AlphaGeometry solution to the Olympiad problem 3, 2005

For more information, please read our paper in Nature: "Solving olympiad geometry without human demonstrations" https://doi.org/10.1038/s41586-023-06747-5

Step 1. $\mathrm{B}, \mathrm{C}, \mathrm{M}$ are collinear and AH is perpendicular to $\mathrm{BC} \Rightarrow \mathrm{AH}$ is perpendicular to CM .
Neural Language Model: construct point D as the midpoint of BH.
Step 2. B, H, D are collinear and $A C$ is perpendicular to $B H \Rightarrow A C$ is perpendicular to HD.
Step 3. AC is perpendicular to HD and AH is perpendicular to $\mathrm{CM} \Rightarrow \angle \mathrm{HAC}=\angle(\mathrm{CM}, \mathrm{HD})$ and $\angle \mathrm{AHD}=\angle \mathrm{MCA}$.

Step 4. A, F, H are collinear, B, C, F are collinear, B, C, M are collinear, B, H, D are collinear and $\angle \mathrm{HAC}=\angle(\mathrm{CM}, \mathrm{HD}) \Rightarrow \angle \mathrm{CAF}=\angle \mathrm{HBF}$.

Step 5. A, F, H are collinear, B, C, F are collinear and AH is perpendicular to $\mathrm{BC} \Rightarrow \angle \mathrm{AFC}=$ $\angle \mathrm{BFH}$.

Step 6. $\angle \mathrm{CAF}=\angle \mathrm{HBF}$ and $\angle \mathrm{AFC}=\angle \mathrm{BFH} \Rightarrow \mathrm{FA} / \mathrm{FB}=\mathrm{FC} / \mathrm{FH}$.
Step 7. A, F, H are collinear, B, C, F are collinear and AH is perpendicular to $\mathrm{BC} \Rightarrow \angle \mathrm{AFB}=$ $\angle \mathrm{CFH}$.

Step 8. $\angle \mathrm{AFB}=\angle \mathrm{CFH}$ and $\mathrm{FA} / \mathrm{FB}=\mathrm{FC} / \mathrm{FH} \Rightarrow \angle \mathrm{BAF}=\angle \mathrm{HCF}$ and $\angle \mathrm{ABF}=\angle \mathrm{CHF}$.
Step 9. $\mathrm{BM}=\mathrm{CM}$ and $\mathrm{BO}=\mathrm{CO} \Rightarrow \mathrm{BC}$ is perpendicular to MO .
Step 10. $\mathrm{B}, \mathrm{C}, \mathrm{M}$ are collinear and $\mathrm{BM}=\mathrm{CM} \Rightarrow \mathrm{M}$ is the midpoint of BC .
Neural Language Model: construct point G as the midpoint of CH.
Step 11. $\mathrm{C}, \mathrm{H}, \mathrm{G}$ are collinear and $\mathrm{CG}=\mathrm{HG} \Rightarrow \mathrm{G}$ is the midpoint of CH .
Step 12. M is the midpoint of BC and G is the midpoint of $\mathrm{CH} \Rightarrow \mathrm{BH}$ is parallel to MG .
Step 13. $\mathrm{B}, \mathrm{H}, \mathrm{D}$ are collinear and $\mathrm{BD}=\mathrm{HD} \Rightarrow \mathrm{D}$ is the midpoint of BH .
Step 14. M is the midpoint of $B C$ and D is the midpoint of $B H \Rightarrow C H$ is parallel to $M D$.

Step 15. $\mathrm{HO} 2=\mathrm{O} 2 \mathrm{Q}$ and $\mathrm{KO} 2=\mathrm{O} 2 \mathrm{Q} \Rightarrow \mathrm{O} 2$ is the circumcenter of HKQ .
Step 16. AQ is perpendicular to HQ and HK is perpendicular to $\mathrm{KQ} \Rightarrow \angle \mathrm{AQH}=\angle \mathrm{QKH}$.
Step 17. O 2 is the circumcenter of HKQ and $\angle \mathrm{AQH}=\angle \mathrm{QKH} \Rightarrow \mathrm{AQ}$ is perpendicular to O 2 Q .
Step $18 . \mathrm{HO} 2=\mathrm{O} 2 \mathrm{Q}, \mathrm{AQ}$ is perpendicular to HQ and AQ is perpendicular to $\mathrm{O} 2 \mathrm{Q} \Rightarrow \mathrm{O} 2$ is the midpoint of HQ .

