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Unprecedented volumes of Earth observation data are continually collected around the world, but high-
quality labels remain scarce given the effort required to make physical measurements and observations.
This has led to considerable investment in bespoke modeling efforts translating sparse labels into
maps. Here we introduce AlphaEarth Foundations, an embedding field model yielding a highly general,
geospatial representation that assimilates spatial, temporal, and measurement contexts across multiple
sources, enabling accurate and efficient production of maps and monitoring systems from local to global
scales. The embeddings generated by AlphaEarth Foundations are the only to consistently outperform
all previous featurization approaches tested on a diverse set of mapping evaluations without re-training.
We will release a dataset of global, annual, analysis-ready embedding field layers from 2017 through
2024.

Introduction

Management of global food supplies, public
health, and disaster response all start from maps
that geographically anchor questions like "which
forests pose an unacceptable wildfire risk?" or
"where are soybeans grown?". The launch of
the first Landsat satellite in 1972 marked the
dawn of an era where spaceborne monitoring
could serve the interests of global environmen-
tal policy-making and provide critical insights
into our changing planet (Cohen and Goward,
2004). Over the following decades Earth obser-
vation (EO) data became widely available, and
streams from both historic and modern EO in-
struments are now routinely used to create maps
that answer questions about the past, present,
and future of Earth’s ecosystems and climate
(Wulder et al., 2022). Nonetheless, advance-
ments in deriving planetary-scale insights from
petabytes of satellite imagery and other environ-
mental datasets remain hamstrung by the relative
scarcity of ground-based measurements and an-
notations, and a new problem: the overwhelming
volume of geospatial data (Tuia et al., 2024). In
this work, we introduce a foundational geospatial

embedding model that solves fundamental chal-
lenges in the institution of mapping through the
generation of a universal feature space. The fea-
tures produced by our model consistently achieve
top performance in all application domains tested
when compared to other general and even do-
main specific approaches (Figure 1A). This marks
a shift from the previous state-of-the-art for which
no single approach was dominant.

From sparse labels to maps

High-quality maps depend on high-quality la-
beled data, yet when working at global scales,
a balance must be struck between measurement
precision and spatial coverage. Many global map-
ping efforts focus on individual ecosystems like
forests (Hansen et al., 2013), water (Pekel et al.,
2016), tidal wetlands (Murray et al., 2022a) or
other broad legends, e.g., (Brown et al., 2022;
Zanaga et al., 2022). This simplifies the label
collection process, allowing trained interpreters
to collect larger volumes at scale at the expense
of descriptive power for certain use cases. In the
cases where high-quality annotations and/or field
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Figure 1 | Embedding fields paradigm. (A) Error ratios across evaluations from the next-best
model/dataset to AlphaEarth Foundations (AEF). Classification errors (bars marked with *) are
measured in Balanced Error Rate kappa (BER𝜅), and regression errors are measured in MAE−1 (bars
marked with †). The pair of numbers on each bar indicate balanced accuracy (BA) for classification
tasks and MAE for regression tasks, with AEF on top and the next-best model/dataset below. Best-case
performance was selected independently for both the next-best model/dataset and for AEF by selecting
the most performant method of transfer (kNN k=1, kNN k=3, linear) for each evaluation. For each
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evaluation shown, all available training data or the "max-trial" was used. Error bars indicate the 1𝜎
best and worst case ratio or ∼90% confidence interval by bootstrapping and k-folds when possible.
Evaluations are sorted by increasing mean error ratio. The dashed line represents a ratio of 1 with
higher values indicating AEF outperforming the next best solution. (B) AEF reconciles multiple sparse,
non-uniformly sampled observation records into a continuous record, regardless of fluctuations in
availability. AEF "embedding fields" are a result of static temporal summaries drawn over a conditional
"valid period" that need not fully intersect the "support period", where the latter defines the temporal
range of the input data. Multiple raster and scalar measurement sources are modeled as sources or
targets by AEF. These may be any combination of temporally, geographically, and spatially sparse. In
the example shown here, NLCD is not present, and GEDI is available in only a sparse fraction of the
spatial context. (C) A view of our global embedding field for the year 2023, note apparent climatic
gradients at large scales. (D) AEF produces highly resolved features at 10m2, shown here plotting
arbitrary axes in Oaxaca, Mexico. (E) A stack of 64 rasterized AEF layers forms an embedding field,
and each individual vector maps to a coordinate on the unit sphere 𝑆63.

measurements are available, systematic cov-
erage is usually much more localized, e.g.,
(d’Andrimont et al., 2020; Lister et al., 2020; Nagy
et al., 2021). Accurate and efficient scaling of
such highly-detailed yet spatially and temporally
sparse data remains an open challenge, e.g., (Sun
et al., 2021).

A natural approach to better leveraging sparse
observations is to isolate the relevant informa-
tion content of the feature space used to gener-
ate maps. Designed EO features like vegetation
indices (Zeng et al., 2022), best-available-pixel
composites (White et al., 2014), 1D harmonics
(Wilson et al., 2018; Zhu and Woodcock, 2014),
and kernel-based filters (Haralick et al., 1973;
Lee et al., 2017) power many of the map data
products used for policy making, e.g., (Brown
et al., 2020; Wulder et al., 2024; Zanaga et al.,
2022). When heuristics are carefully chosen,
they can offer an efficient mechanism for ge-
ographically extrapolating labels and measure-
ments. However, designed features are often
noisy, sensor-dependent, and highly region- and
application-specific, compounding the challenges
inherent to working with satellite imagery and
other planetary-scale datasets.

Machine learning has revolutionized fields
from biochemistry to natural language under-
standing. Unsurprisingly, combining disparate
EO sources through the use of machine learn-
ing has become an active area of research (Rolf
et al., 2024; Zhu et al., 2017). A new genera-
tion of geospatial foundation model approaches

can be roughly characterized as derivatives of
SatMAE (Cong et al., 2022) or implicit models
such as SatCLIP (Klemmer et al., 2025). While
these approaches represent progress in the ap-
plication of ML to EO data, none satisfy all of
the following key properties: (1) multi-source
or multi-modality, (2) inclusion of time into the
modeling framework, or (3) spatial resolution at a
precision useful for serving operational mapping
use cases. Critically, as we will show, existing
learned featurization approaches don’t always
outperform designed featurization methods in
scarce data regimes.

AlphaEarth Foundations

AlphaEarth Foundations (AEF) is the only task-
agnostic learned EO featurization approach to out-
perform all existing featurization methods tested
across a broad set of sparse data domains (Fig-
ure 1A), reducing error magnitudes by ∼23.9%
(∼1.4x error magnitude reduction) on average
while maintaining a best-in-class 10-meter spatial
resolution that requires 16x less information per-
representation (64 bytes) compared to the next-
most compact learned method. We achieve this
leap in performance across challenging mapping
applications through a number of innovations;
namely, we employ an adaptive decoding scheme
that considers time and sensor parameters as con-
tinuous variables in an implicit decoder with asso-
ciated losses, a spatially dense information time-
bottleneck, time-conditional summarization, and
spatially-precise alignment with geotagged text.
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To the best of our knowledge, AEF is the first
EO featurization approach to support continu-
ous time (Figure 1B; see supplemental materials
S2.2.1). Additionally we introduce a challenging
evaluation suite composed of high-quality refer-
ence data that attempts to faithfully replicate
realistic mapping scenarios. We make our annu-
alized planet-scale feature maps or "embedding
field" layers (Figure 1C-D) and evaluation suite
available under an open license to encourage fur-
ther exploration and use.

AEF is designed to accept 𝑁𝑖 frames for 𝑖 ∈ 𝑀𝐸

input (encoded) data sources with 𝐶𝑖 channels
resampled to the same spatial resolution, and a
millisecond epoch timestamp 𝑡 𝑗, 1 ≤ 𝑗 ≤ Σ𝑁𝑖 (Fig-
ure 2A). The range of the input timestamps we
refer to as the “support period”. For the purposes
of learning or at inference time, we support a pair
of conditioning timestamps or “valid period” 𝑡𝑠, 𝑡𝑒
where 𝑡𝑠 < 𝑡𝑒 provides a temporal summary of the
Earth’s surface and climatic activity over [𝑡𝑠, 𝑡𝑒),
even when there is no 𝑡 𝑗 for which 𝑡𝑠 ≤ 𝑡 𝑗 < 𝑡𝑒 (in-
terpolation), or when 𝑡𝑒 ≤ 𝑡 𝑗,∀ 𝑗 ∈ {1, 2, ..., Σ𝑁𝑖}
or 𝑡𝑠 > 𝑡 𝑗,∀ 𝑗 ∈ {1, 2, ..., Σ𝑁𝑖} (extrapolation).
These summaries or “embeddings” are 64 bytes
in size, and each embedding contains informa-
tion that reproduces the temporal trajectory of
variables listed in Table S1 over the summary pe-
riod (Figure 2B) using conditional metadata from
each source (see supplemental materials S2.2.1).
By explicitly separating the input intervals from
those used for the temporal summary, we can ap-
ply AEF to time dependent problems requiring a
precise date range without fine-tuning. Embed-
dings are further constrained to distribute uni-
formly in 𝑆63 using a so-called “batch uniformity”
objective (Figure 2C; see supplemental materials
S2.2.4).

Our video summarization architecture must
simultaneously maintain highly localized repre-
sentations as well as model long distance rela-
tionships through time and space in a computa-
tionally efficient way; for this we’ve designed an
encoder termed Space Time Precision or “STP”
that consists of repeated blocks of three simulta-
neous operators interleaved with spatial pyramid
"exchanges" (Figure 2D) inspired by Wang et al.
(2020) but more efficiently utilizing learned re-

sampling stages. Given a square input of 𝐿 pix-
els a side, each block consists of a 1

16 𝐿 "space"
operator following ViT-like spatial self-attention
(Dosovitskiy et al., 2020), a 1

8 𝐿 “time” operator
utilizing time-axial self-attention, and a 1

2 𝐿 "pre-
cision" operator utilizing 3x3 convolutions. Each
sequence element in the “time” operator is con-
ditioned on the associated input timestamp (𝑡 𝑗)
after conversion to a sinusoidal timecode. STP
blocks terminate with learned Laplacian pyramid
rescaling, such that each operator can pass its
state to each of the operators in the subsequent
block. STP itself terminates with a final learned
spatial resampling to the resolution of the "preci-
sion" operator. Thus for

∑
𝑁𝑖 inputs, STP produces∑

𝑁𝑖 output feature maps at 1
2 𝐿 pixels resolution.

We train a trio of neural network models that
work in tandem: a teacher video embedding
model with implicit decoders, a student video
embedding model sharing the same parameters
and architecture as the teacher, and a text align-
ment model (Figure 2E). We trained ∼1B and
∼480M parameter variants of AEF, and ultimately
proceeded with the smaller variant for improved
inference efficiency. We discuss the training set,
model training, and architecture in greater de-
tail in supplemental materials S2. The results of
running inference at scale are “embedding fields”
tiling Earth’s terrestrial surface in approximate
10m2 grids (Figure 2E).

Evaluation in realistic data-scarce sce-
narios

To establish the performance of AEF relative to
other domain-specific learned and designed rep-
resentations, we required an evaluation dataset
that included archetypal examples of realistic
mapping applications. These include thematic
mapping, biophysical variable estimation, and
change detection at annual and sub-annual ca-
dences. We found most if not all datasets in ex-
isting geospatial benchmark suites provide anno-
tations at an object- or image-level rather than
pixel-level, rely on labels sampled from existing
(machine-generated) datasets, require running
the benchmark analysis using provided source im-
agery, have limited geographic coverage, and/or
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Figure 2 | AlphaEarth Foundations. (A) Block diagram of the overall network architecture used
for video analysis. Preprocessing converts raw observation data via normalization using global
statistics, and acquisition timestamps are converted to sinusoidal timecodes. Individual source
encoders transform inputs to the same latent space before entering the bulk of the model. Outputs
are summarized using conditional timecodes or "summary periods", unique to each decoded source
and contrastive learning task. 𝜇 refers to the embedding outputs of the model. (B) Model outputs are
treated as the mean direction of a von Mises-Fisher distribution, and decoding proceeds by sampling
this distribution, and concatenating it with sensor geometry metadata and a timecode indicating the
relative position in the valid period to decode. Decoding proceeds for all sources, with losses dependent
on the characteristics of each source (see supplemental materials S1). (C) To prevent collapse and
improve performance, embeddings are compared to equivalent batch-rotated embeddings using a dot
product. The absolute value of this quantity is minimized as a necessary condition for an empirically
uniform distribution in 𝑆63. (D) Block diagram of the model bulk, consisting of simultaneous pathways
at different resolutions to maintain efficiency and spatial precision. (E) Contrastive learning between
the video teacher and student model, and text encoder. (F) Complete 360° view of 2023 annual
embedding field covering Earth’s land surface including minor islands over approximately ± 82°.
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do not provide sufficient spatial precision or tem-
poral information, e.g., (Bountos et al., 2023;
Lacoste et al., 2023), limiting their value in as-
sessing practical use.

To address the need for high-quality labeled
datasets that can be used to simulate low-shot
(i.e., tens to hundreds of samples) performance
in data-scarce regimes requiring precise map
outputs, we developed a set of 15 evaluations
sourced from 11 openly available datasets repre-
senting land use/land cover mapping and change
detection, crop type mapping at different hierar-
chies, tree genera and plantation classification,
and estimating evapotranspiration and emissiv-
ity (Table 1). For each evaluation dataset, we
selected a balanced number of training samples
from each class or equally-spaced partition, with
the number of samples determined based on the
minimum class size (Table 1, Max Trial Size) and
the remainder of the dataset reserved for test-
ing. We then assess performance across a suite
of trials designed to test very-low shot training
sizes with 𝑛 samples per class (𝑛 = 1, 10, max)
via transferal methods with minimal parameters:
k-nearest neighbors, and linear layers fit to the
features (see supplemental materials S4). The
“max-trial” scenario is meant to represent realistic
dataset sizes whereas the ten and one shot trials
are meant to evaluate performance given extreme
data sparsity.

We used this set of evaluations to compare AEF
with domain-specific baselines including three
designed featurization approaches: CCDC (Gore-
lick et al., 2023; Zhu and Woodcock, 2014), MO-
SAIKS (Rolf et al., 2021), and composites (Qiu
et al., 2023), and three learned featurization ap-
proaches: SatCLIP (Klemmer et al., 2025), Prithvi
(Jakubik et al., 2023b), and Clay (Clay, 2024).
We also include three controls: spatial coordi-
nates (XY), coordinates and elevation (XYZ), and
a ViT (Vision Transformer) pre-trained on Ima-
geNet (Deng et al., 2009; Dosovitskiy et al., 2020).
Where applicable, baselines were provided with
identical inputs to AEF and baseline hyperparam-
eters were tuned to maximize performance on
our evaluation suite (see supplemental materials
S5).

Our evaluations showed AEF consistently out-

performs designed and learned featurization
methods in all trial settings. AEF reduced error
magnitudes overall by ∼23.9% on average when
compared to the next-best approach and method
of transfer in the max-trial setting (Figure 1A).
For ten-shot trials, AEF reduced error magnitudes
by ∼10.4% on average compared to the next-best
approach, and for one-shot trials AEF reduced er-
ror magnitudes by ∼4.18%. We show quantitative
and qualitative results for select evaluations in
Figure 3 (and see supplemental materials S6 for
full quantitative results). The next-best approach
varies across evaluation dataset and method, in-
dicating both non-uniform progress and that AEF
unlocks progress in historically challenging map-
ping scenarios. We discuss these results and the
effect of scaling training data in further detail
below.

Thematic mapping

Thematic mapping or "semantic segmentation"
refers to spatially-dense discrete classification
over an area. We group 11 classification evalua-
tions into thematic mapping applications includ-
ing land use, land cover, crop detection, crop type,
and species distribution mapping. These classi-
fication datasets vary in their number of classes,
complexity of semantics they represent, and their
summary periods, i.e., instantaneous observa-
tions versus persistence over a reference period
(Table 1). Assessing max-trial performance in Fig-
ure 1A, we find that AEF achieves the greatest er-
ror reductions for evaluations over annual periods:
e.g., LCMAP land cover, Descals oil palm, Africa
crop mask, and LCMAP land use. Other than
Ethiopia crops, all thematic mapping evaluations
had > 1.0x reductions in error within the ∼90%
confidence interval. AEF’s consistent performance
across these diverse evaluations suggests a degree
of generality that was previously not possible even
with higher-dimensional learned embeddings.

