with Pool() as p:
 cv_score = p.map(optimise_top_words, params)

cv_score_df = pd.DataFrame(cv_score)
cv_score_df.plot.line(0, 1, marker='o', xlabel='Number of Features',
 ylabel='Accuracy', label='Accuracy',
 title='Optimal Number of Features')

n_top_words = max(cv_score, key=lambda x:x[1])[0]
print("The best n_top_words is", n_top_words)

plt.plot()

Training with parameters: [1500, 2500, 3500, 4500, 5500, 6500, 7500, 8500, 9500,
10500, 11500, 12500, 13500, 14500, 15500, 16500]
The best n_top_words is 9500

44

Figure 10: Hyperparameter search: The optimal number of features (bias words)

II. 5.3.5 Re-ranking Features Using the Scaling_Factor
The scaling_factor applied to the background corpus plays a crucial role in adjusting the influ-
ence of the prior, as highlighted in (Monroe, Colaresi, and Quinn, 2017). Specifically, increasing 𝛼0
amplifies the regularising effect of the background corpus, which can significantly impact feature
rankings and model performance. In this section, we iterate over a range of scaling_factor val-
ues to assess their effect on the accuracy_score of the classifier. By identifying and selecting the
optimal scaling factor, we aim to strike a balance between regularisation and the discriminative
power of the features, ultimately enhancing the model’s overall performance.

params = np.arange(0.001,4.002,0.5)
print("Training with parameters:", list(params))

def optimise_z_scores(scaling_factor):
 """Determine optimally scaled z_scores with cross validation"""

 z_scores_series = z_score_scaling(scaling_factor)

 X_train_v, X_test_v = FeatureExtractor(n_top_words,
 z_scores_series=z_scores_series)\

45

 .extract_features(X_train, X_test)

 clf = BernoulliNB()
 # score = clf.fit(X_train_v, y_train).score(X_test_v, y_test)
 cv_score = cross_val_score(clf, X_train_v, y_train, cv=5)
 score = np.mean(cv_score)
 return round(scaling_factor,4), round(score,4)

with Pool() as p:
 best_scaling = p.map(optimise_z_scores, params)

pd.DataFrame(best_scaling).sort_index().plot.line(0, 1,
 marker='o',
 xlabel='Scaling Factor',
 ylabel='Accuracy', label='Accuracy',
 title='Optimal Scaling Factor')

best_scaling = max(best_scaling, key=lambda x:x[1])[0]
print("The best scaling is", best_scaling)
plt.plot()

Training with parameters: [0.001, 0.501, 1.001, 1.501, 2.001, 2.501, 3.001,
3.501, 4.001]
The best scaling is 1.501

46

Figure 11: Hyperparameter search: The optimal scaling factor

n_top_words = 9500
best_scaling = 1.501

Recalculate and preprocess with optimal z-scores for best scaling
print(f"Using {n_top_words} top words, and a scaling_factor of {best_scaling}.")
z_scores_series = z_score_scaling(best_scaling)

train_vectors, test_vectors = FeatureExtractor(n_top_words,
z_scores_series=z_scores_series)\
 .extract_features(X_train, X_test)

Using 9500 top words, and a scaling_factor of 1.501.

Retrain Naive Bayes
clf = BernoulliNB()
clf.fit(train_vectors, y_train)
clf.score(test_vectors, y_test)

47

0.7154282765737874

Train Logistic Regression
LogisticRegression(max_iter = 1000)\
 .fit(train_vectors, y_train).score(test_vectors, y_test)

0.750515995872033

Train Random Forest
rf = RandomForestClassifier(
 # max_depth=20,
 # min_samples_split=5,
 # n_estimators=200,
 # bootstrap=False,
 n_jobs=-1)
rf.fit(train_vectors, y_train)
rf.score(test_vectors, y_test)

0.7546439628482973

Manually, we can get a higher score (see evaluation for in depth analysis)
n_top_words = 2000
best_scaling = 1.5

print(f"Using {n_top_words} top words, and a scaling_factor of {best_scaling}.")