Step 19. O 2 is the midpoint of HQ and G is the midpoint of $\mathrm{CH} \Rightarrow \mathrm{CQ}$ is parallel to O 2 G .
Step 20. O2 is the midpoint of HQ and D is the midpoint of $\mathrm{BH} \Rightarrow \mathrm{BQ}$ is parallel to O2D.
Step 21. $\mathrm{AO}=\mathrm{BO}, \mathrm{AO}=\mathrm{OQ}$ and $\mathrm{BO}=\mathrm{CO} \Rightarrow \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{Q}$ are cyclic.
Step 22. $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{Q}$ are cyclic $\Rightarrow \angle \mathrm{ABQ}=\angle \mathrm{ACQ}$ and $\angle \mathrm{ACB}=\angle \mathrm{AQB}$.
Step 23. A, F, H are collinear, B, C, F are collinear, B, C, M are collinear, B, H, D are collinear, $\angle \mathrm{BAF}=\angle \mathrm{HCF}, \angle \mathrm{HAC}=\angle(\mathrm{CM}, \mathrm{HD}), \mathrm{BH}$ is parallel to MG and CH is parallel to $\mathrm{MD} \Rightarrow$ $\angle(\mathrm{AB}, \mathrm{MD})=\angle(\mathrm{AC}, \mathrm{MG})$.

Step 24. $\angle \mathrm{ABQ}=\angle \mathrm{ACQ}, \mathrm{BQ}$ is parallel to O 2 D and CQ is parallel to $\mathrm{O} 2 \mathrm{G} \Rightarrow \angle(\mathrm{AB}, \mathrm{O} 2 \mathrm{D})=$ $\angle(\mathrm{AC}, \mathrm{O} 2 \mathrm{G})$.

Step 25. $\angle(\mathrm{AB}, \mathrm{MD})=\angle(\mathrm{AC}, \mathrm{MG})$ and $\angle(\mathrm{AB}, \mathrm{O} 2 \mathrm{D})=\angle(\mathrm{AC}, \mathrm{O} 2 \mathrm{G}) \Rightarrow \angle \mathrm{GMD}=\angle \mathrm{GO} 2 \mathrm{D}$.
$\mathrm{AB}-\mathrm{MD}=\mathrm{AC}-\mathrm{MG}$
$\mathrm{AB}-\mathrm{O} 2 \mathrm{D}=\mathrm{AC}-\mathrm{O} 2 \mathrm{G}$
$=>\mathrm{O} 2 \mathrm{D}-\mathrm{MD}=\mathrm{O} 2 \mathrm{G}-\mathrm{MG}$
$=>\mathrm{O} 2 \mathrm{D}-\mathrm{O} 2 \mathrm{G}=\mathrm{MD}-\mathrm{MG}$
$=>\mathrm{DO} 2 \mathrm{G}=\mathrm{DMG}$
Step 26. $\angle \mathrm{GMD}=\angle \mathrm{GO} 2 \mathrm{D} \Rightarrow \mathrm{M}, \mathrm{O} 2, \mathrm{G}, \mathrm{D}$ are cyclic.
Step 27. A, F, H are collinear, B, C, F are collinear and $A H$ is perpendicular to $B C \Rightarrow B F$ is perpendicular to FH .

Step 28. D is the midpoint of BH and BF is perpendicular to $\mathrm{FH} \Rightarrow \mathrm{BD}=\mathrm{FD}$.
Step 29. $\mathrm{BD}=\mathrm{FD} \Rightarrow \angle \mathrm{BFD}=\angle \mathrm{DBF}$.
Step 30. G is the midpoint of CH and D is the midpoint of $\mathrm{BH} \Rightarrow \mathrm{BC}$ is parallel to GD.
Step 31. B, C, F are collinear, B, C, M are collinear, B, H, D are collinear, $\angle \mathrm{BFD}=\angle \mathrm{DBF}, \mathrm{BC}$ is parallel to GD and BH is parallel to $\mathrm{MG} \Rightarrow \angle \mathrm{MFD}=\angle \mathrm{MGD}$.