Estimating biophysical variables

The estimation of biophysical variables goes be-
yond problems of semantics and perception. Ef-
fectively extrapolating sparse measurements of
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Dataset Name Domain Evaluation
type

Geographic
Extent

Temporal
Cadence

Max
Trial
Size (n)

Total
Sample
Size (n)

LCMAP (Brown et al.,
2020; Pengra et al.,
2023)

Land cover classification
(6 classes)

CONUS Annual 300 26,510

Land use classification
(6 classes)

CONUS Annual 300 26,513

Land use change change detec-
tion (binary)

CONUS Annual 150 991

Land cover change change detec-
tion (binary)

CONUS Annual 300 2,320

LUCAS (d’Andrimont
et al., 2020; Toth et al.,
2013)

Land cover classification
(15 classes)

Europe Single-date 300 203,569

Land use classification
(40 classes)

Europe Annual 300 226,858

GLaNCE (Stanimirova
et al., 2023)

Land cover classification
(11 classes)

Global Annual 300 34,885

Africa crop mask
(Kerner et al., 2024a,b)

Crop type classification
(4 classes)

Sub-
Saharan
Africa

Annual 200 2,556

Canada crops
(Agriculture and
Canada, 2024)

Fine crop type classification
(24 classes)

Canada Single-date 75 14,566

Coarse crop type classification
(9 classes)

Canada 68 16,079

Ethiopia crops (Blasch
et al., 2024)

Crop type classification
(4 classes)

Ethiopia Annual 49 2,530

US trees (GBIF, 2024) Tree genera classification
(39 classes)

United
States

Single-date 300 45,382

Descals oil palm
(Descals, 2024; Descals
et al., 2021)

Palm plantations classification
(3 classes)

Global Annual 200 17,477

OpenET ensemble
(Melton et al., 2022)

Evapotranspiration regression
(continuous)

Western US Monthly 300 35,683

ASTER GED (Hulley
et al., 2015; NASA,
2014)

Surface emissivity regression
(continuous)

Global Annual 200 17,636

Table 1 | Overview of evaluation datasets. For each dataset, we indicate which mapping domain
it represents, its geographical coverage, and its temporal cadence. All datasets are permissively
licensed and have been modified to ensure a minimum spacing of 1.28km between sample points and
guarantee balanced sample sizes across classes or bins. Maximum trial size (n) for each evaluation is
noted below. Evaluation results are reported in Balanced Accuracy and R2 for classification / change
detection and regression respectively.
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Figure 3 | Detailed quantitative and qualitative results from select evaluations. The black dotted-
line indicates random chance for classification evaluations. Error bars indicate 1𝜎accuracy / R2

or ∼68.27% confidence interval by bootstrapping and k-folds when possible. Most baselines are
completely unable to explain evapotranspiration from our testing, achieving a negative 𝑅2, and so the
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OpenET evaluation omits results for the majority of transfer/baseline combinations. To the right of
each chart we show a qualitative comparison of AEF (starred, top left) to the next-best model or
dataset (top right) on their respective most performant method of transfer on a test example at 10m2

resolution, and cloud-free Sentinel-2 L1C RGB image/composites (bottom row) of the location that is
not necessarily coincident with timing of the example but is at least using imagery from the same
year. We note that AEF demonstrates improved spatial coherence without loss of spatial precision.

properties not easily observed in satellite or other
overhead imagery stands to benefit applications
from greenhouse gas emissions to the heating/-
cooling impact of crops. We consider two bio-
physical variables: emissivity, which is a unitless
measurement of surface radiation, and evapo-
transportation, which characterizes loss of water
to the atmosphere from Earth’s land surface. In
the max-trial setting, we find that all baselines
were able to explain emissivity for some method
of transfer with 𝑅2 > 0.5 except for xy, xyz, and
CCDC. AEF had the highest 𝑅2 (0.72 ± 0.00), fol-
lowed by MOSAIKS (0.69 ± 0.00). In characteriz-
ing evapotranspiration, AEF demonstrates a sig-
nificant departure from the other baselines tested
being the only method with 𝑅2 > 0.2, achiev-
ing 𝑅2 = 0.58 ± 0.01 (Figure 3). We note that
the two baselines with explanatory power in this
evaluation, composites and MOSAIKS, are simple
transformations from raw satellite data, indicat-
ing a gap in applicability of both learned and
designed featurization approaches prior to AEF.

Change detection

Responses to natural and man-made disasters,
illegal logging, and other emergent phenomena
rely on effective and timely regional monitoring.
We consider two approaches to embedding-based
change detection: direct classification of change,
which treats change between two summary pe-
riods as a binary label and trains the same su-
pervised models used above, and unsupervised
change detection, which characterizes a contin-
uous magnitude of deviation from an expected
value and thresholds this to generate a change
mask (see supplemental materials S4.1). Our
change evaluations are a variant on the LCMAP
labels used for thematic mapping that combines
labels from different years to produce a binary
label indicating whether or not a change in use
or cover has occurred. For comparisons we omit

the XY and XYZ controls and SatCLIP baseline as
these are time-invariant.

In the max-trial setting with direct supervision
of change, we find that AEF’s performance ex-
ceeds performance of other models and datasets
achieving 78.4% ± 1.11 balanced accuracy (BA)
(linear) and 79.3% ± 1.67 BA (kNN, k=3) on the
land cover and land use evaluations respectively.
The next-best baseline achieved 72.0% ± 1.28
BA (MOSAIKS, kNN, k=3) and 71.5% ± 2.33 BA
(composite, kNN, k=3) respectively. In the max-
trial setting with unsupervised thresholding, AEF
exceeds performance of all other baselines when
detecting land cover change (Figure 3), but not
land use change, achieving 71.3% ± 1.14 BA and
71.4% ± 2.08 BA compared to 67.0% ± 1.28 BA
(ViT) and 72.9% ± 1.97 BA (ViT) respectively,
suggesting the value of supervision for this use
case.

Scaling source data quantity and type

The AEF training dataset includes over 3 billion
observations across nine different gridded data
sources and one unstructured text source, and
represents approximately 1.1% of Earth’s land
surface area (see supplemental materials section
S2.1). We find that increasing the number of
unique observations used to train AEF leads to
more performant embeddings (Figure 4A). For
some evaluations (LUCAS land use, Africa crop
mask), performance saturated between 100 mil-
lion and 1 billion observations, whereas for others
the saturation point was not obviously reached
(US trees). AEF performance generally exceeds
that of approaches trained with an equivalent
number of observations across all evaluations,
and always outperforms other evaluations with
the full training set. A noteworthy outlier is US
trees for which AEF requires an additional ∼100x
observations compared to SatCLIP, which we spec-
ulate is related to AEF receiving no coordinate
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Figure 4 | Effects of scaling. Error bars indicate 1𝜎 accuracy / 𝑅2 or ∼68.27% confidence interval
by bootstrapping and k-folds when possible. (A) BA as a function of training examples in AEF for
select evaluations compared to other learned featurization approaches. AEF generally outperforms
other approaches when trained on the same number of unique observations or fewer. From published
documentation, SatCLIP uses 100k observations, Prithvi 4.2M observations, and Clay 70M. (B) The
effect of compounding training targets on BA for select evaluations. All BA differences for each
additional source group are significant for 𝛼 = 5%, though saturation effects are apparent following
the LiDAR or Environmental source group for some evaluations.
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information, therefore requiring more examples
to learn climate gradients.

We hypothesized that the number of dis-
tinct data sources and observation modalities
used in training would positively correlate with
model performance. To test this, we catego-
rized the sources into the following groups: Op-
tical (Sentinel-2, Landsat 8/9), Radar (Sentinel-
1, PALSAR2), LiDAR (GEDI), Environmental
(GLO-30, ERA5-Land, GRACE), and Annotated
(NLCD, Wikipedia) and iteratively added addi-
tional groups to training. We find AEF the most
performant when trained on the full set of source
groups, though with diminishing returns as addi-
tional groups are added (Figure 4B).

Global embeddings dataset

To facilitate usage of AEF by EO practitioners, we
have produced a collection of annual embedding
summaries generated by AEF and hosted it as an
image dataset on Google Earth Engine (Google,
2025). For many use-cases we expect these an-
nual embedding fields to revolutionize mapping
workflows that typically require large training
datasets, compute intensive models, and custom
inference systems to apply those models. To fur-
ther minimize compute and storage overhead,
we quantize the 32-bit floating point embeddings
generated by AEF to 8 bits, resulting in an 4x
reduction in storage with negligible impact on
performance (see supplemental materials S8 for
additional details on inference and quantization).

Conclusions

AlphaEarth Foundations (AEF) combines a mul-
titude of diverse geospatial observation records
into a time-continuous embedding space by pre-
cisely modeling temporal dynamics and relation-
ships across sources. By separating information
pertinent only to the act of measurement from
the mutual information across all sources, we are
able to compactly describe Earth’s surface prop-
erties while maintaining robustness to the noise
and sparsity inherent to Earth imaging missions.

Our findings indicate that AEF consistently out-
performs designed and learned featurization ap-

proaches in relatively sparse data regimes and
that AEF embeddings are broadly applicable to a
diverse range of fields such as biodiversity, ecol-
ogy and agriculture. For these fields, obtaining
maps to model both spatial and temporal changes
efficiently is of key importance even when large
annotation corpora are not available. As newmea-
surement platforms are launched, others decom-
missioned, and the accelerating pace of observa-
tional data collection pushes forward, we believe
it is critical to support the community of applied
scientists and practitioners deriving the insights
about our planet that inform decision-making and
policy action. With AlphaEarth Foundations, we
introduce a solution to accurately and generally
extrapolate annotations and field measurements
to the growing archives of Earth observation now,
and into the future.
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Data and Materials Availability

We release annualized embedding field layers
from 2017-2024, our suite of evaluation datasets,
and the locations of our training sample sites un-
der an open license for further exploration and
applied use.

AlphaEarth Foundations was trained using pub-
licly available data from the Copernicus Program,
the United States Geological Survey (USGS), the
National Aeronautics and Space Administration
(NASA), the Japan Aerospace Exploration Agency
(JAXA), and the Copernicus Climate Change Ser-
vice (C3S) of the European Commission and the
European Centre for Medium-Range Weather
Forecasts (ECMWF).

Our evaluation datasets were derived from pub-
licly available data including: LCMAP CONUS
Reference Data Product 1984-2021 land cover,
land use and change process attributes, from
the United States Geological Survey, which is in
the public domain; LUCAS Harmonized (Theo-
retical Location, 2006-2018) V1, from the Joint
Research Centre of the European Commission,
whose use is governed by the Creative Commons
Attribution 4.0 International License (CC-BY);
GLanCE: A Global Land Cover Training Dataset
from 1984 to 2020, from Boston University Global
Land Cover Estimation (GLanCE), whose use is
governed by the Creative Commons Attribution
4.0 International License (CC-BY); Comparison
of Cropland Maps Derived from Land Cover Maps
in Sub-Saharan Africa, whose use is governed
by under the Creative Commons Attribution 4.0
International License (CC-BY); Canadian AAFC
Annual Crop Inventory from the Canadian AAFC
(Agriculture and Agri-Food Canada) whose use
is governed under the Open Government Licence
Canada; Ethiopian Crop Type 2020, whose use
is governed by licensed under the Creative Com-
mons Attribution 4.0 International License (CC-

BY); iNaturalist whose use is governed by a Cre-
ative Commons Attribution Non-Commercial 4.0
License (CC-BY-NC); Global mapping of oil palm
planting year from 1990 to 2021, whose use is
governed by the Creative Commons Attribution
4.0 International License (CC-BY); OpenET En-
semble Monthly Evapotranspiration v2.0 from
OpenET, Inc. whose use is governed by the Cre-
ative Commons Attribution 4.0 International Li-
cense (CC-BY); and AG100: ASTER Global Emis-
sivity Dataset 100-meter V003, which is available
at no charge and with no restrictions on reuse,
sale or redistribution.

Our training site selection was informed by the
RESOLVE Ecoregions 2017 dataset, whose use
is governed by the Creative Commons Attribu-
tion 4.0 International License (CC-BY); the Allen
Coral Atlas (ACA) - Geomorphic Zonation and
Benthic Habitat - v2.0, whose use is governed by
the Creative Commons Attribution 4.0 Interna-
tional License (CC-BY); the Murray Global Inter-
tidal Change Classification, whose use is governed
by the Creative Commons Attribution 4.0 Inter-
national License (CC-BY).
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Supplementary Material

S1. Data sources and preprocessing

AlphaEarth Foundations (AEF) was trained on
both image and text data sources representing
a diversity of imaging modes and measurement
spaces (Table S1). All raster data sources were
sampled from the Earth Engine Data Catalog
(Gorelick et al., 2017), and we prioritized publicly
available, moderate-resolution datasets covering
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the period 2017 to present. As text served more
as an auxiliary task, only English Wikipedia was
used for sourcing text data. Source dataset char-
acteristics and sensor-specific preprocessing steps
are described in the following sections.

We reproject all raster data to Universal Trans-
verse Mercator (UTM) coordinates followed by
spatial resampling to 10 m resolution using bilin-
ear interpolation. We rescale pixel values to zero
mean and unit variance using per-band statistics
computed on the pretraining dataset, clipping val-
ues with magnitude larger than 6 standard devi-
ations post-scaling. We do not perform any mask-
ing at the input stage, instead using the valid data
masks to exclude masked pixels when computing
the loss. Unless stated otherwise, at bare mini-
mum, millisecond acquisition timestamps were
saved as metadata used during reconstruction.

S1.1. Sentinel-2 (optical)

Sentinel-2 is an optical remote sensing mission
from the Copernicus Program that collects mod-
erate spatial resolution (10 m to 60 m) multi-
spectral imagery over land (Drusch et al., 2012).
Sentinel-2A was launched in June of 2015, with
Sentinel-2B to follow in March of 2017. With a
two-satellite constellation, Sentinel-2 is able to
image the Earth once every 5 days at the equator.

We sample imagery from the Sentinel-
2 Level-1C (L1C) collection (COPERNI-
CUS/S2_HARMONIZED), which has been
processed to Top-Of-Atmosphere (TOA) re-
flectance (Gascon et al., 2017). All images are
processed in their source UTM projection and
datatake identifiers are used to remove duplicate
observations at the boundaries of Sentinel-2 tiles.
Given additive storage requirements for each
new band selected, we select a subset of bands to
use for analysis, specifically the blue, green, red,
near-infrared, and shortwave-infrared bands:
"B2", "B3", "B4", "B8", "B11". To ensure a more
even distribution of reflectance, we transform
Sentinel-2 and Landsat 8/9 pixel intensities
using the following formula (prior to standard
scaling):

𝑠(𝑥) = log(𝑥 + 1)
10

(1)

where x is the source pixel intensity.

We include the Cloud Score+ (Pasquarella
et al., 2023) "cloud score" (cs) band as a mask
with each Sentinel-2 image, binarized to 0 / 1 by
thresholding at 0.5. Mask information is only
used during training, no input composting or
masking is performed, and mask information is
not provided to the model at inference time.

S1.2. Landsat 8 & 9 (optical, thermal)

The Landsat Program, a joint initiative of the
United States Geological Survey (USGS) and
National Aeronautics and Space Administration
(NASA), has provided detailed, synoptic depic-
tions of the Earth’s surface for over fifty years
(Wulder et al., 2022). Landsat 8 was launched in
February 2013 (Loveland and Irons, 2016) with
Landsat 9 to follow in September 2021 (Masek
et al., 2020). These satellites both carry separate
optical and thermal instruments, and resulting
images include a 15-meter panchromatic band,
eight 30-meter optical bands, and two 100-meter
thermal bands. Individual Landsat satellites have
a revisit time of 16 days, and an 8-day revisit is
achieved when two satellites are operating con-
currently. Landsat provides another high-quality
multi-spectral optical record that is complemen-
tary to those acquired by the Sentinel-2 mission,
providing additional image frames, as well as the
addition of thermal information.

We exclusively use Collection 2 Tier 1 TOA
imagery (i.e., "LANDSAT/LC08/C02/T1_TOA",
"LANDSAT/LC09/C02/T1_TOA"), which have the
highest available data quality (terrain corrected,
well-calibrated radiometry, intercalibrated across
sensors), and we remove ascending (nighttime)
imagery by filtering based on sun angle meta-
data. Acquisitions were deduplicated based on
time proximity, i.e., at row overlaps, preference
is given first to the image with the closest UTM
central longitude, then the most recent. As with
Sentinel-2, we select a subset of Landsat bands,
specifically the Blue, Green, Red, NIR, SWIR,
RGB Panchromatic, Thermal IR bands: "B2", "B3",
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Type Dataset Product Bands Resolution (m) Usage

Optical Sentinel-2 L1C B2 (Blue), B3 (Green), B4 (Red), B8
(NIR), B11 (SWIR)

10, 20, 60 input,
target

Optical,
Thermal

Landsat-8,
Landsat-9

L1C B2 (Blue), B3 (Green), B4 (Red), B5
(NIR), B6 (SWIR), B8 (Panchromatic),
B10 (Thermal)

15, 30, 100 input,
target

C-band
SAR

Sentinel-1A,
Sentinel-1B

GRD VV, VH, HH, HV, angle 10 input,
target

L-band
SAR

ALOS PALSAR
ScanSAR

Level 2.2 HH, HV, lin 25 target

Elevation Copernicus
DEM

GLO-30 DEM (elevation) 30 target

LiDAR GEDI L2A Relative height metrics (rh*) 25 target

Climate ERA5-Land Monthly aggregates total precipitation (sum, min, max),
air temperature 2m (and min, max),
dewpoint temperature 2m (and min,
max), surface pressure (andmin, max)

11132 target

Gravity
fields

GRACE Monthly mass grids equivalent liquid water thickness 11132 target
(@50%)

Land
cover

National Land
Cover Database

NLCD 2019, 2021 landcover 30 target
(@50%)

Text Wikipedia geocoded articles text embeddings N/A target

Text GBIF Research-grade obs text embeddings (class, genus, and
species)

N/A target

Table S1 | AlphaEarth training data sources. Data sources were selected to represent a diversity of
measurement spaces, resolutions, and temporal refresh rates. All data sources were used as targets,
only input data sources are required at inference-time to generate embedding fields.
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"B4", "B5", "B6", "B8", "B10". We also include the
FMASK pixel quality bitmask ("fmask"). All opti-
cal bands are log-transformed. The "fmask" value
is set to 1 when the pixel is not "dilated cloud"
or "cloud shadow", and 0 otherwise based on the
value of the QA_PIXEL band. Mask information
is only used for training.

