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Global medium-range weather forecasting is critical to decision-making across

many social and economic domains. Traditional numerical weather prediction

uses increased compute resources to improve forecast accuracy, but does not

directly use historical weather data to improve the underlying model. Here,

we introduce “GraphCast”, a machine learning-based method trained directly

from reanalysis data. It predicts hundreds of weather variables, over 10 days

at 0.25° resolution globally, in under one minute. GraphCast significantly out-

performs the most accurate operational deterministic systems on 90% of 1380

verification targets, and its forecasts support better severe event prediction,

including tropical cyclones tracking, atmospheric rivers, and extreme temper-

atures. GraphCast is a key advance in accurate and efficient weather forecast-

ing, and helps realize the promise of machine learning for modeling complex

dynamical systems.
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It is 05:45 UTC in mid-October, 2022, in Bologna, Italy, at the European Centre for Medium-

Range Weather Forecasts (ECMWF)’s new High-Performance Computing Facility, which re-

cently opened for operation. For the past several hours the Integrated Forecasting System (IFS)

has been running sophisticated calculations to forecast Earth’s weather over the next days and

weeks, and its first predictions have just begun to be disseminated to users. This process re-

peats every six hours, every day, to supply the world with the most accurate weather forecasts

available.

The IFS, and modern weather forecasting more generally, are triumphs of science and engi-

neering. The dynamics of weather systems are among the most complex physical phenomena

on Earth, and each day, countless decisions made by individuals, industries, and policymak-

ers depend on accurate weather forecasts, from deciding whether to wear a jacket or to flee a

dangerous storm. The dominant approach for weather forecasting today is “numerical weather

prediction” (NWP), which involves solving the governing equations of weather using super-

computers. The success of NWP lies in the rigorous and ongoing research practices that provide

increasingly detailed descriptions of weather phenomena, and how well NWP scales to greater

accuracy with greater computational resources (1, 2). As a result, the accuracy of weather fore-

casts has increased year after year, to the point where the path of a hurricane can be predicted

many days ahead—a possibility that was unthinkable even a few decades ago.

But while traditional NWP scales well with compute, capitalizing on the vast amount of

historical weather data to improve accuracy is not straightforward. Rather, NWP methods are

improved by highly trained experts innovating better models, algorithms, and approximations,

which can be a time-consuming and costly process.

Machine learning-based weather prediction (MLWP) offers an alternative to traditional

NWP, where forecast models can be trained from historical data, including observations and

analysis data. This has potential to improve forecast accuracy by capturing patterns in the data
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which are not easily represented in explicit equations. MLWP also offers opportunities for

greater efficiency by exploiting modern deep learning hardware, rather than supercomputers,

and striking more favorable speed-accuracy trade-offs. Recently MLWP has helped improve

on NWP-based forecasting in regimes where traditional NWP is relatively weak, for example

sub-seasonal heat wave prediction (3) and precipitation nowcasting from radar images (4–7),

where accurate equations and robust numerical methods are not as available.

In medium-range weather forecasting, i.e., predicting atmospheric variables up to 10 days

ahead, NWP-based systems like the IFS are still most accurate. The top deterministic opera-

tional system in the world is ECMWF’s High RESolution forecast (HRES), a configuration of

IFS which produces global 10-day forecasts at 0.1° latitude/longitude resolution, in around an

hour (8). However, over the past several years, MLWP methods for medium-range forecast-

ing trained on reanalysis data have been steadily advancing, facilitated by benchmarks such as

WeatherBench (8). Deep learning architectures based on convolutional neural networks (9–11)

and Transformers (12) have shown promising results at latitude/longitude resolutions coarser

than 1.0°, and recent works—which use graph neural networks (GNN), Fourier neural opera-

tors, and Transformers (13–16)—have reported performance that begins to rival IFS’s at 1.0°

and 0.25° for a handful of variables, and lead times up to seven days.

Surface variables (5) Atmospheric variables (6) Pressure levels (37)
2-meter temperature (2T) Temperature (T) 1, 2, 3, 5, 7, 10, 20, 30, 50, 70,
10 metre u wind component (10U) U component of wind (U) 100, 125, 150, 175, 200, 225,
10 metre v wind component (10V) V component of wind (V) 250, 300, 350, 400, 450, 500,
Mean sea-level pressure (MSL) Geopotential (Z) 550, 600, 650, 700, 750, 775,
Total precipitation (TP) Specific humidity (Q) 800, 825, 850, 875, 900, 925,

Vertical wind speed (W) 950, 975, 1000

Table 1: Weather variables and levels modeled by GraphCast. The numbers in parentheses in the
column headings are the number of entries in the column. Boldfaced variables and levels indicates those
which were included in the scorecard evaluation. All atmospheric variables are represented at each of
the pressure levels.
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Fig. 1: Model schematic. (a) The input weather state(s) are defined on a 0.25° latitude-longitude
grid comprising a total of 721 × 1440 = 1, 038, 240 points. Yellow layers in the closeup pop-out
window represent the 5 surface variables, and blue layers represent the 6 atmospheric variables that
are repeated at 37 pressure levels (5 + 6 × 37 = 227 variables per point in total), resulting in a state
representation of 235, 680, 480 values. (b) GraphCast predicts the next state of the weather on the grid.
(c) A forecast is made by iteratively applying GraphCast to each previous predicted state, to produce a
sequence of states which represent the weather at successive lead times. (d) The Encoder component
of the GraphCast architecture maps local regions of the input (green boxes) into nodes of the multi-
mesh graph representation (green, upward arrows which terminate in the green-blue node). (e) The
Processor component updates each multi-mesh node using learned message-passing (heavy blue arrows
that terminate at a node). (f) The Decoder component maps the processed multi-mesh features (purple
nodes) back onto the grid representation (red, downward arrows which terminate at a red box). (g) The
multi-mesh is derived from icosahedral meshes of increasing resolution, from the base mesh (M0, 12
nodes) to the finest resolution (M6, 40, 962 nodes), which has uniform resolution across the globe. It
contains the set of nodes from M6, and all the edges from M0 to M6. The learned message-passing over
the different meshes’ edges happens simultaneously, so that each node is updated by all of its incoming
edges.
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GraphCast

Here we introduce an MLWP approach for global medium-range weather forecasting called

“GraphCast”, which produces an accurate 10-day forecast in under a minute on a single Google

Cloud TPU v4 device, and supports applications including predicting tropical cyclone tracks,

atmospheric rivers, and extreme temperatures.

GraphCast takes as input the two most recent states of Earth’s weather—the current time

and six hours earlier—and predicts the next state of the weather six hours ahead. A single

weather state is represented by a 0.25° latitude/longitude grid (721× 1440), which corresponds

to roughly 28×28 kilometer resolution at the equator (Fig. 1a), where each grid point represents

a set of surface and atmospheric variables (listed in Table 1). Like traditional NWP systems,

GraphCast is autoregressive: it can be “rolled out” by feeding its own predictions back in as

input, to generate an arbitrarily long trajectory of weather states (Fig. 1b–c).

GraphCast is implemented as a neural network architecture, based on GNNs in an “encode-

process-decode” configuration (13, 17), with a total of 36.7 million parameters (code, weights

and demos can be found at https://github.com/deepmind/graphcast). Previous

GNN-based learned simulators (18–20) have been very effective at learning the complex dy-

namics of fluid and other systems modeled by partial differential equations, which supports

their suitability for modeling weather dynamics.

The encoder (Fig. 1d) uses a single GNN layer to map variables (normalized to zero-mean

unit-variance) represented as node attributes on the input grid to learned node attributes on an

internal “multi-mesh” representation.

The multi-mesh (Fig. 1g) is a graph which is spatially homogeneous, with high spatial res-

olution over the globe. It is defined by refining a regular icosahedron (12 nodes, 20 faces, 30
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edges) iteratively six times, where each refinement divides each triangle into four smaller ones

(leading to four times more faces and edges), and reprojecting the nodes onto the sphere. The

multi-mesh contains the 40,962 nodes from the highest resolution mesh (which is roughly 1/25

the number of latitude/longitude grid points at 0.25°), and the union of all the edges created in

the intermediate graphs, forming a flat hierarchy of edges with varying lengths.

The processor (Fig. 1e) uses 16 unshared GNN layers to perform learned message-passing

on the multi-mesh, enabling efficient local and long-range information propagation with few

message-passing steps.

The decoder (Fig. 1f) maps the final processor layer’s learned features from the multi-mesh

representation back to the latitude-longitude grid. It uses a single GNN layer, and predicts

the output as a residual update to the most recent input state (with output normalization to

achieve unit-variance on the target residual). See Supplementary Materials Section 3 for further

architectural details.

During model development, we used 39 years (1979–2017) of historical data from ECMWF’s

ERA5 (21) reanalysis archive. As a training objective, we averaged the mean squared error

(MSE) between GraphCast’s predicted states over N autoregressive steps and the correspond-

ing ERA5 states, with the error weighted by vertical level (see Supplementary Materials Equa-

tion (19)). The value of N was increased incrementally from 1 to 12 (i.e., six hours to three

days) over the course of training and the gradient of the loss was computed by backpropagation-

through-time (22). GraphCast was trained to minimize the training objective using gradient

descent which took roughly four weeks on 32 Cloud TPU v4 devices using batch parallelism.

See Supplementary Materials Section 4 for further training details.

Consistent with real deployment scenarios, where future information is not available for

model development, we evaluated GraphCast on the held out data from the years 2018 onward

(see Supplementary Materials Section 5.1).
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Verification methods

We verify GraphCast’s forecast skill comprehensively by comparing its accuracy to HRES’s

on a large number of variables, levels, and lead times. We quantify the respective skills of

GraphCast, HRES, and ML baselines with two skill metrics: the root mean square error (RMSE)

and the anomaly correlation coefficient (ACC).

Of the 227 variable and level combinations predicted by GraphCast at each grid point, we

evaluated its skill versus HRES on 69 of them, corresponding to the 13 levels of Weather-

Bench (8) and variables 1 from the ECMWF Scorecard (24); see boldface variables and levels

in Table 1 and Supplementary Materials Section 1.2 for which HRES cycle was operational

during the evaluation period. In addition to the aggregate performance reported in the main

text, Supplementary Materials Section 7 provides further detailed evaluations, including other

variables, precipitation, regional performance, latitude and pressure level effects, spectral prop-

erties, blurring, biases, comparisons to other ML-based forecasts, and effects of model design

choices.

In making these comparisons, two key choices underlie how skill is established: (1) the

selection of the ground truth for comparison, and (2) a careful accounting of the data assimila-

tion windows used to infer this data from observations. We use ERA5 as the ground truth for

evaluating GraphCast, since it was trained to take ERA5 data as input and predict ERA5 data

as outputs. However, evaluating HRES forecasts against ERA5 would result in non-zero error

on the initial forecast step. Instead, we constructed an “HRES forecast at step 0” (HRES-fc0)

1Because precipitation in ERA5 has known biases (23), no development decision for GraphCast was made
to improve performance on precipitation and GraphCast simply uses precipitation as an auxiliary input/output.
Note that precipitation is sparse and non-Gaussian and would have possibly required different modeling decisions
than the other variables. Additionally, precipitation is not available in the HRES analysis products in a form
amenable to our evaluation protocol (see next paragraphs). Thus, any claim about precipitation prediction is left
out of the scope of this work, and we show precipitation evaluation using a different protocol in Supplementary
Materials Section 7.1.4 for completeness only.
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dataset to use as ground truth for HRES. HRES-fc0 contains the inputs to HRES forecasts at

future initializations (see Supplementary Materials Section 1.2), ensuring that each data point

is grounded by recent observations and that the zeroth step of HRES forecasts will have zero

error.

For a fair comparison, we must ensure that the ERA5 initial conditions for GraphCast were

derived from assimilation windows which look no further into the future than those used by

HRES. HRES initializations (00z/06z/12z/18z2) always assimilate observations 3h into the fu-

ture while ERA5 initializations assimilate observations 9h into the future at 00z/12z and 3h

into the future at 06z/18z. This constrained the choice of initialization times for GraphCast to

06z/18z in all our results. We use the same initializations for HRES when comparing perfor-

mance up to 3.75 days. Beyond that, HRES archived forecasts are only available from 00z/12z

initializations. The transition from 06z/18z to 00z/12z initializations for HRES induces a small

discontinuity in our plots that is indicated by a vertically dashed line at the appropriate lead time.

Supplementary Materials Section 5 contains further verification details, including details of the

comparisons protocol between GraphCast and HRES (Supplementary Materials Section 5.2),

and the effect of initialization lookahead on both models’ performance (Supplementary Materi-

als Section 5.2.2).

Forecast verification results

We find that GraphCast has greater weather forecasting skill than HRES when evaluated on 10-

day forecasts at a horizontal resolution of 0.25° for latitude/longitude and at 13 vertical levels.

Figure 2a–c show how GraphCast (blue lines) outperforms HRES (black lines) on the Z500

(geopotential at 500 hPa) “headline” field in terms of RMSE skill, RMSE skill score (i.e.,

the normalized RMSE difference between model A and baseline B defined as (RMSEA −
2Time in Zulu convention, where 00z means 00:00 UTC
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Fig. 2: Global skill and skill scores for GraphCast and HRES in 2018. (a) RMSE skill (y-axis)
for GraphCast (blue lines) and HRES (black lines), on Z500, as a function of lead time (x-axis). Error
bars represent 95% confidence intervals. The vertical dashed line represents 3.5 days, which is the last
12-hour increment of the HRES 06z/18z forecasts. The black line represents HRES, where lead times
earlier and later than 3.5 days are from the 06z/18z and 00z/12z initializations, respectively. (b) RMSE
skill score (y-axis) for GraphCast versus HRES, on Z500, as a function of lead time (x-axis). Error bars
represent 95% confidence intervals for the skill score. We observe a discontinuity in GraphCast’s curve
because skill scores up to 3.5 days are computed between GraphCast (initialized at 06z/18z) and HRES’s
06z/18z initialization, while after 3.5 days skill scores are computed with respect to HRES’s 00z/12z
initializations. (c) ACC skill (y-axis) for GraphCast (blue lines) and HRES (black lines), on Z500, as a
function of lead time (x-axis). (d) Scorecard of RMSE skill scores for GraphCast, with respect to HRES.
Each subplot corresponds to one variable: U, V, Z, T, Q, 2T, 10U, 10V, MSL, respectively. The rows of
each heatmap correspond to the 13 pressure levels (for the atmospheric variables), from 50 hPa at the
top to 1000 hPa at the bottom. The columns of each heatmap correspond to the 20 lead times at 12-hour
intervals, from 12 hours on the left to 10 days on the right. Each cell’s color represents the skill score,
as shown in (b), where blue represents negative values (GraphCast has better skill) and red represents
positive values (HRES has better skill).
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RMSEB)/RMSEB), and ACC skill. Using Z500, which encodes the synoptic-scale pressure

distribution, is common in the literature, as it has strong meteorological importance (8). The

plots show GraphCast has better skill scores across all lead times, with a skill score improve-

ment around 7%–14%. Plots for additional headline variables are in Supplementary Materi-

als Section 7.1.

Figure 2d summarizes the RMSE skill scores for all 1380 evaluated variables and pressure

levels, across the 10-day forecasts, in a format analogous to the ECMWF Scorecard. The cell

colors are proportional to the skill score, where blue indicates GraphCast had better skill and

red indicates HRES had higher skill. GraphCast outperformed HRES on 90.3% of the 1380

targets, and significantly (p ≤ 0.05, nominal sample size n ∈ {729, 730}) outperformed HRES

on 89.9% of targets. See Supplementary Materials Section 5.4 for methodology and Supple-

mentary Materials table S4 for p-values, test statistics and effective sample sizes.

The regions of the atmosphere in which HRES had better performance than GraphCast (top

rows in red in the scorecards), were disproportionately localized in the stratosphere, and had

the lowest training loss weight (see Supplementary Materials Section 7.2.2). When excluding

the 50 hPa level, GraphCast significantly outperforms HRES on 96.9% of the remaining 1280

targets. When excluding levels 50 and 100 hPa, GraphCast significantly outperforms HRES

on 99.7% of the 1180 remaining targets. When conducting per region evaluations, we found

the previous results to generally hold across the globe, as detailed in Supplementary Materials

figs. S14 - S16.

We found that increasing the number of autoregressive steps in the MSE loss improves

GraphCast performance at longer lead time (see Supplementary Materials Section 7.3.2). It

also encourages GraphCast to blur to a degree at longer lead times (see Supplementary Materi-

als fig. S38), which means its forecasts will lie somewhere in between a traditional deterministic

forecast, and an ensemble mean. HRES’s underlying physical equations, however, do not lead
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to blurred predictions. To assess whether GraphCast’s relative advantage over HRES on RMSE

skill is due to blurrier forecasts better optimizing RMSE, we artificially blurred HRES’s fore-

casts with blurring filters. We fit filters for GraphCast and HRES by minimizing the RMSE

between filtered predictions and the models’ respective ground truths. We found that RMSE-

optimized blurring applied to GraphCast has greater skill than analogous blurring applied to

HRES on 88.0% of our 1380 verification targets, which is generally consistent with our above

conclusions (see Supplementary Materials Section 7.4). Still, blurrier forecasts may not be

desirable for some applications, which we discuss further in the Conclusion.

We also compared GraphCast’s performance to the top competing ML-based weather model,

Pangu-Weather (16), and found GraphCast outperformed it on 99.2% of the 252 targets they

presented (see Supplementary Materials Section 6 for details).

Severe event forecasting results

Beyond evaluating GraphCast’s forecast skill against HRES’s on a wide range of variables and

lead times, we also evaluate how its forecasts support predicting severe events, including trop-

ical cyclones tracks, atmospheric rivers, and extreme temperature. These are key downstream

applications for which GraphCast is not specifically trained, but which are very important for

human activity.

Tropical cyclone tracks

Improving the accuracy of tropical cyclone tracking can help avoid injury and loss of life, as well

as reducing economic harm (25). A cyclone’s existence and trajectory is predicted by applying a

tracking algorithm to forecasts of geopotential (Z), horizontal wind (10U/10V, U/V), and mean

sea-level pressure (MSL). We implemented a tracking algorithm based on ECMWF’s published

protocols (26) and applied it to GraphCast’s forecasts, to produce cyclone track predictions (see
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Fig. 3: Severe-event prediction. (a) Cyclone tracking performances for GraphCast and HRES. The
x-axis represents lead times (in days), and the y-axis represents median track error (in km). Error bars
represent bootstrapped 95% confidence intervals for the median. (b) Cyclone tracking paired error differ-
ence between GraphCast and HRES. The x-axis represents lead times (in days), and the y-axis represents
median paired error difference (in km). Error bars represent bootstrapped 95% confidence intervals for
the median difference (see Supplementary Materials Section 8.1). (c) Atmospheric river prediction (IVT)
skills for GraphCast and HRES. The x-axis represents lead times (in days), and the y-axis represents
RMSE. Error bars are 95% confidence intervals. (d) Extreme heat prediction precision-recall for Graph-
Cast and HRES. The x-axis represents recall, and the y-axis represents precision. The curves represent
different precision-recall trade-offs when sweeping over gain applied to forecast signals (see Supplemen-
tary Materials Section 8.3).
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Supplementary Materials Section 8.1). As a baseline for comparison, we used the operational

tracks obtained from HRES’s 0.1° forecasts with ECMWF’s own tracker, stored in the TIGGE

archive (27, 28). Each model using the tracker leading to its best performance, we measured

errors for both models against the tracks from IBTrACS (29, 30), a separate reanalysis dataset

of cyclone tracks aggregated from various analysis and observational sources. Consistent with

established evaluation of tropical cyclone prediction (26), we evaluate all tracks when both

GraphCast and HRES detect a cyclone, ensuring that both models are evaluated on the same

events, and verify that each model’s true-positive rates are similar.