Step 32. $\angle \mathrm{MFD}=\angle \mathrm{MGD} \Rightarrow \mathrm{F}, \mathrm{M}, \mathrm{G}, \mathrm{D}$ are cyclic.
Step 33. F, M, G, D are cyclic and M, O2, G, D are cyclic $\Rightarrow F, M, O 2$, G are cyclic.
Step 34. F, M, O2, G are cyclic and F, M, G, D are cyclic $\Rightarrow F, O 2$, G, D are cyclic.
Step 35. F, O2, G, D are cyclic $\Rightarrow \angle \mathrm{O} 2 \mathrm{FG}=\angle \mathrm{O} 2 \mathrm{DG}$.
Step 36. AC is perpendicular to HD and AQ is perpendicular to $\mathrm{HQ} \Rightarrow \angle \mathrm{CAQ}=\angle \mathrm{DHQ}$ and $\angle(\mathrm{AC}, \mathrm{HQ})=\angle(\mathrm{HD}, \mathrm{AQ})$.

Step 37. $\mathrm{B}, \mathrm{H}, \mathrm{D}$ are collinear, $\angle \mathrm{CAQ}=\angle \mathrm{DHQ}, \mathrm{BH}$ is parallel to MG, AQ is perpendicular to HQ and AQ is perpendicular to $\mathrm{O} 2 \mathrm{Q} \Rightarrow \angle(\mathrm{AC}, \mathrm{MG})=\angle(\mathrm{AQ}, \mathrm{HO} 2)$.

Step 38. $\mathrm{B}, \mathrm{C}, \mathrm{M}$ are collinear and $\angle \mathrm{ACB}=\angle \mathrm{AQB} \Rightarrow \angle \mathrm{ACM}=\angle \mathrm{AQB}$.
Step 39. $\angle(\mathrm{AC}, \mathrm{MG})=\angle(\mathrm{AQ}, \mathrm{HO} 2)$ and $\angle \mathrm{ACM}=\angle \mathrm{AQB} \Rightarrow \angle(\mathrm{BQ}, \mathrm{HO} 2)=\angle \mathrm{CMG}$.
Step $40 . \mathrm{AO}=\mathrm{BO}$ and $\mathrm{BO}=\mathrm{CO} \Rightarrow \mathrm{O}$ is the circumcenter of ABC .
Step 41. O is the circumcenter of ABC and M is the midpoint of $\mathrm{BC} \Rightarrow \angle(\mathrm{AB}, \mathrm{MO})=\angle \mathrm{ACO}$ and $\angle \mathrm{BAC}=\angle \mathrm{MOC}$.

Step 42. $\mathrm{AO}=\mathrm{BO}$ and $\mathrm{BO}=\mathrm{CO} \Rightarrow \mathrm{AO}=\mathrm{CO}$.
Step 43. $\mathrm{AO}=\mathrm{CO} \Rightarrow \angle \mathrm{ACO}=\angle \mathrm{OAC}$.
Step 44. $\mathrm{B}, \mathrm{H}, \mathrm{D}$ are collinear, $\angle \mathrm{HAC}=\angle(\mathrm{CM}, \mathrm{HD})$ and BH is parallel to $\mathrm{MG} \Rightarrow \angle(\mathrm{AC}, \mathrm{MG})$ $=\angle(\mathrm{AH}, \mathrm{CM})$.

Step 45. $\angle(\mathrm{AB}, \mathrm{MO})=\angle \mathrm{ACO}, \angle \mathrm{ACO}=\angle \mathrm{OAC}, \mathrm{AH}$ is perpendicular to BC and BC is perpendicular to $\mathrm{MO} \Rightarrow \angle \mathrm{BAH}=\angle \mathrm{OAC}$.