S1.3. Sentinel-1 (C-band SAR)

Sentinel-1 is the Copernicus Program’s C-band
Synthetic Aperture Radar (SAR) mission (Torres
et al., 2012). Sentinel-1 instruments are designed
to collect dual-polarized observations with sev-
eral different imaging modes. Notably SAR instru-
ments are water vapor (cloud) penetrating, and
offer consistent ground measurements in the trop-
ics or other persistently cloud areas. The Sentinel-
1 constellation consists of two satellites, Sentinel-
1A and Sentinel-1B, which were launched in April
2014 and April 2016, respectively (Potin et al.,
2016). The Sentinel-1B mission ended in De-
cember 2021 due to a power system failure, re-
sulting in incomplete coverage (and illustrating
challenges of continuity when working with Earth
observation records).

We use Ground Range Detected (GRD) images
("COPERNICUS/S1_GRD"), which have been pro-
cessed using the Sentinel-1 Toolbox to generate
a calibrated, ortho-corrected product. We se-
lect images acquired in the Interferometric Wide
Swath (IW) instrument mode and include both
ascending and descending orbits. We include all
available bands: "VV", "VH", "HH", "HV", "angle",
though noting that each scene contains only 1 or
2 out of 4 possible polarization bands depending
on the instrument’s polarization settings (i.e., VV,
HH, VV+VH, HH+HV). Processed power values
are log-scaled to convert to decibels (dB). The
angle band is included on all images and is con-
verted from degrees to radians.

We additionally mask pixels with values less
than -30.0 dB or greater than 10.0 dB. We retain
metadata on platform heading and orbital inclina-
tion for use as reconstruction metadata. During
training, we also introduce random gap artifacts
as a form of data augmentation to simulate gaps
that sometimes occur between Sentinel-1 scenes

by sampling an angle uniformly at random and
masking out a line of intensities with random
width between 0.5 and 2 pixels at that angle in
all Sentinel-1 images in an input sequence. These
gaps are in-painted during reconstruction.

S1.4. PALSAR-2 (L-band SAR)

The Advanced Land Observing Satellite-2 (ALOS-
2) is the radar satellite operated by the Japan
Aerospace Exploration Agency (JAXA) which car-
ries PALSAR-2 (Phased Array type L-band SAR-
2), an L-band Synthetic Aperture Radar (SAR)
instrument (Kankaku et al., 2013). L-band is a
longer wavelength radar signal with greater abil-
ity to penetrate through dense vegetation, com-
pared with the C-band frequency measured by
Sentinel-1, which tends to be more sensitive to
sparse and low biomass vegetation, e.g., (Koyama
et al., 2022).

We use PALSAR-2 ScanSAR
("JAXA/ALOS/PALSAR-2/Level2_2/ScanSAR")
imagery, which is ortho-rectified and radio-
metrically terrain-corrected. We include all
available bands: "HH", "HV", "LIN". Most images
have horizontal polarization ("HH"), vertical
polarization ("HV"), local incidence angle "LIN"),
and QA mask ("MSK") bands are always present,
though a small subset (<8%) has only HH. We
convert the intensity values from digital numbers
(DN) to decibels using:

𝛾0 = 10 ∗ log10(DN2) − 83. (2)

We rescale local incidence angle (lin) to radi-
ans. Observations are deduplicated based on path,
and we preserve metadata on Pass Direction and
Antenna Pointing for use in reconstruction.

S1.5. ERA5-Land (climate)

As part of the Copernicus Climate Change Service
(C3S) of the European Commission, the Euro-
pean Centre for Medium-Range Weather Fore-
casts (ECMWF) has produced an enhanced global
dataset for the land component of the fifth gener-
ation of European ReAnalysis (ERA5), referred to
as ERA5-Land (Muñoz-Sabater et al., 2021).The
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ERA5-Land dataset is intended to provide a con-
sistent view of the water and energy cycles at
surface level.

We sample the ERA5-Land Monthly aggrega-
tion ("ECMWF/ERA5_LAND/MONTHLY_AGGR"),
which is a post-processed subset of the full ERA5-
Land dataset consisting of monthly statistics (Ser-
vice, 2019). Specifically, we select total precipita-
tion (sum, min, max), temperature at 2-meters
(mean, min, max), dewpoint temperature at 2
meters (mean, min, max), and surface pressure
(mean, min max) variables to represent general
climatic conditions.

S1.6. GEDI (LiDAR)

The Global Ecosystem Dynamics Investigation
(GEDI) is a Light Detection and Ranging (LiDAR)
mission launched by NASA to the International
Space Station (ISS) in 2018 (Dubayah et al.,
2022). LiDAR sensors like GEDI use laser pulses
to estimate vegetation profiles, which can in turn
be used to map canopy height and vegetation
biomass, e.g., (Campbell et al., 2021; Potapov
et al., 2021).

We use the GEDI L2A Raster
Canopy Top Height (Version 2) dataset
("LARSE/GEDI/GEDI02_A_002_MONTHLY")
(Dubayah et al., 2021) This dataset is a rasterized
version of the original Geolocated Elevation and
Height Metrics Product (GEDI02_A) product,
which is primarily composed of 100 Relative
Height (RH) metrics that describe the heights
at which a given energy quantile was received
by the GEDI instrument. We sample all relative
height bands (RH[0-100]), and we mask out
pixels where the ISS was busy or the waveform
was bad based on the "degrade_flag" and "qual-
ity_flag" metadata. GEDI is extremely sparse in
space/time compared to our other raster sources,
nonetheless we find AEF’s reconstruction of the
full set of GEDI relative height metrics to have
mean absolute error ∼3.85m during training,
including sampling from the noisy bottleneck.

S1.7. GRACE (gravity fields)

The Gravity Recovery and Climate Experiment
(GRACE; launched 2002, decommissioned 2017)
and its follow-on mission (GRACE-FO; launched
2018) both consist of a pair of satellites work-
ing in tandem to take detailed measurements of
Earth’s gravity field anomalies (Kornfeld et al.,
2019; Tapley, 2008). These measurements can
be used to detect changes in the distribution of
water across the planet and estimate terrestrial
water storage (Landerer and Swenson, 2012). We
considered the inclusion of GRACE an extreme
test of the flexibility of our method, and were
pleased to note that there was no significant neg-
ative impact on the loss or reconstruction quality
of other sources.

We use GRACE Monthly Mass Grids Release
6.1 Version 3 - Global Mascons ("NASA/GRACE/-
MASS_GRIDS_V03/MASCON
_CRI"). This dataset was derived from GRACE
and GRACE-FO and processed at JPL using the
Mascon approach (RL06.1Mv03) and an addi-
tional Coastal Resolution Improvement (CRI) fil-
ter to reduce errors across coastlines. We specifi-
cally sample the equivalent liquid water thickness
("lwe_thickness") band, which represents the total
terrestrial water storage anomalies from soil mois-
ture, snow, and surface water (including rivers,
lakes, reservoirs, etc.), as well as groundwater
and aquifers in units of centimeters. Given the
very coarse resolution of the GRACE data (0.5° or
about ~55 km at the equator) relative to other
moderate-resolution sources, we apply an addi-
tional upsampling and downsampling step with
bilinear resampling to smooth pixel borders.

S1.8. GLO-30 (topography)

The Copernicus 30-meter global Digital Eleva-
tion Model (DEM), referred to as GLO-30, is a
Digital Surface Model (DSM) that characterizes
the surface of the Earth including buildings, in-
frastructure and vegetation. The GLO-30 dataset
is primarily derived from an existing TanDEM-
X DSM dataset (WorldDEM™) infilled on a lo-
cal basis with other widely used DEMs including
SRTM, ALOS, ASTER and TerraSAR-X. It is gen-
erally considered the most accurate, up-to-date
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radar-derived global DEM, e.g., (Guth and Geof-
froy, 2021; Simard et al., 2024).

We sample the DEM (elevation) band from the
GLO-30 dataset ("COPERNICUS/DEM/GLO30").
Slope and aspect are calculated from the DEM
after it is reprojected into the local coordinate
system (UTM), and decomposed into sine and
cosine. The GLO-30 DEM is assumed to be valid
over the entire period of our training set, though
we note with natural and man-made phenomena
this is not universally true.

S1.9. NLCD (land cover)

The National Land Cover Database (NLCD) is a
suite of products developed for operational land
cover monitoring in the United States. These
machine-generated thematic maps are derived
from 30 meter multi-season Landsat imagery and
rely on a carefully curated training labels, hand-
engineered spatial, spectral and temporal fea-
tures, and classic machine learning (i.e., decision
trees), as well as rigorous post-processing and ac-
curacy assessment (Wickham et al., 2014, 2023).
We include NLCD in our list of source datasets as
a means of testing the value of existing maps as
a form of weak supervision. We note that there
was no significant negative impact on the loss or
reconstruction quality of other sources, and the
effect on evaluations was generally positive de-
spite the temporally-static nature of NLCD (see
supplement section S7.2 for ablation results).

We use the 2021 release for the year 2021 ("US-
GS/NLCD_RELEASES/2021_REL/NLCD"), and
the 2019 release for all other years ("US-
GS/NLCD_RELEASES/2019_REL/NLCD"), and
all samples are associated with the nearest
mapped year (if sample date falls in between
NLCD release years). We select the "landcover"
band, which labels 16 land cover classes using
a nested hierarchy. As noted in Figure 1, NLCD
data is not available for all locations globally.

S1.10. Text sources

Towards truly multi-modal (as opposed to strictly
multi-source) embeddings, we assume that
geocoded text can provide additional context that

will help enrich our learned representations. We
use two sources for obtaining locations and associ-
ated text: Wikipedia and the Global Biodiversity
Information Facility (GBIF) species occurrence
records.

S1.11. Wikipedia

We use geolocated articles from Wikipedia to pro-
vide text-based information for things like land-
marks and other geographic features. We extract
all articles with coordinates (using the P625 - co-
ordinate location Wikidata property) from the
2024-04-21 snapshot of Wikipedia, with addi-
tional filters on the "globe" property to remove
articles with "extraterrestrial" coordinates. We
also drop articles with fewer than 100 words (in-
cluding title and headers) or where more than
25% of the total words in the article are con-
tained in lists. References, Further Reading, and
External Links sections were omitted, and any
non-plain-text content was omitted.

S1.12. GBIF

We obtain species occurrence records through
GBIF occurrence dataset available through Big-
Query (GBIF, 2024). We specifically select
records in the Plantae, Animalia and Fungi king-
doms for the period 2017-2023. Observations
must be available by CC-BY 4.0 or CC0 1.0 li-
cense, be labeled as human or machine obser-
vations, have a maximum spatial uncertainty of
240 meters, and meet a number of other criteria
to remove invalid or otherwise suspicious coordi-
nates, bad date information, and uncertain taxon
matches. Post-filtering, we limit our sampling to
a maximum of 1000 observations per unique fam-
ily, genus, species observation tags. We export the
observation coordinates and timestamp together
with the GBIF taxonomy ID for species, genus,
family, and potentially also higher taxonomic lev-
els, as well as the coordinate uncertainty to use
for sampling corresponding video embeddings.
Finally, we match observations with a subset of
Wikipedia articles using the GBIF taxon ID prop-
erty (Wikidata P846) after normalizing the obser-
vation’s GBIF ID to the accepted ID for its taxon.
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S2. Modeling

S2.1. Training Dataset

AEF was trained over 8,412,511 video sequences
containing interleaved, time-stamped frames
from the sources and metadata listed in supple-
mental materials S1. Each frame covered a 1.28
km x 1.28 km (128 x 128 pixel) area projected
into the UTM zone of the area’s centroid and
were not limited in length: all available data was
used totalling 3,047,520,515 frames. Video se-
quences were sourced from 5,145,244 sites, and
each site was split into two non-overlapping ap-
proximately year-length periods from which two
video sequences were drawn. Sequences were
omitted for a variety of factors, including missing
data in e.g., polar regions and insufficient frames
from a particular source e.g., at swath edges. We
make these training locations available in (Deep-
Mind, 2025b).

S2.1.1. Training site selection

Our global AEF training dataset was developed
to provide a representative sample of Earth’s ter-
restrial land surface and near-shore ecosystems,
while optimizing for coverage across space, time,
and availability of data sources.

Gridded text Our sampling strategy prioritizes
coverage of locations where we have geocoded
text information by first taking a gridded sample
that covers these locations. Our final geocoded
text dataset includes point locations for GBIF
species observations and other geotagged fea-
tures from Wikipedia (as described in supplemen-
tal materials S1.10) plus a key to join these loca-
tions with associated text embeddings. The loca-
tions represented in this dataset inevitably inherit
the same sampling biases as the source GBIF and
Wikipedia data, i.e., locations tend to be clus-
tered in areas with denser human populations
/ more urbanized areas. To account for these
spatial biases, we do not sample each Wikigeo
location individually; instead, we establish a sam-
pling grid such that multiple Wikigeo locations
are associated with the same (non-overlapping)
image samples. We use 1.28 km x 1.28 km as our

base grid cell size and create grids in the native
UTM projection of the zone intersected by the
sampled points. Our final gridded text dataset
includes centroid coordinates for 1,200,099 grid
cells, representing 8,777,536 text points.

RESOLVE ecoregions The gridded sample does
not fully represent the global land surface, so we
use the 2017 RESOLVE Ecoregions dataset ("RE-
SOLVE/ECOREGIONS/2017") (Dinerstein et al.,
2017) to draw an additional random stratified
sample by ecoregion ID. This helps ensure we
are sampling across distinct biogeographic as-
semblages and ecological habitats with uniform
preference regardless of total extent. We use the
ECO_ID (n=846) and target 10,000 samples per
ecoregion, then cull based on standard 1.28 km
minimum distance requirement (i.e., remove sam-
pled points that are too close together and/or too
close to gridded text samples). This generated a
total of 3,940,224 unique (𝑥, 𝑦) locations based
on ecoregion stratification.

Near-shore ecosystems We supplement our ini-
tial RESOLVE sample, which largely targets terres-
trial ecosystems, with additional stratified sam-
ples from the Allen Coral Atlas and Global Inter-
tidal Zones datasets to improve representation
of near-shore ecosystems. The Allen Coral Atlas
("ACA/reef_habitat/v2_0") maps the geomorphic
zonation and benthic habitat for the world’s shal-
low coral reefs at 5 m pixel resolution, as well
as a global reef extent product that maps addi-
tional reef areas unable to be explicitly included
in the geomorphic and benthic mapping (Lyons
et al., 2022, 2024). We resample the Atlas from
5 meter to 30 meter resolution, then draw a ran-
dom sample of 5,000 points. After deduplicating,
the final supplemental coral sample consists of
4,141 locations. We also add samples from the
Murray Global Intertidal dataset (Murray et al.,
2019, 2022a,b). The binary layers in this image
collection depict tidal flat ecosystems around the
global coastline. As with corals, we initially target
5,000 samples, which reduces to a final count of
2,968 intertidal samples after applying our 1.28
km minimum distance criteria.
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Figure S1 | Training site selection. (Top)
5,145,244 unique (𝑥, 𝑦) locations prioritized as
potential training sites, (Bottom) final set of train-
ing sample locations (𝑥, 𝑦, 𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑).

Proposed (𝑥, 𝑦) locations We merge the four
aforementioned samples (gridded text, ecore-
gions, corals, and intertidal) into a single dataset.
We then reduce the number of samples over the
“rock and ice” to n=500, preferentially targeting
removal of samples from Antarctica and Green-
land (priority to keep examples in high-altitude
over high-latitude). We also remove samples over
open water, i.e., 128 x 128 pixel image chips that
would not sample anything other than offshore
water, as we don’t expect the model to learn much
from these examples and it reduces redundancy
among text points associated with offshore obser-
vation transects. After these final filtering steps,
our sampled location dataset consists of a total of
5,145,244 unique (𝑥, 𝑦) locations (Figure S1A).

S2.1.2. Adding time coordinates

To ensure that our sample also represents tem-
poral variability in surface properties, we sample
two temporal (support) periods per site. This has
the added benefit of also effectively doubling the
size of our training sample. The general temporal
processing strategy is as follows: if there are no
Wikigeo points present, a site can select any two
non-overlapping periods in the sampling years.
If there are points, we pick two periods to max-
imally allocate point date ranges that intersect

those periods such that a point is allocated to
only one of the two periods. Upon selection of
the periods, we create a final dataset bearing all
sites with all period bounds (two for each site).
From this, we create our final collection of (𝑥, 𝑦,
𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑) coordinates, which resulted in a total
of 10,203,798 unique rows that moved on to data
source collection.

S2.1.3. Training sample

Our source data distillation system is designed to
sample image sources for (𝑥, 𝑦, 𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑) seed lo-
cations while accounting for sensor-specific minu-
tia and geospatial attributes (i.e., projections).
Some seeds (and associated imagery sequences)
are ultimately dropped due to low (or no) image
availability, i.e., some targeted locations may be
outside coverage for one of our key inference sen-
sors (Sentinel-1, Sentinel-2, Landsat). In total,
we drop 1,791,287 sequences from our initial set
of seeds, and ultimately exclude samples from
Antarctica due to lack of sufficient Sentinel-1 im-
agery; while no single source is required for in-
ference, training rows require all input sources
to be present so they can be artificially dropped.
This resulted in a final pretraining dataset rep-
resenting 8,412,511 unique (𝑥, 𝑦, 𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑) co-
ordinates (Figure S1B), and consisting of a total
of 3,047,520,515 individual image frames (see
Figure S2 for breakdown by sensor). Training
data rows were stored with all pixel data, mask
and sensor metadata, and text and geometries
intersecting the row physical area in a sharded
format designed for rapid loading during training
totaling ∼6PiB after replication.

S2.2. Training algorithm

S2.2.1. Simulating a continuous observation
record

It is critical that embeddings should encapsulate
temporal dynamics. In practice this means the
resulting embedding can differentiate between
similar surface conditions with different temporal
ordering; for example differentiating between
fields with the same crops where the planting
happened at different times.
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Figure S2 | Breakdown of image samples by sen-
sor.

