AlphaGeometry solution to the Olympiad problem 3, 2005

For more information, please read our paper in Nature: "Solving olympiad geometry without human demonstrations" <u>https://doi.org/10.1038/s41586-023-06747-5</u>

Step 1. B, C, M are collinear and AH is perpendicular to BC \Rightarrow AH is perpendicular to CM.

Neural Language Model: construct point D as the midpoint of BH.

Step 2. B, H, D are collinear and AC is perpendicular to $BH \Rightarrow AC$ is perpendicular to HD.

Step 3. AC is perpendicular to HD and AH is perpendicular to $CM \Rightarrow \angle HAC = \angle (CM, HD)$ and $\angle AHD = \angle MCA$.

Step 4. A, F, H are collinear, B, C, F are collinear, B, C, M are collinear, B, H, D are collinear and \angle HAC = \angle (CM, HD) $\Rightarrow \angle$ CAF = \angle HBF.

Step 5. A, F, H are collinear, B, C, F are collinear and AH is perpendicular to BC $\Rightarrow \angle AFC = \angle BFH$.

Step 6. $\angle CAF = \angle HBF$ and $\angle AFC = \angle BFH \Rightarrow FA/FB = FC/FH$.

Step 7. A, F, H are collinear, B, C, F are collinear and AH is perpendicular to BC $\Rightarrow \angle AFB = \angle CFH$.

Step 8. $\angle AFB = \angle CFH$ and $FA/FB = FC/FH \Rightarrow \angle BAF = \angle HCF$ and $\angle ABF = \angle CHF$.

Step 9. BM = CM and BO = CO \Rightarrow BC is perpendicular to MO.

Step 10. B, C, M are collinear and $BM = CM \Rightarrow M$ is the midpoint of BC.

Neural Language Model: construct point G as the midpoint of CH.

Step 11. C, H, G are collinear and CG = HG \Rightarrow G is the midpoint of CH.

Step 12. M is the midpoint of BC and G is the midpoint of $CH \Rightarrow BH$ is parallel to MG.

Step 13. B, H, D are collinear and $BD = HD \Rightarrow D$ is the midpoint of BH.

Step 14. M is the midpoint of BC and D is the midpoint of $BH \Rightarrow CH$ is parallel to MD.

Step 15. HO2 = O2Q and KO2 = O2Q \Rightarrow O2 is the circumcenter of HKQ.

Step 16. AQ is perpendicular to HQ and HK is perpendicular to KQ $\Rightarrow \angle$ AQH = \angle QKH.

Step 17. O2 is the circumcenter of HKQ and $\angle AQH = \angle QKH \Rightarrow AQ$ is perpendicular to O2Q.

Step 18. HO2 = O2Q, AQ is perpendicular to HQ and AQ is perpendicular to O2Q \Rightarrow O2 is the midpoint of HQ.

Step 19. O2 is the midpoint of HQ and G is the midpoint of $CH \Rightarrow CQ$ is parallel to O2G.

Step 20. O2 is the midpoint of HQ and D is the midpoint of $BH \Rightarrow BQ$ is parallel to O2D.

Step 21. AO = BO, AO = OQ and BO = $CO \Rightarrow A, B, C, Q$ are cyclic.

Step 22. A, B, C, Q are cyclic $\Rightarrow \angle ABQ = \angle ACQ$ and $\angle ACB = \angle AQB$.

Step 23. A, F, H are collinear, B, C, F are collinear, B, C, M are collinear, B, H, D are collinear,

 \angle BAF = \angle HCF, \angle HAC = \angle (CM, HD), BH is parallel to MG and CH is parallel to MD \Rightarrow

 \angle (AB, MD) = \angle (AC, MG).

Step 24. $\angle ABQ = \angle ACQ$, BQ is parallel to O2D and CQ is parallel to O2G $\Rightarrow \angle (AB, O2D) = \angle (AC, O2G)$.

Step 25. \angle (AB, MD) = \angle (AC, MG) and \angle (AB, O2D) = \angle (AC, O2G) $\Rightarrow \angle$ GMD = \angle GO2D.

AB - MD = AC - MG

AB - O2D = AC - O2G

 \Rightarrow O2D - MD = O2G - MG

 \Rightarrow O2D - O2G \Rightarrow MD - MG

 \Rightarrow D O2 G = D M G

Step 26. \angle GMD = \angle GO2D \Rightarrow M, O2, G, D are cyclic.

Step 27. A, F, H are collinear, B, C, F are collinear and AH is perpendicular to $BC \Rightarrow BF$ is perpendicular to FH.