z_scores_series = z_score_scaling(best_scaling)
train_vectors, test_vectors = FeatureExtractor(n_top_words,
z_scores_series=z_scores_series)\
 .extract_features(X_train, X_test)

nb = BernoulliNB()
nb.fit(train_vectors, y_train)
nb_score = nb.score(test_vectors, y_test)
lr = LogisticRegression(max_iter=1000)
lr.fit(train_vectors, y_train)
lr_score = lr.score(test_vectors, y_test)
rf = RandomForestClassifier(n_jobs=-1)
rf.fit(train_vectors, y_train)
rf_score = rf.score(test_vectors, y_test)

print(f"\nThe scores are: \n\t- For Naive Bayes: {round(nb_score, 2)},",
 f"\n\t- For Logistic Regression: {round(lr_score, 2)},",
 f"\n\t- For Random Forest: {round(rf_score, 2)}.")

48

Using 2000 top words, and a scaling_factor of 1.5.

The scores are:
 - For Naive Bayes: 0.71,
 - For Logistic Regression: 0.76,
 - For Random Forest: 0.75.

II. 5.4 Evaluating Feature Importance

II. 5.4.1 Feature Importance in Naive Bayes
To further evaluate our feature selection and ranking, we now move on to two approaches to
evaluate feature importance.

First, we utilise a method from nltk’s implementation of Naive Bayes. This offers an interesting
way to determine the most informative features. However, nltk’s NaiveBayesClassifier expects
a (featureset, label) tuple; each featureset is, in turn, a list of (features, category) tuples.
We thus reimplement the preprocessing, to align with (Bird, Klein, and Loper, 2009, pp. 227-228).

The steps are the following:

• The feature extractor (doc_features()) iterates over each article (preprocessed as pre_sent).
• Every word is added as a feature label.
• For each label, its feature values are set to True or False,
• The feature value corresponds to whether the word is in the selected n_top_words.

Implementing nltk's NaiveBayesClassifier
def doc_features(document):
 doc_words = set(document)
 features = {}
 for word in doc_words:
 if word in z_scores_series.iloc[:n_top_words].index:
 features[word] = word in doc_words
 return features

Train the classifier
train_docs = list(zip(X_train.pre_sents, y_train))
train_featureset = [(doc_features(d), c) for (d,c) in tqdm(train_docs)]

classifier = nltk.classify.NaiveBayesClassifier.train(train_featureset)

Test
test_docs = list(zip(X_test.pre_sents, y_test))
test_featureset = [(doc_features(d), c) for (d,c) in tqdm(test_docs)]
print('Accuracy:', nltk.classify.accuracy(classifier, test_featureset))

Return the most informative features
classifier.show_most_informative_features(5)

49

 0%| | 0/34880 [00:00<?, ?it/s]

 0%| | 0/3876 [00:00<?, ?it/s]

Accuracy: 0.7020123839009288
Most Informative Features
 republish = True right : left = 541.8 : 1.0
 byline = True right : left = 344.0 : 1.0
 caller = True right : left = 122.4 : 1.0
 licensing = True right : left = 102.6 : 1.0
 logo = True right : left = 74.9 : 1.0

On a previous run we found a number of HTML tags wrongly labelled as right. These were be
considered noise and were removed:
['width', 'byline', 'maxwidthpx', 'px', 'marginleft', 'marginright']

II. 5.4.2 Feature importance in Random Forest
Next, we look at the most important features according to random forest.

Plot bar chart with the mean and std feature_importances
max_feat = 20

feature_map = vectorizer.get_vocab
feat = [(name, imp) for name, imp in zip(feature_map, rf.feature_importances_)]
feat = sorted(feat, key=lambda x:x[1], reverse=True)
feats = feat[:max_feat]

plt.barh(
 y=[f[0] for f in feats],
 width=[f[1] for f in feats],
 xerr=np.std([tree.feature_importances_[:max_feat] for tree in
rf.estimators_], axis=0)
)

plt.gca().invert_yaxis()
plt.title('Feature importances in random forest')
plt.show()

50

Figure 12: The mean and std feature_importances

II. 5.4.3 Error Analysis (iteration)
Before moving on to the conclusion, we return to our error analysis. We take our best model,
LogisticRegression, and start by looking at the probabilities of wrongly predicted articles, along
with their highest scoring words in terms of z-scores.