Figure 3a shows GraphCast has lower median track error than HRES over 2018–2021 (me-

dian was chosen to resist outliers). As per-track errors for HRES and GraphCast are correlated,

we also measured the per-track paired error difference between the two models and found that

GraphCast is significantly better than HRES for lead time 18 hours to 4.75 days, as shown

in Fig. 3b. The error bars show the bootstrapped 95% confidence intervals for the median (see

Supplementary Materials Section 8.1 for details).

Atmospheric rivers

Atmospheric rivers are narrow regions of the atmosphere which are responsible for the majority

of the poleward water vapor transport across the mid-latitudes and generate 30%-65% of annual

precipitation on the U.S. West Coast (31). Their strength can be characterized by the vertically

integrated water vapor transport IVT (32, 33), indicating whether an event will provide benefi-

cial precipitation or be associated with catastrophic damage (34). IVT can be computed from

the non-linear combination of the horizontal wind speed (U and V) and specific humidity (Q),

which GraphCast predicts. We evaluate GraphCast forecasts over coastal North America and

the Eastern Pacific during cold months (Oct–Apr), when atmospheric rivers are most frequent.

Despite not being specifically trained to characterize atmospheric rivers, Fig. 3c shows that
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GraphCast improves the prediction of IVT compared to HRES, from 25% at short lead time, to

10% at longer horizons (see Supplementary Materials Section 8.2 for details).

Extreme heat and cold

Extreme heat and cold are characterized by large anomalies with respect to typical climatology

(3,35,36), which can be dangerous and disrupt human activities. We evaluate the skill of HRES

and GraphCast in predicting events above the top 2% climatology across location, time of day,

and month of the year, for 2T at 12-hour, 5-day, and 10-day lead times, for land regions across

northern and southern hemisphere over their respective summer months. We plot precision-

recall curves (37) to reflect different possible trade-offs between reducing false positives (high

precision) and reducing false negatives (high recall). For each forecast, we obtain the curve by

varying a “gain” parameter that scales the 2T forecast’s deviations with respect to the median

climatology.

Figure 3d shows GraphCast’s precision-recall curves are above HRES’s for 5- and 10-day

lead times, suggesting GraphCast’s forecasts are generally superior than HRES at extreme clas-

sification over longer horizons. By contrast, HRES has better precision-recall at the 12-hour

lead time, which is consistent with the 2T skill score of GraphCast over HRES being near zero,

as shown in Fig. 2d. We generally find these results to be consistent across other variables

relevant to extreme heat, such as T850 and Z500 (36), other extreme thresholds (5%, 2% and

0.5%), and extreme cold forecasting in winter. See Supplementary Materials Section 8.3 for

details.

Effect of training data recency

GraphCast can be re-trained periodically with recent data, which in principle allows it to capture

weather patterns that change over time, such as the effects of climate change, and long climate
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Fig. 4: Training GraphCast on more recent data. Each colored line represents GraphCast trained
with data ending before a different year, from 2018 (blue) to 2021 (purple). The y-axis represents RMSE
skill scores on 2021 test data, for Z500, with respect to GraphCast trained up to before 2018, over lead
times (x-axis). The vertical dashed line represents 3.5 days, where the HRES 06z/18z forecasts end. The
black line represents HRES, where lead times earlier and later than 3.5 days are from the 06z/18z and
00z/12z initializations, respectively.

oscillations. We trained four variants of GraphCast, from scratch, with data that always began

in 1979, but ended in 2017, 2018, 2019, and 2020, respectively (we label the variant ending

in 2017 as “GraphCast:<2018”, etc). We compared their performances to HRES on 2021 test

data.

Figure 4 shows the skill scores (normalized by GraphCast:<2018) of the four variants and

HRES, for Z500. We found that while GraphCast’s performance when trained up to before

2018 is still competitive with HRES in 2021, training it up to before 2021 further improves

its skill scores (see Supplementary Materials Section 7.1.3). We speculate this recency effect

allows recent weather trends to be captured to improve accuracy. This shows that GraphCast’s

performance can be improved by re-training on more recent data.
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Conclusions

GraphCast’s forecast skill and efficiency compared to HRES shows MLWP methods are now

competitive with traditional weather forecasting methods. Additionally, GraphCast’s perfor-

mance on severe event forecasting, which it was not directly trained for, demonstrates its ro-

bustness and potential for downstream value. We believe this marks a turning point in weather

forecasting, which helps open new avenues to strengthen the breadth of weather-dependent

decision-making by individuals and industries, by making cheap prediction more accurate, more

accessible, and suitable for specific applications.

With 36.7 million parameters, GraphCast is a relatively small model by modern ML stan-

dards, chosen to keep the memory footprint tractable. And while HRES is released on 0.1° res-

olution, 137 levels, and up to 1 hour time steps, GraphCast operated on 0.25° latitude-longitude

resolution, 37 vertical levels, and 6 hour time steps, because of the ERA5 training data’s native

0.25° resolution, and engineering challenges in fitting higher resolution data on hardware. Gen-

erally GraphCast should be viewed as a family of models, with the current version being the

largest we can practically fit under current engineering constraints, but which have potential to

scale much further in the future with greater compute resources and higher resolution data.

One key limitation of our approach is in how uncertainty is handled. We focused on de-

terministic forecasts and compared against HRES, but the other pillar of ECMWF’s IFS, the

ensemble forecasting system, ENS, is especially important for quantifying the probability of

extreme events and as the skill of the forecast decreases at longer lead times. The non-linearity

of weather dynamics means there is increasing uncertainty at longer lead times, which is not

well-captured by a single deterministic forecast. ENS addresses this by generating multiple,

stochastic forecasts, which approximate a predictive distribution over future weather, however

generating multiple forecasts is expensive. By contrast, GraphCast’s MSE training objective
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encourages it to spatially blur its predictions in the presence of uncertainty, which may not be

desirable for some applications where knowing tail, or joint, probabilities of events is impor-

tant. Building probabilistic forecasts that model uncertainty more explicitly, along the lines of

ensemble forecasts, is a crucial next step.

It is important to emphasize that data-driven MLWP relies critically on large quantities

of data and their quality, which in the case of models trained on reanalysis, depends on the

fidelity of NWPs. Therefore, rich high-quality data sources like ECMWF’s MARS archive (38)

are invaluable. Our approach should not be regarded as a replacement for traditional weather

forecasting methods, which have been developed for decades, rigorously tested in many real-

world contexts, and offer many features we have not yet explored. Rather our work should

be interpreted as evidence that MLWP is able to meet the challenges of real-world forecasting

problems and has potential to complement and improve the current best methods.

Beyond weather forecasting, GraphCast can open new directions for other important geo-

spatiotemporal forecasting problems, including climate and ecology, energy, agriculture, and

human and biological activity, as well as other complex dynamical systems. We believe that

learned simulators, trained on rich, real-world data, will be crucial in advancing the role of

machine learning in the physical sciences.
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Materials and Methods
1 Datasets

In this section, we give an overview of the data we used to train and evaluate GraphCast (Sup-

plements Section 1.1), the data defining the forecasts of the NWP baseline HRES, as well as

HRES-fc0, which we use as ground truth for HRES (Supplements Section 1.2). Finally, we

describe the data used in the tropical cyclone tracking analysis (Section 1.3).

We constructed multiple datasets for training and evaluation, comprised of subsets of ECMWF’s

data archives and IBTrACS (29, 30). We generally distinguish between the source data, which

we refer to as “archive” or “archived data”, versus the datasets we have built from these archives,

which we refer to as “datasets”.

1.1 ERA5

For training and evaluating GraphCast, we built our datasets from a subset of ECMWF’s ERA5 (21)3

archive, which is a large corpus of data that represents the global weather from 1959 to the

present, at 0.25° latitude/longitude resolution, and 1 hour increments, for hundreds of static,

surface, and atmospheric variables. The ERA5 archive is based on reanalysis, which uses

ECMWF’s HRES model (cycle 42r1) that was operational for most of 2016 (see Table S2),

within ECMWF’s 4D-Var data assimilation system. ERA5 assimilated 12-hour windows of ob-

servations, from 21z-09z and 09z-21z, as well as previous forecasts, into a dense representation

of the weather’s state, for each historical date and time.

Our ERA5 dataset contains a subset of available variables in ECMWF’s ERA5 archive (Ta-

ble S1), on 37 pressure levels4: 1, 2, 3, 5, 7, 10, 20, 30, 50, 70, 100, 125, 150, 175, 200,

3See ERA5 documentation: https://confluence.ecmwf.int/display/CKB/ERA5.
4We follow common practice of using pressure as our vertical coordinate, instead of altitude. A “pressure level”

is a field of altitudes with equal pressure. E.g., “pressure level 500 hPa” corresponds to the field of altitudes for
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225, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 775, 800, 825, 850, 875, 900,

925, 950, 975, 1000 hPa. The range of years included was 1979-01-01 to 2022-01-10, which

were downsampled to 6 hour time intervals (corresponding to 00z, 06z, 12z and 18z each day).

The downsampling is performed by subsampling, except for the total precipitation, which is

accumulated for the 6 hours leading up to the corresponding downsampled time.

1.2 HRES

Evaluating the HRES model baseline requires two separate sets of data, namely the forecast data

and the ground truth data, which are summarized in the subsequent sub-sections. The HRES

versions which were operational during our test years are shown in Table S2.

HRES operational forecasts HRES is generally considered to be the most accurate deter-

ministic NWP-based weather model in the world, so to evaluate the HRES baseline, we built

a dataset of HRES’s archived historical forecasts. HRES is regularly updated by ECMWF,

so these forecasts represent the latest HRES model at the time the forecasts were made. The

forecasts were downloaded at their native representation (which uses spherical harmonics and

an octahedral reduced Gaussian grid, TCo1279 (40)), and roughly corresponds to 0.1° lati-

tude/longitude resolution. We then spatially downsampled the forecasts to a 0.25° latitude/longitude

grid (to match ERA5’s resolution) using ECMWF’s Metview library, with default regrid pa-

rameters. We temporally downsampled them to 6 hour intervals. There are two groups of

HRES forecasts: those initialized at 00z/12z which are released for 10 day horizons, and those

initialized at 06z/18z which are released for 3.75 day horizons.

which the pressure is 500 hPa. The relationship between pressure and altitude is determined by the geopotential
variable.
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Type Variable name Short ECMWF Role (accumulation
name Parameter ID period, if applicable)

Atmospheric Geopotential z 129 Input/Predicted
Atmospheric Specific humidity q 133 Input/Predicted
Atmospheric Temperature t 130 Input/Predicted
Atmospheric U component of wind u 131 Input/Predicted
Atmospheric V component of wind v 132 Input/Predicted
Atmospheric Vertical velocity w 135 Input/Predicted

Single 2 metre temperature 2t 167 Input/Predicted
Single 10 metre u wind component 10u 165 Input/Predicted
Single 10 metre v wind component 10v 166 Input/Predicted
Single Mean sea level pressure msl 151 Input/Predicted
Single Total precipitation tp 228 Input/Predicted (6h)
Single TOA incident solar radiation tisr 212 Input (1h)
Static Geopotential at surface z 129 Input
Static Land-sea mask lsm 172 Input
Static Latitude n/a n/a Input
Static Longitude n/a n/a Input
Clock Local time of day n/a n/a Input
Clock Elapsed year progress n/a n/a Input

Table S1: ECMWF variables used in our datasets. The “Type” column indicates whether
the variable represents a static property, a time-varying single-level property (e.g., surface vari-
ables are included), or a time-varying atmospheric property. The “Variable name” and “Short
name” columns are ECMWF’s labels. The “ECMWF Parameter ID” column is a ECMWF’s
numeric label, and can be used to construct the URL for ECMWF’s description of the vari-
able, by appending it as suffix to the following prefix, replacing “ID” with the numeric code:
https://apps.ecmwf.int/codes/grib/param-db/?id=ID. The “Role” column indicates
whether the variable is something our model takes as input and predicts, or only uses as input context
(the double horizontal line separates predicted from input-only variables, to make the partitioning more
visible).

8



IFS cycle Dates of operation Used in ERA5 HRES evaluation year(s)

42r1 2016-03-08 – 2016-11-21 ✓ –
43r1 2016-11-22 – 2017-07-10 –
43r3 2017-07-11 – 2018-06-04 2018
45r1 2018-06-05 – 2019-06-10 2018, 2019
46r1 2019-06-11 – 2020-06-29 2019, 2020
47r1 2020-06-30 – 2021-05-10 2020, 2021
47r2 2021-05-11 – 2021-10-11 2021
47r3 2021-10-12 – present 2021, 2022

Table S2: 0.1° resolution IFS cycles since 2016. The table shows every IFS cycle that operated at
0.1° latitude/longitude resolution. The columns represent the IFS cycle version, its dates of operation,
whether it was used for data assimilation for ERA5, and the years it was used as a baseline for com-
paring to GraphCast in our results evaluation. See https://www.ecmwf.int/en/forecasts/
documentation-and-support/changes-ecmwf-model for the full cycle release schedule.

HRES-fc0 For evaluating the skill of the HRES operational forecasts, we constructed a ground

truth dataset, “HRES-fc0”, based on ECMWF’s HRES operational forecast archive. This dataset

comprises the initial time step of each HRES forecast, at initialization times 00z, 06z, 12z, and

18z (see Figure S1). The HRES-fc0 data is similar to the ERA5 data, but it is assimilated using

the latest ECMWF NWP model at the forecast time. Assimilation for 00z, 06z, 12z and 18z

uses observations up to +3h ahead (i.e., lookahead) of the corresponding date and time (see

Supplement Section 5.2.2). Note, ECMWF also provides an archive of “HRES Analysis” data,

which is distinct from our HRES-fc0 dataset. The HRES-Analysis dataset and HRES-fc0 some-

times differ due to the presence or absence of land surface analysis, and differences in the data

assimilation processes. Therefore we use HRES-fc0 as ground truth to ensure that HRES has

zero error at the zeroth timestep, and to minimize error at short lead times due to differences in

the input and the ground truth data sources. In the ECMWF Scorecard, all models are evaluated

against HRES-Analysis, however errors at short lead times due to these discrepancies would be

present across all models, rather than making one look apparently worse, as would be the case

if we were to use it for verifying HRES.
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Fig. S1: Schematic of HRES-fc0. Each horizontal line represent a forecast made by HRES, initialized
at a different time (grey axis). HRES forecasts initialized from 00z and 12z make predictions up to 10
days lead time (blue axis), while HRES forecasts initialized from 06z and 18z make predictions up to
3.75 days. Each square represent a state predicted by HRES, by 6 hours increments (smaller time steps
are omitted from the schematic, as well as states in the middle of a forecast trajectory). Red squares
represent the forecast at time 0 for each HRES forecast, and defines the data points included in HRES-
fc0. The brown axis represents the validity time and allows visualizing the alignment of predictions from
different initialization time. For instance, the error of the prediction made by HRES, initialized at 06z
(second row of squares from the top), at 12h lead time, i.e., 18z validity time (3rd square from the left)
would be measured against the first step of the HRES forecast initialized at 18z (red square from the last
row of square).
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HRES NaN handling A very small subset of the values from the ECMWF HRES archive for

the variable geopotential at 850hPa (Z850) and 925hPa (Z925) are not numbers (NaN). These

NaN’s seem to be distributed uniformly across the 2016-2021 range and across forecast times.

This represents about 0.00001% of the pixels for Z850 (1 pixel every ten 1440 x 721 latitude-

longitude frames), 0.00000001% of the pixels for Z925 (1 pixel every ten thousand 1440 x 721

latitude-longitude frames) and has no measurable impact on performance. For easier compari-

son, we filled these rare missing values with the weighted average of the immediate neighboring

pixels. We used a weight of 1 for side-to-side neighbors and 0.5 weights for diagonal neigh-

bors5.

1.3 Tropical cyclone datasets

For our analysis of tropical cyclone tracking, we used the IBTrACS (29, 30, 41, 42) archive to

construct the ground truth dataset. This includes historical cyclone tracks from around a dozen

authoritative sources. Each track is a time series, at 6-hour intervals (00z, 06z, 12z, 18z), where

each timestep represents the eye of the cyclone in latitude/longitude coordinates, along with the

corresponding Saffir-Simpson category and other relevant meteorological features at that point

in time.

For the HRES baseline, we used the TIGGE archive, which provides cyclone tracks es-

timated with the operational tracker, from HRES’s forecasts at 0.1° resolution (27, 28). The

data is stored as XML files available for download under https://confluence.ecmwf.

int/display/TIGGE/Tools. To convert the data into a format suitable for further post-

processing and analysis, we implemented a parser that extracts cyclone tracks for the years of

interest. The relevant sections (tags) in the XML files are those of type “forecast”, which typi-

cally contain multiple tracks corresponding to different initial forecast times. Within these tags,

5In the extremely rare cases that the neighbors were also NaN’s, we dropped both the NaN neighbor and the
opposed neighbor from the weighted average.
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we then extract the cyclone name (tag “cycloneName”), the latitude (tag “latitude”) and the

longitude (tag “longitude”) values, and the valid time (tag “validTime”).

See Section 8.1 for details of the tracker algorithm and results.
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2 Notation and problem statement

In this section, we define useful time notations use throughout the paper (Section 2.1), formalize

the general forecasting problem we tackle (Section 2.2), and detail how we model the state of

the weather (Section 2.3).

2.1 Time notation

The time notation used in forecasting can be confusing, involving a number of different time

symbols, e.g., to denote the initial forecast time, validity time, forecast horizon, etc. We there-

fore introduce some standardized terms and notation for clarity and simplicity. We refer to a

particular point in time as “date-time”, indicated by calendar date and UTC time. For example,

2018-06-21_18:00:00 means June 21, 2018, at 18:00 UTC. For shorthand, we also some-

times use the Zulu convention, i.e., 00z, 06z, 12z, 18z mean 00:00, 06:00, 12:00, 18:00

UTC, respectively. We further define the following symbols:

• t: Forecast time step index, which indexes the number of steps since the forecast was

initialized.

• T : Forecast horizon, which represents the total number of steps in a forecast.

• d: Validity time, which indicates the date-time of a particular weather state.

• d0: Forecast initialization time, indicating the validity time of a forecast’s initial inputs.

• ∆d: Forecast step duration, indicating how much time elapses during one forecast step.

• τ : Forecast lead time, which represents the elapsed time in the forecast (i.e., τ = t∆d).
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2.2 General forecasting problem statement

Let Zd denote the true state of the global weather at time d. The time evolution of the true

weather can be represented by an underlying discrete-time dynamics function, Φ, which gener-

ates the state at the next time step (∆d in the future) based on the current one, i.e., Zd+∆d =

Φ(Zd). We then obtain a trajectory of T future weather states by applying Φ autoregressively

T times,

Zd+∆d:d+T∆d = (Φ(Zd),Φ(Zd+∆d), . . . ,Φ(Zd+(T−1)∆d)︸ ︷︷ ︸
1...T autoregressive iterations

). (1)

Our goal is to find an accurate and efficient model, ϕ, of the true dynamics function, Φ, that

can efficiently forecast the state of the weather over some forecast horizon, T∆d. We assume

that we cannot observe Zd directly, but instead only have some partial observation Xd, which is

an incomplete representation of the state information required to predict the weather perfectly.

Because Xd is only an approximation of the instantaneous state Zd, we also provide ϕ with one

or more past states, Xd−∆d, Xd−2∆d, ..., in addition to Xd. The model can then, in principle,

leverage this additional context information to approximate Zd more accurately. Thus ϕ predicts

a future weather state as,

X̂d+∆d = ϕ(Xd, Xd−∆d, ...). (2)

Analogous to Equation (1), the prediction X̂d+∆d can be fed back into ϕ to autoregressively

produce a full forecast,

X̂d+∆d:d+T∆d = (ϕ(Xd, Xd−∆d, ...), ϕ(X̂d+∆d, Xd, ...), . . . , ϕ(X̂d+(T−1)∆d, X̂d+(T−2)∆d, ...)︸ ︷︷ ︸
1...T autoregressive iterations

).