For time conditional summarization following
STP, we produce a temporal summary leverag-
ing time-axial attention pooling based on a single
learned query feature derived from the valid pe-
riod [𝑡𝑠, 𝑡𝑒) following a conversion to sinusoidal
timecodes. This summary is up-sampled to size L
using a learned kernel. We then introduce a vari-
ational bottleneck with a key innovation: rather
than collapse the output spatially, we estimate the
mean direction across an 𝐿𝑥𝐿 grid of von Mises-
Fisher (VMF) distributions in 𝑆63. This bottleneck
construction permits a high-degree of spatial pre-
cision without the further fine-tuning that is typ-
ical of other unsupervised embedding models,
and provides a mechanism to parameterize the
"smoothness" of a given embedding manifold via
the VMF concentration.

AEF is trained to conditionally decode embed-
dings from the bottleneck. For each of 𝑖 ∈ 𝑀𝐷 de-
coded sources, a small decoder network accepts
an embedding, and a set of conditional metadata
specific to that source (Figure 2B). Typically this
is at least a sinusoidal timecode representing an
instant in the valid period [𝑡𝑠𝑖 , 𝑡𝑒𝑖) normalized to
[0, 1), though may also contain orbital geometry
and metadata that is only relevant to the act of
measurement, not the measurement itself. The
source decoder network is applied to every loca-
tion in the output grid to produce an 𝐿𝑥𝐿 recon-
struction 𝑦 ′

𝑖
, one for each 𝑖 ∈ 𝑀𝐷 with 𝐶𝑖 channels.

Interestingly, these decoders have the effect of
generating spatially continuous predictions for an
arbitrary timestamp (e.g., dense, superresolved
LiDAR profiles from GEDI). We update the param-

eters in the entire network to minimize the error
between 𝑦 ′

𝑖
and 𝑦𝑖, a target source frame ran-

domly selected to intersect the valid period and
potentially held out of the inputs. The error met-
ric varies depending on the source, and accounts
for spatial misregistration of the instrument, miss-
ing data, and 𝑦 ′

𝑖
vs. 𝑦𝑖 resolution mismatches as is

the case when our nominal embedding resolution
(10𝑚2) does not match the source’s original reso-
lution. We minimize cross-entropy loss for cate-
gorical sources, and L1 error for non-categorical
sources.

Another unique requirement of working with
EO data is that our model must be robust to the
highly sparse nature of EO data sources. To re-
duce swath and tiling artifacts during learning,
we utilize an additional forward pass or "stu-
dent" model trained alongside the "teacher" as
described above. The student’s input frames are
randomly dropped, and some input sources are
removed entirely. A key insight is that simply aug-
menting the teacher’s inputs in this way does not
influence the objective function to reward yield-
ing near-identical outputs in the same location
and same time period regardless of input com-
position. We minimize 1 minus the dot product
between the teacher and student embeddings,
both conditioned on the same valid period, and
the teacher and student share parameters.

S2.2.2. Learning algorithm

Unlike other work pursuant of general geospa-
tial modeling (Tseng et al., 2023), we opted to
minimize the number of sources used as model in-
puts to improve performance and avoid ill-posed
reconstruction problems where e.g. climatic in-
formation must inform reconstruction of radar
data. We found Sentinel-2 L1C, Sentinel-1 GRD,
Landsat-8 C2 T1 TOA, and Landsat-9 C2 T1 TOA
to be the minimal set providing satisfactory re-
constructions across all sources. Inputs were nor-
malized based on global image statistics and no
further value modification or augmentation was
performed.

Training proceeded using stochastic mini-batch
gradient descent to minimize the following objec-
tive function with respect to model parameters:
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𝑙 =
𝑎

𝑀

∑︁
𝑖∈𝑀

𝑓𝑖 (y𝑖, y′𝑖)𝑤𝑖 + 𝑏
64∑︁
𝑖=1

|𝑢𝑖 · 𝑢′𝑖 |

+ 𝑐
(
1 − 𝒖 · 𝒖𝑠

2

)
+ 𝑑 𝑓CLIP(𝒖, 𝒖𝑡) (3)

Indicated by weights a, b, c, d of the linear
combination, the loss components are:

(a) Reconstruction objective with 𝑓𝑖 varying as a
function of data source.

(b) Batch uniformity objective encouraging a
uniform distribution over the training set of
embeddings in 𝑆63

(c) Contrastive consistency objective: encourag-
ing model forward passes with missing in-
puts to yield embeddings identical to forward
passes without missing inputs.

(d) Text contrastive objective: align embeddings
derived from text descriptions with embed-
dings derived from the video sequence.

Loss weights were normalized prior to training.

S2.2.3. Reconstruction objective

To facilitate learning, in each row a framewas ran-
domly selected from each source sequence. For
sequences serving as model inputs these frames
were removed from the input sequence directly.
Randomly selected frames, and their correspond-
ing metadata and timecode, are then used for
computing reconstruction losses The model’s em-
bedding output is concatenated with sensor meta-
data and the observation timecode, and a small
decoder is applied at each pixel embedding to
reconstruct the selected frame. Losses are com-
puted against this reconstructed frame, with the
nature of the loss 𝑓 𝑖 changing depending on the
source 𝑖 ∈ 𝑀 and a source-specific weight (Table
S2).

Shift-invariant loss computes the minimum er-
ror metric across any planar shift in reconstruc-
tion up to the specified distance. Re-gridding loss
re-grids the reconstruction and target using area-
weighted averaging to the given nominal resolu-
tion before computing the error metric. All losses

utilize per-frame per-pixel weights to account for
swath edges and invalid pixels; decisions around
derivation of weights and masks from source data
are detailed in supplemental materials S1.

We set the weight of the overall reconstruction
objective 𝑎 = 1.0.

Reconstructions each randomly selected sum-
marization periods [𝑡′𝑠𝑖 , 𝑡

′
𝑒𝑖
) for source 𝑖 ∈ 𝑀𝐷 s.t.

𝑡′𝑒𝑖 − 𝑡′𝑠𝑖 > 4 days. For each reconstruction objec-
tive, a different embedding corresponding to the
unique summarization period is generated, and
the target timestamp is normalized to this period
on [0, 1). We use the embedding and normal-
ized timecode to reconstruct source i, alongside
any source specific metadata specific to the act of
measurement detailed in supplemental materials
S1.

S2.2.4. Batch uniformity objective

To increase the utilization of our embedding
space, we introduced an objective to encourage
the uniform distribution of a given embedding
vector over 𝑆63. Since, on average, random vec-
tors on a sphere will be orthogonal (Cai et al.,
2013), we can treat this as a necessary condition
for our uniformity constraint. Across a batch of
image-space embedding vectors u, we can rotate
this vector through the batch dimension to get u′.
Assuming a uniform sample from the training set,
batch element pairs 𝑢𝑖 and 𝑢′𝑖 are effectively uni-
form random sample pairs from the training set,
and we can compute an overall "orthogonality"
across the batch:

𝐵𝑎𝑡𝑐ℎ𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚𝑖𝑡𝑦 =

64∑︁
𝑖=1

|𝑢𝑖 · 𝑢′𝑖 | (4)

We minimize this batch uniformity term dur-
ing training. We note that alone, there are per-
fectly valid non-uniform distributions for which
this tends to zero e.g. clusters of points on op-
posite poles. In practice, setting the weight in
the loss combination for this term > 0 prevented
collapse scenarios where this term would tend to
1 otherwise. We ultimately settled on a weight of
𝑏 = 0.05.
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Data Source Shift invari-
ant loss
distance (m)

Re-gridding loss
spacing (m)

Error metric Loss weight
(𝑤𝑖)

Sentinel-2 L1C 20 – L1 1.0

Sentinel-1 GRD 20 – L1 1.0

Landsat Group – 30 L1 1.0

PALSAR-2 ScanSAR L2.2 – 30 L1 1.0

ERA5-Land Monthly Aggregated – – L1 1.0

GEDI L2A – 20 L1 1.0

GRACE Monthly Mass Grids V4 – 1280 L1 0.5

Copernicus DEM GLO-30 – 30 L1 1.0

NLCD Group – 30 Cross Entropy 0.5

Table S2 | Loss configurations for data sources

While tuning was not performed, as expected,
evaluation scores improved when batch unifor-
mity was present, or there was no difference. For
a sweep of 𝑏 ∈ [0, 0.001, 0.005, 0.01, 0.1], we
found settings of 𝑏 = 0 and 𝑏 = 0.1 to be the least
performant across evaluations, and 𝑏 = 0.005
to be optimal. For some evals, the difference
in performance was notable e.g. GLanCE land
cover max-trial linear transfer BA scores were
~66.6% for 𝑏 = 0.005 and ~64.7% for b = 0. For
others, there was only a small improvement e.g.
LUCAS land cover max-trial linear transfer BA
scores were ~34.7% for 𝑏 = 0.005 and ~34.2%
for 𝑏 = 0.

S2.2.5. Consistency objective

Earth observation data is irregular in space and
time. Acquisition campaigns are not always
global, have acquisition periods unique from
other instruments, vary as a function of solar an-
gle, come on and offline for a number of reasons,
and atmospheric conditions at the time an obser-
vation is made are unpredictable at local scales.
As our model is intended to produce continuous
embedding fields over arbitrary regions of Earth’s
surface, it is crucial that we reduce the effect of
these space and time varying irregularities. Un-
like purely supervised models we cannot rely on
labels to help reduce noisy artifacts. Additionally,
we need to ensure that our model provides con-
sistent embeddings for a location regardless of

the condition of the inputs as we want to model
Earth’s underlying landscape dynamics not the
measurement process.

To achieve this, we run our forward pass twice.
We utilize a teacher model that has access to all
inputs, and a student model that has its inputs
perturbed. Perturbation proceeds in two stages:

1. Entirely drop a source from the inputs. The
Landsat Group is randomly dropped 30%
of the time, and Sentinel-1 GRD is dropped
30% of the time. Sentinel-2 L1C is never
dropped.

2. Select one of three perturbation strategies:
(a) Randomly drop time-steps across all
sources. 30% of images from the Land-
sat Group are randomly dropped, 30%
of images from Sentinel-1 GRD are
dropped, and 50% of images from
Sentinel-2 L1C are dropped.

(b) The latter six months of the input se-
quence across all sources is dropped
(forecasting-like).

(c) The former six months of the input se-
quence across all sources is dropped
(backcasting-like).

If perturbation strategy (a) is used, we choose
a unique, random summarization period [𝑡′𝑠, 𝑡′𝑒)
s.t. 𝑡′𝑒 − 𝑡′𝑠 > 4 days intersecting the annual period
of the non-perturbed inputs. If strategy (b) is
used, we choose a summarization period across
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the latter six months of the input sequence. If
strategy (𝑐) is used, we choose a summarization
period across the former six months of the input
sequence. We note sequence start and end times
are not aligned to any calendar unit.

The student and teacher model now embed
their inputs based on the shared summary period.
The teacher must produce an embedding that the
student can mimic with limited inputs while the
student must produce an embedding that agrees
with the teacher. Given teacher embeddings and
student embeddings s, we minimize:

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦𝐿𝑜𝑠𝑠 =
1 − 𝝁 · 𝝁𝑠

2
(5)

We set the weight of the overall contrastive ob-
jective 𝑐 = 0.02 to balance reconstruction visual
quality and maximize student / teacher agree-
ment. We note that while considerably reduced,
tile artifacts are still visible in our embedding
fields layers resulting from irregular inputs, and
these could be removed in future work with a
more aggressive consistency objective term.

S2.2.6. Text-contrastive objective

We co-train with a frozen language model (Gem-
ini et al., 2024) with the goal that embeddings
characterizing points on Earth’s surface with sim-
ilar semantics will cluster together.

All points and corresponding text intersecting
a training row’s geometry and date range were
stored with the row. During training, a random
text point is selected if available, and we choose a
unique random summary period [𝑡′′𝑠 , 𝑡′′𝑒 ) s.t. 𝑡′′𝑒 −
𝑡′′𝑠 > 4 days intersecting the annual period of the
teacher model’s inputs. We condition an MLP
decoder on the language model’s output with
this summary period to produce an embedding
aligned with the teacher model using standard
CLIP loss (Radford et al., 2021).

We set the weight of the overall text-contrastive
objective 𝑑 = 0.001.

S2.3. Model training

AEF was trained for 56 hours on 512 TPU v4
devices over 100k steps in batches of 256 video
sequences. Training was sharded by batch, and
further by sequence s.t. two TPU v4 devices were
allocated to each batch element. Input sequences
were subsampled from the training row to 103
frames (𝑁𝑖), comprising 65 Sentinel-2 L1C, 17
Sentinel-1 GRD, and 21 Landsat Group observa-
tions. Masks were substituted for unavailable or
perturbed frames (see supplemental materials
S2.2.3).

Learning utilized the Adam optimization strat-
egy (Kingma, 2014), with a piecewise linear
learning rate schedule from 0 to 1𝑒−4 over
[0, 1𝑒3) steps, then 1𝑒−4 to 0 over [1𝑒3, 1𝑒5].
Learning hyperparameters were selected to min-
imize training loss while maintaining satisfac-
tory reconstruction visual quality, stability in the
contrastive and batch uniformity objectives, and
desired performance on a set of diagnostic eval-
uations designed to assess whether embeddings
could distinguish the presence of specific input
sources.

S2.4. Architectural details

We used a model dimension of 𝐷𝑃 = 128 along
the precision path, 𝐷𝑇 = 512 along the time path,
and 𝐷𝑆 = 1024 along the space path. 15 STP
blocks were used in total. Implicit decoders were
two-hidden-layer MLPs with a width of 512. The
VMF bottlenecks utilized a fixed concentration
(𝜅) of 8𝑒3.

S3. Evaluation datasets

We assess AEF performance using a set of eval-
uation datasets we derived from ten publicly-
available reference datasets (Table 1). These
datasets were selected to represent archetypal
classification, regression, and change detection
use cases, with all datasets directly linked to real-
world products and applications.
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Property Units Notes

x decimal de-
grees

Longitude coordinate. Must have at least 10−4 precision to be
considered valid at ∼10m resolution.

y decimal de-
grees

Latitude coordinate. Must have at least 10−4 precision to be con-
sidered valid at ∼10m resolution.

label numeric
(int or
float)

Column recording the label or measurement field used for evalu-
ation. Either dense sequential remapping of ‘label_name’ values
(classification) or measurement value (regression).

label_name str (optional) This field can be used to preserve values/codes from the
original dataset for readability and visualization. Not required for
regression evals.

valid_time_start_ms
valid_time_end_ms

millis Start and end times defining the range over which the label or
measurement is valid (may be same for single-date measurements)
and over-which the embedding summary is created. Should not
extend more than 6 months before or after the support period.

support_time_start_ms
support_time_end_ms

millis Start and end times defining a support period for informing predic-
tion. This is the period over which input data is fetched for each
row. It must be no longer than 1 year in length.

split str (’train’
or ’test’)

Each label/observation (row) should be assigned to a fixed
train/test split.

shard numeric
(int)

(optional) Assign a shard to each row for efficient ingestion. A
shard should be associated with no more than 2000 rows.

label_before numeric
(int)

Integer label for “before” class.

label_before_name str This is used to preserve “before” values/codes from the original
dataset.

label_after numeric
(int)

Integer label for “after” class

label_after_name str This is used to preserve “after” values/codes from the original
dataset.

valid_time_start_before_ms
valid_time_end_before_ms
valid_time_start_after_ms
valid_time_end_after_ms

millis Start and end times defining the range over which the “before” and
“after” labels/measurements are valid (may be same for single-date
measurements) and over-which embedding summaries are created.

support_time_start_before_ms
support_time_end_before_ms
support_time_start_after_ms
support_time_end_after_ms

millis Start and end times defining the before and after change support
periods.

Table S3 | Evaluation dataset properties. Fields in italics are required for change detection datasets
only.
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S3.1. Selection criteria

We selected publicly available datasets to repre-
sent a range of different real-world classification,
regression and change detection applications. We
did not generate any of our own annotations
for these evaluations; rather, we identified ex-
isting datasets that represented high-quality ob-
servation/measurement information and could
be used with minimal processing. We priori-
tized reference datasets with human-assigned
interpretations or physical measurements over
model-generated predictions. In some cases (like
OpenET), we do include “model proxy tasks”
that sample model-generated predictions, but
these were selected with strong justification, e.g.,
proxying a computationally intensive ensemble
approach. We generally avoided harmonized
datasets that combine multiple sets of annota-
tions initially collected with differing protocol-
s/criteria since this makes it more difficult to un-
derstand/interpret results/errors. Given we are
evaluating a global model, we attempted to con-
struct an overall suite with large area / global
coverage. We preferred point measurements or
annotations over polygons, since reasoning about
labels for a specific point rather than over a larger
area is more straightforward, and this simplifies
sampling of embeddings and other feature vec-
tors for comparisons across approaches. We only
selected datasets where point coordinate data
(longitude, latitude) in decimal degrees was suf-
ficiently precise relative to a nominal 10-meter
resolution, i.e., at least four decimal points of
precision (0.0001), which is about 11.1m at the
equator. Given our focus on temporal precision,
we also required that labels have a clearly defined
“valid period” over which the label could be rea-
sonably applied, i.e., a range or instant (annual,
monthly, single-date), and this period must in-
tersect 2017 onward, and we ensured that we
had representation of different temporal aggre-
gations across our final set of evaluations (Table
1). For all candidate datasets, we required that
the georeference of a given annotation was not
tied to a specific observation. In the spirit of typi-
cal computer vision benchmarks or evaluations,
many recent general purpose geospatial evalua-
tions provide source imagery (see Schmitt et al.
(2023) for review), though we argue this is not

appropriate for assessing general purpose geospa-
tial analysis approaches that may leverage time
and additional sources uniquely. Were we to re-
quire that all baseline approaches tested share
the same sources, many would be artificially pe-
nalized or would not have been usable at all. As
most observational data is tied to a ground truth,
not a specific measurement, we argue that future
geospatial benchmarking work moves towards
evaluations with precise timing and without req-
uisite inputs. We present our evaluation suite as
an example of such.