print("=> The Accuracy score for Logistic Regression:",
round(lr.score(test_vectors, y_test), 3))

pred_proba = lr.predict_proba(test_vectors)
X_test['pred_proba'] = [l-r for l,r in pred_proba]
y_pred = ['left' if np.argmax(proba) == 0 else 'right' for proba in pred_proba]

analyse_sorted_errors(y_pred, 3, by_score='pred_proba')

=> The Accuracy score for Logistic Regression: 0.761

3 ‘Left’ articles falsely predicted as ‘Right’:

51

bias pred title pred_proba num_rating

6425 left right See how hurricanes have upended presiden-
tial politics, from Helene to Sandy to Katrina

−0.992696 −2.0

9343 left right GOP congressman whines and makes
threats after Hunter Biden pardon

−0.972232 −4.0

9913
left right MAGA Lawmakers Call on DeSantis To Ap-

point Lara Trump to Marco Rubio's Senate
Seat

−0.948921 −2.0

Top word scores for falsely predicted ‘Left’ article:

trump 66.151071
election 45.735578
republican 42.324916
house 31.233762
audience -25.958259
oct -23.395951
democrat 22.021645
party 21.500262
report -18.205064
briefing 17.226746
dtype: float64

3 ‘Right’ articles falsely predicted as ‘Left’:

bias pred title pred_proba num_rating

6425 left right See how hurricanes have upended presiden-
tial politics, from Helene to Sandy to Katrina

−0.992696 −2.0

9343 left right GOP congressman whines and makes
threats after Hunter Biden pardon

−0.972232 −4.0

9913
left right MAGA Lawmakers Call on DeSantis To Ap-

point Lara Trump to Marco Rubio's Senate
Seat

−0.948921 −2.0

Top word scores for falsely predicted ‘Right’ article:

trump 66.151071
election 45.735578
republican 42.324916
house 31.233762
audience -25.958259
oct -23.395951

52

democrat 22.021645
party 21.500262
report -18.205064
briefing 17.226746
dtype: float64

Note: The overlap in top words for both classes of misclassified articles suggests that the back-
ground corpus lacks data on election-related features. Specifically, low counts of terms like ‘trump’
and ‘election’ in the prior led to these words being assigned disproportionately high differentia-
tion strength in their z-scores.

III Conclusions
III. 1 Evaluation
The final performance of the three classifiers was evaluated on the dataset, with logistic regression
emerging as the best-performing model. It delivered a 5 percentage point improvement in accu-
racy over the baseline model, successfully achieving a core objective of this project. Additionally,
it demonstrated a gain of 5–11% compared to a comparable baseline reported in hajare, Kamal,
Krishnan, and Bagavathi (n.d.).

Logistic regression’s superior performance highlights its suitability for this type of task. As a
discriminative model, it is highly effective in sparse, high-dimensional feature spaces, which are
characteristic of text classification problems. This robustness, coupled with its ability to handle
binary classification tasks with precision, underscores why it excelled in distinguishing political
bias in news content. The results reinforce the model’s reliability and validate its effectiveness in
leveraging the LOR-IDP features for accurate predictions.

III. 1.1 Overview
In terms of accuracy, we accumulated the following values:

Model Accuracy

NaiveBayes Baseline 0.7159442724458205

Z-score 0.6308049535603715

Delta values 0.6940144478844169

NaiveBayes 0.7180082559339526

nltk NaiveBayes 0.7094943240454077

LogisticRegression 0.7484520123839009

RandomForest 0.7466460268317854

NaiveBayes with hyper params 0.7154282765737874

53

Model Accuracy

LogisticRegression with hyper params 0.7613519091847265

RandomForest with hyper params 0.7603199174406605

The best values used 2000 features, and a scaling_factor of 1.5. Notably, Naive Bayes improve little
over the baseline.

III. 1.2 Detailed Classification Report
While the aggregated delta-values and z-scores are decent predictors compared to the non-ML
baseline, the best Machine Learning algorithm added nearly 7 percentage points. We can now
compare the precision, recall, and f1-score alongside these with a classification report:

print(classification_report(y_pred, y_test))

 precision recall f1-score support

 left 0.83 0.74 0.79 2286
 right 0.68 0.79 0.73 1590

 accuracy 0.76 3876
 macro avg 0.76 0.77 0.76 3876
weighted avg 0.77 0.76 0.76 3876

Key Insight: The test set exhibits a significant class imbalance between ‘left’ and ‘right’ labels,
which may explain the notably higher precision for ‘left’ labels. As seen in the summary statistics
in Section II. 2.5, the dataset as a whole did not indicate this kind of imbalance.