(3)

We assess the forecast quality, or skill, of ϕ by quantifying how well the predicted trajec-

tory, X̂d+∆d:d+T∆d, matches the ground-truth trajectory, Xd+∆d:d+T∆d. However, it is important
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to highlight again that Xd+∆d:d+T∆d only comprises our observations of Zd+∆d:d+T∆d, which

itself is unobserved. We measure the consistency between forecasts and ground truth with an

objective function,

L
(
X̂d+∆d:d+T∆d, Xd+∆d:d+T∆d

)
,

which is described explicitly in Section 5.

In our work, the temporal resolution of data and forecasts was always ∆d = 6 hours with a

maximum forecast horizon of 10 days, corresponding to a total of T = 40 steps. Because ∆d

is a constant throughout this paper, we can simplify the notation using (X t, X t+1, . . . , X t+T )

instead of (Xd, Xd+∆d, . . . , Xd+T∆d), to index time with an integer instead of a specific date-

time.

2.3 Modeling ECMWF weather data

For training and evaluating models, we treat our ERA5 dataset as the ground truth representation

of the surface and atmospheric weather state. As described in Section 1.2, we used the HRES-

fc0 dataset as ground truth for evaluating the skill of HRES.

In our dataset, an ERA5 weather state X t comprises all variables in Table S1 (see next

paragraph for details of the variables), at a 0.25° horizontal latitude-longitude resolution with

a total of 721 × 1440 = 1, 038, 240 grid points and 37 vertical pressure levels. The atmo-

spheric variables are defined at all pressure levels and the set of (horizontal) grid points is given

by G0.25° = {−90.0,−89.75, . . . , 90.0} × {−179.75,−179.5, . . . , 180.0}. These variables are

uniquely identified by their short name (and the pressure level, for atmospheric variables). For

example, the surface variable “2 metre temperature” is denoted 2T; the atmospheric variable

“Geopotential” at pressure level 500 hPa is denoted Z500. Note, only the “predicted” variables

are output by our model, because the “input”-only variables are forcings that are known apri-
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ori, and simply appended to the state on each time-step. We ignore them in the description for

simplicity.

The input and predicted variables used in our model are shown in Table 1 and Table S1. Of

the predicted variables (indicated in Table S1 with “Input/Predicted” in the “Role” column), 5

are surface variables, and 6 are atmospheric variables at 37 pressure levels, giving a total of 227

(5 + 6 × 37) target variables. Several other static and/or external variables were also provided

as input context for our model (indicated in Table S1 with “Input” in the “Role” column). The

static/external variables include information such as the geometry of the grid/mesh, orography

(surface geopotential), land-sea mask and radiation at the top of the atmosphere.

We refer to the subset of variables in X t that correspond to a particular grid point i (1,038,240

in total) as xt
i, and to each variable j of the 227 target variables as xt

i,j . The full state represen-

tation X t therefore contains a total of 721× 1440× (5 + 6× 37) = 235, 680, 480 values. Note,

at the poles, the 1440 longitude points are equal, so the actual number of distinct grid points is

slightly smaller.

One thing to note is that the coordinate system we use is not special, and can be changed

to suit particular use cases. For example, using RMSE as a training objective to optimize wind

vectors in Cartesian coordinates incentivizes reducing the wind magnitude under predictive

uncertainty, which may not be desirable. Using polar coordinates (magnitude and angular di-

rection) may be more desirable in this case.
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3 GraphCast model

This section provides a detailed description of GraphCast, starting with the autoregressive gen-

eration of a forecast (Section 3.1), an overview of the architecture in plain language (Sec-

tion 3.2), followed by a technical description the all the graphs defining GraphCast (Section 3.3),

its encoder (Section 3.4), processor (Section 3.5), and decoder (Section 3.6), as well as all the

normalization and parameterization details (Section 3.7).

3.1 Generating a forecast

Our GraphCast model is defined as a one-step learned simulator that takes the role of ϕ in

Equation (2) and predicts the next step based on two consecutive input states,

X̂ t+1 = GraphCast(X t, X t−1). (4)

As in Equation (3), we can apply GraphCast iteratively to produce a forecast

X̂ t+1:t+T = (GraphCast(X t, X t−1),GraphCast(X̂ t+1, X t), . . . ,GraphCast(X̂ t+T−1, X̂ t+T−2)︸ ︷︷ ︸
1...T autoregressive iterations

)

(5)

of arbitrary length, T . This is illustrated in Figure 1b,c. We found, in early experiments, that

two input states yielded better performance than one, and that three did not help enough to

justify the increased memory footprint.

3.2 Architecture overview

GraphCast is implemented using GNNs in an “encode-process-decode” configuration (17), as

depicted in Figure 1d,e,f, where the encoder maps (surface and atmospheric) features on the

input latitude-longitude grid to a multi-mesh, the processor performs many rounds of message-

passing on the multi-mesh, and the decoder maps the multi-mesh features back to the out-

put latitude-longitude grid (see Figure 1). GNN-based learned simulators are very effective at
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learning complex physical dynamics of fluids and other materials (18, 19), as the structure of

their representations and computations are analogous to learned finite element solvers (20). A

key advantage of GNNs is that the input graph’s structure determines what parts of the rep-

resentation interact with one another via learned message-passing, allowing arbitrary patterns

of spatial interactions over any range. By contrast, a convolutional neural network (CNN) is

restricted to computing interactions within local patches (or, in the case of dilated convolution,

over regularly strided longer ranges). And while Transformers (43) can also compute arbitrarily

long-range computations, they do not scale well with very large inputs (e.g., the 1 million-plus

grid points in GraphCast’s global inputs) because of the quadratic memory complexity induced

by computing all-to-all interactions. Contemporary extensions of Transformers often sparsify

possible interactions to reduce the complexity, which in effect makes them analogous to GNNs

(e.g., graph attention networks (44)).

The way we capitalize on the GNN’s ability to model arbitrary sparse interactions is by in-

troducing GraphCast’s new internal “multi-mesh” representation, which allows long-range in-

teractions within few message-passing steps and has generally homogeneous spatial resolution

over the globe. This is in contrast with a latitude-longitude grid which induce a non-uniform

distribution of grid points. Using the latitude-longitude grid is not an advisable representation

due to its spatial inhomogeneity, and high resolution at the poles which demands disproportion-

ate compute resources.

Our multi-mesh is constructed by first dividing a regular icosahedron (12 nodes and 20

faces) iteratively 6 times to obtain a hierarchy of icosahedral meshes with a total of 40,962

nodes and 81,920 faces on the highest resolution. We leveraged the fact that the coarse-mesh

nodes are subsets of the fine-mesh nodes, which allowed us to superimpose edges from all levels

of the mesh hierarchy onto the finest-resolution mesh. This procedure yields a multi-scale set of

meshes, with coarse edges bridging long distances at multiple scales, and fine edges capturing
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local interactions. Figure 1g shows each individual refined mesh, and Figure 1e shows the full

multi-mesh.

GraphCast’s encoder (Figure 1d) first maps the input data, from the original latitude-longitude

grid, into learned features on the multi-mesh, using a GNN with directed edges from the grid

points to the multi-mesh. The processor (Figure 1e) then uses a 16-layer deep GNN to per-

form learned message-passing on the multi-mesh, allowing efficient propagation of information

across space due to the long-range edges. The decoder (Figure 1f) then maps the final multi-

mesh representation back to the latitude-longitude grid using a GNN with directed edges, and

combines this grid representation, Ŷ t+k, with the input state, X̂ t+k, to form the output predic-

tion, X̂ t+k+1 = X̂ t+k + Ŷ t+k.

The encoder and decoder do not require the raw data to be arranged in a regular rectilinear

grid, and can also be applied to arbitrary mesh-like state discretizations (20). The general

architecture builds on various GNN-based learned simulators which have been successful in

many complex fluid systems and other physical domains (18, 19, 45). Similar approaches were

used in weather forecasting (13), with promising results.

On a single Cloud TPU v4 device6, GraphCast can generate a 0.25° resolution, 10-day

forecast (at 6-hour steps) in under 60 seconds. For comparison, ECMWF’s IFS system runs

on a 11,664-core cluster, and generates a 0.1° resolution, 10-day forecast (released at 1-hour

steps for the first 90 hours, 3-hour steps for hours 93-144, and 6-hour steps from 150-240

hours, in about an hour of compute time (8). See the HRES release details here: https:

//www.ecmwf.int/en/forecasts/datasets/set-i.
6For information about Cloud TPU v4 performance, memory and energy consumption, see https://

cloud.google.com/tpu/docs/system-architecture-tpu-vm#tpu_v4.
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3.3 GraphCast’s graph

The model operates on a graph G(VG,VM, EM, EG2M, EM2G), defined in detail in the subsequent

paragraphs.

Grid nodes VG represents the set containing each of the grid nodes vG
i . Each grid node

represents a vertical slice of the atmosphere at a given latitude-longitude point, i. The features

associated with each grid node vG
i are vG,features

i = [xt−1
i ,xt

i, f
t−1
i , f ti , f

t+1
i , ci], where xt

i is the

time-dependent weather state X t corresponding to grid node vG
i and includes all the predicted

data variables for all 37 atmospheric levels as well as surface variables. The forcing terms

f t consist of time-dependent features that can be computed analytically, and do not need to

be predicted by GraphCast. They include the total incident solar radiation at the top of the

atmosphere, accumulated over 1 hour, the sine and cosine of the local time of day (normalized

to [0, 1)), and the sine and cosine of the of year progress (normalized to [0, 1)). The constants

ci are static features: the binary land-sea mask, the geopotential at the surface, the sine of

the latitude, and the sine and cosine of the longitude. At 0.25° resolution, there is a total of

721× 1440 = 1, 038, 240 grid nodes, each with (5 surface variables + 6 atmospheric variables

× 37 levels) × 2 steps + 5 forcings × 3 steps + 5 constant = 474 input features.

Mesh nodes VM represents the set containing each of the mesh nodes vM
i . Mesh nodes are

placed uniformly around the globe in a R-refined icosahedral mesh MR. M0 corresponds to a

unit-radius icosahedron (12 nodes and 20 triangular faces) with faces parallel to the poles (see

Figure 1g). The mesh is iteratively refined M r →M r+1 by splitting each triangular face into 4

smaller faces, resulting in an extra node in the middle of each edge, and re-projecting the new

nodes back onto the unit sphere.7 Features vM,features
i associated with each mesh node vM

i are the

7Note this split and re-project mechanism leads to a maximum difference of 16.4% and standard deviation of
6.5% in triangle edge lengths across the mesh.
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cosine of the latitude, and the sine and cosine of the longitude. GraphCast works with a mesh

that has been refined R = 6 times, M6, resulting in 40,962 mesh nodes (see Supplementary

Table S3), each with the 3 input features.

Refinement 0 1 2 3 4 5 6
Num Nodes 12 42 162 642 2,562 10,242 40,962
Num Faces 20 80 320 1,280 5,120 20,480 81,920
Num Edges 60 240 960 3,840 15,360 61,440 245,760

Num Multilevel Edges 60 300 1,260 5,100 20,460 81,900 327,660

Table S3: Multi-mesh statistics. Statistics of the multilevel refined icosahedral mesh as function of the
refinement level R. Edges are considered to be bi-directional and therefore we count each edge in the
mesh twice (once for each direction).

Mesh edges EM are bidirectional edges added between mesh nodes that are connected in the

mesh. Crucially, mesh edges are added to EM for all levels of refinement, i.e., for the finest mesh,

M6, as well as for M5, M4, M3, M2, M1 and M0. This is straightforward because of how the

refinement process works: the nodes of M r−1 are always a subset of the nodes in M r. Therefore,

nodes introduced at lower refinement levels serve as hubs for longer range communication,

independent of the maximum level of refinement. The resulting graph that contains the joint

set of edges from all of the levels of refinement is what we refer to as the “multi-mesh”. See

Figure 1e,g for a depiction of all individual meshes in the refinement hierarchy, as well as the

full multi-mesh.

For each edge eM
vM

s →vM
r

connecting a sender mesh node vM
s to a receiver mesh node vM

r , we

build edge features eM,features
vM

s →vM
r

using the position on the unit sphere of the mesh nodes. This

includes the length of the edge, and the vector difference between the 3d positions of the sender

node and the receiver node computed in a local coordinate system of the receiver. The local

coordinate system of the receiver is computed by applying a rotation that changes the azimuthal
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angle until that receiver node lies at longitude 0, followed by a rotation that changes the polar

angle until the receiver also lies at latitude 0. This results in a total of 327,660 mesh edges (See

Table S3), each with 4 input features.

Grid2Mesh edges EG2M are unidirectional edges that connect sender grid nodes to receiver

mesh nodes. An edge eG2M
vG

s →vM
r

is added if the distance between the mesh node and the grid node

is smaller or equal than 0.6 times8 the length of the edges in mesh M6 (see Figure 1) which

ensures every grid node is connected to at least one mesh node. Features eG2M,features
vG

s →vM
r

are built

the same way as those for the mesh edges. This results on a total of 1,618,746 Grid2Mesh

edges, each with 4 input features.

Mesh2Grid edges EM2G are unidirectional edges that connect sender mesh nodes to receiver

grid nodes. For each grid point, we find the triangular face in the mesh M6 that contains it and

add three Mesh2Grid edges of the form eM2G
vM

s →vG
r
, to connect the grid node to the three mesh nodes

adjacent to that face (see Figure 1). Features eM2G,features
vM

s →vG
r

are built on the same way as those for

the mesh edges. This results on a total of 3,114,720 Mesh2Grid edges (3 mesh nodes connected

to each of the 721× 1440 latitude-longitude grid points), each with four input features.

3.4 Encoder

The purpose of the encoder is to prepare data into latent representations for the processor, which

will run exclusively on the multi-mesh.

Embedding the input features As part of the encoder, we first embed the features of each

of the grid nodes, mesh nodes, mesh edges, grid to mesh edges, and mesh to grid edges into a

8Technically it is 0.6 times the “longest” edge in M6, since there is some variance in the length of the edges
caused by the split-and-reproject mechanism.
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latent space of fixed size using five multi-layer perceptrons (MLP),

vG
i = MLPembedder

VG (vG,features
i )

vM
i = MLPembedder

VM (vM,features
i )

eM
vM

s →vM
r
= MLPembedder

EM (eM,features
vM

s →vM
r

)

eG2M
vG

s →vM
r
= MLPembedder

EG2M (eG2M,features
vG

s →vM
r

)

eM2G
vM

s →vG
r
= MLPembedder

EM2G (eM2G,features
vM

s →vG
r

)

(6)

Grid2Mesh GNN Next, in order to transfer information of the state of atmosphere from the

grid nodes to the mesh nodes, we perform a single message passing step over the Grid2Mesh

bipartite subgraph GG2M(VG,VM, EG2M) connecting grid nodes to mesh nodes. This update is

performed using an interaction network (17, 46), augmented to be able to work with multiple

node types (47). First, each of the Grid2Mesh edges are updated using information from the

adjacent nodes,

eG2M
vG

s →vMr

′
= MLPGrid2Mesh

EG2M ([eG2M
vG

s →vMr
,vG

s ,v
M
r ]). (7)

Then each of the mesh nodes is updated by aggregating information from all of the edges arriv-

ing at that mesh node:

vM
i
′
= MLPGrid2Mesh

VM

([
vM
i ,

∑
eG2M
vG

s →vM
r
: vM

r =vM
i

eG2M
vG

s →vM
r

′])
. (8)

Each of the grid nodes are also updated, but with no aggregation, because grid nodes are not

receivers of any edges in the Grid2Mesh subgraph,

vG
i

′
= MLPGrid2Mesh

VG

(
vG
i

)
. (9)

After updating all three elements, the model includes a residual connection, and for simplicity
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of the notation, reassigns the variables,

vG
i ← vG

i + vG
i

′
,

vM
i ← vM

i + vM
i
′
,

eG2M
vG

s →vMr
← eG2M

vG
s →vMr

+ eG2M
vG

s →vMr

′
.

(10)

3.5 Processor

The processor is a deep GNN that operates on the Mesh subgraph GM(VM, EM) which only

contains the Mesh nodes and and the Mesh edges. Note the Mesh edges contain the full multi-

mesh, with not only the edges of M6, but all of the edges of M5, M4, M3, M2, M1 and M0,

which will enable long distance communication.

Multi-mesh GNN A single layer of the Mesh GNN is a standard interaction network (17,46)

which first updates each of the mesh edges using information of the adjacent nodes:

eM
vMs →vMr

′
= MLPMesh

EM ([eM
vMs →vMr

,vM
s ,vM

r ]). (11)

Then it updates each of the mesh nodes, aggregating information from all of the edges arriving

at that mesh node:

vM
i
′
= MLPMesh

VM

([
vM
i ,

∑
eM
vM

s →vM
r
: vM

r =vM
i

eM
vM

s →vM
r

′]) (12)

And after updating both, the representations are updated with a residual connection and for

simplicity of the notation, also reassigned to the input variables:

vM
i ← vM

i + vM
i
′

eM
vMs →vMr

← eM
vNs →vMr

+ eM
vMs →vMr

′
(13)

The previous paragraph describes a single layer of message passing, but following a similar

approach to (18, 19), we used a stack of 16 layer, with unshared neural network weights for the

MLPs in each layer. Note that while unshared across layers, within any given layer, the neural

parameters of all of the MLPs in GraphCast are always shared across spatial locations.
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3.6 Decoder

The role of the decoder is to bring back information to the grid, and extract an output.

Mesh2Grid GNN Analogous to the Grid2Mesh GNN, the Mesh2Grid GNN performs a single

message passing over the Mesh2Grid bipartite subgraph GM2G(VG,VM, EM2G). The Grid2Mesh

GNN is functionally equivalent to the Mesh2Grid GNN, but using the Mesh2Grid edges to send

information in the opposite direction. The GNN first updates each of the Grid2Mesh edges

using information of the adjacent nodes:

eM2G
vMs →vG

r

′
= MLPMesh2Grid

EM2G ([eM2G
vMs →vG

r
,vM

s ,vG
r ]) (14)

Then it updates each of the grid nodes, aggregating information from all of the edges arriving

at that grid node:

vG
i

′
= MLPMesh2Grid

VG

([
vG
i ,

∑
eM2G
vM

s →vG
r
: vG

r =vG
i

eM2G
vM

s →vG
r

′])
. (15)

In this case we do not update the mesh nodes, as they won’t play any role from this point on.

Here again we add a residual connection, and for simplicity of the notation, reassign the

variables, this time only for the grid nodes, which are the only ones required from this point on:

vG
i ← vG

i + vG
i

′
. (16)

Output function Finally the prediction ŷi for each of the grid nodes is produced using another

MLP,

ŷG
i = MLPOutput

VG

(
vG
i

)
(17)

which contains all 227 predicted variables for that grid node. Similar to (18, 19), the next

weather state, X̂ t+1, is computed by adding the per-node prediction, Ŷ t, to the input state for

25



all grid nodes,

X̂ t+1 = GraphCast(X t, X t−1) = X t + Ŷ t. (18)

3.7 Normalization and network parameterization

Input normalization Similar to (18,19), we normalized all inputs. For each physical variable,

we computed the per-pressure level mean and standard deviation over 1979–2015, and used that

to normalize them to zero mean and unit variance. For relative edge distances and lengths, we

normalized the features to the length of the longest edge. For simplicity, we omit this output

normalization from the notation.

Output normalization Because our model outputs a difference, Ŷ t, which, during inference,

is added to X t to produce X̂ t+1, we normalized the output of the model by computing per-

pressure level standard deviation statistics for the time difference Y t = X t+1 − X t of each

variable9. When the GNN produces an output, we multiply this output by this standard deviation

to obtain Ŷ t before computing X̂ t+1, as in Equation (18). For simplicity, we omit this output

normalization from the notation.

Neural network parameterizations The neural networks within GraphCast are all MLPs,

with one hidden layer, and hidden and output layers sizes of 512 (except the final layer of the

Decoder’s MLP, whose output size is 227, matching the number of predicted variables for each

grid node). Using a single hidden layer in MLPs is common practice in GNNs, as conventional

wisdom, and our own experience, indicates increasing the number of layers of message-passing,

and decreasing the depth of the MLPs, works best. Preliminary experiments of varied MLP

depths supported this choice.