S3.2. Processing

All reference datasets were processed to the stan-
dard format and properties in Table S3. In some
cases, e.g., LCMAP, LUCAS, and Canada crops,
multiple evals were created using different hierar-
chies or combinations of source labels, resulting
in a final total of 15 derivative datasets (Table 1).
Point observations were filtered to guarantee a
minimum distance of 1.28 km between sampled
points in order to reduce spatial autocorrelation
between training and test sites (and this process
will be hereafter referred to as “spatial proximity
filtering”). Sample points were allocated to train
and test splits such that the training datasets were
balanced by class (or regularly spaced bins in the
case of regression datasets), with no per-class
sample exceeding 300 points and the remainder
of the points allocated to an unbalanced test split.
When possible, we used existing Google Earth
Engine assets for publicly available datasets; oth-
erwise reference datasets were downloaded from
archived sources. Additional details on sources
and processing for individual datasets are pro-
vided in the following sections, and we make our
processed evaluation datasets available as a sup-
plemental dataset (DeepMind, 2025a).

S3.3. Evaluation datasets

S3.3.1. LCMAP

LCMAP (Land Change Monitoring, Assessment,
and Projection) is a USGS project aimed at gen-
erating annual land cover and land cover change
maps for the United States (Brown et al., 2020).
The LCMAP CONUS Reference Dataset is a col-

31



AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data

Figure S3 | Distribution of LCMAP land use/cover
sample locations.

lection of human-interpreted labels for 27,000
30m x 30m plots across CONUS, which includes
an initial sample of 25,000 randomly distributed
points and a supplemental sample of 2,000 strat-
ified random "intensification" sites (Pengra et al.,
2023). Land use, land cover, and change process
information for each plot are available for annual
timesteps for the year 1984 to 2021.

We use the LCMAP reference datasets, which
include multiple label properties and distinct
legends, to create two classification datasets
(LCMAP land cover and LCMAP land use) and two
change detection evaluation datasets (LCMAP
land cover change and LCMAP land use change).
These datasets are representative of the con-
tiguous United States (CONUS; Figures S3 and
S4), and we take performance on LCMAP sub-
datasets as indicative of performance for oper-
ational national-scale land use and land cover
mapping and change detection.

LCMAP land cover & LCMAP land use The
LCMAP land cover and land use evaluation
datasets are based on the "dominant_landcover"
and "dominant_landuse" fields in the source
LCMAP dataset. The LCMAP land cover legend
includes six broad cover-type classes (Table S4),

label label name train test

0 Impervious 300 192

1 Grass/forb/herb 300 13545

2 Trees 300 6815

3 Water 300 1326

4 Barren 300 970

5 Shrubs 300 1862

Table S4 | LCMAP land cover classes and sample
counts by split.

label label name train test

0 Developed 300 1368

1 Agriculture 300 4116

2 Forest 300 7843

3 Other 300 1533

4 Rangeland 300 9510

5 Non-forest Wetland 300 343

Table S5 | LCMAP land use classes and sample
counts by split.

while the LCMAP land use legend includes an al-
ternative set of six land use categories (Table S5).
The full LCMAP dataset includes labels for all
sample locations across all years; we subset the
full set of interpretations to 2017-2021 to overlap
with our period of interest, and randomly select
one year from the time series of labels for each
sample point (based on the ’image_year’ prop-
erty). We sample a total of 300 points from each
label class, with the remaining points allocated to
the test split. For all points, the valid period (i.e.,
the period over which embeddings are generat-
ed/summarized) is assumed to be January 1 of
the "image_year" from the source dataset through
January 1 of the following year. Our final LCMAP
land cover evaluation has a total of 1800 train-
ing points and 24,710 test points, while our final
LCMAP land use evaluation also has a total of
1800 training points and 24,713 test points after
pre-processing and spatial proximity filtering.

LCMAP land cover change & LCMAP land
use change Though the source LCMAP dataset
includes change process labels, we gener-
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Figure S4 | Distribution of LCMAP land cover
change sample locations.

label label name train test

0 no change 150 549

1 change 150 142

Table S6 | LCMAP land use change classes and
sample counts by split.

label label name train test

0 no change 300 1315

1 change 300 405

Table S7 | LCMAP land cover change classes and
sample counts by split.

ated new change labels directly from "domi-
nant_landcover", "dominant_landuse", and "im-
age_year" fields for parity with the LCMAP clas-
sification evaluations. We again subset the full
reference dataset to 2017-2021 to overlap with
our period of interest. We then label pairs of se-
quential years where the label is not consistent
(i.e., yeart and yeart+1 have different labels) as
“change” and years with consistent labels as “no
change”. We select only one year-pair for each ref-
erence point, and we sample a total of 300 points
per class for land cover change (Table S7) and
150 points per class for land use change (Table
S6). Because we want to compare embeddings
for two annual labels, we set a valid time start and
end for both the before and after periods, where
both periods are one year in length from January
1 to January 1 of the following year and assigned
based on the "image_year" property in the source
dataset. Our final LCMAP land cover change eval-
uation has a total of 600 training points and 1,720
test points, and our final LCMAP land use change
evaluation has a total of 300 training points and
691 test points after pre-processing and spatial
proximity filtering.

S3.3.2. LUCAS

The LUCAS (Land Use/Cover Area frame statis-
tical Survey) was designed to gather informa-
tion on land cover and land use updated via
regular harmonised surveys across all European
Member States in the survey years 2018 and
2022/2023 (Toth et al., 2013).The survey in-
cludes over 250,000 sample points throughout
the EU (Figure S5), and the survey is repeated
every few years to identify changes to land use
and cover. One of the primary purposes of the
LUCAS dataset is to generate estimates of the
area occupied by different land use or land cover
types. Given the high level of detail in LUCAS,
and the ground-based nature of its collection, we
consider LUCAS a challenging assessment of how
well a set of geospatial features distinguish de-
tailed ground-level concepts.

We use the LUCAS Harmonized (Theoretical
Location, 2006-2018) V1 dataset (d’Andrimont
et al., 2020) sourced from the Earth Engine Data
Catalog ("JRC/LUCAS_HARMO/THLOC/V1").
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Figure S5 | Distribution of LUCAS survey points.

We filter the full LUCAS dataset to keep only
survey data intersecting our period of interest
(year greater than or equal to 2017, and
with a location precision of at least 10 meters
("gps_prec" less than 10). We exclude points
labeled as ‘ex_ante’ given this indicates they
were not visited in a given survey year. Finally,
we keep only classes with at least 420 samples.

LUCAS land cover Our LUCAS land cover evalu-
ation uses the "lc1" label. After the initial filtering
described above, we additionally checked that the
‘lc1’ label is not null, and that percent cover for
the "lc1" label ("lc1_perc") is classified as "50 - 75
%" or "> 75 %". This results in a label dataset
with 40 land cover classes (Table S8). We assume
land cover represents an instantaneous observa-
tion of state, so we set the valid time to the time at
which the land cover observation was made (i.e.,
time start = time end). We select 300 points per

class for training and assign the remainder to the
test split (Table S8). Our final LUCAS land cover
evaluation has a total of 12,000 training points
and 191,569 test points after pre-processing and
spatial proximity filtering.

LUCAS land use Our LUCAS land use evalua-
tion uses the "lu1" label. We apply the same initial
filtering as we do for land cover. We also check
that the ‘lu1’ label is not null, and that percent
cover for the lu1 label ("lu1_perc") is classified
as "50 - 75 %", "75 - 90 %", "> 90 %". This re-
sults in a label dataset with 15 land use classes
(Table S9). We assume land use represents an
integrated observation of state (e.g., "forestry"
may include periods of tree cover, clearing, and
regrowth), so we set the valid period to a one-
year window centered on the time at which the
land use observation was made, i.e., six months
prior, six months after. As with land cover, we
select 300 points per class for training and assign
the remainder to the test split (Table S9). Our
final LUCAS land use evaluation has a total of
4,500 training points and 222,358 test points af-
ter pre-processing and spatial proximity filtering.

S3.3.3. GLaNCE land cover

The NASA-funded Global Land Cover Estima-
tion (GLanCE) project seeks to provide high-
quality long-term records of land cover and land
cover change at a 30m spatial resolution for the
21st century (2001 to present) (Friedl et al.,
2022). The GLanCE training dataset was de-
signed for regional-to-global land cover and land
cover change analyses (Stanimirova et al., 2023).
Similar to LCMAP, the dataset legend is intended
to support a broader community of end-users;
however, the GLaNCE dataset is a global sam-
ple (Figure S6). Thus, we consider the GLaNCE
dataset a good proxy for general-purpose global
(as opposed to national) land cover mapping.

Our GLaNCE evaluation dataset is derived
from the GLanCE training dataset in the
GEE Community Catalog ("projects/sat-io/open-
datasets/GLANCE/GLANCE_TRAINING_DATA
_V1") (Roy et al., 2025). Though published
GLaNCE data products use Level 1 labels (Arevalo
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label label name train test

0 other_bare_soil 300 4538

1 common_wheat 300 11149

2 other_leguminous_and_mixtures_for_fodder 300 797

3 shrubland_without_tree_cover 300 5883

4 broadleaved_woodland 300 34253

5 grassland_without_tree/shrub_cover 300 42460

6 spruce_dominated_coniferous_woodland 300 4587

7 oats 300 1501

8 lucerne 300 1520

9 inland_marshes 300 563

10 non_built-up_area_features 300 3117

11 pine_dominated_coniferous_woodland 300 9321

12 pine_dominated_mixed_woodland 300 3883

13 other_mixed_woodland 300 3112

14 maize 300 7076

15 grassland_with_sparse_tree/shrub_cover 300 6984

16 sunflower 300 1236

17 spontaneously_vegetated_surfaces 300 8250

18 shrubland_with_sparse_tree_cover 300 4821

19 barley 300 6647

20 dry_pulses 300 867

21 sugar_beet 300 1003

22 temporary_grasslands 300 3576

23 spruce_dominated_mixed_woodland 300 3408

24 potatoes 300 593

25 rape_and_turnip_rape 300 2793

26 arable_land_(only_pi) 300 1523

27 non_built-up_linear_features 300 5877

28 clovers 300 267

29 buildings_with_1_to_3_floors 300 3629

30 triticale 300 587

31 rye 300 1148

32 other_coniferous_woodland 300 1066

33 durum_wheat 300 1837

34 olive_groves 300 487

35 other_fresh_vegetables 300 151

36 mixed_cereals_for_fodder 300 462

37 vineyards 300 137

38 other_artificial_areas 300 338

39 peatbogs 300 122

Table S8 | LUCAS land cover classes and sample counts by split.
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label label name train test

0 agriculture_(excluding_fallow_land_and_kitchen_gardens) 300 121309

1 semi-natural_and_natural_areas_not_in_use 300 24198

2 forestry 300 48649

3 road_transport 300 7037

4 amenities_museums_leisure 300 1273

5 other_abandoned_areas 300 1460

6 residential 300 9937

7 kitchen_garden 300 824

8 logistics_and_storage 300 206

9 fallow_land 300 5272

10 community_services 300 902

11 sport 300 454

12 electricity_gas_and_thermal_power_distribution 300 163

13 commerce 300 417

14 mining_and_quarrying 300 257

Table S9 | LUCAS land use classes and sample counts by split.

Figure S6 | Distribution of GLaNCE sample loca-
tions.

et al., 2022), we use the Level 2 of the labeling
hierarchy ("Glance_Class_ID_level2") as a test of
maximizing thematic detail. Given that GLaNCE
includes a number of other datasets, some of
which overlap with other evaluation datasets, e.g.,
LCMAP, we select a subset of sources, specifi-
cally the MODIS STEP dataset (STEP), results
of spectral-temporal clustering (CLUSTERING),
a labeled dataset from the NASA Arctic-Boreal
Vulnerability Experiment (ABoVE), and a set
of annotations collection by the project team
("Dataset_Code" = 1, 2, 4, or 704). GLaNCE
labels are associated with time segments, i.e., la-
bels have a start and end date similar to our use
of a valid period. We select only labeled segments
with an end year after 2017 ("End_Year" greater
than or equal to 2017). We remove null values as
well as the "ice_and_snow" and "moss" categories,
which have fewer than 500 samples per class. This
results in a final dataset with eleven classes, and
we select 300 training points per class with the
remainder allocated to the test split (Table S10).
Thoughwe note that segments could be converted
to a series of annual labels for each location, this
approach would be subject to greater temporal
autocorrelation across labels for the same loca-
tion; instead, we sample a random year between
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label label name train test

0 water 300 1167

1 developed 300 878

2 soil 300 291

3 rock 300 921

4 sand 300 1195

5 deciduous 300 2700

6 evergreen 300 5959

7 mixed 300 2425

8 shrub 300 2118

9 grassland 300 6952

10 agriculture 300 6979

Table S10 | GLaNCE classes and sample counts
by split.

segment start and end dates as an annual valid
period to ensure more independent sampling of
the time domain. Our final GLaNCE land cover
evaluation has a total of 3,300 training points
and 31,585 test points after pre-processing and
spatial proximity filtering.

S3.3.4. Africa crop mask

Our Africa crop mask evaluation was derived from
a manually-labeled reference dataset designed
to validate the accuracy of cropland maps de-
rived from land cover maps (Kerner et al., 2024a).
The dataset includes pointwise (binary) annota-
tions for cropland versus non-cropland in eight
Sub-Saharan African countries (Kenya, Rwanda,
Uganda, Tanzania, Mali, Malawi, Togo, and Zam-
bia; Figure S7). For all countries except Mali,
where the percentage of cropland area is small,
reference points were selected by drawing a ran-
dom uniform sample of point locations within
each country’s boundaries. For each sample,
trained individuals inspected images from each
month in the country’s growing season to deter-
mine whether the point contained active crop-
land, defined as "points where patterns of sow-
ing, growing, and/or harvesting in an agricul-
tural field could be observed during the relevant
agricultural season within a 12-month period"
(Kerner et al., 2024a). At least two annotators
labeled every point to maximize label confidence,

Figure S7 | Distribution of Africa crop mask sam-
ple locations.

and points that did not have unanimous agree-
ment between annotators were discarded to en-
sure high-confidence labels in the final reference
dataset. We consider the Africa crop mask ref-
erence dataset a good proxy for general agricul-
tural land use in landscapes where there has been
notable disagreement among existing mapping
efforts.

We accessed the crop mask reference datasets
for individual countries as Earth Engine assets
provided by the authors ("projects/bsos-geog-

label label name train test

0 not_crop 200 2038

1 crop 200 118

Table S11 | Africa crop mask classes and sample
counts by split.
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harvest1/assets/harvest-reference-datasets/*"),
though we note that these datasets are also
available as archived shapefiles (Kerner et al.,
2024b). We merge separate datasets for Kenya,
Rwanda, Uganda, Tanzania, Mali, Malawi, Togo,
and Zambia into a single dataset and assign
labels based on the “crop_label” field. We use an
annual valid period covering Jan 1 2019 to Jan
1 2020 for all countries except Malawi, where
reference labels are for 2020, so we use a valid
period of Jan 1 2020 to Jan 1 2021 instead. Our
final Africa crop mask evaluation has a total of
400 training points and 2,156 test points after
pre-processing and spatial proximity filtering
(Table S11)

S3.3.5. Canada crops

The Canadian AAFC (Agriculture and Agri-Food
Canada) Annual Crop Inventory Ground Truth
Data is an annual field-by-field inventory of Cana-
dian crops (Agriculture and Canada, 2024). It
does not cover the whole country; rather, a "wind-
shield survey" is done annually for provinces
where crop data is not provided to provincial
crop insurance companies (Figure S8). This data
was originally collected as training and valida-
tion points for use in the AAFC Annual Crop In-
ventory (ACI, which looks at state and trends in
national agriculture production. We create two
evaluation datasets at two different levels of clas-
sification hierarchy, which we refer to as Canada
crops coarse and Canada crops fine. We assume
that these datasets are a good proxy for perfor-
mance on multi-level crop classification at a na-
tional scale, and unlike reference datasets that
rely on interpretation of imagery, the windshield-
survey approach indicates performance scaling
sparse ground-based observations from national
inventory datasets.

We downloaded prepackaged shapefiles for the
years 2017, 2018, 2019, 2020, 2021, and 2022
(2023 data was also available but formatting was
not consistent with other years, so we dropped
from consideration). Processing for the two sub-
datasets (coarse and fine) are described in the
following sections.

Figure S8 | Distribution of Canada crops sample
locations.

Canada crops (coarse) We use the Landuse
Category Code (CATCODE) and corresponding
English Landuse Category Name (CATNAME) to
derive our Canada crops coarse evaluation. We
impose a minimum overall per-class sample size
of n=100, and cull any classes that do not meet
this minimum count requirement. Given the class
distribution is highly imbalanced and includes
several classes with less than 200 samples per
class, we set a proportional split rather than a
fixed sample, allocating 60% to training and re-
serving 40% for testing and re-sampling as part
of the evaluation process to re-balance the train-
ing set (Table S12). We treat the observations
as instantaneous and assign the Date Collected
(DATE_COLL) as the valid period start and end
(single-date). Our final Canada crops coarse eval-
uation has a total of 2,831 training points and
13,248 test points after pre-processing and spatial
proximity filtering.