The observed 15% gap in precision indicates a high rate of False Positives among ‘right’ predic-
tions. This trade-off between False Negatives and False Positives is best visualised using a confu-
sion matrix. As shown below, the primary issue lies with the top-right value, representing false
‘right’ predictions.

Addressing the imbalance could involve increasing the test size (currently only 10%), changing
the seed (the random_state parameter), under- or oversampling, or collecting additional data to
provide a more representative distribution.

ConfusionMatrixDisplay.from_predictions(y_pred, y_test, cmap='viridis')
plt.show()

54

III. 1.3 Generalisability in terms of Transfer Learning
Finally, we assess the generalisability of our primarily American dataset by evaluating its applic-
ability to UK publications, exploring the potential for transfer learning.

While The Telegraph and The Daily Mail are occasionally misclassified as ‘left’, other UK publica-
tions are mostly predicted correctly. However, the low sample counts for these publications limit
the reliability of these evaluations, underscoring the need for more representative data to draw
robust conclusions.

uk_sources = ['spectator.org', 'theguardian.com', 'vice.com', 'telegraph.co.uk',
'independent.co.uk', 'dailymail.co.uk', 'economist.com']

uk_sources_s = X_test.query("@uk_sources in source_api")
print("The test accuracy on UK papers is:",
 (uk_sources_s['bias'] == uk_sources_s['pred']).mean().round(3))

uk_series = uk_sources_s.source_api.value_counts()
uk_biases = uk_sources_s.groupby('source_api')[['bias']].first()
mean_proba = uk_sources_s.groupby('source_api')['pred_proba'].mean()

pd.concat([uk_series, uk_biases, mean_proba], axis=1).round(2)

55

The test accuracy on UK papers is: 0.647

count bias pred_proba

source_api

independent.co.uk 66 left −0.75

theguardian.com 61 left −0.71

telegraph.co.uk 48 right −0.76

spectator.org 19 right 0.42

dailymail.co.uk 9 right −0.57

vice.com 3 left 0.09

economist.com 1 left −0.99

III. 2 Summary and Conclusions
This project demonstrated the efficacy of the Log Odds Ratio Informative Dirichlet Prior (LOR-
IDP) in feature selection and weighting for political bias classification. By integrating background
knowledge through a Dirichlet prior, LOR-IDP effectively reduced sparsity in the dataset and im-
proved class separability, resulting in interpretable features that enhance both model transparency
and human understanding.

The comparative analysis of Naive Bayes, Logistic Regression, and Random Forest revealed dis-
tinct strengths and weaknesses. Logistic Regression emerged as the most robust, excelling in
sparse, high-dimensional feature spaces due to its effective L2 regularisation. However, its re-
liance on linear separability posed limitations for non-linear decision boundaries. Naive Bayes
underperformed, largely because of its strong independence assumptions, though incorporating
n-grams to capture word co-occurrence holds promise for improvement. Random Forest showed
potential in identifying feature importance but struggled with sparsity, requiring careful hyper-
parameter tuning for optimal performance.

Initial results using the AllSides dataset yielded only marginal improvements over baseline accu-
racy. Early iterations made a key assumption: that the dataset’s carefully curated, side-by-side
comparisons would provide sufficient semantics for the model to learn meaningful patterns. This
proved mistaken. While temporal diversity in the data, ranging from 2022 to the present, added
robustness, class imbalance (60% left-leaning versus 40% right-leaning labels) and accuracy stag-
nating at around 62% highlighted the need for additional data sources.

The integration of the NewsCatcher API data addressed these issues and significantly improved
performance, but not without challenges. For instance, the background corpus underrepresented
election-related language, necessitating adjustments to the Dirichlet prior’s scaling factor (𝛼0).
Additionally, feature optimisation revealed unexpected trends: while the larger dataset converged
on a higher feature count (around 11,500), the best performance was achieved with only 2,000

56

features, indicating asymmetries in the feature space due to the shorter article lengths of the All-
Sides data.

Interestingly, the polarised language used during the U.S. election may have artificially boosted
classifier performance. It is unfortunate but it may also explain why the model may fail to gen-
eralise to UK publications, as many politicians and commentators here remain wary of echooing
overly divisive ideas.