9We ignore the mean in the output normalization, as the mean of the time differences is zero.
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We chose the “swish” (48) activation function for all MLPs. All MLPs are followed by a

LayerNorm (49) layer (except for the Decoder’s MLP).
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4 Training details

This section provides details pertaining to the training of GraphCast, including the data split

used to develop the model (Section 4.1), the full definition of the objective function with the

weight associated with each variable and vertical level (Section 4.2), the autoregressive training

approach (Section 4.3), optimization settings (Section 4.4), curriculum training used to reduce

training cost (Section 4.5), technical details used to reduce the memory footprint of GraphCast

(Section 4.6), training time (Section 4.7) and the software stacked we used (Section 4.8).

4.1 Training split

To mimic real deployment conditions, in which the forecast cannot depend on information from

the future, we split the data used to develop GraphCast and data used to test its performance

“causally”, in that the “development set” only contained dates earlier than those in the “test

set”, as recommended in the WeatherBench benchmark (8). Similarly to (14), the development

set comprises the period 1979–2017, and the test set contains the years 2018–2021. Neither the

researchers, nor the model training software, were allowed to view data from the test set until

we had finished the development phase. This prevented our choices of model architecture and

training protocol from being able to exploit any information from the future.

Within our development set, we further split the data into a training set comprising the years

1979–2015, and a validation set that includes 2016–2017. We used the training set as training

data for our models and the validation set for hyperparameter optimization and model selection,

i.e., to decide on the best-performing model architecture. We then froze the model architecture

and all the training choices and moved to the test phase. In preliminary work, we also explored

training on earlier data from 1959–1978, but found it had little benefit on performance10, so in

10We hypothesize this is due to the limited availability of observations, including satellite data, to construct
ERA5 reanalysis prior to 1979 (50).
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the final phases of our work we excluded 1959–1978 for simplicity.

4.2 Training objective

GraphCast was trained to minimize an objective function over 12-step forecasts (3 days) against

ERA5 targets, using gradient descent. The training objective is defined as the mean square error

(MSE) between the target output X and predicted output X̂ ,

LMSE =
1

|Dbatch|
∑

d0∈Dbatch︸ ︷︷ ︸
forecast date-time

1

Ttrain

∑
τ∈1:Ttrain︸ ︷︷ ︸

lead time

1

|G0.25°|
∑

i∈G0.25°︸ ︷︷ ︸
spatial location

∑
j∈J︸︷︷︸

variable-level

sjwjai (x̂
d0+τ
i,j − xd0+τ

i,j )2︸ ︷︷ ︸
squared error

(19)

where

• τ ∈ 1 : Ttrain are the lead times that correspond to the Ttrain autoregressive steps.

• d0 ∈ Dbatch represent forecast initialization date-times in a batch of forecasts in the train-

ing set,

• j ∈ J indexes the variable, and for atmospheric variables the pressure level. E.g. J =

{Z1000, Z850, . . . , 2T, MSL},

• i ∈ G0.25° are the location (latitude and longitude) coordinates in the grid,

• x̂d0+τ
i,j and xd0+τ

i,j are predicted and target values for some variable-level, location, and lead

time,

• sj is the per-variable-level inverse variance of time differences,

• wj is the per-variable-level loss weight,

• ai is the area of the latitude-longitude grid cell, which varies with latitude, and is normal-

ized to unit mean over the grid.

In order to build a single scalar loss, we took the average across latitude-longitude, pressure

levels, variables, lead times, and batch size. We averaged across latitude-longitude axes, with

a weight proportional to the latitude-longitude cell size (normalized to mean 1). We applied

uniform averages across time and batch.
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Fig. S2: Training loss weights. (a) Loss weights per pressure level, for atmospheric variables. (b) Loss
weights for surface variables.

The quantities sj = Vi,t

[
xt+1
i,j − xt

i,j

]−1 are per-variable-level inverse variance estimates

of the time differences, which aim to standardize the targets (over consecutive steps) to unit

variance. These were estimated from the training data. We then applied per-variable-level loss

weights, wj . For atmospheric variables, we averaged across levels, with a weight proportional

to the pressure of the level (normalized to unit mean), as shown in Figure S2a. We use pressure

here as a proxy for the density (13). This is a design choice reflecting the higher importance

we decided to assign to levels close to the surface. Note that the loss weight applied to pressure

levels at or below 50 hPa, where HRES tends to perform better than GraphCast, is only 0.66%

of the total loss weight across all variables and levels. We tuned the loss weights for the surface

variables during model development, so as to produce roughly comparable validation perfor-

mance across all variables: the weight on 2T was 1.0, and the weights on 10U, 10V, MSL, and

TP were each 0.1, as shown in Figure S2b. The loss weights across all variables sum to 7.4, i.e.,

(6×1.0 for the atmospheric variables, plus (1.0+0.1+0.1+0.1+0.1) for the surface variables

listed above, respectively).
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In follow up work, we found that by replacing the product of the vertical weight wj and the

inverse residual variance sj by the per-level-per-variable weights defined as the inverse 6h-MSE

of HRES, one could improve the performance of GraphCast at low pressure level for a number

of variables, while maintaining the general performance advantage with respect to HRES. This

suggests that there is no fundamental limitation to obtaining good performance at low pressure,

and with the appropriate weighting, and modeling additional variables relevant to phenomenon

occurring at low pressure, GraphCast could further improve performance above the tropopause.

4.3 Training on autoregressive objective

In order to improve our model’s ability to make accurate forecasts over more than one step, we

used an autoregressive training regime, where the model’s predicted next step was fed back in as

input for predicting the next step. The final GraphCast version was trained on 12 autoregressive

steps, following a curriculum training schedule described below. The optimization procedure

computed the loss on each step of the forecast, with respect to the corresponding ground truth

step, error gradients with respect to the model parameters were backpropagated through the full

unrolled sequence of model iterations (i.e., using backpropagation-through-time).

4.4 Optimization

The training objective function was minimized using gradient descent, with mini-batches. We

sampled ground truth trajectories from our ERA5 training dataset, with replacement, for batches

of size 32. We used the AdamW optimizer (51,52) with parameters (beta1 = 0.9, beta2 = 0.95).

We used weight decay of 0.1 on the weight matrices. We used gradient (norm) clipping with a

maximum norm value of 32.
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Fig. S3: Training schedule. (a) First phase of training. (b) Second phase of training. (c) Third phase of
training. Left orange y-axis indicates the learning rate values. Right purple y-axis indicates the number
of autoregressive steps used in the loss.

4.5 Curriculum training schedule

Training the model was conducted using a curriculum of three phases, which varied the learning

rates and number of autoregressive steps. The first phase consisted of 1000 gradient descent

updates, with one autoregressive step, and a learning rate schedule that increased linearly from

0 to 1e−3 (Figure S3a). The second phase consisted of 299,000 gradient descent updates, again

with one autoregressive step, and a learning rate schedule that decreased back to 0 with half-

cosine decay function (53) (Figure S3b). The third phase consisted of 11,000 gradient descent

updates, where the number of autoregressive steps increased from 2 to 12, increasing by 1 every

1000 updates, and with a fixed learning rate of 3e−7 (Figure S3c).

The schedule for the number of autoregressive steps in the loss aims at reducing the com-

putational cost of training by using a less expensive loss for most of the steps. By linearly

increasing the number of steps in the autoregressive loss, the model focuses on obtaining good

performance at short lead time first, a necessary step before learning how to reduce the error at

long lead time.
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4.6 Reducing memory footprint

To fit long trajectories (12 autoregressive steps) into the 32GB of a Cloud TPU v4 device11,

we use several strategies to reduce the memory footprint of our model. First, we use batch

parallelism to distribute data across 32 TPU devices (i.e., one data point per device). Second,

we use bfloat16 floating point precision to decrease the memory taken by activations (note, we

use full-precision numerics (i.e. float32) to compute performance metrics at evaluation time).

Finally, we use gradient check-pointing (54) to further reduce memory footprint at the cost of a

lower training speed.

4.7 Training time

Following the training schedule that ramps up the number of autoregressive steps, as detailed

above, training GraphCast took about four weeks on 32 TPU devices.

4.8 Software and hardware stack

We use JAX (55), Haiku (56), Jraph (57), Optax, Jaxline (58) and xarray (59) to build and train

our models.

11For information about Cloud TPU v4 performance, memory and energy consumption, see https://
cloud.google.com/tpu/docs/system-architecture-tpu-vm#tpu_v4.
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5 Verification methods

This section provides details on our evaluation protocol. Section 5.1 details our approach to

splitting data in a causal way, ensuring our evaluation tests for meaningful generalization,

i.e., without leveraging information from the future. Section 5.2 explains in further details

our choices to evaluate HRES skill and compare it to GraphCast, starting from the need for

a ground truth specific to HRES to avoid penalizing it at short lead times (Section 5.2.1), the

impact of ERA5 and HRES using different assimilation windows on the lookahead each state

incorporates (Section 5.2.2), the resulting choice of initialization time for GraphCast and HRES

to ensure that all methods benefit from the same lookahead in their inputs as well as in their tar-

gets (Section 5.2.3), and finally the evaluation period we used to report performance on 2018

(Section 5.2.4). Section 5.3 provides the definition of the metrics used to measure skill in our

main results, as well as metrics used in complementary results in the Supplements. Finally,

Section 5.4 details our statistical testing methodology.

5.1 Training, validation, and test splits

In the test phase, using protocol frozen at the end of the development phase (Section 4.1), we

trained four versions of GraphCast, each of them on a different period. The models were trained

on data from 1979–2017, 1979–2018, 1979–2019 and 1979–2020 for evaluation on the periods

2018–2021, 2019–2021, 2020–2021 and 2021, respectively. Again, these splits maintained a

causal separation between the data used to train a version of the model and the data used to

evaluate its performance (see Figure S4). Most of our results were evaluated on 2018 (i.e., with

the model trained on 1979–2017), with several exceptions. For cyclone tracking experiments,

we report results on 2018–2021 because cyclones are not that common, so including more years

increases the sample size. We use the most recent version of GraphCast to make forecast on a
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1979-2015 2016 2017

Development phase

1979-2015 2016 2017 2018 2019 2020 2021*,✝

1979-2015 2016 2017 2018 2019 2021✝

1979-2015 2016 2017 2018 2019* 2020 2021✝

1979-2015 2016 2017 2019 2020 2021✝

Test phase

GraphCast <2018

GraphCast <2019

GraphCast <2020

GraphCast <2021

2020*

2018*

Fig. S4: Data split summary. In the development phase, GraphCast was trained on 1979–2015 (blue)
and validated on 2016–2017 (yellow) until the training protocol was frozen. In the test phase, four
versions of GraphCast were trained on larger and more recent train sets. Blue years represent training
years for a given version of GraphCast, and red years represent the data that can be used at test time while
satisfying split causality. Note that in the test phase, because the training protocol uses a fixed number
of steps, we do not need validation data to compute a stopping criterion. The box represents the model
and test year pair used in most of the results presented in the paper. The asterisks represent the model
and test year pairs used in the cyclone tracking experiments. The dagger symbols denote the model and
test year pairs used to characterize the effect of data recency.

given year: GraphCast <2018 for 2018 forecast, GraphCast <2019 for 2019 forecast, etc. For

training data recency experiments, we evaluated how different models trained up to different

years compared on 2021 test performance.

5.2 Comparing GraphCast to HRES

5.2.1 Choice of ground truth datasets

GraphCast was trained to predict ERA5 data, and to take ERA5 data as input; we also use

ERA5 as ground truth for evaluating our model. HRES forecasts, however, are initialized based

on HRES analysis. Generally, verifying a model against its own analysis gives the best skill

estimates (60). So rather than evaluating HRES forecasts against ERA5 ground truth, which
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would mean that even the zeroth step of HRES forecasts would have non-zero error, we con-

structed an “HRES forecast at step 0” (HRES-fc0) dataset, which contains the initial time step

of HRES forecasts at future initializations (see Table S2). We use HRES-fc0 as ground truth for

evaluating HRES forecasts.

5.2.2 Ensuring equal lookahead in assimilation windows

When comparing the skills of GraphCast and HRES, we made several choices to control for

differences between the ERA5 and HRES-fc0 data assimilation windows. As described in Sec-

tion 1, for each day of the test year 2018, HRES assimilates observations using four windows

around 00z, 06z, 12z, and 18z (where 18z means 18:00 UTC in Zulu convention), each win-

dow including observations up to +3h after each corresponding time and date (see (61), Figure

11.2). However, ERA5 uses two windows around 00z and 12z assimilating observation up to

+9h ahead, or equivalently two windows around 06z and 18z assimilating observation up to +3h

ahead (see (21), Table 2). See Figure S5 for an illustration. We chose to evaluate GraphCast’s

forecasts from the 06z and 18z initializations, ensuring its inputs carry information from +3h

of future observations, matching HRES’s inputs. We did not evaluate GraphCast’s 00z and 12z

initializations, to avoid a mismatch between having a +9h lookahead in ERA5 inputs versus

+3h lookahead for HRES inputs. Figure S6 and Figure S7 show the performance of GraphCast

initialized from 06z/18z, and 00z/12z. When initialized from a state with a larger lookahead,

GraphCast gets a visible improvement that persists at longer lead times, supporting our choice

to initialized evaluation from 06z/18z.

We applied the same logic when choosing the target on which to evaluate: we only evaluate

targets which incorporate a +3h lookahead for both HRES and ERA5. Given our choice of

initialization at 06z and 18z, this corresponds to evaluating every 12h, on future 06z and 18z

analysis times. As a practical example, if we were to evaluate GraphCast and HRES initialized

36



+3h
+9h

+3h

+3h
+9h

+3h +3h +3h

21z 09z 21z

21z 09z 21z03z 15z

ERA5

00z 06z 12z 18z 00z

HRES

00z 06z 12z 18z 00z

Fig. S5: Schematic of the assimilation windows for ERA5 and HRES. Data assimilation windows
are marked as blue open rectangles. The red arrows represent the duration of the effective lookahead that
is incorporated in the corresponding state.

at 06z, at lead time 6h (i.e., 12z), the target for GraphCast would integrate a +9h lookahead,

while the target for HRES would only incorporate +3h lookahead. At equal lead time, this could

result in a harder task for GraphCast.

5.2.3 Alignment of initialization and validity times-of-day

As stated above, a fair comparison with HRES requires us to evaluate GraphCast using 06z and

18z initializations, and with lead times which are multiples of 12h, meaning validity times are

also 06z and 18z.

For lead times up to 3.75 days there are archived HRES forecasts available using 06z and

18z initialization and validity times, and we use these to perform a like-for-like comparison with

GraphCast at these lead times. Note, because we evaluate only on 12 hour lead time increments,

this means the final lead time is 3.5 days.

For lead times of 4 days and beyond, archived HRES forecasts are only available at 00z and
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12z initializations, which given our 12-hour-multiple lead times means 00z and 12z validity

times. At these lead times we have no choice but to compare GraphCast at 06z and 18z, with

HRES at 00z and 12z.

In Figure S8, we can see that up to 3.5 day lead times, HRES RMSEs tend to be smaller

on average over 00z and 12z initialization/validity times than they are at the 06z and 18z times

which GraphCast is evaluated on. We can also see that the difference decreases as lead time

increases, and that the 06z/18z RMSEs generally appear to be tending towards an asymptote

above the 00z/12z RMSE, but within 2% of it. We expect these differences to remain small,

and so we do not believe that they compromise our conclusions in cases where GraphCast has

greater skill than HRES.

Whenever we plot RMSE and other evaluation metrics as a function of lead time, we indicate

with a dotted line the 3.5 day changeover point where we switch from evaluating HRES on

06z/18z to evaluating on 00z/12z. At this changeover point, we plot both the 06z/18z and

00z/12z metrics, showing the discontinuity clearly.
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Fig. S6: Effect of initialization time for GraphCast only. This figure is analogous to Figure 2a,b, as
well as to Figure S10, but showing results separately for GraphCast initialized at 00z/12z vs 06z/18z,
while using the same baseline we used in the main results (HRES 06z/18z as baseline up to 3.5 days
and HRES 00z/12z beyond 3.5 days). When initialized from an ERA5 state benefiting from longer
lookahead (00z/12z), GraphCast performs better than when initialized from an ERA5 state benefiting
from a shorter lookahead (06z/18z). The improvement is measurable from short to long prediction lead
time. This supports our choice to evaluate all models from 06z/18z, in order to avoid giving an artificial
advantage to GraphCast. The x-axis represents lead time, at 12-hour steps over 10 days. The y-axis
represents the RMSE skill or skill score. 39
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Fig. S7: Effect of initialization time. This figure is analogous to Figure 2a,b, as well as to Figure S10,
but showing results separately for 00z/12z and 06z/18z initializations, such that GraphCast 00z/12z is
compared to HRES 00z/12z, and GraphCast 06z/18z is compared to HRES 06z/18z. When initializing
from 00z/12z states with benefit from an extra ERA5 lookahead, GraphCast performs better than when
initialized from 06z/18z states which has the same lookahead for ERA5 and HRES-fc0. The improve-
ment is measurable from short to long prediction lead time. This supports our choice to evaluate all
models from 06z/18z when possible, in order to avoid giving an artificial advantage to GraphCast. The
x-axis represents lead time, at 12-hour steps over 10 days. The y-axis represents the RMSE skill or skill
score. 40
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initialized at 06z/18z are available. The y axis scales are shared.
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5.2.4 Evaluation period

Most of our main results are reported for the year 2018 (from our test set), for which the first

forecast initialization time was 2018-01-01_06:00:00UTC and the last 2018-12-31_18:00:00,

or when evaluating HRES at longer lead times, 2018-01-01_00:00:00 and 2018-12-31_12:00:00.

Additional results on cyclone tracking and the effect of data recency use years 2018–2021 and

2021 respectively.

5.3 Evaluation metrics

We quantify the skillfulness of GraphCast, other ML models, and HRES using the root mean

square error (RMSE) and the anomaly correlation coefficient (ACC), which are both computed

against the models’ respective ground truth data. The RMSE measures the magnitude of the

differences between forecasts and ground truth for a given variable indexed by j and a given

lead time τ (see Equation (20)). The ACC, Lj,τ
ACC, is defined in Equation (28) and measures

the correlation between forecasts’ differences from climatology and ground truth’s differences

from climatology, where climatology is the average weather for a location and date. For skill

scores we use the normalized RMSE difference between model A and baseline B as (RMSEA−

RMSEB)/RMSEB, and the normalized ACC difference as (ACCA − ACCB)/(1− ACCB).

All metrics were computed using float32 precision and reported using the native dynamic

range of the variables, without normalization.

Root mean square error (RMSE). We quantified forecast skill for a given variable, xj , and

lead time, τ = t∆d, using a latitude-weighted root mean square error (RMSE) given by

RMSE(j, τ) =
1

|Deval|
∑

d0∈Deval

√
1

|G0.25°|
∑

i∈G0.25°

ai
(
x̂d0+τ
j,i − xd0+τ

j,i

)2
(20)

where
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• d0 ∈ Deval represent forecast initialization date-times in the evaluation dataset,

• j ∈ J index variables and levels, e.g., J = {Z1000, Z850, . . . , 2T, MSL},

• i ∈ G0.25° are the location (latitude and longitude) coordinates in the grid,

• x̂d0+τ
j,i and xd0+τ

j,i are predicted and target values for some variable-level, location, and lead

time,

• ai is the area of the latitude-longitude grid cell (normalized to unit mean over the grid)

which varies with latitude.