Step 28. D is the midpoint of BH and BF is perpendicular to $FH \Rightarrow BD = FD$.

Step 29. BD = FD $\Rightarrow \angle$ BFD = \angle DBF.

Step 30. G is the midpoint of CH and D is the midpoint of $BH \Rightarrow BC$ is parallel to GD.

Step 31. B, C, F are collinear, B, C, M are collinear, B, H, D are collinear, $\angle BFD = \angle DBF$, BC

is parallel to GD and BH is parallel to MG $\Rightarrow \angle$ MFD = \angle MGD.

Step 32. \angle MFD = \angle MGD \Rightarrow F, M, G, D are cyclic.

- Step 33. F, M, G, D are cyclic and M, O2, G, D are cyclic \Rightarrow F, M, O2, G are cyclic.
- Step 34. F, M, O2, G are cyclic and F, M, G, D are cyclic \Rightarrow F, O2, G, D are cyclic.
- Step 35. F, O2, G, D are cyclic $\Rightarrow \angle O2FG = \angle O2DG$.
- Step 36. AC is perpendicular to HD and AQ is perpendicular to HQ $\Rightarrow \angle CAQ = \angle DHQ$ and $\angle (AC, HQ) = \angle (HD, AQ)$.

Step 37. B, H, D are collinear, $\angle CAQ = \angle DHQ$, BH is parallel to MG, AQ is perpendicular to

HQ and AQ is perpendicular to O2Q $\Rightarrow \angle$ (AC, MG) = \angle (AQ, HO2).

Step 38. B, C, M are collinear and $\angle ACB = \angle AQB \Rightarrow \angle ACM = \angle AQB$.

Step 39. \angle (AC, MG) = \angle (AQ, HO2) and \angle ACM = \angle AQB $\Rightarrow \angle$ (BQ, HO2) = \angle CMG.

Step 40. AO = BO and BO = CO \Rightarrow O is the circumcenter of ABC.

Step 41. O is the circumcenter of ABC and M is the midpoint of BC $\Rightarrow \angle$ (AB, MO) = \angle ACO and \angle BAC = \angle MOC.

Step 42. AO = BO and BO = CO \Rightarrow AO = CO.

Step 43. AO = CO $\Rightarrow \angle ACO = \angle OAC$.

Step 44. B, H, D are collinear, \angle HAC = \angle (CM, HD) and BH is parallel to MG $\Rightarrow \angle$ (AC, MG) = \angle (AH, CM).

Step 45. \angle (AB, MO) = \angle ACO, \angle ACO = \angle OAC, AH is perpendicular to BC and BC is perpendicular to MO $\Rightarrow \angle$ BAH = \angle OAC.

Step 46. \angle BAH = \angle OAC and \angle (AC, MG) = \angle (AH, CM) $\Rightarrow \angle$ (AB, CM) = \angle (AO, MG).

Step 47. A, F, H are collinear, B, C, F are collinear and AH is perpendicular to BC \Rightarrow CF is perpendicular to FH.

Step 48. G is the midpoint of CH and CF is perpendicular to $FH \Rightarrow FG = HG$.

Step 49. FG = HG $\Rightarrow \angle$ FHG = \angle GFH.

Step 50. B, C, M are collinear, \angle (BQ, HO2) = \angle CMG, \angle O2FG = \angle O2DG, BC is parallel to GD and BQ is parallel to O2D $\Rightarrow \angle$ O2FG = \angle (HO2, MG).

Step 51. A, F, H are collinear, B, C, F are collinear, B, C, M are collinear, C, H, G are collinear, \angle (AB, CM) = \angle (AO, MG), \angle ABF = \angle CHF and \angle FHG = \angle GFH $\Rightarrow \angle$ (AH, FG) = \angle (AO, MG).

Step 52. \angle (AH, FG) = \angle (AO, MG) and \angle O2FG = \angle (HO2, MG) $\Rightarrow \angle$ (AH, FO2) = \angle (AO, HO2).

Step 53. B, C, M are collinear, B, H, D are collinear, $\angle ACB = \angle AQB$, $\angle AHD = \angle MCA$ and BH is parallel to MG $\Rightarrow \angle (AH, MG) = \angle BQA$.

Step 54. B, H, D are collinear, \angle (AC, HQ) = \angle (HD, AQ), BH is parallel to MG, AQ is

perpendicular to HQ and AQ is perpendicular to O2Q $\Rightarrow \angle$ (AC, MG) = \angle (HO2, AQ).

Step 55. \angle (AC, MG) = \angle (HO2, AQ) and \angle (AH, MG) = \angle BQA $\Rightarrow \angle$ HAC = \angle (BQ, HO2).

