A7D
De novo structure prediction with deep-learning based scoring
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A7D CASP13 submissions were produced by three variants of an automatic free-modelling structure
prediction system relying on scores computed with deep neural networks. Scoring relied on one of two
neural networks: a predictor of inter-residue distances and a direct-scoring network. The basic method
used a generative neural network for fragment generation for fragment assembly in
memory-augmented simulated annealing. Successive rounds of simulated annealing used fragments
from the memory. The third method used full-chain score minimization with gradient descent.

Methods

The systems tested all use multiple sequence alignments (MSA) and profiles generated from HHBlits
[2] and PSI-BLAST [3]. No templates were used, nor were server predictions. No manual intervention
was made except for domain segmentation of T0999 and final decoy ranking in a handful of cases. In
protein complexes, each chain was processed independently.

Scoring

Two neural networks were used for scoring. For the first, a very deep residual convolutional
neural network was trained on a non-redundant database of proteins selected from the Protein Data
Bank (PDB) to predict the distances between C-beta atoms of different residues, using MSA-based
features. With these predictions and a reference distribution, a likelihood score was computed for
candidate structures according to the realised distances.

A second deep residual convolutional neural network was trained to directly output a score as a
function of structure geometry, MSA-based features and the contact predictions from the first network.

Domain segmentation

Domain segmentation hypotheses for two or three domains were generated by automatic
analysis of the full-chain contact matrix prediction derived from the inter-residue distance prediction.
Each domain segmentation hypothesis (as well as full chain without segmentation) was folded
independently up to eight times with the domains in each hypothesis being folded independently.

Fragment assembly

Two approaches were used for structure modelling. The first was based on fragment assembly.
For each domain, a DRAW [4] model of backbone torsion angles, trained on the same PDB subset was
sampled to generate a set of overlapping 9-residue fragments. Fragments were inserted with simulated
annealing using a score based on our distance predictions for the domain hypothesis plus Rosetta’s [1]
score2 (Variant 1) or the direct structure scoring without Rosetta (Variant 2).
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Repeated rounds of simulated annealing were run, using evolutionary hyper-parameter optimization to
tune run-length and start temperature, with successive rounds using fragments from the structures
generated in previous rounds.

The best-scoring structures from simulated annealing were relaxed using Rosetta fast relax with
our inter-residue distance prediction score and Rosetta’s full-atom score.

Domain assembly

After domain-level relaxation, for each domain segmentation, full-chain structures were
assembled from domain structures with simulated annealing and further relaxed. The best-scoring
full-chain structure for each run of each domain segmentation hypothesis for each method was chosen.

Direct structure optimization

An alternative structure modelling approach was used for Variant 3 without any domain
segmentation. Here we used gradient descent of a combination score (inter-residue distance prediction
score + neural-network-based torsion angle prediction likelihood + score2) to optimize full chain
structures, parameterised with torsion angles.

Decoy selection

Five ranked structure predictions were submitted for each “all groups” target. Initial
submissions used variants 1 & 2 in parallel, but submissions from T0975 on used variants 1 & 3 in
parallel. The 5 candidate submissions were the best scoring from among the independent runs of the
two different methods, with a bias towards selecting from variants 2 or 3, and manual ranking in a
handful of cases.
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