By taking the square root inside the mean over forecast initializations we follow the con-

vention of WeatherBench (8). However we note that this differs from how RMSE is defined in

many other contexts, where the square root is only applied to the final mean, that is,

RMSEtrad(j, τ) =

√
1

|Deval|
∑

d0∈Deval

1

|G0.25°|
∑

i∈G0.25°

ai
(
x̂d0+τ
j,i − xd0+τ

j,i

)2
. (21)

Root mean square error (RMSE), spherical harmonic domain. In all comparisons involv-

ing predictions that are filtered, truncated or decomposed in the spherical harmonic domain,

for convenience we compute RMSEs directly in the spherical harmonic domain, with all means

taken inside the square root,

RMSEsh(j, τ) =

√√√√ 1

|Deval|
∑

d0∈Deval

1

4π

lmax∑
l=0

l∑
m=−l

(
f̂d0+τ
j,l,m − fd0+τ

j,l,m

)2

(22)

Here f̂d0+τ
j,l,m and fd0+τ

j,l,m are predicted and target coefficients of spherical harmonics with total

wavenumber l and longitudinal wavenumber m. We compute these coefficients from grid-based

data using a discrete spherical harmonic transform (62) with triangular truncation at wavenum-

ber 719, which was chosen to resolve the 0.25° (28km) resolution of our grid at the equator.

This means that l ranges from 0 to lmax = 719 and m from −l to l. We chose to plot this full

range, rather than truncating at ERA5’s highest wavenumber of 639, and note that regridding

from 639 to 0.25° leads to some content above 639 as well.
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This RMSE closely approximates the grid-based definition of RMSE given in Equation (21),

however it is not exactly comparable, in part because the triangular truncation at wavenumber

719 does not resolve the additional resolution of the equiangular grid near the poles.

Root mean square error (RMSE), per location. This is computed following the RMSE

definition of Equation (21), but for a single location:

RMSEby-lat-lon(i, j, τ) =

√
1

|Deval|
∑

d0∈Deval

(
x̂d0+τ
j,i − xd0+τ

j,i

)2
. (23)

We also break down RMSE by latitude only:

RMSEby-lat(l, j, τ) =

√
1

|Deval|
∑

d0∈Deval

1

|lon(G0.25°)|
∑

i∈G0.25°:lat(i)=l

(x̂d0+τ
j,i − xd0+τ

j,i )
2

(24)

where |lon(G0.25°)| = 1440 is the number of distinct longitudes in our regular 0.25° grid.

Root mean square error (RMSE), by surface elevation. This is computed following the

RMSE definition of Equation (21) but restricted to a particular range of surface elevations,

given by bounds zl ≤ zsurface < zu on the surface geopotential:

RMSEby-elevation(zl, zu, j, τ) =

√∑
d0∈Deval

∑
i∈G0.25°

I[zl ≤ zsurface(i) < zu]ai(x̂
d0+τ
j,i − xd0+τ

j,i )2

|Deval|
∑

i∈G0.25°
I[zl ≤ zsurface(i) < zu]ai

,

(25)

where I denotes the indicator function.

Mean bias error (MBE), per location. This quantity is defined as

MBEby-lat-lon(i, j, τ) =
1

|Deval|
∑

d0∈Deval

(
x̂d0+τ
j,i − xd0+τ

j,i

)
. (26)

Root-mean-square per-location mean bias error (RMS-MBE). This quantifies the average

magnitude of the per-location biases from Equation (26) and is given by

RMS-MBE(j, τ) =

√
1

|G0.25°|
∑

i∈G0.25°

ai MBEby-lat-lon(i, j, τ)2. (27)
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Anomaly correlation coefficient (ACC). We also computed the anomaly correlation coeffi-

cient for a given variable, xj , and lead time, τ = t∆d, according to

Lj,τ
ACC =

1

|Deval|
∑

d0∈Deval

∑
i∈G0.25°

ai
(
x̂d0+τ
j,i − Cd0+τ

j,i

) (
xd0+τ
j,i − Cd0+τ

j,i

)√[∑
i∈G0.25°

ai
(
x̂d0+τ
j,i − Cd0+τ

j,i

)2] [∑
i∈G0.25°

ai
(
xd0+τ
j,i − Cd0+τ

j,i

)2]
(28)

where Cd0+τ
j,i is the climatological mean for a given variable, level, latitude and longitude, and

for the day-of-year containing the validity time d0 + τ . Climatological means were computed

using ERA5 data between 1993 and 2016. All other variables are defined as above.

5.4 Statistical methodology

5.4.1 Significance tests for difference in means

For each lead time τ and variable-level j, we test for a difference in means between per-

initialization-time RMSEs (defined in Equation (29)) for GraphCast and HRES. We use a paired

two-sided t-test with correction for auto-correlation, following the methodology of (63). This

test assumes that time series of differences in forecast scores are adequately modelled as station-

ary Gaussian AR(2) processes. This assumption does not hold exactly for us, but is motivated

as adequate for verification of medium range weather forecasts by the ECMWF in (63).

The nominal sample size for our tests is n = 730 at lead times under 4 days, consisting of

two forecast initializations per day over the 365 days of 2018. (For lead times over 4 days we

have n = 729, see Section 5.4.2). However these data (differences in forecast RMSEs) are auto-

correlated in time. Following (63) we estimate an inflation factor k for the standard error which

corrects for this. Values of k range between 1.21 and 6.75, with the highest values generally

seen at short lead times and at the lowest pressure levels. These correspond to reduced effective

sample sizes neff = n/k2 in the range of 16 to 501.

See Table S4 for detailed results of our significance tests, including p-values, values of the t
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test statistic and of neff.

5.4.2 Forecast alignment

For lead times τ less than 4 days, we have forecasts available at 06z and 18z initialization

and validity times each day for both GraphCast and HRES, and we can test for differences in

RMSEs between these paired forecasts. Defining the per-initialization-time RMSE as:

RMSE(j, τ, d0) =

√
1

|G0.25°|
∑

i∈G0.25°

ai
(
x̂d0+τ
j,i − xd0+τ

j,i

)2
(29)

We compute differences

diff-RMSE(j, τ, d0) = RMSEGC(j, τ, d0)− RMSEHRES(j, τ, d0), (30)

which we use to test the null hypothesis that E[diff-RMSE(j, τ, d0)] = 0 against the two-sided

alternative. Note that by our stationarity assumption this expectation does not depend on d0.

As discussed in Section 5.2.3, at lead times of 4 days or more we only have HRES forecasts

available at 00z and 12z initialization and validity times, while for the fairest comparison (Sec-

tion 5.2.2) GraphCast forecasts must be evaluated using 06z and 18z initialization and validity

times. In order to perform a paired test, we compare the RMSE of a GraphCast forecast with an

interpolated RMSE of the two HRES forecasts either side of it: one initialized and valid 6 hours

earlier, and the other initialized and valid 6 hours later, all with the same lead time. Specifically

we compute differences:

diff-RMSEinterp(j, τ, d0) = RMSEGC(j, τ, d0) (31)

− 1

2

(
RMSEHRES(j, τ, d0 − 6h) + RMSEHRES(j, τ, d0 + 6h)

)
.

We can use these to test the null hypothesis E[diff-RMSEinterp(j, τ, d0)] = 0, which again

doesn’t depend on d0 by the stationarity assumption on the differences. If we further assume

that the HRES RMSE time series itself is stationary (or at least close enough to stationary
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over a 6 hour window) then E[diff-RMSEinterp(j, τ, d0)] = E[diff-RMSE(j, τ, d0)] and the in-

terpolated differences can also be used to test deviations from the original null hypothesis that

E[diff-RMSE(j, τ, d0)] = 0.

This stronger stationarity assumption for HRES RMSEs is violated by diurnal periodicity,

and in Section 5.2.3 we do see some systematic differences in HRES RMSEs between 00z/12z

and 06z/18z validity times. However as discussed there, these systematic differences reduce

substantially as lead time grows and they tend to favour HRES, and so we believe that a test

of E[diff-RMSE(j, τ, d0)] = 0 based on diff-RMSEinterp will be conservative in cases where

GraphCast appears to have greater skill than HRES.

5.4.3 Confidence intervals for RMSEs

The error bars in our RMSE skill plots correspond to separate confidence intervals for E[RMSEGC ]

and E[RMSEHRES] (eliding for now the arguments j, τ, d0). These are derived from the two-

sided t-test with correction for auto-correlation that is described above, applied separately to

GraphCast and HRES RMSE time-series.

These confidence intervals make a stationarity assumption for the separate GraphCast and

HRES RMSE time series, which as stated above is a stronger assumption that stationarity of the

differences and is violated somewhat. Thus these single-sample confidence intervals should be

treated as approximate; we do not rely on them in our significance statements.

5.4.4 Confidence intervals for RMSE skill scores

From the t-test described in Section 5.4.1 we can also derive in the standard way confidence

intervals for the true difference in RMSEs, however in our skill score plots we would like

to show confidence intervals for the true RMSE skill score, in which the true difference is
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normalized by the true RMSE of HRES:

RMSE-SStrue =
E[RMSEGC − RMSEHRES]

E[RMSEHRES]
(32)

A confidence interval for this quantity should take into account the uncertainty of our estimate

of the true HRES RMSE. Let [ldiff, udiff] be our 1 − α/2 confidence interval for the numerator

(difference in RMSEs), and [lHRES, uHRES] our 1− α/2 confidence interval for the denominator

(HRES RMSE). Given that 0 < lHRES in every case for us, using interval arithmetic and the

union bound we obtain a conservative 1− α confidence interval

[min{ldiff/uHRES, ldiff/lHRES},max{udiff/uHRES, udiff/lHRES, }] (33)

for RMSE-SStrue. We plot these confidence intervals alongside our estimates of the RMSE skill

score, however note that we don’t rely on them for significance testing.
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Supplementary Text
6 Comparison with previous machine learning baselines

To determine how GraphCast’s performance compares to other ML methods, we focus on

Pangu-Weather (16), a strong MLWP baseline that operates at 0.25° resolution. To make the

most direct comparison, we depart from our evaluation protocol, and use the one described

in (16). Because published Pangu-Weather results are obtained from the 00z/12z initializations,

we use those same initializations for GraphCast, instead of 06z/18z, as in the rest of this paper.

This allows both models to be initialized on the same inputs, which incorporate the same amount

of lookahead (+9 hours, see Sections 5.2.2 and 5.2.3). As HRES initialization incorporates at

most +3 hours lookahead, even if initialized from 00z/12z, we do not show the evaluation of

HRES (against ERA5 or against HRES-fc0) in this comparison as it would disadvantage it. The

second difference with our protocol is to report performance every 6 hours, rather than every

12 hours. Since both models are evaluated against ERA5, their targets are identical, in partic-

ular, for a given lead time, the target incorporates +3 hours or +9 hours of lookahead for both

GraphCast and Pangu-Weather, allowing for a fair comparison. Pangu-Weather (16) reports its

7-day forecast accuracy (RMSE and ACC) on: Z500, T500, T850, Q500, U500, V500, 2T,

10U, 10V, and MSL.

As shown in Figure S9, GraphCast (blue lines) outperforms Pangu-Weather (16) (red lines)

on 99.2% of targets. For the surface variables (2T, 10U, 10V, MSL), GraphCast’s error in the

first several days is around 10-20% lower, and over the longer lead times plateaus to around 7-

10% lower error. The only two (of the 252 total) metrics on which Pangu-Weather outperformed

GraphCast was Z500, at lead times 6 and 12 hours, where GraphCast had 1.7% higher average

RMSE (Figure S9a,e).
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Fig. S9: Comparison between GraphCast and Pangu-Weather, on RMSE skill. Rows 1 and 3
show absolute RMSE for GraphCast (blue lines), and Pangu-Weather (16) (red lines); rows 2 and 4
show normalized RMSE differences between the models with respect to Pangu-Weather. Each subplot
represents a single variable (and pressure level, for atmospheric variables), as indicated in the subplot
titles. The x-axis represents lead time, at 6-hour steps over 10 days. The y-axis represents (absolute
or normalized) RMSE. The variables and levels were chosen to be those reported by (16). We did not
include 10V, because 10U is already present, and the two are highly correlated.
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7 Additional forecast verification results

This section provides additional analysis of GraphCast’s performance, giving a fuller picture of

its strengths and limitations. Section 7.1 complements the main results of the paper on addi-

tional variables and levels beyond Z500. Section 7.2 further analyses GraphCast performance

broken down by regions, latitude and pressure levels (in particular distinguishing the perfor-

mance below and above the tropopause), illustrates the biases and the RMSE by latitude lon-

gitude and elevation. Section 7.3 demonstrates that both the multi-mesh and the autoregressive

loss play an important role in the performance of GraphCast. Section 7.4 details the approach of

optimized blurring applied to HRES and GraphCast, to ensure that GraphCast improved perfor-

mance is not only due to its ability to blur its predictions. It also shows the connection between

the number of autoregressive steps in the loss and blurring, demonstrating that autoregressive

training does more than just teaching the model to blur its predictions. Finally, Section 7.5

shows various spectral analyses, demonstrating that in most cases GraphCast has improved per-

formance over HRES across all horizontal length scales and resolutions. We also discuss the

impact of differences in spectra between ERA5 and HRES. Together, those results show an

extensive evaluation of GraphCast and a rigorous comparison to HRES.

7.1 Detailed results for additional variables

7.1.1 RMSE and ACC

Figure S10 complements Figure 2a–b and shows the RMSE and normalized RMSE difference

with respect to HRES for GraphCast and HRES on a combination of 12 highlight variables.

Figure S11 shows the ACC and normalized ACC difference with respect to HRES for GraphCast

and HRES on the same a combination of 12 variables and complements Figure 2c. The ACC

skill score is the normalized ACC difference between model A and baseline B as (ACCA −
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ACCB)/(1− RMSEB).

7.1.2 Detailed significance test results for RMSE comparisons

Table S4 provides further information about the statistical significance claims made in the main

section about differences in RMSE between GraphCast and HRES. Details of the methodology

are in Section 5.4. Here we give p-values, test statistics and effective sample sizes for all

variables. For reasons of space we limit ourselves to three key lead times (12 hours, 2 days and

10 days) and a subset of 7 pressure levels chosen to include all cases where p > 0.05 at these

lead times.

7.1.3 Effect of data recency on GraphCast

An important feature of MLWP methods is that a new model can be trained periodically with

the most recent data. This, in principle, allows them to model recent weather patterns that

change over time, as well as the effects of climate change. To explore how the recency of the

training data influences GraphCast’s test performance, we trained four variants of GraphCast,

from scratch, with training data that always began in 1979, but ended in 2017, 2018, 2019,

and 2020, respectively (we label the variant ending in 2017 as “GraphCast:<2018”, etc). We

evaluated the variants, and HRES, on 2021 test data.

Figure S12 shows the skill and skill scores (with respect to HRES) of the four variants of

GraphCast, for several variables and complements Figure 4a. There is a general trend where

variants trained to years closer to the test year have generally improved skill score against

HRES. The reason for this improvement is not fully understood, though we speculate it is anal-

ogous to bias correction, but over longer time scales, where statistical biases or changes in the

weather are being exploited to improve accuracy. It is also important to note that HRES is not a

single NWP across years: it tends to be upgraded once or twice a year, with generally increasing

skill on Z500 and other fields (64–68). This may also contribute to why GraphCast:<2018 and
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Fig. S10: GraphCast’s RMSE skill versus HRES in 2018 (lower is better) Rows 1, 3 and 5 show
absolute RMSE for GraphCast (blue lines) and HRES (black lines), with 95% confidence interval error
bars (see Section 5.4.3); rows 2, 4 and 6 show RMSE skill score (normalized RMSE differences between
GraphCast’s RMSE and HRES’s) with 95% confidence interval error bars (see Section 5.4.4). Each
subplot represents a single variable (and pressure level), as indicated in the subplot titles. The x-axis rep-
resents lead time, at 12-hour steps over 10 days. The y-axis represents (absolute or normalized) RMSE.
The vertical dashed line represents 3.5 days, which which marks the transition from HRES forecasts ini-
tialized at 06z/18z, to forecast initialized at 00z/12z. This transition explains the discontinuity observed
in GraphCast’s skill score curves. 53
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Fig. S11: GraphCast’s ACC skill versus HRES in 2018 (higher is better). Rows 1, 3 and 5 show
absolute ACC for GraphCast (blue lines) and HRES (black lines); rows 2, 4 and 6 show ACC skill
score (normalized ACC differences between GraphCast’s RMSE and HRES’s). Each subplot represents
a single variable (and pressure level), as indicated in the subplot titles. The x-axis represents lead time,
at 12-hour steps over 10 days. The y-axis represents (absolute or normalized) ACC. The vertical dashed
line represents 3.5 days, which which marks the transition from HRES forecasts initialized at 06z/18z,
to forecast initialized at 00z/12z. This transition explains the discontinuity observed in GraphCast’s skill
score curves.
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Lead time 12 hours 2 days 10 days
Variable p t neff p t neff p t neff

Z50 < 10−9 11 27.8 < 10−9 6.87 37.3 < 10−9 14.9 84.5
Z100 0.0045 −2.85 88 0.044 2.01 38.3 0.0088 −2.63 178
Z300 < 10−9 −23.3 239 < 10−9 −17.9 311 < 10−9 −12.7 275
Z500 < 10−9 −30.1 319 < 10−9 −20.6 337 < 10−9 −12.8 268
Z700 < 10−9 −50 465 < 10−9 −28.3 334 < 10−9 −12.3 257
Z850 < 10−9 −59.8 452 < 10−9 −33.5 332 < 10−9 −12.1 259

Z1000 < 10−9 −76.9 462 < 10−9 −40.5 349 < 10−9 −12.1 261
T50 < 10−9 31.8 27.2 < 10−9 8.56 32.9 < 10−9 40.5 54.3

T100 < 10−9 20.6 94.5 0.32 −0.995 35.6 1.7× 10−6 4.83 55.2
T300 0.35 0.941 228 < 10−9 −59.6 251 < 10−9 −20 198
T500 < 10−9 −40.7 224 < 10−9 −71.2 366 < 10−9 −17.1 279
T700 < 10−9 −60.4 186 < 10−9 −72.1 202 < 10−9 −17.6 298
T850 < 10−9 −78.4 243 < 10−9 −90.3 229 < 10−9 −16.9 244

T1000 < 10−9 −23 82.9 < 10−9 −59.7 169 < 10−9 −11.8 275
U50 < 10−9 25.5 20.9 < 10−9 10.1 20.9 < 10−9 19.6 55

U100 4.5× 10−5 4.1 158 < 10−9 −14.7 86 < 10−9 −10.1 133
U300 < 10−9 −41.8 235 < 10−9 −76.9 295 < 10−9 −25.3 294
U500 < 10−9 −114 339 < 10−9 −103 337 < 10−9 −26.8 269
U700 < 10−9 −162 285 < 10−9 −124 263 < 10−9 −27 227
U850 < 10−9 −183 275 < 10−9 −134 336 < 10−9 −27.6 243

U1000 < 10−9 −155 183 < 10−9 −134 383 < 10−9 −26.6 231
V50 < 10−9 35.5 31.8 < 10−9 9.96 36.4 0.34 0.951 175

V100 0.023 2.28 175 < 10−9 −14 77.5 < 10−9 −16.5 234
V300 < 10−9 −27.2 198 < 10−9 −78.7 343 < 10−9 −19 261
V500 < 10−9 −101 331 < 10−9 −96 365 < 10−9 −21 256
V700 < 10−9 −159 297 < 10−9 −127 315 < 10−9 −25.3 241
V850 < 10−9 −181 272 < 10−9 −129 335 < 10−9 −25.8 260

V1000 < 10−9 −211 345 < 10−9 −130 367 < 10−9 −25.5 275
Q50 < 10−9 24.5 43.9 < 10−9 20.7 34.1 < 10−9 8.25 56.6

Q100 1.8× 10−8 −5.69 177 < 10−9 −8.91 77.6 7.9× 10−5 −3.97 22.5
Q300 < 10−9 −170 224 < 10−9 −139 188 < 10−9 −42.5 125
Q500 < 10−9 −70.6 78.9 < 10−9 −137 214 < 10−9 −40.4 129
Q700 < 10−9 −54.2 50 < 10−9 −150 180 < 10−9 −49.2 166
Q850 < 10−9 −128 92.1 < 10−9 −222 199 < 10−9 −61.4 163

Q1000 < 10−9 −85.6 89.3 < 10−9 −128 140 < 10−9 −28.8 215
2T 0.037 2.09 38.9 < 10−9 −23.4 108 0.00075 −3.39 249

10U < 10−9 −175 143 < 10−9 −156 370 < 10−9 −29.9 239
10V < 10−9 −281 298 < 10−9 −160 365 < 10−9 −28.8 283
MSL < 10−9 −82.4 501 < 10−9 −41.2 360 < 10−9 −12 260

Table S4: Detailed significance test results for the comparison of GraphCast and HRES RMSE.
We list the p-value, the test statistic t and the effective sample size neff for all variables at three key lead
times, and a subset of 7 levels chosen to include all cases where p > 0.05 at these lead times. Nominal
sample size n ∈ {729, 730}.
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GraphCast:<2019, in particular, have lower skill scores against HRES at early lead times for the

2021 test evaluation. We note that for other variables, GraphCast:<2018 and GraphCast:<2019

tend to still outperform HRES. These results highlight a key feature of GraphCast, in allowing

performance to be automatically improved by re-training on recent data.