Step 56. AO = BO, AO = OQ and BO = CO \Rightarrow O is the circumcenter of BCQ.

Step 57. O is the circumcenter of BCQ and M is the midpoint of BC $\Rightarrow \angle$ (BQ, MO) = \angle QCO. Step 58. \angle HAC = \angle (BQ, HO2), \angle (BQ, MO) = \angle QCO, CQ is parallel to O2G, AH is

perpendicular to BC and BC is perpendicular to MO $\Rightarrow \angle$ (AC, HO2) = \angle (CO, O2G).

Step 59. $\angle BAC = \angle MOC$, AH is perpendicular to BC and BC is perpendicular to MO $\Rightarrow \angle BAC = \angle (AH, CO)$.

Step 60. $\angle BAC = \angle (AH, CO)$ and $\angle (AC, HO2) = \angle (CO, O2G) \Rightarrow \angle (AB, HO2) = \angle (AH, O2G)$.

Step 61. A, F, H are collinear, B, C, F are collinear, B, C, M are collinear, $\angle BAF = \angle HCF$ and CH is parallel to MD $\Rightarrow \angle (AB, MD) = \angle (AH, CM)$.

Step 62. \angle (AB, HO2) = \angle (AH, O2G) and \angle (AB, MD) = \angle (AH, CM) $\Rightarrow \angle$ (CM, O2G) =

 \angle (MD, HO2).

Step 63. M, O2, G, D are cyclic $\Rightarrow \angle O2MD = \angle O2GD$.

Step 64. B, C, M are collinear, \angle (CM, O2G) = \angle (MD, HO2), \angle O2MD = \angle O2GD and BC is parallel to GD $\Rightarrow \angle$ (HO2, MD) = \angle O2MD.

Step 65. \angle (HO2, MD) = \angle O2MD \Rightarrow HO2 is parallel to MO2.

Step 66. HO2 is parallel to MO2 \Rightarrow H, M, O2 are collinear.

Step 67. AH is perpendicular to CM and AQ is perpendicular to HQ $\Rightarrow \angle$ HAQ = \angle (CM, HQ).

Step 68. A, F, H are collinear, B, C, F are collinear, B, C, M are collinear, H, M, O2 are collinear,

 \angle HAQ = \angle (CM, HQ), AQ is perpendicular to HQ and AQ is perpendicular to O2Q $\Rightarrow \angle$ AFM = \angle AQM.

Step 69. $\angle AFM = \angle AQM \Rightarrow A, F, M, Q$ are cyclic.

Step 70. A, F, M, Q are cyclic $\Rightarrow \angle AFQ = \angle AMQ$.

Step 71. \angle (AH, FO2) = \angle (AO, HO2), AH is perpendicular to BC, AQ is perpendicular to HQ,

AQ is perpendicular to O2Q and BC is perpendicular to MO $\Rightarrow \angle AOM = \angle QO2F$.

Step 72. A, F, H are collinear, H, M, O2 are collinear, $\angle AFQ = \angle AMQ$, AH is perpendicular to BC, AQ is perpendicular to HQ, AQ is perpendicular to O2Q and BC is perpendicular to MO \Rightarrow

 $\angle AMO = \angle O2QF.$

Step 73. $\angle AMO = \angle O2QF$ and $\angle AOM = \angle QO2F \Rightarrow OA/OM = O2F/O2Q$.

Step 74. F, M, O2, G are cyclic $\Rightarrow \angle$ MFO2 = \angle MGO2.

Step 75. AO = KO and AO = $OQ \Rightarrow KO = OQ$.

Step 76. KO = OQ and KO2 = O2Q \Rightarrow O2O is the bisector of \angle KO2Q.

Step 77. KO = OQ and KO2 = O2Q \Rightarrow KQ is perpendicular to OO2.

Step 78. AO = BO, AO = KO and BO = CO \Rightarrow A, B, C, K are cyclic.

Step 79. A, B, C, K are cyclic and A, B, C, Q are cyclic \Rightarrow A, C, K, Q are cyclic.

Step 80. A, C, K, Q are cyclic $\Rightarrow \angle ACK = \angle AQK$ and $\angle CAK = \angle CQK$.

Step 81. AC is perpendicular to HD and HK is perpendicular to KQ $\Rightarrow \angle$ (AC, HK) = \angle (HD, KQ).

Step 82. $\angle ACK = \angle AQK$, O2O is the bisector of $\angle KO2Q$, AQ is perpendicular to O2Q and

KQ is perpendicular to OO2 $\Rightarrow \angle$ ACK = \angle OO2K.

