1. a k c are collinear (by assumption) 2. a l b are collinear (by assumption) 3. |o a| = |o b| (by assumption) 4. |o p| = |o a| (by assumption) 5. |o b| = |o p| (by calculation 3 4)   |o b| = |o a| (by 3: |o a| = |o b|)         = |o p| (by 4: |o p| = |o a|) 6. ∠o b p = ∠b p o (by isosceles triangle 5) 7. |o a| = |o c| (by assumption) 8. |o p| = |o c| (by calculation 4 7)   |o p| = |o a| (by 4: |o p| = |o a|)         = |o c| (by 7: |o a| = |o c|) 9. ∠o c p = ∠c p o (by isosceles triangle 8) 10. |o b| = |o a| (by calculation 3)   |o b| = |o a| (by 3: |o a| = |o b|) 11. ∠a b o = ∠o a b (by isosceles triangle 10) 12. ∠a c o = ∠o a c (by isosceles triangle 7) 13. b d c are collinear (by assumption) 14. x b c are collinear (by assumption) 15. b x d c are collinear (by merge lines 13 14) 16. y b c are collinear (by assumption) 17. b x d y c are collinear (by merge lines 15 16) 18. ∠y b i = ∠d b i (by calculation 15 17)   d(i b) + -1*d(y b) = d(i b) + -1*d(b d) (∠y b i = ∠d b i)      1 ×    d(y b) + -1*d(b d) = 0        (17: b x d y c are collinear) 19. ∠a b i = ∠i b c (by assumption) 20. i d ⊥ b c (by assumption) 21. y t2 || a b (by assumption) 22. |i t2| = |i d| (by assumption) 23. |i y| / |i d| = |i y| / |i t2| (by calculation 22)   |y i| / |d i| = |y i| / |i t2| (by 22: |i t2| = |i d|) 24. y t2 ⊥ t2 i (by assumption) 25. ∠y t2 i = ∠i d y (by calculation 17 20 24)   d(i t2) + -1*d(t2 y) = d(y d) + -1*d(i d) (∠y t2 i = ∠i d y)      1 ×    d(t2 y) + -1*d(i t2) = 1/2*pi        (24: y t2 ⊥ t2 i)      1 ×    d(y d) + -1*d(c b) = 0        (17: b x d y c are collinear)     -1 ×    d(i d) + -1*d(c b) = 1/2*pi        (20: i d ⊥ b c) 26. |i t2| < |i y| (by diagram check) 27. d → i → y and i → t2 → y are of same clock direction. (by diagram check) 28. ∠d y i = ∠i y t2 (by similar triangles Ssa 23 25 26 27) 29. ∠y i b = ∠b d i (by calculation 15 17 19 20 21 28)   d(i b) + -1*d(i y) = d(i d) + -1*d(b d) (∠y i b = ∠b d i)   -1/2 ×    d(i b) + -1*d(a b) = d(c b) + -1*d(i b)        (19: ∠a b i = ∠i b c)    1/2 ×    d(i y) + -1*d(y d) = d(t2 y) + -1*d(i y)        (28: ∠d y i = ∠i y t2)    1/2 ×    d(t2 y) + -1*d(a b) = 0        (21: y t2 || a b)    1/2 ×    d(y d) + -1*d(b d) = 0        (17: b x d y c are collinear)    1/2 ×    d(c b) + -1*d(b d) = 0        (15: b x d c are collinear)      1 ×    d(i d) + -1*d(c b) = 1/2*pi        (20: i d ⊥ b c) 30. |b y| / |y i| = |b i| / |i d| (by similar triangles aa 18 29) 31. ∠x b i = ∠i b a (by calculation 14 19)   d(i b) + -1*d(x b) = d(a b) + -1*d(i b) (∠x b i = ∠i b a)     -1 ×    d(i b) + -1*d(a b) = d(c b) + -1*d(i b)        (19: ∠a b i = ∠i b c)     -1 ×    d(c b) + -1*d(x b) = 0        (14: x b c are collinear) 32. ∠b a i = ∠i a c (by assumption) 33. x t1 || a c (by assumption) 34. |i t1| = |i d| (by assumption) 35. |i x| / |i t1| = |i x| / |i d| (by calculation 34)   |x i| / |i t1| = |x i| / |d i| (by 34: |i t1| = |i d|) 36. x t1 ⊥ t1 i (by assumption) 37. ∠x d i = ∠i t1 x (by calculation 15 20 36)   d(i d) + -1*d(x d) = d(t1 x) + -1*d(t1 i) (∠x d i = ∠i t1 x)     -1 ×    d(i d) + -1*d(c b) = 1/2*pi        (20: i d ⊥ b c)      1 ×    d(x d) + -1*d(c b) = 0        (15: b x d c are collinear)      1 ×    d(t1 x) + -1*d(t1 i) = 1/2*pi        (36: x t1 ⊥ t1 i) 38. |i d| < |i x| (by diagram check) 39. i → t1 → x and d → i → x are of same clock direction. (by