7.1.4 Precipitation

Precipitation is an important variable to predict and GraphCast models its 6h-accumulation at

every step. However, for data quality reasons and lack of fair evaluation for the baseline HRES,

we left precipitation out of the scope of this work since the beginning of the project, and simply

kept it as an auxiliary variable. For the two aforementioned reasons, expanded below, we do not

make any claims about performance on precipitation and leave this important thread of research

for future work. We provide the following results for completeness and illustrative purpose.

Because precipitation data in ERA5 is known to have significant biases (23), in this work,

we did not focus on improving its prediction as GraphCast would learn to reproduce the same

biases. We simply kept it as an auxiliary variable that could provide useful information to

the model. Because of this, we did not treat precipitation differently than any other variable:

it is normalized in the same way (centered by mean, and scaled by standard deviation), and

trained with the same MSE loss. Both those approaches are appropriate for variables with

distributions close to Gaussian, however precipitation is sparse and very non-Gaussian variable,

which can lead to sub-optimal training. Future work should address these limitations to improve

the statistical modeling of precipitation.

Since there is no precipitation analysis available in the operational ECMWF products (HRES-

fc0 and HRES Analysis), we used ERA5 reanalysis as targets to compute metrics for HRES.

This differs from the evaluation protocol used in the rest of the paper, and puts HRES at a

disadvantage, as explained in Section 5.2.1. With this important caveat in mind, we evaluate
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Fig. S12: Effects of data recency. Each color line in the plot represent a variant of GraphCast trained
on different amounts of available data, while the black line represents HRES. All models are evaluated on
the test year 2021. Rows 1, 3, and 5 show the RMSE, and rows 2, 4, and 6 show the normalized RMSE
difference with respect to GraphCast:<2018. Each subplot represents a single variable (and pressure
level), as indicated in the subplot titles. GraphCast’s performance can be improved by retraining on the
most recent data.
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GraphCast and HRES both against ERA5 targets using RMSE and Stable Equitable Error in

Probability Space (SEEPS) (69–71) of total precipitation over 6-hour and 24-hour intervals (see

Figure S13). For the computation of SEEPS, we use the same equations, and the same param-

eters as in (71). We summarize this computation in the following lines. Predictions and targets

are categorized as dry, light-rain, and heavy-rain over a given interval or “time window” (6 hour

or 24 hour). Dry / light-rain / heavy-rain monthly climatology is computed at 0.25° resolution

between 1980 and 2015. A “dry” time window occurs when there is less than 0.25 mm of

precipitation over the interval. The threshold for light-rain / heavy-rain time-windows, is set

location-wise, such that, in each location light-rain events occur twice as often as heavy-rain

events. Regions for which less than 10% of the fraction of all windows are considered to be dry

(very wet regions), and for which more than 85% of the fraction of all intervals are considered

to be dry (very dry regions), are not included as part of the analysis. For each location and each

time window, SEEPS is computed as,

SEEPS =
∑
v,f

pv,fsv,f (34)

where v is the actual category, f is the predicted category, and pv,f are the elements of the

contingency matrix P = {pv,f} (which is 3x3 and, for a single deterministic prediction, contains

all zeros except for a single 1 in the location that corresponds to the predicted category row and

actual category column); and sv,f are the elements of the scoring matrix S = {sv,f},

S = {sv,f} =
1

2

 0 1
1−p1

1
p3

+ 1
1−p1

1
p1

0 1
p3

1
p1

+ 1
1−p3

1
1−p3

0

 (35)

such that p1, and p3 are the climatological probability of dry events, and heavy-rain events

respectively, for that specific location. SEEPS is then averaged across all locations (with an

area weighted averages), and across all initialization times.

The results indicate that total precipitation RMSE (lower is better) for GraphCast is about
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30% better than HRES for 6-hour accumulations (Figure S13c), and 20% better than HRES

for 24-hour accumulations (Figure S13d). Looking at 1-SEEPS, which is a more appropriate

metrics for precipitation prediction skill (higher is better), we observe however, that GraphCast

is only better than HRES for 6-hour accumulations (Figure S13e), but not for 24-hour accu-

mulations (Figure S13f). Furthermore, we noticed that using a threshold of 0.25 mm for dry

regions over 6h periods (as in (71)), was leading to about 20% of the world being filtered out

as “very dry” regions. To compensate for this we repeated the analysis using a threshold of

0.1 mm dry threshold (dashed line in the plots), which results in a similar fraction of “very dry”

regions as 0.25 mm over 24h (about 10%). We noticed that while this change does not affect

HRES performance much, it does makes the SEEPS performance of GraphCast worse. These

results indicate that the metrics themselves seem to be sensitive to different biases in GraphCast

and HRES, which makes them hard to interpret without further analysis (which is out of the

scope of this work). We speculate we might be seeing two different trends. First, GraphCast

may tend to underestimate precipitation compared to HRES, and this is why it worsens with a

lower threshold parameter. It may be possible to correct for this via bias/variance correction,

however it would be preferable to train the model with a training loss more appropriate for pre-

cipitation. Second, HRES may be better at predicting total precipitation volumes over a long

intervals (e.g. 24h), but not very precise about when exactly it is going to happen. On the other

hand, GraphCast may be better at predicting precise time intervals (’6h’), but may be worse at

predicting the exact total volume.

59



0.002

0.004

0.006

0.008
RM

SE

Lo
we

r i
s b

et
te

r

a) Skill (RMSE): tp6hr (m)

GraphCast
HRES (against ERA5)

Lo
we

r i
s b

et
te

r

b) Skill (RMSE): tp24hr (m)

0.6

0.5

0.4

0.3

0.2

0.1

0.0

No
rm

. R
M

SE
 d

iff
.

Lo
we

r i
s b

et
te

r

c) Skill score (RMSE): tp6hr

Lo
we

r i
s b

et
te

r

d) Skill score (RMSE): tp24hr

0 1 2 3 4 5 6 7 8 9 10
Lead time (days)

0.2

0.4

0.6

0.8

1 
- S

EE
PS

Hi
gh

er
 is

 b
et

te
r

e) (1 - SEEPS): tp6hr

Dry threshold
0.25mm
0.1mm

0 1 2 3 4 5 6 7 8 9 10
Lead time (days)

Hi
gh

er
 is

 b
et

te
r

f) (1 - SEEPS): tp24hr

Fig. S13: GraphCast’s skill versus HRES in 2018 predicting 6 hour (a, c, e) and 24 hour (b, d, f)
total precipitation for GraphCast (blue lines) and HRES (black lines). (a,b) show absolute RMSE (lower
is better) with 95% confidence interval error bars (see Section 5.4.3); (c,d) RMSE skill score (lower is
better) (normalized RMSE differences between GraphCast’s RMSE and HRES’s) with 95% confidence
interval error bars (see Section 5.4.4); and (e,f) 1-SEEPS (higher is better) (69–71), which is shown for
two different dry thresholds: 0.25 mm of rain per 6h/24h interval (solid line), and 0.1 mm of rain per
6h/24h interval (dashed line). Note, in this case since there is no precipitation analysis available in the
operational ECMWF products (HRES-fc0 and HRES Analysis), we used ERA5 reanalysis as targets to
compute metrics for HRES. The x-axis represents lead time, at 12-hour steps over 10 days. The y-axis
represents (absolute or normalized) RMSE. The vertical dashed line represents 3.5 days, which which
marks the transition from HRES forecasts initialized at 06z/18z, to forecast initialized at 00z/12z. This
transition explains the discontinuity observed in GraphCast’s skill score curves.
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7.2 Disaggregated results

7.2.1 RMSE by region

Per-region evaluation of forecast skill is provided in Figures S15 and S16, using the same

regions and naming convention as in the ECMWF scorecards (https://sites.ecmwf.

int/ifs/scorecards/scorecards-47r3HRES.html). We added some additional

regions for better coverage of the entire planet. These regions are shown in Figure S14.
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Fig. S14: Region specification for the regional analysis. We use the same regions and naming
convention as in the ECMWF scorecards (https://sites.ecmwf.int/ifs/scorecards/
scorecards-47r3HRES.html), and add some additional regions for better coverage of the en-
tire planet. Per-region evaluation is provided in Figure S15 and Figure S16.
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Fig. S15: Skill (RMSE) of GraphCast versus HRES, per-region. Each column is a different variable
(and level), for a representative set of variables. Each row is a different region. The x-axis is lead time,
in days. The y-axis is RMSE, with units specified in the column titles. GraphCast’s RMSEs are the blue
lines, and HRES’s RMSEs are the black lines. The regions are: n.hem, s.hem, tropics, europe,
n.atl, n.amer, n.pac, e.asia, austnz, and arctic. See Figure S14 for a legend of the region
names.
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Fig. S16: Skill (RMSE) of GraphCast versus HRES, per-region. This plot is the same as Figure S15,
except for regions (in Figure S14): antarctic, n.africa, s.africa, s.atl, s.amer, m.pac,
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7.2.2 RMSE skill score by latitude and pressure level

In Figure S17, we plot normalized RMSE differences between GraphCast and HRES, as a

function of both pressure level and latitude. We plot only the 13 pressure levels from Weather-

Bench (8) on which we have evaluated HRES.

On these plots, we indicate at each latitude the mean pressure of the tropopause, which

separates the troposphere from the stratosphere. We use values computed for the ERA5 dataset

(1979-1993), given in Figure 1 of (72). These will not be quite the same as for ERA5 but

are intended only as a rough aid to interpretation. We can see from the scorecard in Figure 2

that GraphCast performs worse than HRES at the lowest pressure levels evaluated (50hPa).

Figure S17 shows that the pressure level at which GraphCast starts to get worse is often latitude-

dependent too, in some cases roughly following the mean level of the tropopause.

The reasons for GraphCast’s reduced skill in the stratosphere are currently poorly under-

stood. We use a lower loss weighting for lower pressure levels and this may be playing some

role (see comment on alternative weighting in Section 4.2); it is also possible that there may be

differences between the ERA5 and HRES-fc0 datasets in the predictability of variables in the

stratosphere.
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Fig. S17: Normalized RMSE difference of Graphcast relative to HRES, by pressure level and
latitude. Black lines indicate the mean pressure of the tropopause at each latitude; the area above these
lines in each plot corresponds roughly to the stratosphere. Latitude spacing is proportional to surface
area. Red indicates that HRES has a lower RMSE than GraphCast, blue the opposite. GraphCast was
evaluated using 06z/18z initializations; HRES was evaluated using 06z/18z initializations at 12 hour and
2 day lead times, and 00z/12z at 5 and 10 day lead times (see Section 5).
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7.2.3 Biases by latitude and longitude

In Figures S18 to S23, we plot the mean bias error (MBE, or just ‘bias’, defined in Equa-

tion (26)) of GraphCast and HRES as a function of latitude and longitude, at three lead times:

12 hours, 2 days and 10 days. MBE is computed over the 2018 test set using 06z/18z initializa-

tion times, except in the case of HRES at 10 day lead time where only 00z/12z initializations

are available.

In the plots for variables given on pressure levels, we have masked out regions whose surface

elevation is high enough that the pressure level is below ground on average. We determine this

to be the case when the surface geopotential exceeds a climatological mean geopotential at

the same location and pressure level. In these regions the variable will typically have been

interpolated below ground and will not represent a true atmospheric value.

Fig. S18: Mean bias error for GraphCast at 12 hour lead time, over the 2018 test set at 06z/18z
initializations
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Fig. S19: Mean bias error for HRES at 12 hour lead time, over the 2018 test set at 06z/18z initial-
izations.
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Fig. S20: Mean bias error for GraphCast at 2 day lead time, over the 2018 test set at 06z/18z
initializations.
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Fig. S21: Mean bias error for HRES at 2 day lead time, over the 2018 test set at 06z/18z initializa-
tions.
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Fig. S22: Mean bias error for GraphCast at 10 day lead time, over the 2018 test set at 06z/18z
initializations.
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Fig. S23: Mean bias error for HRES at 10 day lead time, over the 2018 test set at 00z/12z initializa-
tions.
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To quantify the average magnitude of the per-location biases shown in Figures S18 to S23,

we computed the root-mean-square of per-location mean bias errors (RMS-MBE, defined in

Equation (27)). These are plotted in Figure S24 for GraphCast and HRES as a function of lead

time. We can see that GraphCast’s biases are smaller on average than HRES’ for most variables

up to 6 days. However they generally start to exceed HRES’ biases at longer lead times, and at

4 days in the case of 2m temperature. Forecasts of longer than 10 days would likely have much

larger biases. There are, however, existing post-processing techniques that could potentially

address this bias.
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Fig. S24: Root-mean-square of per-location biases for GraphCast and HRES as a function of lead
time.

7.2.4 RMSE skill score by latitude and longitude

In Figures S25 to S27, we plot the normalized RMSE difference between GraphCast and HRES

by latitude and longitude. As in Section 7.2.3, for variables given on pressure levels, we have

masked out regions whose surface elevation is high enough that the pressure level is below

ground on average.
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Fig. S25: Normalized RMSE difference of GraphCast relative to HRES, by location, at 12 hours.
Blue indicates that GraphCast has greater skill than HRES, Red that HRES has greater skill.

Notable areas where HRES outperforms GraphCast include specific humidity near the poles

(particularly the south pole); geopotential near the poles; 2m temperature near the poles and

over many land areas; and a number of surface or near-surface variables in regions of high sur-

face elevation (see also Section 7.2.5). GraphCast’s skill in these areas generally improves over

longer lead times. However HRES outperforms GraphCast on geopotential in some tropical

regions at longer lead times.

At 12 hour and 2 day lead times both GraphCast and HRES are evaluated at 06z/18z ini-

tialization and validity times, however at 10 day lead times we must compare GraphCast at

06z/18z with HRES at 00z/12z (see Section 5). This difference in time-of-day may confound

comparisons at specific locations for variables like 2m temperature (2T) with a strong diurnal

cycle.
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Fig. S26: Normalized RMSE difference of GraphCast relative to HRES, by location, at 2 days.
Blue indicates that GraphCast has greater skill than HRES, Red that HRES has greater skill.
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Fig. S27: Normalized RMSE difference of GraphCast relative to HRES, by location, at 10 days.
Blue indicates that GraphCast has greater skill than HRES, Red that HRES has greater skill. In these 10
day plots we must compare GraphCast at 06z/18z with HRES at 00z/12z (see Section 5). This difference
in time-of-day may confound some comparisons, e.g. of 2T.
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7.2.5 RMSE skill score by surface elevation

In Figure S25, we can see that GraphCast appears to have reduced skill in high-elevation regions

for many variables at 12 hour lead time. To investigate this further we divided the earth surface

into 32 bins by surface elevation (given in terms of geopotential height) and computed RMSEs

within each bin according to Equation (24). These are plotted in Figure S28.

At short lead times and especially at 6 hours, GraphCast’s skill relative to HRES tends

to decrease with higher surface elevation, in most cases dropping below the skill of HRES at

sufficiently high elevations. At longer lead times of 5 to 10 days this effect is less noticeable,

however.

We note that GraphCast is trained on variables defined using a mix of pressure-level co-

ordinates (for atmospheric variables) and height above surface coordinates (for surface-level

variables like 2m temperature or 10m wind). The relationship between these two coordinates

systems depends on surface elevation. Despite GraphCast conditioning on surface elevation we

conjecture that it may struggle to learn this relationship, and to extrapolate it well to the highest

surface elevations. In further work we would propose to try training the model on a subset of

ERA5’s native model levels instead of pressure levels; these use a hybrid coordinate system (73)

which follows the land surface at the lowest levels, and this may make the relationship between

surface and atmospheric variables easier to learn, especially at high surface elevations.

Variables using pressure-level coordinates are interpolated below ground when the pressure

level exceeds surface pressure. GraphCast is not given any explicit indication that this has

happened and this may add to the challenge of learning to forecast at high surface elevations.

In further work using pressure-level coordinates we propose to provide additional signal to the

model indicating when this has happened.

Finally, our loss weighting is lower for atmospheric variables at lower pressure levels, and

this may affect skill at higher-elevation locations. Future work might consider taking surface
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elevation into account in this weighting.
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Fig. S28: Normalized RMSE difference of GraphCast relative to HRES, by surface geopotential
height. For pressure-level variables, we crop the x-axis to exclude surface geopotential heights at which
the variable is typically below ground (those greater than the mean geopotential height at the variable’s
pressure level, indicated via a dotted vertical line).

7.3 GraphCast ablations

7.3.1 Multi-mesh ablation

To better understand how the multi-mesh representation affects the performance of GraphCast,

we compare GraphCast performance to a version of the model trained without the multi-mesh

representation. The architecture of the latter model is identical to GraphCast (including same

encoder and decoder, and the same number of nodes), except that in the process block, the

graph only contains the edges from the finest icosahedron mesh M6 (245,760 edges, instead of

327,660 for GraphCast). As a result, the ablated model can only propagate information with

short-range edges, while GraphCast contains additional long-range edges.

Figure S29 (left panel) shows the scorecard comparing GraphCast to the ablated model.

GraphCast benefits from the multi-mesh structure for all predicted variables, except for lead
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times beyond 5 days at 50 hPa. The improvement is especially pronounced for geopotential

across all pressure levels and for mean sea-level pressure for lead times under 5 days. The

middle panel shows the scorecard comparing the ablated model to HRES, while the right panel

compares GraphCast to HRES, demonstrating that the multi-mesh is essential for GraphCast to

outperform HRES on geopotential at lead times under 5 days.

7.3.2 Effect of autoregressive training

We analyzed the performance of variants of GraphCast that were trained with fewer autoregres-

sive (AR) steps12, which should encourage them to improve their short lead time performance

at the expense of longer lead time performance. As shown in Figure S30 (with the lighter blue

lines corresponding to training with fewer AR steps) we found that models trained with fewer

AR steps tended to trade longer for shorter lead time accuracy. These results suggest potential

for combining multiple models with varying numbers of AR steps, e.g., for short, medium and

long lead times, to capitalize on their respective advantages across the entire forecast horizon.

The connection between number of autoregressive steps and blurring is discussed in Supple-

ments Section 7.4.4.

12Each of these models were trained using a curriculum where the 1 AR-step model was fine-tuned for 1000
gradient updates each, on increasing numbers of AR steps, from 2-12 (see Section 4 and Figure S3 for details).
Each model shown in Figure S30 completed its respective number of AR-step training. This means the higher AR-
step models had slightly more training than the others, though we do not believe that each had generally converged,
so training the lower AR-step models longer likely would not have made much difference.