Step 83. B, H, D are collinear, \angle (AC, HK) = \angle (HD, KQ), BH is parallel to MG, HK is

perpendicular to KQ and KQ is perpendicular to OO2 $\Rightarrow \angle$ (AC, MG) = \angle (OO2, KQ).

Step 84. \angle (AC, MG) = \angle (OO2, KQ) and \angle ACK = \angle OO2K \Rightarrow \angle (CK, MG) = \angle O2KQ.

Step 85. A, B, C, K are cyclic $\Rightarrow \angle ACB = \angle AKB$.

Step 86. AO = BO, AO = KO and BO = CO \Rightarrow O is the circumcenter of BCK.

Step 87. O is the circumcenter of BCK and M is the midpoint of BC $\Rightarrow \angle KBO = \angle (CK, MO)$.

Step 88. AO = BO and AO = KO \Rightarrow BO = KO.

Step 89. BO = KO $\Rightarrow \angle BKO = \angle OBK$.

Step 90. B, C, M are collinear, B, H, D are collinear, $\angle ACB = \angle AKB$, $\angle AHD = \angle MCA$ and BH is parallel to MG $\Rightarrow \angle (AH, MG) = \angle BKA$.

Step 91. \angle KBO = \angle (CK, MO), \angle BKO = \angle OBK, AH is perpendicular to BC and BC is

perpendicular to MO $\Rightarrow \angle$ (AH, CK) = \angle BKO.

Step 92. \angle (AH, CK) = \angle BKO and \angle (AH, MG) = \angle BKA $\Rightarrow \angle$ AKO = \angle (MG, CK).

Step 93. \angle (CK, MG) = \angle O2KQ and \angle AKO = \angle (MG, CK) $\Rightarrow \angle$ AKO = \angle QKO2.

Step 94. $\angle CAK = \angle CQK$ and CQ is parallel to $O2G \Rightarrow \angle CAK = \angle (O2G, KQ)$.

Step 95. \angle CAK = \angle (O2G, KQ) and \angle AKO = \angle QKO2 $\Rightarrow \angle$ (AC, KO) = \angle GO2K.

Step 96. B, C, F are collinear, B, C, M are collinear, B, H, D are collinear, \angle HAC = \angle (CM,

HD), \angle MFO2 = \angle MGO2 and BH is parallel to MG $\Rightarrow \angle$ CAH = \angle GO2F.

Step 97. \angle CAH = \angle GO2F and \angle (AC, KO) = \angle GO2K $\Rightarrow \angle$ (AH, KO) = \angle FO2K.

Step 98. AO = KO, KO2 = O2Q and OA/OM = O2F/O2Q \Rightarrow O2F/O2K = OK/OM.

Step 99. \angle (AH, KO) = \angle FO2K, AH is perpendicular to BC and BC is perpendicular to MO \Rightarrow \angle FO2K = \angle MOK.

Step 100. \angle FO2K = \angle MOK and O2F/O2K = OK/OM $\Rightarrow \angle$ FKO2 = \angle OMK.

Neural Language Model: construct point E as the midpoint of KM.

Step 101. KO1= MO1 and KE = ME \Rightarrow KM is perpendicular to O₂E.

Step 102. FO1= KO1and KO1= MO1 \Rightarrow O1 is the circumcenter of FKM.

Step 103. K, M, E are collinear and KE = ME \Rightarrow E is the midpoint of KM.

Step 104. O₁ is the circumcenter of FKM and E is the midpoint of KM $\Rightarrow \angle$ KFM = \angle KO₂E.

Step 105. B, C, M are collinear, K, M, E are collinear, AH is perpendicular to BC and KM is perpendicular to $O_2E \Rightarrow \angle (AH, CM) = \angle KEO_2$.

Step 106. B, C, F are collinear, B, C, M are collinear and $\angle KFM = \angle KO_2E \Rightarrow \angle (CM, FK) = \angle EO_2K$.

Step 107. \angle (AH, CM) = \angle KEO1and \angle (CM, FK) = \angle EO₂K $\Rightarrow \angle$ (AH, FK) = \angle EKO₂.

Step 108. K, M, E are collinear, \angle (AH, FK) = \angle EKO₂, \angle FKO2 = \angle OMK, AH is

perpendicular to BC and BC is perpendicular to $MO \Rightarrow \angle FKO2 = \angle FKO2$.

Step 109. \angle FKO2 = \angle FKO1 \Rightarrow KO2 is parallel to KO₂.

Step 110. KO2 is parallel to KO1 \Rightarrow K, O2, O1are collinear