Step 46. $\angle \mathrm{BAH}=\angle \mathrm{OAC}$ and $\angle(\mathrm{AC}, \mathrm{MG})=\angle(\mathrm{AH}, \mathrm{CM}) \Rightarrow \angle(\mathrm{AB}, \mathrm{CM})=\angle(\mathrm{AO}, \mathrm{MG})$.
Step 47. A, F, H are collinear, B, C, F are collinear and AH is perpendicular to $\mathrm{BC} \Rightarrow \mathrm{CF}$ is perpendicular to FH .

Step 48. G is the midpoint of CH and CF is perpendicular to $\mathrm{FH} \Rightarrow \mathrm{FG}=\mathrm{HG}$.
Step 49. $\mathrm{FG}=\mathrm{HG} \Rightarrow \angle \mathrm{FHG}=\angle \mathrm{GFH}$.
Step $50 . \mathrm{B}, \mathrm{C}, \mathrm{M}$ are collinear, $\angle(\mathrm{BQ}, \mathrm{HO} 2)=\angle \mathrm{CMG}, \angle \mathrm{O} 2 \mathrm{FG}=\angle \mathrm{O} 2 \mathrm{DG}, \mathrm{BC}$ is parallel to GD and BQ is parallel to $\mathrm{O} 2 \mathrm{D} \Rightarrow \angle \mathrm{O} 2 \mathrm{FG}=\angle(\mathrm{HO} 2, \mathrm{MG})$.

Step 51. A, F, H are collinear, B, C, F are collinear, B, C, M are collinear, C, H, G are collinear, $\angle(\mathrm{AB}, \mathrm{CM})=\angle(\mathrm{AO}, \mathrm{MG}), \angle \mathrm{ABF}=\angle \mathrm{CHF}$ and $\angle \mathrm{FHG}=\angle \mathrm{GFH} \Rightarrow \angle(\mathrm{AH}, \mathrm{FG})=\angle(\mathrm{AO}$, MG).

Step 52. $\angle(\mathrm{AH}, \mathrm{FG})=\angle(\mathrm{AO}, \mathrm{MG})$ and $\angle \mathrm{O} 2 \mathrm{FG}=\angle(\mathrm{HO} 2, \mathrm{MG}) \Rightarrow \angle(\mathrm{AH}, \mathrm{FO} 2)=\angle(\mathrm{AO}$, HO2).

Step 53. $\mathrm{B}, \mathrm{C}, \mathrm{M}$ are collinear, $\mathrm{B}, \mathrm{H}, \mathrm{D}$ are collinear, $\angle \mathrm{ACB}=\angle \mathrm{AQB}, \angle \mathrm{AHD}=\angle \mathrm{MCA}$ and BH is parallel to $\mathrm{MG} \Rightarrow \angle(\mathrm{AH}, \mathrm{MG})=\angle \mathrm{BQA}$.

Step 54. $\mathrm{B}, \mathrm{H}, \mathrm{D}$ are collinear, $\angle(\mathrm{AC}, \mathrm{HQ})=\angle(\mathrm{HD}, \mathrm{AQ}), \mathrm{BH}$ is parallel to MG, AQ is perpendicular to HQ and AQ is perpendicular to $\mathrm{O} 2 \mathrm{Q} \Rightarrow \angle(\mathrm{AC}, \mathrm{MG})=\angle(\mathrm{HO} 2, \mathrm{AQ})$.

Step 55. $\angle(\mathrm{AC}, \mathrm{MG})=\angle(\mathrm{HO} 2, \mathrm{AQ})$ and $\angle(\mathrm{AH}, \mathrm{MG})=\angle \mathrm{BQA} \Rightarrow \angle \mathrm{HAC}=\angle(\mathrm{BQ}, \mathrm{HO} 2)$.
Step 56. $\mathrm{AO}=\mathrm{BO}, \mathrm{AO}=\mathrm{OQ}$ and $\mathrm{BO}=\mathrm{CO} \Rightarrow \mathrm{O}$ is the circumcenter of BCQ .
Step 57. O is the circumcenter of BCQ and M is the midpoint of $\mathrm{BC} \Rightarrow \angle(\mathrm{BQ}, \mathrm{MO})=\angle \mathrm{QCO}$.
Step 58. $\angle \mathrm{HAC}=\angle(\mathrm{BQ}, \mathrm{HO} 2), \angle(\mathrm{BQ}, \mathrm{MO})=\angle \mathrm{QCO}, \mathrm{CQ}$ is parallel to $\mathrm{O} 2 \mathrm{G}, \mathrm{AH}$ is perpendicular to BC and BC is perpendicular to $\mathrm{MO} \Rightarrow \angle(\mathrm{AC}, \mathrm{HO} 2)=\angle(\mathrm{CO}, \mathrm{O} 2 \mathrm{G})$.