Canada crops (fine) For the Canada crops fine
evaluation, we use the Landuse Code (LAND-
CODE) and associated English Landuse Name
(LANDNAME). These species-level labels present
an excellent opportunity to characterize perfor-
mance on highly detailed legends and viability
for agricultural use cases that require this level of
detail. However, many categories have few sam-
ples, and some categories may be too noisy to
draw any sound conclusions about performance
(particularly the “Undifferentiated” categories,
which could include examples of the same crop
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label label name train test

0 Agr. Cereals 500 3059

1 Agr. Forages 500 4914

2 Agr. Fruits (Berry &
Annual)

207 138

3 Agr. Fruits (Trees) 75 51

4 Agr. Oilseeds 500 1797

5 Agr. Pulses 76 51

6 Agr. Vegetables 277 186

7 Agr. Others 196 132

8 Non-Agr. 500 2920

Table S12 | Canada crops (coarse) classes and
sample counts by split.

type but grouping different phenologies already
represented individually).

Specifically, we:

• Remove "Cereals (Undiff)"
• Merge "Barley (Undiff)", "Winter Barley",
"Spring Barley"

• Remove "Wheat (Undiff)"
• Merge "Rye (Undiff)", "Winter Rye", "Spring
Rye"

• Merge "Triticale (Undiff)", "Spring Triticale",
"Winter Triticale”

• Merge "Blueberry (Undiff)", "Blueberry -
High Bush", "Blueberry - Low Bush"

• Merge "Beans (Undiff)", "Adzuki Beans",
"Otebo Beans", "Black Beans","Cranbery
Beans", "Fababeans", "Kidney Beans", "Lima
Beans", "White Beans", "Edible (generic)
Beans"

• Merge "Peas (Undiff)" and "Field Peas".
• Remove "Vegetables (Undiff)"

After these merges and removals, we check to
ensure remaining categories have a viable num-
ber of samples (greater than 100 per class). As
with Canada crops coarse, there is a high degree
of variability in per-class sample sizes, so we use
a proportional rather than fixed per class sam-
ple size, allocating 60% to training and 40% to
testing and re-balancing the training set using
repeat sampling during training. We again treat
window survey observation as instantaneous and

label label name train test

0 Barley (Undiff) 110 74

1 Oats 123 82

2 Spring Wheat 99 66

3 Winter Wheat 390 260

4 Corn 500 1546

5 Pasture/Forage 93 63

6 Alfalfa 257 172

7 Mixed Forage 500 2768

8 Pasture 500 628

9 Unimproved Pasture 250 167

10 Blueberry (Undiff) 112 75

11 Canola/Rapeseed 68 46

12 Soybeans 500 1673

13 Potatoes 145 97

14 Native Grassland 68 46

15 Shrubland 249 167

16 Urban 291 194

17 Barren 141 94

18 Water 106 72

19 Coniferous 153 102

20 Mixedwood 361 242

21 Wetland 222 149

22 Abandoned (Over-
grown)

168 112

23 Abandoned (Shrubs) 159 106

Table S13 | Canada crops (fine) classes and sam-
ple counts by split.
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assign the Date Collected (DATE_COLL) as the
valid period start and end (single-date). Our final
Canada crops fine evaluation has a total of 5,565
training points and 9,001 test points after pre-
processing and spatial proximity filtering (Table
S13).

S3.3.6. Ethiopia crops

The Ethiopian Crop Type 2020 (EthCT2020)
dataset is a benchmark for environmental and
agricultural remote sensing applications in com-
plex Ethiopian smallholder wheat-based farming
systems (Blasch et al., 2024). The dataset con-
sists of harmonized, quality-controlled, and geo-
referenced in-situ samples of annual crop types
(Blasch, 2024). Like the Canada crops inventory,
these in situ samples represent an important class
of sparse-but-high-quality data, and we take addi-
tional steps to process this dataset for consistency
with our evaluation dataset protocols and stan-
dards.

We downloaded the dataset from Mendeley
(Blasch, 2024). Per the dataset description, this
shapefile contains the delimitation of 2,793 cir-
cular plots (10 m radius) located in cultivated
fields, and the crop information (crop group and
crop class) of the 2020/21 main Meher season
(June 2020 to February 2021) for each field plot.
Given close proximity of many of the interpreted
sites, we do not simply remove points to satisfy
minimum distance criteria. Rather, we create con-
nected components by joining points within 1.28
km radii, and assign points to the train or test
split based on their component membership.This
avoids the scenario where a train and test point
are in the same spatial neighborhood. Compo-
nent membership assignment is performed tomin-
imize the number of points off from which all
classes have allocated 20% of their points to their
train split, though the large size of some compo-
nents lead to an imbalanced result. Given our
evaluation protocol sub-samples to the minimum
class size this was not problematic. We lastly re-
move all datapoints with crop classes that have a
total of < 49 train points. The valid time is treated
as instantaneous (single-date) and set to the data
collection timestamp, ("sub_dat") from the origi-
nal dataset. Our final Ethiopia crops evaluation

Figure S9 | Distribution of Ethiopia crops sample
locations.

label label name train test

0 wheat 377 1700

1 barley 82 20

2 maize 66 30

3 teff 49 206

Table S14 | Ethiopia crops classes and sample
counts by split.

has a total of 873 training points and 1,657 test
points after pre-processing and spatial proximity
filtering (Figure S9, Table S14).

S3.3.7. US trees

To evaluate performance on biodiversity-related
applications, we leveraged the Global Biodiversity
Information Facility (GBIF) records, specifically
research-grade observations from the iNaturalist
citizen science repository (GBIF, 2024). GBIF is
a comprehensive collection of species occurrence
records. Unlike our text pretraining dataset, here
we focus on genus-level taxonomic labels (as op-
posed to alignment with text embeddings for the
information associated with a given species). We
chose to focus on tree genera in the United States
given interest in forest species composition map-
ping across a diversity of forest types (Figure
S10).

We select GBIF records for the period Jan 1
2017 to Jan 1 2023 and filter to just observations
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Figure S10 | Distribution of US trees sample loca-
tions.

where the genus label is found in a list of tree
genera sourced from the US Forest Service and
country code is set to the US. Observations must
be labeled as human or machine observations,
and have a maximum spatial uncertainty of 10
meters. From this initial list of tree genera obser-
vations, we get the five most frequently observed
species for each of the US states, including Alaska
and Hawaii, then combine into a single dedupli-
cated list of common US tree genera. We select
these genera for further processing.

Of the remaining observations across common
tree genera, we drop any that have less than 500
samples per class, resulting in a final set of 39
genera (Table S15). We allocate 300 samples to
the train split and the rest to the test split (Table
S15). We treat observations as instantaneous
labels, using the date of the observation record
(eventdate) as a single-date valid period. Our final
US trees evaluation has a total of 11,700 training
points and 33,682 test points after pre-processing
and spatial proximity filtering.

S3.3.8. Descals oil palm

The Global oil palm extent and planting year from
1990 to 2021 reference dataset is an updated ver-
sion of a dataset used to validate a previously

label label name train test

0 abies 300 827

1 acer 300 1296

2 aesculus 300 665

3 ailanthus 300 857

4 alnus 300 220

5 amelanchier 300 203

6 asimina 300 614

7 betula 300 917

8 carya 300 628

9 cercis 300 1296

10 cornus 300 1296

11 diospyros 300 934

12 elaeagnus 300 1296

13 fagus 300 1187

14 gleditsia 300 353

15 ilex 300 1296

16 juglans 300 620

17 juniperus 300 1296

18 liquidambar 300 1296

19 liriodendron 300 1173

20 maclura 300 317

21 magnolia 300 874

22 morus 300 387

23 picea 300 621

24 pinus 300 1296

25 populus 300 1296

26 prosopis 300 1057

27 prunus 300 1296

28 pseudotsuga 300 602

29 quercus 300 1296

30 sabal 300 272

31 salix 300 957

32 sassafras 300 1006

33 taxodium 300 271

34 thuja 300 474

35 triadica 300 300

36 tsuga 300 1190

37 ulmus 300 604

38 yucca 300 1296

Table S15 | US trees genera labels and sample
counts by split.
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Figure S11 | Distribution of Descals oil palm sam-
ple locations.

published global map of smallholder and indus-
trial closed-canopy oil palm plantations (Descals
et al., 2021). The updated dataset was refined to
validate a 10-meter resolution global map of in-
dustrial and smallholder oil palm developed using
Sentinel-1 data for the years 2016–2021 (Descals,
2024). The 2024 version of the dataset covers re-
gions where oil palm is found worldwide (Figure
S11) and makes several notable improvements
over the previous version, including updating la-
bels where coconut plantations were incorrectly
labeled as oil palm and relabeling young planta-
tions that were initially considered ‘other’ as oil
palm. Reference sites from the initial study were
selected using a simple random sample, making
the sampling design reusable for creating statis-
tically rigorous accuracy metrics. We interpret
this dataset as reflecting land use as an oil-palm
plantation: points are labeled as being part of a
plantation if they were a closed canopy planta-
tion some time in 2016-2021. We consider the
Descals oil palm reference dataset a useful eval-
uation of performance for subtle land use and
tropical commodity mapping.

We download the validation points
(Validation_points_GlobalOP2016-2021.zip)
from the archived dataset (Descals, 2024). The
dataset has three classes, where class 0 represents
other land covers that are not closed-canopy oil
palm; class 1 represents closed-canopy industrial
oil palm; and class 2 represents closed-canopy
smallholder oil palm (Table S16). These classes
were initially determined based on observations
on imagery from 2019, but further informed
by observations over the years 2016-2021.
We assume that non-plantation to plantation

label label name train test

0 Other 200 16323

1 Industrial oil palm 200 461

2 Smallholder oil palm 200 93

Table S16 | Descals oil palm labels and sample
counts by split.

transitions are more likely than the reverse, so
while it’s possible that observations in some
years may not match the assigned label, it’s less
likely for later years. In order to make this into a
dataset that is useful as a training dataset, we
randomly assign one of the years in [2019, 2021]
to each row and set the valid period to that entire
year. Our final Descals oil palm evaluation has
a total of 600 training points and 16,877 test
points after pre-processing and spatial proximity
filtering.

S3.3.9. OpenET ensemble

The OpenET project aims to make satellite-based
estimates of the total amount of water that is
transferred from the land surface to the atmo-
sphere through the process of evapotranspiration
(ET) available for improved water management
(Melton et al., 2022; Volk et al., 2024). OpenET
datasets include ET estimates from six different
satellite-driven ET models as well as an ensem-
ble product, which is calculated as the mean of
the ensemble after filtering and removing outliers
using the median absolute deviation approach.
All models currently use 30-meter Landsat data
to produce ET estimates, and the monthly ET
dataset provides data on total ET by month as an
equivalent depth of water in millimeters.

Our OpenET evaluation dataset is derived from
the OpenET monthly total ensemble product in
Earth Engine. This dataset is designed not to
measure performance on ET estimation directly.
Rather, it characterizes performance on proxying
the OpenETmodel ensemble, given that ensemble
approaches are inherently computationally inten-
sive and challenging to scale and has historically
limited OpenET ensemble coverage (i.e., Figure
S12). Thus accurate proxy models could be a
more viable means of scaling ensemble results
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Figure S12 | Distribution of OpenET ensemble
sample locations.

over larger extents.

We construct our OpenET evaluation by first
tiling CONUS in 35km grid cells in the Albers
conic projection with EPSG code 5070. For each
grid cell, we select a random month from all pos-
sible months mapped in the source OpenET en-
semble product, and sample 2 locations for each
of 10 equally spaced 20mm bins between 0mm
and 200mm. Locations with ET values > 200mm
were assigned to the highest bin (Figure S13).
We ignore locations where less than 5 models in
the ensemble ran, or the disagreement between
the minimum and maximum model estimates ex-
ceeded 10mm. To each sample we assigned a
valid period of the entire month fromwhich it was
drawn, and a support period ending with the end
of the valid period, and extending 1 year prior:
this was chosen to emulate the realistic scenario
where evapotranspiration estimates are desired
at the conclusion of a given calendar month. We
selected 300 train points per bin, and allocated
the remainder to test. Our final OpenET ensem-
ble evaluation has a total of 3,000 training points
and 32,683 test points after pre-processing and

Figure S13 | Distribution of OpenET ensemble
values. Values are reported in total mm evapo-
transpiration (ET) per month.

spatial proximity filtering.

S3.3.10. ASTER Global Emissivity Database
(GED)

Emissivity is an intrinsic property of materials
that describes how efficiently a surface can emit
radiation at a certain wavelength. The Advanced
Spaceborne Thermal Emission and Reflection Ra-
diometer (ASTER) is the most detailed emissivity
map of the Earth. The dataset was created by
processing millions of cloud free ASTER images
acquired between 2000 to 2008 (Hulley et al.,
2015). ASTER-GED land surface temperature
and emissivity are generated using a number of
physical process models that aim to separate tem-
perature and emissivity from overall reflectance
signals. Like OpenET, we consider ASTER-GED
a proxy task that we can use to evaluate perfor-
mance in terms of reproducing the results of a
more complex modelling workflow for estimating
a material property.

We sample the 100-meter ASTER-GED prod-
uct available in Earth Engine (AG100: ASTER
Global Emissivity Dataset 100-meter V003;
"NASA/ASTER_GED/AG100_003") (Figure S14).
The original dataset was generated for the years
2000-2008. We assume surface properties are
relatively stable at 100-meter resolution (though
acknowledge this introduces added uncertainty
in signal). We select 2017 for both the support
and valid periods. We construct our sample by
first arbitrarily selecting the 8.3 𝜇m band ("emis-
sivity_band10") as our label, and subsetting to
locations for which all wavelength emissivity esti-
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Figure S14 | Distribution of ASTER GED sample
locations.

Figure S15 | Distribution of ASTER GED values.
Note that emissivity of natural Earth surfaces is
a unitless quantity that typically ranges between
0.6 and 1.0. Surfaces with emissivities less than
0.85 are typically found over deserts and semi-
arid areas; vegetation, water, and ice have high
emissivities above 0.95.

mates had standard deviations < 0.05. We fur-
ther subsetted to locations exclusively over land,
and within ± 60° latitude. We then oversampled
by selecting 330k of the remaining locations over
land, and culling them with spatial proximity fil-
tering. We then sample 2000 locations from 10
equally spaced bins between emissivity values of
0.7 and 1.0. We selected 200 train points per
0.03 sized bin, and allocated the remainder to
test (Figure S15). Our final ASTER GED eval-
uation has a total of 2,000 training points and
15,636 test points after pre-processing.

S4. Details on evaluation setup

For each of our 15 evaluation datasets, we iterate
through a suite of trials designed to test model
performance with varying degrees of label spar-
sity and various transfer methods.

S4.1. Predictors

Given a training set (𝑒𝑡1, 𝑙
𝑡
1), ..., (𝑒

𝑡
𝑁 , 𝑙

𝑡
𝑁) of 𝑁 exam-

ples and a validation set 𝑙𝑣1, ..., 𝑙
𝑣
𝑀 of 𝑀 embed-

dings with held out labels, we fit a predictor, or
"transfer method", using the training set and then
report results on the validation set.

The purpose of the predictor is to obtain a label
𝑙 𝑗 for each embedding 𝑒𝑣𝑗 in the validation set. We
consider two simple predictors: a linear predic-
tor (or "linear probe") and kNN. We chose these
predictors as they are applicable to low-shot data
domains and require minimal parameterization
which avoids unduly penalizing any given method
due to non-optimal hyperparameters.

For the linear prediction approach, we follow
the "RidgeClasifier" in scikit-learn (Pedregosa
et al., 2011) and use a one-vs-rest approach with
a pure-linear model per class. For each class in
the training set, we create labels {−1, 1} for each
item in the training set, where −1 denotes ab-
sence of the class and 1 presence. We then use
ordinary least squares to fit this model and obtain
the predictor. As the classes are mutually exclu-
sive, a given example in the validation is then
classified based on which of the classifiers gave
the highest prediction.

To run the kNN predictor, the nearest set of 𝑘
embeddings 𝑒𝑡

𝑛1, ..., 𝑒
𝑡
𝑛𝑘
in the training set is found

under an l2 distance. For a classification evalu-
ation, with a set 𝐶 of possible class labels, the
majority class labels of those 𝑘 embeddings in the
train set is chosen:

𝑙 𝑗 = max
𝑐∈C

𝑘∑︁
𝑖

𝑙𝑡𝑛𝑖 = 𝑐 (6)

For a regression task, a weighted average is
used to obtain the final result:
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𝑙 𝑗 =

𝑘∑︁
𝑖

𝑤𝑖 ∗ 𝑙𝑡𝑛𝑖∑𝑘
𝑖 𝑤𝑖

(7)

where 𝑤𝑖 denotes the l2 distance.

For direct classification of change, we simply
concatenate each pair of embeddings character-
izing Earth’s local state before/after an event in
both train and test, and follow through with the
aforementioned predictors as stated.

For unsupervised anomaly detection, we dis-
card the train set and l2 normalize each pair of
validation embeddings providing a normalized
embedding before the event: , and after the event
. We now take the dot product between each pair,
remapped s.t. 0 = embeddings were the same, 1
= embeddings were on opposite poles:

𝑑 𝑗 =
1 − 𝑒𝑣

𝑗
· 𝑝𝑣

𝑗

2
(8)

We now choose a global threshold 𝑠 on (0, 1)
to binarize all 𝑑 𝑗, and thus provide a predicted
𝑙 𝑗 to compare to 𝑙 𝑗𝑣. 𝑠 is chosen from one of
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] to maxi-
mize BA over the entire validation dataset, and
then all other metrics are computed using this
threshold.