79



1 2 3 4 5 6 7 8 9 10
Lead time (days)

var PL Normalized RMSE difference
50
100
150
200
250
300
400
500
600
700
850
925
1000
50
100
150
200
250
300
400
500
600
700
850
925
1000
50
100
150
200
250
300
400
500
600
700
850
925
1000
50
100
150
200
250
300
400
500
600
700
850
925
1000
50
100
150
200
250
300
400
500
600
700
850
925
1000

 
 
 
 

z

t

u

v

q

2t
10u
10v
msl

1 2 3 4 5 6 7 8 9 10
Lead time (days)

var PL Normalized RMSE difference
50
100
150
200
250
300
400
500
600
700
850
925
1000
50
100
150
200
250
300
400
500
600
700
850
925
1000
50
100
150
200
250
300
400
500
600
700
850
925
1000
50
100
150
200
250
300
400
500
600
700
850
925
1000
50
100
150
200
250
300
400
500
600
700
850
925
1000

 
 
 
 

z

t

u

v

q

2t
10u
10v
msl

1.0 1.1 1.1 1.1

2.0 2.0 1.8 1.7 1.6 1.4 1.3 1.2 1.0

1 2 3 4 5 6 7 8 9 10
Lead time (days)

var PL Normalized RMSE difference
50
100
150
200
250
300
400
500
600
700
850
925
1000
50
100
150
200
250
300
400
500
600
700
850
925
1000
50
100
150
200
250
300
400
500
600
700
850
925
1000
50
100
150
200
250
300
400
500
600
700
850
925
1000
50
100
150
200
250
300
400
500
600
700
850
925
1000

 
 
 
 

z

t

u

v

q

2t
10u
10v
msl

2.0 1.8 1.7 1.5 1.4 1.2 1.1 1.0

Fig. S29: Scorecards comparing GraphCast to the ablated model without multi-mesh edges (left
panel), the ablated model to HRES (middle panel) and GraphCast to HRES (right panel). In the
left panel, blue cells represent variables and lead time where GraphCast is better than the ablated model,
showing that training a model with the multi-mesh improves performance for all variables, except at
50 hPa past 5 days of lead time. In the middle panel, blue cells represent variables and lead time where
the ablated model is better than HRES. Comparing the middle panel to the right one, where blue cells
indicate that GraphCast is better than HRES, shows that the multi-mesh is necessary to outperform HRES
on geopotential for lead times under 5 days.

80



2 4 6 8 10
0

200

400

600

800
RM

SE
a) Skill (RMSE): z500 (m2/s2)

2 4 6 8 10
0

200

400

600
b) Skill (RMSE): z850 (m2/s2)

2 4 6 8 10

1

2

3

c) Skill (RMSE): t500 (K)

2 4 6 8 10

1

2

3

4
d) Skill (RMSE): t850 (K)

2 4 6 8 10

0.00

0.05

0.10

0.15

No
rm

. R
M

SE
 d

iff
.

e) Skill score (RMSE): z500

2 4 6 8 10
0.0

0.1

0.2

0.3
f) Skill score (RMSE): z850

2 4 6 8 10

0.00

0.05

0.10

0.15

g) Skill score (RMSE): t500

2 4 6 8 10

0.00

0.05

0.10

0.15

0.20

h) Skill score (RMSE): t850

2 4 6 8 10

2

4

6

8

RM
SE

i) Skill (RMSE): u500 (m/s)

2 4 6 8 10

2

4

6

j) Skill (RMSE): u850 (m/s)

2 4 6 8 10

2

4

6

8

10
k) Skill (RMSE): v500 (m/s)

2 4 6 8 10

2

4

6

l) Skill (RMSE): v850 (m/s)

2 4 6 8 10

0.00

0.05

0.10

0.15

0.20

No
rm

. R
M

SE
 d

iff
.

m) Skill score (RMSE): u500

2 4 6 8 10

0.0

0.1

0.2

n) Skill score (RMSE): u850

2 4 6 8 10

0.00

0.05

0.10

0.15

o) Skill score (RMSE): v500

2 4 6 8 10

0.0

0.1

0.2

p) Skill score (RMSE): v850

2 4 6 8 10

0.0005

0.0010

0.0015

0.0020

RM
SE

q) Skill (RMSE): q700 (kg/kg)

2 4 6 8 10
0.5

1.0

1.5

2.0

2.5

3.0
r) Skill (RMSE): 2t (K)

2 4 6 8 10

1

2

3

4

5
s) Skill (RMSE): 10u (m/s)

2 4 6 8 10

200

400

600

800
t) Skill (RMSE): msl (Pa)

2 4 6 8 10
Lead time (days)

0.0

0.1

0.2

0.3

No
rm

. R
M

SE
 d

iff
.

u) Skill score (RMSE): q700

2 4 6 8 10
Lead time (days)

0.00

0.05

0.10

0.15

v) Skill score (RMSE): 2t

HRES 2018
GC (1 AR)

GC (2 AR)
GC (4 AR)

GC (6 AR)
GC (8 AR)

GC (10 AR)
GC (12 AR)

2 4 6 8 10
Lead time (days)

0.0

0.1

0.2

0.3

0.4

w) Skill score (RMSE): 10u

2 4 6 8 10
Lead time (days)

0.0

0.1

0.2

0.3
x) Skill score (RMSE): msl

Fig. S30: Effects of autoregressive training. Each line in the plots represents GraphCast, fine-tuned
with different numbers of autoregressive steps, where increasing numbers of steps are represented with
darker shades of blue. Rows 1, 3 and 5 show absolute RMSE for GraphCast. Rows 2, 4 and 6 show
normalized RMSE differences, with respect to our full 12 autoregressive-step (AR) GraphCast. Each
subplot represents a single variable (and pressure level), as indicated in the subplot titles. The x-axis
represents lead time, at 12-hour steps over 10 days. The y-axis represents (absolute or normalized)
RMSE.
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7.4 Optimized blurring

7.4.1 Effect on the comparison of skill between GraphCast and HRES

Generally GraphCast’s MSE training objective encourages it to produce blurrier predictions at

long lead times, which may not be desirable for some applications. It is also possible that Graph-

Cast’s RMSE skill advantage over HRES is due in part to the fact that blurred predictions can

give lower RMSE under predictive uncertainty. To assess this possibility, we artificially blurred

GraphCast’s and HRES’s forecasts by fitting RMSE-optimizing blurring filters independently

for each model, and then compared their skills.

Figures S31 and S32 compares the resulting RMSE skills of HRES versus GraphCast be-

fore and after optimized blurring has been applied to both models. We can see that optimized

blurring rarely changes the ranking of the two models, however it does generally narrow the

gap between them.

7.4.2 Filtering methodology

We chose filters which minimize RMSE within the class of linear, homogeneous (location in-

variant), isotropic (direction invariant) filters on the sphere. These filters can be applied easily

in the spherical harmonic domain, where they correspond to multiplicative filter weights that

depend on the total wavenumber, but not the longitudinal wavenumber (74).

For each initialization d0, lead time τ , variable and level j, we applied a discrete spherical

harmonic transform (62) to predictions x̂d0+τ
j and targets xd0+τ

j , obtaining spherical harmonic

coefficients f̂d0+τ
j,l,m and fd0+τ

j,l,m for each pair of total wavenumber l and longitudinal wavenumber

m. To resolve the 0.25° (28km) resolution of our grid at the equator, we use a triangular trun-

cation at total wavenumber 719, which means that l ranges from 0 to lmax = 719, and for each

l the value of m ranges from −l to l.

We then multiplied each predicted coefficient f̂d0+τ
j,l,m by a filter weight bτj,l, which is inde-

82



0

200

400

600

800

RM
SE

z500

0

200

400

600
z850

1

2

3

t500

1

2

3

t850

0.5

1.0

1.5

2.0 1e 3 q700

 

0.15

0.10

0.05

0.00

No
rm

. R
M

SE
 d

iff
.

 

0.2

0.1

0.0

 

0.15

0.10

0.05

0.00

 

0.15

0.10

0.05

0.00

 

0.2

0.1

0.0

2

4

6

8

RM
SE

u500

2

4

6

v850

0.5

1.0

1.5

2.0

2.5

2t

1

2

3

4

5
10u

200

400

600

msl

1 2 3 4 5 6 7 8 910
Lead time (days)

0.20

0.15

0.10

0.05

0.00

No
rm

. R
M

SE
 d

iff
.

1 2 3 4 5 6 7 8 910
Lead time (days)

0.20

0.15

0.10

0.05

0.00

1 2 3 4 5 6 7 8 910
Lead time (days)

0.05

0.00

0.05

1 2 3 4 5 6 7 8 910
Lead time (days)

0.3

0.2

0.1

0.0

1 2 3 4 5 6 7 8 910
Lead time (days)

0.2

0.1

0.0

GraphCast
GraphCast + optimal filtering

HRES
HRES + optimal filtering

Fig. S31: Effect of optimized blurring on GraphCast and HRES RMSE skill. We show RMSEs for
unfiltered predictions (solid lines) and optimally filtered predictions (dotted lines) for both GraphCast
and HRES. Rows 1 and 3 show RMSEs, rows 2 and 4 show RMSE skill scores relative to unfiltered
HRES. RMSEs are computed in the spherical harmonic domain (see Equation (22)).
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Fig. S32: Effect of optimized blurring on GraphCast and HRES RMSE scorecards. We show
scorecards (as in Figure 2) comparing unfiltered predictions, and scorecards comparing optimally filtered
predictions. In these scorecards each cell’s color represents the RMSE skill score, where blue represents
negative values (GraphCast has better skill) and red represents positive values (HRES has better skill).

pendent of the longitudinal wavenumber m. The filter weights were fitted using least-squares

to minimize mean squared error, for each lead time separately, as computed in the spherical

harmonic domain:

Lj,τ
filters =

1

|Deval|
∑

d0∈Deval

1

4π

lmax∑
l=0

l∑
m=−l

(
bτj,lf̂

d0+τ
j,l,m − fd0+τ

j,l,m

)2

. (36)

We used data from 2017 to fit these weights, independently for GraphCast and HRES. This

period does not overlap with the 2018 test set. When evaluating the filtered predictions, we

computed MSE in the spherical harmonic domain, as detailed in Equation (22).

By fitting different filters for each lead time, the degree of blurring was free to increase with

increasing uncertainty at longer lead times.

While this method is fairly general, it also has limitations. Because the filters are homo-

geneous, they are unable to take into account location-specific features, such as orography or

land-sea boundaries, and so they must choose between over-blurring predictable high-resolution

details in these locations, or under-blurring unpredictable high-resolution details more gener-

ally. This makes them less effective for some surface variables like 2T, which contain many
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such predictable details. Future work may consider more complex post-processing schemes.

An alternative way to approximate a conditional expectation (and so improve RMSE) for

our ECMWF forecast baseline would be to evaluate the ensemble mean of the ENS ensemble

forecast system, instead of the deterministic HRES forecast. However the ENS ensemble is run

at lower resolution than HRES, and because of this, it is unclear to us whether its ensemble

mean will improve on the RMSE of a post-processed version of HRES. We leave an exploration

of this for future work.

7.4.3 Transfer functions of the optimized filters

Since our optimized filters are linear, homogeneous and isotropic, they are uniquely identified

by transfer functions (74) which specify their power gain (ratio of output power to input power)

at each wavelength. We have plotted transfer functions for the optimized filters in Figure S33.

Power gain is conventionally plotted on a logarithmic decibel scale; in our case the power gain

in decibels is a simple transformation 20 log10(b
τ
j,l) of the filter weights bτj,l from Equation (36).

The more negative the power gain over a range of wavelengths, the more power is attenuated,

or the more signal is removed or blurred out, by the filter at these wavelengths. For both HRES

and GraphCast, we see that the optimized filters generally attenuate power, or blur, over some

short-to-mid wavelengths. As lead times increase from 12 hours to 10 days, the amount of

blurring increases, and the blurring also starts to affect longer and longer wavelengths.

In optimizing for MSE, we seek to approximate a conditional expectation which averages

over predictive uncertainty. Over longer lead times this predictive uncertainty increases, as does

the spatial scale of uncertainty about the location of weather phenomena. We believe that this

largely explains these changes in the optimized filter responses as a function of lead time.

We can see that the optimized filters tend to blur HRES more than GraphCast, because

GraphCast’s predictions already blur to some extent (see Section 7.5.3), whereas HRES’ do
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not.

The optimized filters are also able to compensate, to some extent, for spectral biases in

the predictions of GraphCast and HRES. For example, for many variables in our regridded

ERA5 dataset, the spectrum cuts off abruptly for wavelengths below 62km that are unresolved

at ERA5’s native 0.28125◦ resolution. GraphCast has not learned to replicate this cutoff exactly,

but the optimal filters are able to implement it.

We also note that there are noticeable peaks in the GraphCast filter response around 100km

wavelength for Z500, which are not present for HRES. We believe these are filtering out small,

spurious artifacts which are introduced by GraphCast around these wavelengths as a side-effect

of the grid-to-mesh and mesh-to-grid transformations performed inside the model.
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Fig. S33: Transfer functions of optimized filters for GraphCast and HRES. The y-axis shows the
ratio of output power to input power for the filter, on the logarithmic decibel scale; lower values corre-
spond to more attenuation of power or blurring at a given wavelength. This is plotted against wavelength
on the x-axis. Blue lines correspond to filters fit for different lead times, and the horizontal black line at
zero indicates an identity filter response. Vertical dotted lines on the GraphCast plots show the shortest
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7.4.4 Relationship between autoregressive training horizon and blurring
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Fig. S34: Results of optimized blurring, for GraphCast trained to different autoregressive training
horizons. In the first row we plot the RMSE of filtered predictions relative to corresponding unfiltered
predictions. In the second row we plot the RMSE of filtered predictions relative to the filtered predictions
trained to 12 autoregressive steps. Circles show the lead time equivalent to the autoregressive training
horizon which each model was trained up to.

In Figure S34 we use the results of optimized blurring to investigate the connection between

autoregressive training and the blurring of GraphCast’s predictions at longer lead times.

In the first row of Figure S34, we see that models trained with longer autoregressive train-

ing horizons benefit less from optimized blurring, and that the benefits of optimized blurring

generally start to accrue only after the lead time corresponding to the horizon they were trained

up to. This suggests that autoregressive training is effective in teaching the model to blur up to

the training horizon, but beyond this further blurring is required to minimize RMSE.

It would be convenient if we could replace longer-horizon training with a simple post-

processing strategy like optimized blurring, but this does not appear to be the case: in the

second row of Figure S34 we see that longer-horizon autoregressive training still results in
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lower RMSEs, even after optimized blurring has been applied.

If one desires predictions which are in some sense minimally blurry, one could use a model

trained to a small number of autoregressive steps. This would of course result in higher RMSEs

at longer lead times, and our results here suggest that these higher RMSEs would not only be

due to the lack of blurring; one would be compromising on other aspects of skill at longer lead

times too. In some applications this may still be a worthwhile trade-off, however.

7.5 Spectral analysis

7.5.1 Spectral decomposition of mean squared error

In Figure S35 we compare the skill of GraphCast with HRES over a range of spatial scales,

by plotting the contribution of each wavelength towards the mean squared error for both mod-

els. In Figure S36 we have also repeated this analysis after the optimized blurring described

in Section 7.4.

The MSE, via its spectral formulation (Equation (22)) can be decomposed as a sum of mean

error powers at different total wavenumbers:

MSEsh(j, τ) =
lmax∑
l=0

Sj,τ (l) (37)

Sj,τ (l) =
1

|Deval|
∑

d0∈Deval

1

4π

l∑
m=−l

(
f̂d0+τ
j,l,m − fd0+τ

j,l,m

)2

, (38)

where lmax = 719 as in Equation (22). Each total wavenumber l corresponds approximately

to a wavelength Ce/l, where Ce is the earth’s circumference. We plot Sj,τ (l) as a function of

wavelength Ce/l on a log-log scale. As a note of caution, because of the log-log scale, area

under the curve does not correspond to MSE in these plots.

At lead times of 2 days or more, for the majority of variables GraphCast improves on the

skill of HRES uniformly over all wavelengths. (2m temperature is a notable exception).
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At shorter lead times of 12 hours to 1 day, for a number of variables (including Z500, T500,

T850 and U500) HRES has greater skill than GraphCast at scales in the approximate range of

200-2000km, with GraphCast generally having greater skill outside this range.
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7.5.2 RMSE as a function of horizontal resolution

In Figure S37, we compare the skill of GraphCast with HRES when evaluated at a range of

spatial resolutions. Specifically, at each total wavenumber ltrunc, we plot RMSEs between pre-

dictions and targets which are both truncated at that total wavenumber. This is approximately

equivalent to a wavelength Ce/ltrunc where Ce is the earth’s circumference.

The RMSEs between truncated predictions and targets can be obtained via cumulative sums

of the mean error powers Sj,τ (l) defined in Equation (38), according to

RMSEtrunc(j, τ, ltrunc) =

√√√√ ltrunc∑
l=0

Sj,τ (l). (39)

Figure S37 shows that in most cases GraphCast has lower RMSE than HRES at all resolu-

tions typically used for forecast verification. This applies before and after optimized blurring

(see Section 7.4). Exceptions include 2 meter temperature at a number of lead times and resolu-

tions, T500 at 12 hour lead times, and U500 at 12 hour lead times, where GraphCast does better

at full resolution but HRES does better at resolutions corresponding to shortest wavelengths of

around 100 to 500 km.

In particular we note that the native resolution of ERA5 is 0.28125◦ corresponding to a

shortest wavelength of 62km, indicated by a vertical line in the plots. HRES-fc0 targets contain

some signal at wavelengths shorter than 62km, but the ERA5 targets used to evaluate GraphCast

do not, natively at least (see Section 7.5.3). In Figure S37 we can see that evaluating at 0.28125◦

resolution instead of 0.25° does not significantly affect the comparison of skill between Graph-

Cast and HRES.
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7.5.3 Spectra of predictions and targets

Figure S38 compares the power spectra of GraphCast’s predictions, the ERA5 targets they were

trained against, and HRES-fc0. A few phenomena are notable:

Differences between HRES and ERA5 There are noticeable differences in the spectra of

ERA5 and HRES-fc0, especially at short wavelengths. These differences may in part be caused

by the methods used to regrid them from their respective native IFS resolutions of TL639

(0.28125◦) and TCo1279 (approx. 0.1◦, (40)) to a 0.25° equiangular grid. However even be-

fore this regridding is done there are differences in IFS versions, settings, resolution and data

assimilation methodology used for HRES and ERA5, and these differences may also affect the

spectra. Since we evaluate GraphCast against ERA5 and HRES against HRES-fc0, this domain

gap remains an important caveat to attach to our conclusions.

Blurring in GraphCast We see reduced power at short-to-mid wavelengths in GraphCast’s

predictions which reduces further with lead time. We believe this corresponds to blurring which

GraphCast has learned to perform in optimizing for MSE. We discussed this further in Sec-

tions 7.4 and 7.4.4.

Peaks for GraphCast around 100km wavelengths These peaks are particularly visible for

Z500; they appear to increase with lead time. We believe they correspond to small, spurious

artifacts introduced by the internal grid-to-mesh and mesh-to-grid transformations performed

by GraphCast at each autoregressive step. In future work we hope to eliminate or reduce the

effect of these artifacts, which were also observed by (13).

Finally we note that, while these differences in power at short wavelengths are very notice-

able in log scale and relative plots, these short wavelengths contribute little to the total power
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of the signal.
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Fig. S38: Power spectra of predictions and targets for GraphCast. For each variable, the first row
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8 Additional severe event forecasting results

In this section, we provide additional details about our severe event forecasting analysis. We

note that GraphCast is not specifically trained for those downstream tasks, which demonstrates

that, beyond improved skills, GraphCast provides useful forecast for tasks with real-world im-

pact such as tracking cyclones (Section 8.1), characterizing atmospheric rivers (Section 8.2),

and classifying extreme temperature (Section 8.3). Each task can also be seen as evaluating

the value of GraphCast on a different axis: spatial and temporal structure of high-resolution

prediction (cyclone tracking task), ability to non-linearly combine GraphCast predictions to de-

rive quantities of interest (atmospheric rivers task), and ability to characterize extreme and rare

events (extreme temperatures).

8.1 Tropical cyclone track forecasting

In this section, we detail the evaluation protocols we used for cyclone tracking (Supplements Sec-

tion 8.1.1) and analyzing statistical significance (Supplements Section 8.1.2), provide additional

results (Supplements Section 8.1.3), and describe our tracker and its differences with the one

from ECMWF (Supplements Section 8.1.4).