Step 59. $\angle \mathrm{BAC}=\angle \mathrm{MOC}, \mathrm{AH}$ is perpendicular to BC and BC is perpendicular to $\mathrm{MO} \Rightarrow$ $\angle \mathrm{BAC}=\angle(\mathrm{AH}, \mathrm{CO})$.

Step 60. $\angle \mathrm{BAC}=\angle(\mathrm{AH}, \mathrm{CO})$ and $\angle(\mathrm{AC}, \mathrm{HO} 2)=\angle(\mathrm{CO}, \mathrm{O} 2 \mathrm{G}) \Rightarrow \angle(\mathrm{AB}, \mathrm{HO} 2)=\angle(\mathrm{AH}$, O2G).

Step 61. A, F, H are collinear, B, C, F are collinear, B, C, M are collinear, $\angle \mathrm{BAF}=\angle \mathrm{HCF}$ and CH is parallel to $\mathrm{MD} \Rightarrow \angle(\mathrm{AB}, \mathrm{MD})=\angle(\mathrm{AH}, \mathrm{CM})$.

Step 62. $\angle(\mathrm{AB}, \mathrm{HO} 2)=\angle(\mathrm{AH}, \mathrm{O} 2 \mathrm{G})$ and $\angle(\mathrm{AB}, \mathrm{MD})=\angle(\mathrm{AH}, \mathrm{CM}) \Rightarrow \angle(\mathrm{CM}, \mathrm{O} 2 \mathrm{G})=$ \angle (MD, HO2).

Step 63. M, O2, G, D are cyclic $\Rightarrow \angle \mathrm{O} 2 \mathrm{MD}=\angle \mathrm{O} 2 \mathrm{GD}$.
Step 64. $\mathrm{B}, \mathrm{C}, \mathrm{M}$ are collinear, $\angle(\mathrm{CM}, \mathrm{O} 2 \mathrm{G})=\angle(\mathrm{MD}, \mathrm{HO} 2), \angle \mathrm{O} 2 \mathrm{MD}=\angle \mathrm{O} 2 \mathrm{GD}$ and BC is parallel to $\mathrm{GD} \Rightarrow \angle(\mathrm{HO} 2, \mathrm{MD})=\angle \mathrm{O} 2 \mathrm{MD}$.

Step 65. $\angle(\mathrm{HO} 2, \mathrm{MD})=\angle \mathrm{O} 2 \mathrm{MD} \Rightarrow \mathrm{HO} 2$ is parallel to MO 2 .
Step 66. HO 2 is parallel to $\mathrm{MO} 2 \Rightarrow \mathrm{H}, \mathrm{M}, \mathrm{O} 2$ are collinear.
Step 67. AH is perpendicular to CM and AQ is perpendicular to $\mathrm{HQ} \Rightarrow \angle \mathrm{HAQ}=\angle(\mathrm{CM}, \mathrm{HQ})$.
Step 68. A, F, H are collinear, B, C, F are collinear, B, C, M are collinear, H, M, O2 are collinear, $\angle \mathrm{HAQ}=\angle(\mathrm{CM}, \mathrm{HQ}), \mathrm{AQ}$ is perpendicular to HQ and AQ is perpendicular to $\mathrm{O} 2 \mathrm{Q} \Rightarrow \angle \mathrm{AFM}$ $=\angle \mathrm{AQM}$.