S4.2. Kappa adjustment

When stated, kappa adjusted metrics were
rescaled by linearly transforming the metric range
by the metric value a "random" predictor would
achieve on average. For Balanced Error Rate
(BER), 1 was remapped to the balanced error
rate of a random predictor. Any scores that man-
aged to achieve a higher error rate than a random
predictor were clamped at 1.

S4.3. Max trial group folds

For datasets in our max-trial setting, we did not
always have an equivalent number of labels in
each training class. In these instances we drew
k-folds based on the least present class 𝑐′ using
the formula:

𝑘 =

⌈
1000

2log10 𝑐
′

⌉
(9)

E.g., Canada crops coarse for which 𝑐′ = 75, we
drew 𝑘 = 273 folds (Table S12). When all classes
had an equivalent number of training labels per-
class, 𝑘 = 1.

S4.4. Uncertainty estimation

We use two complementary approaches to com-
pute the error bars for evaluation metrics. For
"low-shot" evaluation trials that do not use the
entire training split, we perform k-fold cross val-
idation and randomly sample K class-balanced
training sets by subsampling the full training split,
fit an independent predictor to each set and com-
pute a normal distribution over metrics.

𝑚𝑖 =M({ 𝑓𝑖 (𝑒 𝑗), 𝑙 𝑗}𝑀−1
𝑗=0 ) (10)

�̄� =
1
𝐾

𝐾−1∑︁
𝑖=0

𝑚𝑖 (11)

𝑠 =

√√√
1

𝐾 − 1

𝐾−1∑︁
𝑖=0

(𝑚𝑖 − �̄�)2 (12)

where 𝑚𝑖 is the value of the metric M com-
puted on the validation set for the predictor 𝑓𝑖
fitted to the 𝑖th training fold.

For "full" evaluation trials, where we use the
entire training split to fit the downstream predic-
tor, we instead use bootstrap statistics instead,
resampling the validation split with replacement
𝐵 = 100 times and computing statistics across the
samples:

𝑚𝑖 =M({ 𝑓 (𝑒 𝑗), 𝑙 𝑗, 𝑤(𝑖)
𝑗
}𝑀−1
𝑗=0 ) (13)

�̄� =
1
𝐵

𝐵−1∑︁
𝑖=0

𝑚𝑖 (14)
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𝑠 =

√√√
1

𝐵 − 1

𝐵−1∑︁
𝑖=0

(𝑚𝑖 − �̄�)2 (15)

where is a weight indicating how many times
the 𝑗th validation example is included in the 𝑖th
bootstrap sample (satisfying

∑𝑀−1
𝑗=0 𝑤

(𝑖)
𝑗

= 𝑀).

For smaller datasets where it was not possible
to create a balanced training set with at least 200
examples in each class (or 200 examples overall
for regression tasks), we used a combination of
multiple training sets (with number of examples
per class equal to the size of the smallest class)
and nested bootstrap resampling of the validation
split to estimate the statistics.

S5. Baseline comparisons

We considered both widely adopted feature en-
gineering approaches developed by the EO re-
search community, as well as new deep learning
approaches adapted for use with geospatial im-
age inputs. We also included a set of controls
to establish the predictive power of purely geo-
graphic information as well as a generic vision
model trained on camera imagery (see Table S17
for summary).

Due to differences in handling of spatial, tem-
poral, and channel dimensions and hard-coded
data source requirements, it is not always straight-
forward to apply them to our benchmark or in a
comparable manner. In the following sections, we
describe the process by which we obtain embed-
dings (or embedding-like feature vectors), and
how those embeddings/features are extracted
and aggregated. This process has to be redone
for each temporal window or spatial extent un-
der study by obtaining the correct EO data and
running their model and/or assessing resulting
feature vectors using our standardized evaluation
framework and datasets.

To extract features/embeddings from baselines
with outputs at a coarser spatial resolution than
AEF, we bi-linearly resample spatial dimensions
to 10m, and extract the embedding at the precise
location of the evaluation dataset sample. This

location was centered as much as possible in the
geographic tile used for inference, and as the
(longitude, latitude) coordinates of labels were
kept at full precision, sub-pixel aliasing was taken
into account for extraction.

As we were interested in assessing the extrap-
olation power given only sparse in-situ observa-
tions, for linear probes we did not attempt to fit
a full-patch linear decoder to the ViT-based ap-
proaches that produced spatially coarse tokens
(ViT, Prithvi, Clay). We instead fit a per-pixel lin-
ear model after bi-linearly resampling the tokens
to 10m. To ensure equivalence to full-patch de-
coding, all evaluations concerned the same pixel
location (center) such that we were consistently
fitting one of the many linear combinations we
would have fit had we used a full-patch decoder.

S5.1. Controls (not EO-specific)

S5.1.1. XY

The XY coordinate baseline assumes that the
geospatial coordinates (i.e., longitude and lat-
itude) of a given set of sparsely distributed
geocoded labels or observations can be used to
simply interpolate values spatially. This control
essentially tests the hypothesis that location "Is
All You Need”. We decompose polar latitude and
longitude coordinates in degrees into sine and
cosine components. This puts coordinate values
in a continuous range of values, removing the
discontinuity that would otherwise result at the
antimeridian. We concatenate the results, and
treat the resulting vectors as four-dimensional
positional XY embeddings.

We note that XY is not time-varying, so we
were unable to assess change detection evalua-
tions and we generally expect poor performance
on evaluations where landscapes are dynamic
(e.g. agriculture).

S5.1.2. XYZ

The XYZ control extends the XY baseline to a
three-dimensional location coordinate by includ-
ing elevation (height) information. Elevation
plays a role in both regulating abiotic conditions
and may act as a proxy for other terrain-driven
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Approach Category Description Dims Inputs (m)

XY Control Latitude and longitude only 4 XY

XYZ Control Latitude, longitude and elevation 5 XY, elevation

ViT Control Standard vision-transformer pre-trained on
ImageNet

1024 S2 (RGB-only)

Composites Designed Basic mean/median compositing of normal-
ized EO image inputs

16 S1, S2, Landsat
8/9

CCDC Designed Harmonic spectral-temporal features 54 Landsat 8/9 (all
bands)

MOSAIKS Designed Engineered embedding space 1024 S1, S2, Landsat
8/9

SatCLIP Learned Implicit model designed for EO data 256 XY

Prithvi Learned EO foundation model 768 2304 Harmonized
Landsat-Sentinel
(HLS) L30

Clay Learned EO foundation model 768 S1, S2, Landsat
8/9

Table S17 | Summary of baseline approaches compared with AlphaEarth embeddings.

process interactions, e.g., (Hof et al., 2012).
Therefore, the XYZ control tests the hypothesis
that adding height information to positional en-
codings will improve predictive power. As with
the XY baseline, we decompose latitude and lon-
gitude into trigonometric components. We also
retrieve elevation information from the Coperni-
cus GLO-30 DEM (see supplemental materials
S1.8 for more details on this dataset). We mosaic
individual images in the GLO-30 collection and
select the elevation band (‘DEM’). Images are re-
projected toWGS84 with a 1 arcsecond resolution
for sampling. Elevation values are normalized
based on the mean and standard deviation of the
training sample elevations. We concatenate XY
coordinates with sampled elevation, resulting in
five-dimensional positional XYZ embeddings.

We note that XYZ is not time-varying, so we
were unable to assess change detection evalua-
tions and we generally expect poor performance
on evaluations where landscapes are dynamic
(e.g. agriculture).

S5.1.3. Vision Transformer (ViT)

The Vision Transformer (ViT) is a popular deep
learning architecture for computer vision. We use
a ViT trained on the standard ImageNet bench-

mark of images and classification annotations
(Dosovitskiy et al., 2020) as a control. This is
nominally a general-purpose model for computer
vision, so we include it as a control to assess
performance in comparison to systems designed
specifically for EO data.

We choose the ViT-L/16model architecture and
parameters because it is popular for benchmark-
ing and transfer learning in machine learning and
computer vision papers, e.g. (Chen et al., 2021).
As a pre-trained vision model for ImageNet, the
ViT is limited in its resolution, bands, and han-
dling of multi-temporal imagery. Standard ViTs
only accept a single RGB color image, so we select
the RGB bands of Sentinel-2 (L1C) normalized
to the training statistics as input. These are the
bands B2 (blue), B3 (green), and B4 (red). Each
input image is embedded independently across
time, and the outputs are masked using the input
mask. Time is then collapsed by output averag-
ing (weighted by masks). The result is a 1024-
dimensional multi-temporal ViT embedding.

To maximize the performance of the ViT con-
trol, we tuned its hyperparameters to the evalu-
ation set. We tried additional versions including
one using annual composites, random initializa-
tion, and stacking all features through time. We
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found the version described here the most per-
formant, and surprisingly more performant than
non-controls in a number of instances.

S5.2. Designed EO features

S5.2.1. Composites

Rather than rely on reflectance values from any in-
dividual image acquisition, composite approaches
combine observations from multiple image acqui-
sitions to generate spatially continuous mosaics
that optimize for pixel "quality", acquisition tim-
ing, and increasing signal-to-noise. Compositing
approaches are fairly ubiquitous in modern re-
mote sensing applications, i.e., (Francini et al.,
2023; Qiu et al., 2023). Median composites are
fairly standard for optical imagery and tend to
be preferred over mean composites because (a)
medians preserve observed data values, and (b)
are less sensitive to outliers, particularly clouds
and cloud shadows which spectrally lie at very
extreme bright and dark values. For radar im-
agery, mean composites tend to be more common
as the goal is less-so to avoid outliers and select
real data values, and more-so to smooth across
many noisy observations varying with slight de-
viations in acquisition geometry. Composites are
inherently lower-dimensional and orderless (com-
pared with a stack of images which would be
higher-dimensional and preserve the time order
of observations), but serve as an important base-
line for pure spectral information from minimally
transformed de-noised/cloud-free image inputs.

We composite inputs across time by taking the
median for optical sources (Sentinel-2, Landsat-
8/9) and the mean for radar sources (Sentinel-
1). Composite inputs are pre-processed using the
same methods described in supplemental materi-
als S1 and standardized by the AEF pretraining
dataset statistics. Individual images are padded
and masked as necessary to get constant input
data dimensions. We filter by taking the observa-
tions in the valid period when we have them, and
by taking the closest observations to the valid pe-
riod bounds when we do not. Image sources are
combined by concatenation, so the dimension of
the composite feature space varies with the choice
and number of sources. The number of channels

is equal to the sum of the number of bands across
sources, i.e., compositing in this way takes the
input shape 𝐵𝑥𝑇𝑥𝐻𝑥𝑊𝑥𝐷 and makes the output
shape 𝐵𝑥𝐻𝑥𝑊𝑥𝐷′. The final composite feature
vector or “embedding” has 16 dimensions across
the same Sentinel-1, Sentinel-2, and Landsat 8/9
bands used for AEF inference.

To maximize the performance of the compos-
ite baseline, we tuned its hyperparameters to
the evaluation set. We tried additional versions
including one using a consistently annual date
range, mean rather than median compositing,
versions that omitted all combinations of optical /
radar sources, and versions that omitted masking.
We found the version described here the most
performant.

S5.2.2. Continuous Change Detection and Clas-
sification (CCDC)

Harmonic curve-fitting has become an increas-
ingly common approach for generating features
that characterize spectral-temporal trajectories,
e.g., (Pasquarella et al., 2018; Wilson et al.,
2018). The most basic way to generate these sorts
of harmonics would be simply fitting linear mod-
els to time series of EO data, e.g., (Wilson et al.,
2018). However, there are several more sophis-
ticated temporal segmentation approaches that
generate such features as part of a larger change
detection workflows, i.e., Breaks For Additive Sea-
son and Trend (BFAST) (Verbesselt et al., 2010),
Exponentially Weighted Moving Average Change
Detection (EWMACD) (Brooks et al., 2014), and
the Continuous Change Detection and Classifi-
cation (CCDC) (Zhu and Woodcock, 2014) ap-
proach. We chose to use the CCDC approach
because it is (a) well-known and widely used for
remote sensing applications (see Pasquarella et al.
(2022) for a review) and (b) has already been run
globally and surfaced as a dataset, making it one
of the few existing examples of a model-as-dataset
currently available globally in a cloud-computing
environment.

We use precomputed CCDC features/parame-
ters from the global Landsat-based Earth Engine
collection available for 1999-2024 (“projects/C-
CDC/measures/v4”), which is an updated version
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of the Google Global Landsat-based CCDC Seg-
ments (1999-2019) dataset described in Gorelick
et al. (2023). CCDC coefficients are stored as
variable-length arrays and are accessible as an
Earth Engine Image Collection. We select the
eight harmonic coefficients in the *_coefs bands
[𝑜 𝑓 𝑓 𝑠𝑒𝑡, 𝑡, 𝑐𝑜𝑠(𝜔𝑡), 𝑠𝑖𝑛(𝜔𝑡), 𝑐𝑜𝑠(2𝜔𝑡), 𝑠𝑖𝑛(2𝜔𝑡),
𝑐𝑜𝑠(3𝜔𝑡), 𝑠𝑖𝑛(3𝜔𝑡)] plus the *_rmse values for
seven Landsat bands (Blue, Green, Red, NIR,
SWIR1, SWIR2, thermal). To match CCDC coeffi-
cients with a valid period, we choose the segment
that intersects the valid period date for single-
date evaluations and the middle of the specified
valid period for monthly and annual evaluations.
The final CCDC feature vector or “embedding”
has 56 dimensions (8 coefficients for 7 Landsat
bands).

S5.2.3. MOSAIKS

Multi-task Observation using Satellite Imagery &
Kitchen Sinks (MOSAIKS) is a designed nonlinear
representation of satellite imagery intended as
analysis-ready data for accessible use and efficient
computation across downstream tasks (70). It
can be seen as a randomly-initialized linear com-
bination of source data in a small sliding window
with an additional non-linearity. The MOSAIKS
approach provides a spatially localized represen-
tation of input satellite imagery at a specific time,
bearing the same lack-of temporal constraints as
composites. In particular it was first designed for
RGB composite inputs and then generalized to
RGB Sentinel-2 inputs. The MOSAIKS output is
high dimensional and configurable (with a de-
fault of 8192 in the original implementation and
1024 in our reference implementation).

The original model described in (Rolf et al.,
2021) was developed for only single-date RGB im-
agery. We reference the Microsoft Planetary Com-
puter implementation (Microsoft, 2021), which
generates random filters rather than selecting
input patches. Specifically, we sample random
convolutional filter parameters, once, for all in-
puts, convolve each input image with these ran-
dom filters, stack the filter responses and their
negatives to double the channels, apply a ReLU
nonlinearity so the representation is not simply
linear, and pool out the spatial dimensions for a

vector embedding of each input.

We also extend our implementation to sup-
port multi-source output averaging where em-
beddings are generated for each source then
averaged across the sources. This approach is
preferred over concatenating embeddings for
multiple sources as the specified embedding di-
mensionality is preserved regardless of the num-
ber of sources. Similarly, we accommodate
multi-temporal embeddings by averaging outputs
across time. The resulting multi-source, multi-
temporal MOSAIKS embeddings have 1024 di-
mensions.

To maximize the performance of the MOSAIKS
baseline, we tuned its hyperparameters to the
evaluation set. We tried additional versions in-
cluding one using a consistently annual input
date range, versions that utilize composited in-
puts like those described in supplemental ma-
terials S5.2.1, versions that omitted all combi-
nations of optical / radar sources, versions with
[64, 128, 256, 1024, 8192] output features, and
versions stacking all features through time. We
found the version described here the most perfor-
mant.

S5.3. Learned EO features

S5.3.1. SatCLIP

SatCLIP is a deep learning-based approach that
takes inspiration from CLIP approach (Radford
et al., 2021), training location and image en-
coders via contrastive learning and matching im-
ages to their corresponding locations (Klemmer
et al., 2025). SatCLIP models are trained on the
pre-extracted Sentinel-2-100k dataset, a collec-
tion of 100 000 Sentinel-2 images that includes all
available bands (B01, B02, B03, B04, B06, B06,
B07, B08, B08A, B09, B11, B12) resampled to
10m resolution. The SatCLIP authors provide six
pretrained SatCLIP models, trained with different
vision encoders and spatial resolution hyperpa-
rameters.

We evaluate only the SatCLIP Vit16-L40 model,
which outperforms other versions according to
the SatCLIP paper (Klemmer et al., 2025). Dur-
ing evaluation, we use only the location encoder,
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following the procedure suggested by the au-
thors. No specific preprocessing of the locations
is required beforehand, i.e., the location encoder
takes longitude and latitude. Generated SatCLIP
embeddings have 256 dimensions. We note that
SatCLIP is not time-varying, so we were unable to
assess change detection evaluations and we gen-
erally expect poor performance on evaluations
where landscapes are dynamic (e.g. agriculture).

S5.3.2. Prithvi

Prithvi is a temporal pre-trained ViT-based archi-
tecture trained in a fashion similar to Cong et al.
(2022) on Harmonized Landsat Sentinel (HLS)
L30 imagery with 30m nominal scale collected
over the contiguous United States during 2017
(Jakubik et al., 2023a,b). Input videos are lim-
ited to three in the model version provided by the
authors. Prithvi is considered a geospatial foun-
dation model, the encoder output from which
can be used to solve various downstream tasks.
While Prithvi authors only explicitly suggest its
use with additional deep-learning decoders, it
is common to transfer ViT-like architectures via
linear decoding as we do here.