III. 2.1 Future Directions
While binary classification provides a strong starting point, future work can explore multi-class
labelling to capture a broader spectrum of political orientations, such as extreme, moderate, cen-
tre-left, centre, and so on. Starting from UK-only datasets, including UK-specific sources, could
also enhance the model’s adaptability to other cultural and political contexts. Further advance-
ments could leverage contextual embeddings, such as XLM-RoBERTa or GloVe, to enable cross-
linguistic generalisation and better representation of nuanced language.

Finally, this project’s methodology offers promising applications in media recommendation sys-
tems. By balancing news exposure to include diverse perspectives, such systems could help coun-
teract echo chambers and foster more informed public discourse. By addressing key challenges
and emphasising both interpretability and scalability, this project hopes to make a meaningful
contribution to the study of political bias, natural language processing, and societal discourse.

Bibliography
Bird, S., Klein, E., Loper, E., 2009. Natural language processing with Python, 1st ed. ed. O'Reilly,

Beijing ; Cambridge [Mass.].

D’Alonzo, S., Tegmark, M., 2022. Machine-learning media bias. PLOS ONE 17, e271947.. https://
doi.org/10.1371/journal.pone.0271947

Haak, F., Schaer, P., 2023. Q_{bias} – A Dataset on Media Bias in Search Queries and Query
Suggestions, in: . pp. 239–244.. https://doi.org/10.1145/3578503.3583628

hajare, P., Kamal, S., Krishnan, S., Bagavathi, A., n.d.. A Machine Learning Pipeline to Examine
Political Bias with Congressional Speeches.. https://doi.org/10.48550/arXiv.2109.09014

Helberger, N., 2019. On the Democratic Role of News Recommenders. Digital Journalism 7, 993–
1012.. https://doi.org/10.1080/21670811.2019.1623700

Jurafsky, D., Martin, J. H., 2024. Speech and Language Processing: An Introduction to Natural Lan-
guage Processing, Computational Linguistics, and Speech Recognition with Language Models,
3rd ed.

K., K., 2020. Log-odds-ratio with Informative Dirichlet Priors [WWW Document].. URL https://
github.com/kornosk/log-odds-ratio/tree/master

Monroe, B. L., Colaresi, M. P., Quinn, K. M., 2017. Fightin' Words: Lexical Feature Selection and
Evaluation for Identifying the Content of Political Conflict. Political Analysis 16, 372–403..
https://doi.org/10.1093/pan/mpn018

57

https://doi.org/10.1371/journal.pone.0271947
https://doi.org/10.1145/3578503.3583628
https://doi.org/10.48550/arXiv.2109.09014
https://doi.org/10.1080/21670811.2019.1623700
https://github.com/kornosk/log-odds-ratio/tree/master
https://github.com/kornosk/log-odds-ratio/tree/master
https://doi.org/10.1093/pan/mpn018

	Introduction
	Domain-Specific Area
	Objectives
	Dataset
	Evaluation Methodology

	Implementation
	Imports
	Data Preparation
	QB i a s dataset
	Crawl data
	Scrape Numerical Ratings
	NewsCatcher API Dataset
	Background data
	Merge the Qb i a s data with the Crawl Data
	Rebalance and More Data

	Summary Statistics
	Summary of the Labelled Data
	Summary of the Background Data

	Preprocessing
	Preprocessing as a Function
	Implementing the Preprocessing
	Train-Test Split

	Baseline Performance
	A Simple non-ML Baseline
	A Basic Model

	Classification
	Using LOR-IDP to Determine Informative Features
	Implementating the Feature Selection Method
	Implementing the raw Statistical Method

	The Feature Extractor
	Training the Classifier
	Three Classic Models
	Error Analysis
	Tf-idf as a Feature Extraction Method
	Optimise the number of features
	Re-ranking Features Using the Scaling_Factor

	Evaluating Feature Importance
	Feature Importance in Naive Bayes
	Feature importance in Random Forest
	Error Analysis (iteration)

	Conclusions
	Evaluation
	Overview
	Detailed Classification Report
	Generalisability in terms of Transfer Learning

	Summary and Conclusions
	Future Directions

	Bibliography