Step 69. $\angle \mathrm{AFM}=\angle \mathrm{AQM} \Rightarrow \mathrm{A}, \mathrm{F}, \mathrm{M}, \mathrm{Q}$ are cyclic.
Step 70. $\mathrm{A}, \mathrm{F}, \mathrm{M}, \mathrm{Q}$ are cyclic $\Rightarrow \angle \mathrm{AFQ}=\angle \mathrm{AMQ}$.
Step 71. $\angle(\mathrm{AH}, \mathrm{FO} 2)=\angle(\mathrm{AO}, \mathrm{HO} 2), \mathrm{AH}$ is perpendicular to BC, AQ is perpendicular to HQ , AQ is perpendicular to O 2 Q and BC is perpendicular to $\mathrm{MO} \Rightarrow \angle \mathrm{AOM}=\angle \mathrm{QO} 2 \mathrm{~F}$.

Step 72. A, F, H are collinear, $\mathrm{H}, \mathrm{M}, \mathrm{O} 2$ are collinear, $\angle \mathrm{AFQ}=\angle \mathrm{AMQ}, \mathrm{AH}$ is perpendicular to BC, AQ is perpendicular to HQ, AQ is perpendicular to O 2 Q and BC is perpendicular to $\mathrm{MO} \Rightarrow$ $\angle \mathrm{AMO}=\angle \mathrm{O} 2 \mathrm{QF}$.

Step 73. $\angle \mathrm{AMO}=\angle \mathrm{O} 2 \mathrm{QF}$ and $\angle \mathrm{AOM}=\angle \mathrm{QO} 2 \mathrm{~F} \Rightarrow \mathrm{OA} / \mathrm{OM}=\mathrm{O} 2 \mathrm{~F} / \mathrm{O} 2 \mathrm{Q}$.
Step 74. F, M, O2, G are cyclic $\Rightarrow \angle \mathrm{MFO} 2=\angle \mathrm{MGO} 2$.
Step 75. $\mathrm{AO}=\mathrm{KO}$ and $\mathrm{AO}=\mathrm{OQ} \Rightarrow \mathrm{KO}=\mathrm{OQ}$.
Step 76. $\mathrm{KO}=\mathrm{OQ}$ and $\mathrm{KO} 2=\mathrm{O} 2 \mathrm{Q} \Rightarrow \mathrm{O} 2 \mathrm{O}$ is the bisector of $\angle \mathrm{KO} 2 \mathrm{Q}$.
Step 77. $\mathrm{KO}=\mathrm{OQ}$ and $\mathrm{KO} 2=\mathrm{O} 2 \mathrm{Q} \Rightarrow \mathrm{KQ}$ is perpendicular to OO 2 .
Step 78. $\mathrm{AO}=\mathrm{BO}, \mathrm{AO}=\mathrm{KO}$ and $\mathrm{BO}=\mathrm{CO} \Rightarrow \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{K}$ are cyclic.
Step 79. A, B, C, K are cyclic and A, B, C, Q are cyclic $\Rightarrow A, C, K, Q$ are cyclic.
Step $80 . \mathrm{A}, \mathrm{C}, \mathrm{K}, \mathrm{Q}$ are cyclic $\Rightarrow \angle \mathrm{ACK}=\angle \mathrm{AQK}$ and $\angle \mathrm{CAK}=\angle \mathrm{CQK}$.
Step 81. AC is perpendicular to HD and HK is perpendicular to $\mathrm{KQ} \Rightarrow \angle(\mathrm{AC}, \mathrm{HK})=\angle(\mathrm{HD}$, KQ).

Step 82. $\angle \mathrm{ACK}=\angle \mathrm{AQK}, \mathrm{O} 2 \mathrm{O}$ is the bisector of $\angle \mathrm{KO} 2 \mathrm{Q}, \mathrm{AQ}$ is perpendicular to O 2 Q and KQ is perpendicular to $\mathrm{OO} 2 \Rightarrow \angle \mathrm{ACK}=\angle \mathrm{OO} 2 \mathrm{~K}$.

Step $83 . \mathrm{B}, \mathrm{H}, \mathrm{D}$ are collinear, $\angle(\mathrm{AC}, \mathrm{HK})=\angle(\mathrm{HD}, \mathrm{KQ}), \mathrm{BH}$ is parallel to MG, HK is perpendicular to KQ and KQ is perpendicular to $\mathrm{OO} 2 \Rightarrow \angle(\mathrm{AC}, \mathrm{MG})=\angle(\mathrm{OO} 2, \mathrm{KQ})$.