We adapt the approach described in the Prithvi-
specific example HLS Multi-temporal Crop Clas-
sification Model (Li et al., 2023), where encoder
outputs are used as embeddings in a crop clas-
sification task. The multi-temporal embedding
dimension is equal to 768 multiplied by the num-
ber of frames available (1 to 3) yielding 768 to
2304 dimensions.

We retrieve input data from the HLSL30: HLS-
2 Landsat Operational Land Imager Surface Re-
flectance and TOA Brightness Daily Global 30m
collection (Masek et al., 2021) on Earth En-
gine ("NASA/HLS/HLSL30/v002"). We sample
patches of 224x224 at a 30-meter spatial res-
olution. We fetch all images under a specified
cloud cover threshold (20% or 50%) for the sup-
port period and incrementally increase the frame
(into the past) by the HLS maximum revisit pe-
riod until we find an available image. We use a
cloud coverage threshold of 20% for all evaluation
datasets with the exception of the Descals evalua-
tion dataset, where we use a higher (50%) cloud

coverage threshold due to low imagery availabil-
ity. In rare instances (< 1% for any given dataset),
the cloud coverage-based filtering yields no data,
and in these cases we set embeddings for such
entries as the expectation over the computed em-
beddings for a given dataset.

S5.3.3. Clay

The Clay Foundation Model is more akin to a
traditional ViT differentiated by the use of in-
put metadata at inference time. This metadata
includes nominal resolution, the geographic cen-
troid of the input, a source encoding derived from
a wavelength associated with the bandpass or
transmission when applicable, and the observa-
tion timestamp (Clay, 2024). Generating seman-
tic embeddings for any location and time is a
stated use case for the Clay model, and classifica-
tion, regression, and detecting changes over time
are suggested use-cases by the authors.

We sample 256x256 pixel images with a nomi-
nal scale of 10 meters for Sentinel-2 / Sentinel-
1, and 30 meters for Landsat 8/9 per author-
provided instructions. We filter out Landsat and
Sentinel-2 images with cloud coverage exceeding
20%, after that we limit the number of entries per
time frame to fit them into NVIDIA V100 RAM
(30 frames maximum). Input images are normal-
ized using statistics unique to each evaluation’s
training split. To obtain the final embedding over
the valid period, we average over per-source per-
time spatial tokens for a final dimensionality of
768. When no imagery for a particular source is
available within the valid period, we follow the
procedure used for HLS detailed in supplemental
materials S5.3.2.

There are a number of suggested mechanisms
for extracting embeddings from The Clay Foun-
dation Model. For example, the authors suggest
taking the class token as a patch embedding, and
in others, the non-class tokens are averaged. To
tune Clay hyperparameters to our evaluation set,
we tried a number of Clay variants. These in-
cluded using the class token for a patch repre-
sentation and versions that omitted combinations
of optical / radar sources. We found the version
described here the most performant.
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S6. Additional results & discussion

S6.1. Comparisons with 10 and 1 samples per-
class

In our extreme low-shot trials, overall perfor-
mance of methods was close to random chance
in many cases. For 500-fold 10-shot trials, AEF
error reductions were only > 1.0x in the ~90%
confidence interval for 8/15 evaluations with an
average range of variation ±0.38x, and for 1000-
fold 1-shot trials, AEF error reductions were only
> 1.0x in the ~90% confidence interval in 5/15
evaluations with average variation ±0.49x. While
the mean gain was in AEF’s favor for both settings,
we consider the extreme degree of variability in-
dicative that adequate general 1-shot or 10-shot
performance remains an unsolved research fron-
tier.

S6.2. Classification

AEF showed consistently strong performance
across all classification evaluations, while the
next-best approach varies considerably with some
approaches performing no better than the null
expectation for some datasets (Figure S16). This
result indicates the utility of AEF as a general-
purpose feature space suitable for a multitude of
classification problems ranging from simple, bi-
nary legends to detailed land use, land cover, and
even genus-level tree species mapping. While fur-
ther iteration on training labels and/or secondary
predictors may improve absolute accuracies, AEF
shows previously unachievable performance in
low-shot regimes with simple classifiers, unlock-
ing use cases that may have previously been un-
tenable given sparse observational records and/or
highly detailed taxonomies.

For the applications considered, AEF often of-
fers a notable improvement over other archetypal
examples of other designed and learned feature
spaces. CCDC harmonics were the next-best pre-
dictors for Canada crops (coarse and fine) and
Africa crop mask, suggesting spectral-temporal
information characterizing phenology is more im-
portant than spatial resolution or multi-sensor
inputs for these crop-mapping applications. Sat-
CLIP was the next-best approach for Ethiopia

crops and US trees, evaluations we would expect
should benefit phenological information. Prefer-
ence for SatCLIP here suggests encoding localized
EO features was beneficial for these tasks, and
improvements for SatCLIP relative to the coordi-
nate and ViT controls indicate that these gains
can be attributed to inclusion of EO-specific in-
formation content. We find that MOSAIKS is the
next-best predictor for GLancE and LCMAP land
cover, while Clay for LUCAS land use and land
cover. Preference for MOSAIKS indicates spatial
context provides valuable information for land
cover mapping at both national and global scales,
as it would for Clay which also does not have
access to multitemporal information.

Interestingly, we found that in some cases, con-
trols were selected as the second-best approach,
specifically the XYZ control for the Descals oil
palm evaluation and the ViT for the LCMAP land
use evaluation. This suggests that AEF is more
effectively leveraging EO-specific data sources to
generate learned representations than other base-
lines that do not consistently outperform controls.
In general, we found Prithvi to exhibit poor per-
formance. This is not particularly surprising given
the model is not explicitly designed to provide
a feature space, and confirms that Prithvi is not
well-suited for this sort of low-shot classification
and requires additional fine-tuning. However, it is
interesting to note the lack of parity with the ViT
control that has not been trained on EO data, does
not have access to multitemporal information, nor
is intended to function as a feature space.

Of the low-shot classification methods consid-
ered, AEF features typically exhibited the great-
est balanced accuracies for the linear classifier
experiments for the max trial groups, with the
exception of Ethiopia crops, where kNN with
k=1 is preferred (Figure S16). We believe the
Ethiopia crops evaluation is particularly challeng-
ing given its extreme sparsity and fine scale, and
so simple nearest neighbor classification was the
best method of transfer for a handful of methods.
Given the generally poor performance of all meth-
ods on this four class classification problem, there
are opportunities to improve performance on this
type of dataset.
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Figure S16 | Classification results reported in terms of balanced accuracy. Black dotted line indicates
expected accuracy given random chance / number of classes. Error bars indicate 1𝜎 (68.27%) confi-
dence interval by bootstrapping or bootstrapping and k-folds for small datasets, e.g., ethiopia_crops,
canada_crops_*.
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Figure S17 | Regression results reported in terms
of mean 𝑅2 values. Error bars indicate 1𝜎
(68.27%) confidence interval by bootstrapping.
Negative 𝑅2 estimates were clamped to zero for
visualization purposes.

S6.3. Regression

For regression tasks, AEF again exhibited the best
overall performance in terms of both gains in 𝑅2

and reductions in MAE (Figures S17 and S18).
We find that 𝑅2 values for AEF are always within a
valid range, noting that several other approaches
produced negative 𝑅2 values i.e. worse-than-null
performance for ASTER GED (emissivity predic-
tion). OpenET ensemble (evapotranspiration pre-
diction) was evidently more challenging where
almost all other methods had negative values
(clipped to -0.01 for plotting purposes; Figure
S17).

For predicting ASTER emissivity values, MO-
SAIKS is the next-best approach and compos-
ites generally show strong performance, while
spectral-temporal CCDC features and XY and
XYZ positional encodings are demonstrably worse.
This indicates that local spatial patterns and over-
all reflectance (as opposed to seasonality in re-
flectance) are important factors for this use case.

When evaluating on the OpenET Ensemble
dataset, we found that AEF was the only approach
to produce viable results using all kNN and lin-
ear predictors considered. Of the other baselines,
composites with linear probes and MOSAIKS with

Figure S18 | Regression results reported in terms
of Mean Absolute Error (MAE). Error bars indi-
cate 1𝜎 (68.27%) confidence interval by boot-
strapping. Dotted line represents approximate
expectation of error from product publications.

knn with k=3 produced the only other viable re-
sults in terms of having 𝑅2 values greater than 0
(i.e., greater variance explained than the mean).
Looking at results in terms of MAE where lower
values indicate better performance, we find AEF
has an error rate in line with what would be ex-
pected for both ASTER GED and OpenET perfor-
mance expectations for the data products these
evaluation datasets were sampled from (Figure
S18). Here we can more clearly see variability
in performance, with particularly large errors for
SatCLIP and Prithvi linear trials.

Though we note the small sample use cases
represented here, we do note that continuous
measurements, as opposed to discrete categori-
cal labels, are often associated with field-based
observational datasets, and we expect to see ex-
ternal comparisons including AEF on additional
regression problems in the future following our
data release (see Model-as-data section).

S6.4. Change detection

The SatCLIP, XY, and XYZ baselines were omitted
from change detection comparisons given these
approaches are location-only, i.e., have no time
handling or way to differentiate between obser-
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Figure S19 | Change detection results reported
in terms of balanced accuracy. The black dotted-
line indicates random chance for classification
evaluations given the number of classes. Error
bars indicate 1𝜎 (68.27%)confidence interval by
bootstrapping.

vations at different times. We find generally less
differentiation in performance across methods,
with the exception of Prithvi and linear trials of
MOSAIKS, which perform at or near the random
baseline (Figure S19).

S7. Ablations

S7.1. Training observations

We share a full set of plots detailing the perfor-
mance scaling of AEF relative to other learned
baselines as additional observations are added
(Figure S21). Baselines were omitted when 𝑅2

values were < 0, or for change detection evalu-
ations when the baseline was not time-varying
(SatCLIP). We note no obvious trend among the
baselines, indicating methodologies that perform
better on some problems more so than others.
AEF generally improves monotonically as addi-
tional observations are added for 9-of-15 evalua-
tion datasets. There is some unpredictable non-
montonicity for some evals, but we do not identify
any obvious grouping or regional bias.

S7.2. Sources

We share a full set of plots detailing the perfor-
mance of AEF relative to ablated by source groups.
The groups are as follows: Optical (Sentinel-2,
Landsat-8 / Landsat-9), Radar (Sentinel-1, PAL-
SAR2 ScanSAR), LiDAR (GEDI), Environmental
(GLO 30, ERA5 Land, GRACE), and Annotated
(NLCD, Wikipedia) (Figure S21). We note a va-
riety of patterns characterized by source groups,
though 11-of-15 evaluations were most perfor-
mant with all groups. Evidently, different evalu-
ations "prefer" different types of measurements;
in some cases this is expected e.g. the Descals
oil palm evaluation is most performant with Op-
tical + Radar + LiDAR as these groups offer the
most information regarding sub-canopy structure,
where climatic variables and free-form text an-
notations / land-cover labels are less informa-
tive. Unsurprisingly, all LULC evaluations (ex-
cluding change) are most performant with all
groups including the Annotated group, though
interestingly this does not lead to the biggest per-
formance gain compared to adding radar and
lidar data.

S7.3. Bottleneck characteristics

AEF’s reconstruction task relies on a noisy bot-
tleneck to compress and extrapolate information
from the sparse input sequence. Two model hy-
perparameters, the embedding dimension, and
the channel noise parameterized by VMF 𝜅, di-
rectly affect the capacity of this bottleneck. Lower
settings of 𝜅 in particular will also affect the
smoothness of the latent (embedding) manifold
due to the regularizing effect of the noise (Kingma
et al., 2013). This last property is desirable when
using embeddings for nearest neighbor retrieval
as distances measured along a smooth (lower di-
mensional) manifold are more meaningful than
those in a higher dimensional space (assuming
the manifold hypothesis (Fefferman et al., 2016).
Therefore contention exists between a smoother
embedding space (lower 𝜅), and the information
capacity of the channel and therefore embedding
(higher 𝜅). We explore this in the context of em-
bedding dimension across all methods of transfer
and trial group sizes in Figure S22. The the set-
ting used for AEF was Embedding 𝐷 = 64, 𝜅 = 8𝑒3.
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Figure S20 | Effects of scaling observations for evals in linear probe max-trial regime. Error bars
indicate 1𝜎 BA / 𝑅2 or ~68.27% confidence interval by bootstrapping and k-folds when possible. AEF
is represented by the dotted line and star markers.
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Figure S21 | Effects of additional source groups for evals in linear probe max-trial regime. Error bars
indicate 1𝜎 BA / 𝑅2 or ~68.27% confidence interval by bootstrapping and k-folds when possible. The
London-fog-blue bar to the far right matches the version of AEF used in other comparisons.
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Figure S22 | Evaluation performance as a function of embedding dimension (Embedding 𝐷) and VMF
kappa (𝜅) for all trial sizes (1 shot, 10 shot, and max shot) and methods of transfer (nearest neighbors
for k=1, k=3, and linear probe). The red square indicates the parameter setting (Embedding 𝐷 = 64,
𝜅 = 8𝜅) used for AEF.
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Figure S22 | (con’t) Evaluation performance as a function of embedding dimension (Embedding
𝐷) and VMF kappa (𝜅) for all trial sizes (1 shot, 10 shot, and max shot) and methods of transfer
(nearest neighbors for k=1, k=3, and linear probe). The red square indicates the parameter setting
(Embedding 𝐷 = 64, 𝜅 = 8𝜅) used for AEF.
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Figure S22 | (con’t) Evaluation performance as a function of embedding dimension (Embedding
𝐷) and VMF kappa (𝜅) for all trial sizes (1 shot, 10 shot, and max shot) and methods of transfer
(nearest neighbors for k=1, k=3, and linear probe). The red square indicates the parameter setting
(Embedding 𝐷 = 64, 𝜅 = 8𝜅) used for AEF.
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Figure S22 | (con’t) Evaluation performance as a function of embedding dimension (Embedding
𝐷) and VMF kappa (𝜅) for all trial sizes (1 shot, 10 shot, and max shot) and methods of transfer
(nearest neighbors for k=1, k=3, and linear probe). The red square indicates the parameter setting
(Embedding 𝐷 = 64, 𝜅 = 8𝜅) used for AEF.
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We find that performance as a function of
bottleneck characteristics varies considerably de-
pending on the evaluation dataset. One expected
trend emerges for datasets with larger legends
compared to e.g. two or three class classifica-
tion problems in the max-trial setting: Canada
crops (fine), LUCAS derived datasets, and iNatu-
ralist trees all tend to perform better with more
concentrated noise and higher embedding dimen-
sions. We also, expectedly, find that a noisier
bottleneck seems to improve, or not impact, the
performance in the smaller trial groups (500x10,
1000x1). This is most evident in Canada crops
derived datasets and OpenET ensemble.

S8. Inference

S8.1. Quantization

To reduce the storage and compute require-
ments for working with our released embedding
field data, we opted to test a number of post-
quantization schemes. We tried quantizing 32-bit
float values to signed 8-bit and 16-bit integers
using a method identical to the following pseudo-
JAX method:
def quantize (

x: chex.Array ,
power : float ,
scale : float ,
min_value : float ,
max_value : float ,
quantization_type : jnp. dtype ) -> chex. Array :

sat = jnp.abs(x) ** (1 / power ) * jnp.sign(x)
snapped = jnp. round (sat * scale )

return jnp.clip(
snapped ,
min_value ,
max_value

). astype ( quantization_type )

Values were dequantized using a method iden-
tical to the following pseudo-JAX method:
def dequantize (

y: chex.Array ,
power : float ,
scale : float ,
quantization_type : jnp. dtype ) -> chex. Array :

rescaled = y. astype (jnp. float32 ) / scale
return (

jnp.abs( rescaled ) ** power * jnp.sign( rescaled )
)

The exponentiation was introduced to preserve
information in the least significant digits of de-
quantized values. We used the following scale,
minimum, and maximum values according to Ta-
ble S18.

Integer type Scale Min
value

Max
value

int8 (s8) 127.5 127 127

int16 (s16) 32767.5 32767 32767

Table S18 | Quantization parameters.

(a) Quantization results for regression evals.

We did not initially assume that 8-bits ought to
be enough for any evaluation given that quantiza-
tion was not part of the learning process, we were
nonetheless pleased to note little performance
variability compared to the non-quantized em-
beddings as shown in Figure S23A-C. As quanti-
zation was not part of our comparisons, we chose
to quantize to 8-bits with power = 2 as this gave
the best storage / performance tradeoff based on
evaluation performance. We believe our compari-
son results with this quantization strategy would
be largely the same as without.

(b) Quantization results for change detection evals.
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(c) Quantization results for classification evals.

Figure S23 | Quantization results. s82 is the quantization strategy used for our released embedding
fields data. The exponent on the x-axis labels indicates the quantization power.
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S8.2. Creating embedding fields

To produce global, annual, embedding field lay-
ers, we divide the world into UTM zones, and
run inference in a tiling of each zone by 960m x
960m. Before input sources are collected, each
tile is individually buffered by 160m on each side
(overtiling) to provide a 1.28km x 1.28km tile for
inference. Sources are collected using the same
protocol as for our training data, a model forward
pass is run, and the outer 80m is trimmed from
each tile before rendering back onto the UTM
zone. We include the tiles that slightly extend
beyond UTM zone degree boundaries to avoid
seams when using the data in different projec-
tions.

Our inference system is the same as our train-
ing data collection system, and is backed entirely
by Earth Engine. A great degree of care was
taken to ensure our inference system respects
the shared capacity of Earth Engine while scal-
ing to hundreds of billions of observations. As
we’ve demonstrated strong performance in our
annual-period evaluations, we hope our annual
embedding fields enable more practitioners to
achieve similar results without the need or ex-
pense of pushing field campaigns to meet the
needs of custom deep learning workflows.
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