8.1.1 Evaluation protocol

The standard way of comparing two tropical cyclone prediction systems is to restrict the com-

parison to events where both models predict the existence of a cyclone. As detailed in Supple-

ments Section 5.2.2, GraphCast is initialized from 06z and 18z, rather than 00z and 12z, to avoid

giving it a lookahead advantage over HRES. However, the HRES cyclone tracks in the TIGGE

archive (27) are only initialized at 00z and 12z. This discrepancy prevents us from selecting

events where the initialization and lead time map to the same validity time for both methods,

as there is always a 6h mismatch. Instead, to compare HRES and GraphCast on a set of similar
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events, we proceed as follows. We consider all the dates and times for which our ground truth

dataset IBTrACS (29, 30) identified the presence of a cyclone. For each cyclone, if its time is

06z or 18z, we make a prediction with GraphCast starting from that date, apply our tracker and

keep all the lead times for which our tracker detects a cyclone. Then, for each initialization

time/lead time pairs kept for GraphCast, we consider the two valid times at +/-6h around the

initialization time of GraphCast, and use those as initialization time to pick the corresponding

HRES track from the TIGGE archive. If, for the same lead time as GraphCast, HRES detects a

cyclone, we include both GraphCast and HRES initialization time/lead time pairs into the final

set of events we use to compare them. For both methods, we only consider predictions up to

120 hours.

Because we compute error with respect to the same ground truth (i.e., IBTrACS), the eval-

uation is not subject to the same restrictions described in Supplements Section 5.2.2, i.e., the

targets for both models incorporate the same amount of lookahead. This is in contrast with

most our evaluations in this paper, where the targets for HRES (i.e., HRES-fc0) incorporates

+3h lookahead, and the ones for GraphCast (from ERA5) incorporate +3h or +9h, leading us to

only report results for the lead times with a matching lookahead (multiples of 12h). Here, since

the IBTrACS targets are the same for both models, we can report performance as a function of

lead time by increments of 6h.

For a given forecast, the error between the predicted center of the cyclone and the true center

is computed using the geodesic distance.

8.1.2 Statistical methodology

Computing statistical confidence in cyclone tracking requires particular attention in two aspects:

1. There are two ways to define the number of samples. The first one is the number of

tropical cyclone events, which can be assumed to be mostly independent events. The
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second one is the number of per-lead time data points used, which is larger, but accounts

for correlated points (for each tropical cyclone event multiple predictions are made at 6h

interval). We chose to use the first definition which provides more conservative estimates

of statistical significance. Both numbers are shown for lead times 1 to 5 days on the x-axis

of Supplements Figure S39.

2. The per-example tracking errors of HRES and GraphCast are correlated. Therefore sta-

tistical variance in their difference is much smaller than their joint variance. Thus, we

report the confidence that GraphCast is better than HRES (see Supplements Figure S39b)

in addition to the per-model confidence (see Supplements Figure S39a).

Given the two considerations above, we do bootstrapping with 95% confidence intervals at

the level of cyclones. For a given lead time, we consider all the corresponding initialization

time/lead time pairs and keep a list of which cyclone they come from (without duplication). For

the bootstrap estimate, we draw samples from this cyclone list (with replacement) and apply

the median (or the mean) to the corresponding initialization time/lead time pairs. Note that this

gives us much more conservative confidence bounds than doing bootstrapping at the level of

initialization time/lead time pairs, as it is equivalent to assuming all bootstrap samples coming

from the sample cyclone (usually in the order of tens) are perfectly correlated.

For instance, assume for a given lead time we have errors of (50, 100, 150) for cyclone

A, (300, 200) for cyclone B and (100, 100) for cyclone C, with A having more samples. A

bootstrapping sample at the level of cyclones first samples uniformly at random 3 cyclones with

replacement (for instance A,A,B) and then computes the mean on top of the corresponding

samples with multiplicity: mean(50,100,150,50,100,150,200,300)=137.5.
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Fig. S39: Mean performance on cyclone tracking (lower is better) a) Cyclone tracking performances
for GraphCast and HRES. The x-axis represents lead times (in days). The y-axis represents mean track
error (in km). The error bars represent the bootstrapped error of the mean. b) Paired analysis of cyclone
tracking. The x-axis represents lead times (in days). The y-axis represents mean per-track error differ-
ence between HRES and GraphCast. The error bars represent the bootstrapped error of the mean.

8.1.3 Results

In Figure 3a-b, we chose to show the median error rather than the mean. This decision was made

before computing the results on the test set, based on the performance on the validation set. On

the years 2016–2017, using the version of GraphCast trained on 1979–2015, we observed that,

using early versions of our tracker, the mean track error was dominated by very few outliers and

was not representative of the overall population. Furthermore, a sizable fraction of these outliers

were due to errors in the tracking algorithm rather than the predictions themselves, suggesting

that the tracker was suboptimal for use with GraphCast. Because our goal is to assess the value

of GraphCast forecast, rather than a specific tracker, we show median values, which are also

affected by tracking errors, but to a lesser extent. In figure Figure S40 we show how that the

distribution of both HRES and GraphCast track errors for the test years 2018–2021 are non-

gaussian with many outliers. This suggests the median is a better summary statistic than the

mean.
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Fig. S40: Histograms of cyclone track errors with linear and logarithmic y-axis. The horizontal lines
connect the median error (circle) to the mean error (vertical tick) for each model. We observe that the
distribution of errors of HRES, and particularly GraphCast, have heavier tails than a Gaussian, breaking
the implicit Gaussian assumption of the RMSE estimator.

Supplements Figure S39 complements Figure 3a-b by showing the mean track error and

the corresponding paired analysis. We note that using the final version of our tracker (Supple-

ments Section 8.1.4), GraphCast mean results are similar to the median one, with GraphCast

significantly outperforming HRES for lead time between 2 and 5 days.

Because of well-known blurring effects, which tend to smooth the extrema used by a tracker

to detect the presence of a cyclone, ML methods can drop existing cyclones more often than

NWPs. Dropping a cyclone is very correlated with having a large positional error. Therefore,

removing from the evaluation such predictions, where a ML model would have performed par-

ticularly poorly, could give it an unfair advantage.

To avoid this issue, we verify that our hyper-parameter-searched tracker (see Supplements Sec-

tion 8.1.4) misses a similar number of cyclones as HRES. Supplements Figure S41 shows that

on the test set (2018–2021), GraphCast and HRES drop a similar number of cyclones, ensuring
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Fig. S41: True positive rate detection of cyclones (higher is better) GraphCast and HRES detect a
comparable number of cyclones, decreasing as a function of lead time.

our comparisons are as fair as possible.

Supplements Figures S42 and S43 show the median error and paired analysis as a function

of lead time, broken down by cyclone category, where category is defined on the Saffir-Simpson

Hurricane Wind Scale (75), with category 5 representing the strongest and most damaging

storms (note, we use category 0 to represent tropical storms). We found that GraphCast has

equivalent or better performance than HRES across all categories, although the sample sizes are

smaller. For category 5, the most intense events, GraphCast is significantly better that HRES for

lead times beyond two days, as demonstrated by the per-track paired analysis. We also obtain

similar results when measuring mean performance instead of median.

Another important part of cyclone forecasting is to characterize their intensity. However,

even point-wise data from ERA5 at 1h-0.25° resolution poorly correlates to the category of a

cyclone, with events corresponding to both low and high categories resulting in speeds of about

60-110km/h, well below the 1min-wind speed thresholds that define the Saffir-Simpson scale
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(119km/h for category 1, 252km/h for category 5). We thus leave predicting the category from

GraphCast forecasts for future work.

8.1.4 Tracker details

The tracker we used for GraphCast is based on our reimplementation of ECMWF’s tracker (26).

Because it is designed for 0.1° HRES, we found it helpful to add several modifications to reduce

the amount of mistracked cyclones when applied to GraphCast predictions. However, tracking

errors still occur, which is expected from tracking cyclone from 0.25° predictions instead of

0.1°. We note that we do not use our tracker for the HRES baseline, as its tracks are directly

recovered from the TIGGE archives (27).

We first give a high-level summary of the default tracker from ECMWF, before explaining

the modifications we made and our decision process.

ECMWF tracker Given a model’s predictions of the variables 10U, 10V, MSL as well as

U, V and Z at pressure levels 200, 500, 700, 850 and 1000 hPa over multiple time steps, the

ECMWF tracker (35) sequentially processes each time step to iteratively predict the location of

a cyclone over an entire trajectory. Each 6h prediction of the tracker has two main steps. In the

first step, based on the current location of the cyclone, the tracker computes an estimate of the

next location, 6h ahead. The second step consists in looking in the vicinity of that new estimate

for locations that satisfy several conditions that are characteristic of cyclone centers.

To compute the estimate of the next cyclone location, the tracker moves the current estimate

using a displacement computed as the average of two vectors: 1) the displacement between

the last two track locations (i.e., linear extrapolation) and 2) an estimate of the wind steering,

averaging the wind speed U and V at the previous track position at pressure levels 200, 500, 700

and 850 hPa.

Once the estimate of the next cyclone location is computed, the tracker looks at all local
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Fig. S42: Per-cyclone-category median and mean performance (category 0 to 2) Each column cor-
responds to a cyclone category from 0 to 2 on the Saffir-Simpson Hurricane Wind Scale.
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Fig. S43: Per-cyclone-category median and mean performance (category 3 to 5) Each column cor-
responds to a cyclone category from 3 to 5 on the Saffir-Simpson Hurricane Wind Scale.
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minima of mean sea-level pressure (MSL) within 445 km of this estimate. It then searches for

the candidate minima closest to the current estimate that satisfies the following three conditions:

1. Vorticity check: the maximum vorticity at 850 hPa within 278 km of the local minima is

larger than 5 · 10−5 s−1 for the Northern Hemisphere, or is smaller than −5 · 10−5s−1 for

the Southern Hemisphere. Vorticity can be derived from horizontal wind (U and V).

2. Wind speed check: if the candidate is on land, the maximum 10m wind speed within

278 km is larger than 8 m/s.

3. Thickness check: if the cyclone is extratropical, there is a maximum of thickness between

850 hPa and 200 hPa within a radius of 278 km, where the thickness is defined as Z850-

Z200.

If no minima satisfies all those conditions, the tracker considers that there is no cyclone. ECMWF’s

tracker allows cyclones to briefly disappear under some corner-case conditions before reap-

pearing. In our experiment with GraphCast, however, when a cyclone disappear, we stop the

tracking.

Our modified tracker We analysed the mistracks on cyclones from our validation set years

(2016–2017), using a version of GraphCast trained on 1979–2015, and modified the default

re-implementation of the ECMWF tracker as described below. When we conducted a hyper-

parameter search over the value of a parameter, we marked in bold the values we selected.

1. The current step vicinity radius determines how far away from the estimate a new center

candidate can be. We found this parameter to be critical and searched a better value

among the following options: 445× f for f in 0.25, 0.375, 0.5, 0.625, 0.75, 1.0 (original

value).
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2. The next step vicinity radius determines how strict multiple checks are. We also found

this parameter to be critical and searched a better value among the following options:

278× f for f in 0.25, 0.375, 0.5, 0.625, 0.75, 1.0 (original value).

3. The next-step estimate of ECMWF uses a 50-50 weighting between linear extrapolation

and wind steering vectors. In our case where wind is predicted at 0.25° resolution, we

found wind steering to sometimes hinder estimates. This is not surprising because the

wind is not a spatially smooth field, and the tracker is likely tailored to leverage 0.1°

resolution predictions. Thus, we hyper-parameter searched the weighting among the fol-

lowing options: 0.0, 0.1, 0.33, 0.5 (original value).

4. We noticed multiple misstracks happened when the track sharply reversed course, going

against its previous direction. Thus, we only consider candidates that creates an angle

between the previous and new direction below d degrees, where d was searched among

these values: 90, 135, 150, 165, 175, 180 (i.e. no filter, original value).

5. We noticed multiple misstracks made large jumps, due to a combination of noisy wind

steering and features being hard to discern for weak cyclones. Thus, we explored clipping

the estimate from moving beyond x kilometers (by resizing the delta with the last center),

searching over the following values for x: 445× f for f in 0.25, 0.5, 1.0, 2.0, 4.0, ∞ (i.e.

no clipping, original value).

During the hyper-parameter search, we also verified on validation data that the tracker applied

to GraphCast dropped a similar number of cyclones as HRES.

Note, we also ran an identical hyper-parameter search for our tracker applied to HRES

predictions at 0.25° resolution. We found that, on the validation years and at equal true positive

rate, the performance gap between HRES and GraphCast was larger when using our tracker
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(optimized for HRES) than when retrieving the HRES tracks from the TIGGE archive. This

supports using the HRES tracks from TIGGE in our evaluations.

8.2 Atmospheric rivers

The vertically integrated water vapor transport (IVT) is commonly used to characterize the inten-

sity of atmospheric rivers (32,33). Although GraphCast does not directly predict IVT and is not

specifically trained to predict atmospheric rivers, we can derive this quantity from the predicted

atmospheric variables specific humidity, Q, and horizontal wind, (U, V), via the relation (32):

IV T =
1

g

√(∫ pt

pb

Q(p)U(p)dp

)2

+

(∫ pt

pb

Q(p)V(p)dp

)2

, (40)

where g = 9.80665 m/s2 is the acceleration due to gravity at the surface of the Earth, pb =

1000 hPa is the bottom pressure, and pt = 300 hPa is the top pressure.

Evaluation of IVT using the above relation requires numerical integration and the result

therefore depends on the vertical resolution of the prediction. GraphCast has a vertical resolu-

tion of 37 pressure levels which is higher than the resolution of the available HRES trajectories

with only 25 pressure levels. For a consistent and fair comparison of both models, we therefore

only use a common subset of pressure levels, which are also included in the WeatherBench

benchmark, when evaluating IVT 13, namely [300, 400, 500, 600, 700, 850, 925, 1000] hPa.

Consistently with the rest of our evaluation protocol, each model is evaluated against its

own “analysis”. For GraphCast, we compute the IVT based on its predictions and we compare it

to the IVT computed analogously from ERA5. Similarly, we use HRES predictions to compute

the IVT for HRES and and compare it to the IVT computed from HRES-fc0.

Similarly to previous work (31), Figure S44 reports RMSE skill and skill score averaged

over coastal North America and the Eastern Pacific (from 180°W to 110°W longitude, and 10°N

13As suggested by ECMWF during personal conversation.
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Fig. S44: Skill and skill score for GraphCast and HRES on vertically integrated water vapor
transport (ivt) (lower is better). (a) RMSE skill (y-axis) for GraphCast (blue line) and HRES (black line)
on IVT as a function of lead time (x-axis), with 95% confidence interval error bars (see Section 5.4.3).
(b) RMSE skill score (y-axis) for GraphCast and HRES with respect to HRES on IVT as a function of
lead time (x-axis), with 95% confidence interval error bars (see Section 5.4.4). GraphCast improves the
prediction of IVT compared to HRES, from 25% at short lead time, to 10% at longer horizon.

to 60°N latitude) during the cold season (Jan-April and Oct-Dec 2018), which corresponds to a

region and a period with frequent atmospheric rivers.

8.3 Extreme heat and cold

We study extreme heat and cold forecasting as a binary classification problem (3, 35) by com-

paring whether a given forecasting model can correctly predict whether the value for a certain

variable will be above (or below) a certain percentile of the distribution of a reference histori-

cal climatology (for example above 98% percentile for extreme heat, and below 2% percentile

for extreme cold). Following previous work (35), the reference climatology is obtained sep-

arately for (1) each variable, (2) each month of the year, (3) each time of the day, (4) each

latitude/longitude coordinate, and (5) each pressure level (if applicable). This makes the detec-

tion of extremes more contrasted by removing the effect of the diurnal and seasonal cycles in

each spatial location. To keep the comparison as fair as possible between HRES and GraphCast,

we compute this climatology from HRES-fc0 and ERA5 respectively, for years 2016-2021. We
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experimented with other ways to compute climatology (2016-2017 as well as using ERA5 cli-

matology 1993-2016 for both models), and found that results hold generally.

Because extreme prediction is by definition an imbalanced classification problem, we base

our analysis on precision-recall plots which are well-suited for this case (37). Precision and

recall are defined respectively as,

P =
tp

tp+ fp
(41)

R =
tp

tp+ fn
, (42)

where tp, fp, and fn, indicate “true positives”, “false positives” and “false negatives”, respec-

tively. The precision-recall curve is obtained by varying a free parameter “gain” consisting

of a scaling factor with respect to the median value of the climatology, i.e. scaled forecast =

gain × (forecast − median climatology) + median climatology. This has the effect of shifting

the decision boundary and allows to study different trade offs between false negatives and false

positives. Intuitively, a 0 gain will produce zero forecast positives (e.g. zero false positives),

and an infinite gain will produce amplify every value above the median to be a positive (so

potentially up to 50% false positive rate). The “gain” is varied smoothly from 0.8 to 4.5. Sim-

ilar to the rest of the results in the paper we also use labels from HRES-fc0 and ERA5 when

evaluating HRES and GraphCast, respectively.

We focus our analysis on variables that are relevant for extreme temperature conditions,

specifically 2T (3, 35), and also T850, Z500 which are often used by ECMWF to characterize

heatwaves (36). Following previous work (3), for extreme heat we average across June, July,

and August over land in the northern hemisphere (latitude > 20◦) and across December, January,

and February over land in the southern hemisphere (latitude < -20◦). For extreme cold, we

swapped the months for the northern and southern hemispheres. See full results in Figure S45.

We also provide a more fine-grained lead-time comparison, by summarizing the precision-recall
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curves by selecting the point with the highest SEDI score (35) and showing this as function of

lead time (Figure S46). The SEDI score is defined as,

SEDI =
logF − logR− log(1− F ) + log(1−R)

logF + logR + log(1− F ) + log(1−R)
, (43)

where R is the recall, and F is the “false positive rate”, defined as,

F =
fp

fp+ tn
, (44)

where fp, and tn, indicate “false positives”, “true negatives”, respectively.
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Fig. S45: Detailed extremes evaluation. Higher precision and recall is better.
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Fig. S46: Extremes SEDI scores. Maximum SEDI scores across the extreme prediction precision-
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9 Forecast visualizations

In this final section, we provide a few visualization examples of the predictions made by Graph-

Cast for variables 2T (Figure S47), 10U (Figure S48), MSL (Figure S49), Z500 (Figure S50),

T850 (Figure S51), V500 (Figure S52), Q700 (Figure S53). For each variable, we show a rep-

resentative prediction from GraphCast by choosing the example with the median performance

on 2018.
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Fig. S47: GraphCast forecast visualization: 2T. Forecast initialized at 2018-05-05 12:00 UTC, with
plots corresponding to 2, 6, and 10 day lead times.
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Fig. S48: GraphCast forecast visualization: 10U. Forecast initialized at 2018-12-22 00:00 UTC, with
plots corresponding to 2, 6, and 10 day lead times.
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Fig. S49: GraphCast forecast visualization: MSL. Forecast initialized at 2018-03-03 12:00 UTC,
with plots corresponding to 2, 6, and 10 day lead times.
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Fig. S50: GraphCast forecast visualization: Z500. Forecast initialized at 2018-11-23 12:00 UTC,
with plots corresponding to 2, 6, and 10 day lead times.
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Fig. S51: GraphCast forecast visualization: T850. Forecast initialized at 2018-11-12 12:00 UTC,
with plots corresponding to 2, 6, and 10 day lead times.
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Fig. S52: GraphCast forecast visualization: V500. Forecast initialized at 2018-03-30 12:00 UTC,
with plots corresponding to 2, 6, and 10 day lead times.

120



2018-11-21_12:00 UTC

2018-11-25_12:00 UTC

2018-11-29_12:00 UTC

-0.0001

0.0012

0.0026

0.0039

0.0053

0.0066

0.0080

0.0093

0.0107

0.0120

0.0134

kg
/k

g

q700: Initialization time 2018-11-19_12:00 UTC

Fig. S53: GraphCast forecast visualization: Q700. Forecast initialized at 2018-11-19 12:00 UTC,
with plots corresponding to 2, 6, and 10 day lead times.
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