Step 84. $\angle(\mathrm{AC}, \mathrm{MG})=\angle(\mathrm{OO} 2, \mathrm{KQ})$ and $\angle \mathrm{ACK}=\angle \mathrm{OO} 2 \mathrm{~K} \Rightarrow \angle(\mathrm{CK}, \mathrm{MG})=\angle \mathrm{O} 2 \mathrm{KQ}$.
Step $85 . A, B, C, K$ are cyclic $\Rightarrow \angle A C B=\angle A K B$.
Step 86. $\mathrm{AO}=\mathrm{BO}, \mathrm{AO}=\mathrm{KO}$ and $\mathrm{BO}=\mathrm{CO} \Rightarrow \mathrm{O}$ is the circumcenter of BCK .
Step 87. O is the circumcenter of BCK and M is the midpoint of $\mathrm{BC} \Rightarrow \angle \mathrm{KBO}=\angle(\mathrm{CK}, \mathrm{MO})$.
Step 88. $A O=B O$ and $A O=K O \Rightarrow B O=K O$.
Step 89. $\mathrm{BO}=\mathrm{KO} \Rightarrow \angle \mathrm{BKO}=\angle \mathrm{OBK}$.

Step 90. $\mathrm{B}, \mathrm{C}, \mathrm{M}$ are collinear, $\mathrm{B}, \mathrm{H}, \mathrm{D}$ are collinear, $\angle \mathrm{ACB}=\angle \mathrm{AKB}, \angle \mathrm{AHD}=\angle \mathrm{MCA}$ and BH is parallel to $\mathrm{MG} \Rightarrow \angle(\mathrm{AH}, \mathrm{MG})=\angle \mathrm{BKA}$.

Step 91. $\angle \mathrm{KBO}=\angle(\mathrm{CK}, \mathrm{MO}), \angle \mathrm{BKO}=\angle \mathrm{OBK}, \mathrm{AH}$ is perpendicular to BC and BC is perpendicular to $\mathrm{MO} \Rightarrow \angle(\mathrm{AH}, \mathrm{CK})=\angle \mathrm{BKO}$.

Step 92. $\angle(\mathrm{AH}, \mathrm{CK})=\angle \mathrm{BKO}$ and $\angle(\mathrm{AH}, \mathrm{MG})=\angle \mathrm{BKA} \Rightarrow \angle \mathrm{AKO}=\angle(\mathrm{MG}, \mathrm{CK})$.
Step 93. $\angle(\mathrm{CK}, \mathrm{MG})=\angle \mathrm{O} 2 \mathrm{KQ}$ and $\angle \mathrm{AKO}=\angle(\mathrm{MG}, \mathrm{CK}) \Rightarrow \angle \mathrm{AKO}=\angle \mathrm{QKO} 2$.
Step 94. $\angle \mathrm{CAK}=\angle \mathrm{CQK}$ and CQ is parallel to $\mathrm{O} 2 \mathrm{G} \Rightarrow \angle \mathrm{CAK}=\angle(\mathrm{O} 2 \mathrm{G}, \mathrm{KQ})$.
Step 95. $\angle \mathrm{CAK}=\angle(\mathrm{O} 2 \mathrm{G}, \mathrm{KQ})$ and $\angle \mathrm{AKO}=\angle \mathrm{QKO} 2 \Rightarrow \angle(\mathrm{AC}, \mathrm{KO})=\angle \mathrm{GO} 2 \mathrm{~K}$.
Step 96. B, C, F are collinear, B, C, M are collinear, B, H, D are collinear, $\angle \mathrm{HAC}=\angle(\mathrm{CM}$,
$\mathrm{HD}), \angle \mathrm{MFO} 2=\angle \mathrm{MGO} 2$ and BH is parallel to $\mathrm{MG} \Rightarrow \angle \mathrm{CAH}=\angle \mathrm{GO} 2 \mathrm{~F}$.
Step 97. $\angle \mathrm{CAH}=\angle \mathrm{GO} 2 \mathrm{~F}$ and $\angle(\mathrm{AC}, \mathrm{KO})=\angle \mathrm{GO} 2 \mathrm{~K} \Rightarrow \angle(\mathrm{AH}, \mathrm{KO})=\angle \mathrm{FO} 2 \mathrm{~K}$.
Step 98. $\mathrm{AO}=\mathrm{KO}, \mathrm{KO} 2=\mathrm{O} 2 \mathrm{Q}$ and $\mathrm{OA} / \mathrm{OM}=\mathrm{O} 2 \mathrm{~F} / \mathrm{O} 2 \mathrm{Q} \Rightarrow \mathrm{O} 2 \mathrm{~F} / \mathrm{O} 2 \mathrm{~K}=\mathrm{OK} / \mathrm{OM}$.
Step 99. $\angle(\mathrm{AH}, \mathrm{KO})=\angle \mathrm{FO} 2 \mathrm{~K}, \mathrm{AH}$ is perpendicular to BC and BC is perpendicular to $\mathrm{MO} \Rightarrow$ $\angle \mathrm{FO} 2 \mathrm{~K}=\angle \mathrm{MOK}$.

Step 100. $\angle \mathrm{FO} 2 \mathrm{~K}=\angle \mathrm{MOK}$ and $\mathrm{O} 2 \mathrm{~F} / \mathrm{O} 2 \mathrm{~K}=\mathrm{OK} / \mathrm{OM} \Rightarrow \angle \mathrm{FKO} 2=\angle \mathrm{OMK}$.

Neural Language Model: construct point E as the midpoint of KM.

Step 101. $\mathrm{KO1}=\mathrm{MO} 1$ and $\mathrm{KE}=\mathrm{ME} \Rightarrow \mathrm{KM}$ is perpendicular to $\mathrm{O}_{2} \mathrm{E}$.
Step 102. $\mathrm{FO} 1=\mathrm{KO} 1 \mathrm{and} \mathrm{KO}=\mathrm{MO} 1 \Rightarrow \mathrm{O}$ is the circumcenter of FKM .
Step 103. $\mathrm{K}, \mathrm{M}, \mathrm{E}$ are collinear and $\mathrm{KE}=\mathrm{ME} \Rightarrow \mathrm{E}$ is the midpoint of KM .
Step 104. O_{1} is the circumcenter of FKM and E is the midpoint of $\mathrm{KM} \Rightarrow \angle \mathrm{KFM}=\angle \mathrm{KO}_{2} \mathrm{E}$.
Step 105. B, C, M are collinear, K, M, E are collinear, AH is perpendicular to BC and KM is perpendicular to $\mathrm{O}_{2} \mathrm{E} \Rightarrow \angle(\mathrm{AH}, \mathrm{CM})=\angle \mathrm{KEO}_{2}$.

Step 106. B, C, F are collinear, $\mathrm{B}, \mathrm{C}, \mathrm{M}$ are collinear and $\angle \mathrm{KFM}=\angle \mathrm{KO}_{2} \mathrm{E} \Rightarrow \angle(\mathrm{CM}, \mathrm{FK})=$ $\angle \mathrm{EO}_{2} \mathrm{~K}$.

Step 107. $\angle(\mathrm{AH}, \mathrm{CM})=\angle \mathrm{KEO} 1 \mathrm{and} \angle(\mathrm{CM}, \mathrm{FK})=\angle \mathrm{EO}_{2} \mathrm{~K} \Rightarrow \angle(\mathrm{AH}, \mathrm{FK})=\angle \mathrm{EKO}_{2}$.
Step 108. $\mathrm{K}, \mathrm{M}, \mathrm{E}$ are collinear, $\angle(\mathrm{AH}, \mathrm{FK})=\angle \mathrm{EKO}_{2}, \angle \mathrm{FKO} 2=\angle \mathrm{OMK}, \mathrm{AH}$ is perpendicular to BC and BC is perpendicular to $\mathrm{MO} \Rightarrow \angle \mathrm{FKO} 2=\angle \mathrm{FKO}_{2}$.

Step 109. $\angle \mathrm{FKO} 2=\angle \mathrm{FKO} \Rightarrow \mathrm{KO} 2$ is parallel to KO_{2}.
Step $110 . \mathrm{KO} 2$ is parallel to $\mathrm{KO} \Rightarrow \mathrm{K}, \mathrm{O} 2$, O1 are collinear