diagram check) 40. ∠t1 x i = ∠i x d (by similar triangles Ssa 35 37 38 39) 41. ∠x i b = ∠i a b (by calculation 15 19 32 33 40)   d(i b) + -1*d(i x) = d(a b) + -1*d(i a) (∠x i b = ∠i a b)   -1/2 ×    d(i b) + -1*d(a b) = d(c b) + -1*d(i b)        (19: ∠a b i = ∠i b c)    1/2 ×    d(i x) + -1*d(t1 x) = d(x d) + -1*d(i x)        (40: ∠t1 x i = ∠i x d)    1/2 ×    d(t1 x) + -1*d(c a) = 0        (33: x t1 || a c)    1/2 ×    d(x d) + -1*d(c b) = 0        (15: b x d c are collinear)   -1/2 ×    d(i a) + -1*d(a b) = d(c a) + -1*d(i a)        (32: ∠b a i = ∠i a c) 42. |b x| / |b i| = |b i| / |b a| (by similar triangles aa 31 41) 43. |b x| / |x i| = |b i| / |i a| (by similar triangles aa 31 41) 44. ∠x c i = ∠d c i (by calculation 14 15)   d(c i) + -1*d(c x) = d(c i) + -1*d(c d) (∠x c i = ∠d c i)     -1 ×    d(c d) + -1*d(c x) = 0        (15: b x d c are collinear) 45. ∠b c i = ∠i c a (by assumption) 46. ∠x i c = ∠c d i (by calculation 15 20 33 40 45)   d(c i) + -1*d(i x) = d(i d) + -1*d(c d) (∠x i c = ∠c d i)   -1/2 ×    d(c i) + -1*d(c b) = d(c a) + -1*d(c i)        (45: ∠b c i = ∠i c a)    1/2 ×    d(i x) + -1*d(t1 x) = d(x d) + -1*d(i x)        (40: ∠t1 x i = ∠i x d)    1/2 ×    d(t1 x) + -1*d(c a) = 0        (33: x t1 || a c)    1/2 ×    d(x d) + -1*d(c b) = 0        (15: b x d c are collinear)      1 ×    d(i d) + -1*d(c b) = 1/2*pi        (20: i d ⊥ b c)     -1 ×    d(c d) + -1*d(c b) = 0        (15: b x d c are collinear) 47. |c x| / |x i| = |c i| / |i d| (by similar triangles aa 44 46) 48. e i b are collinear (by assumption) 49. ∠a b e = ∠i b y (by calculation 17 19 48)   d(e b) + -1*d(a b) = d(y b) + -1*d(i b) (∠a b e = ∠i b y)      1 ×    d(i b) + -1*d(e b) = 0        (48: e i b are collinear)     -1 ×    d(i b) + -1*d(a b) = d(c b) + -1*d(i b)        (19: ∠a b i = ∠i b c)     -1 ×    d(c b) + -1*d(y b) = 0        (17: b x d y c are collinear) 50. |l e| = |l b| (by assumption) 51. |l b| = |l e| (by calculation 50)   |b l| = |e l| (by 50: |l e| = |l b|) 52. ∠l e b = ∠e b l (by isosceles triangle 51) 53. |a l| = |b l| (by assumption) 54. |l a| = |l e| (by calculation 50 53)   |a l| = |b l| (by 53: |a l| = |b l|)         = |e l| (by 50: |l e| = |l b|) 55. ∠l a e = ∠a e l (by isosceles triangle 54) 56. ∠a e b = ∠b i y (by calculation 2 17 19 21 28 52 55)   d(e b) + -1*d(e a) = d(i y) + -1*d(i b) (∠a e b = ∠b i y)   -1/2 ×    d(e b) + -1*d(e l) = d(l b) + -1*d(e b)        (52: ∠l e b = ∠e b l)   -1/2 ×    d(l b) + -1*d(a l) = 0        (2: a l b are collinear)    1/2 ×    d(e a) + -1*d(a l) = d(e l) + -1*d(e a)        (55: ∠l a e = ∠a e l)    1/2 ×    d(i y) + -1*d(y d) = d(t2 y) + -1*d(i y)        (28: ∠d y i = ∠i y t2)    1/2 ×    d(t2 y) + -1*d(a b) = 0        (21: y t2 || a b)    1/2 ×    d(y d) + -1*d(c b) = 0        (17: b x d y c are collinear)   -1/2 ×    d(i b) + -1*d(a b) = d(c b) + -1*d(i b)        (19: ∠a b i = ∠i b c) 57. |b a| / |a e| = |b y| / |y i| (by similar triangles aa 49 56) 58. p a i are collinear (by assumption) 59. |o b| = |o c| (by calculation 3 7)   |o b| = |o a| (by 3: |o a| = |o b|)         = |o c| (by 7: |o a| = |o c|) 60. ∠c b o = ∠o c b (by isosceles triangle 59) 61. |o a| = |o p| (by calculation 4)   |o a| = |o p| (by 4: |o p| = |o a|) 62. ∠a p o = ∠o a p (by isosceles triangle 61) 63. ∠a l e = ∠i p c (by calculation 2 9 11 19 48 52 58 60 62)   d(e l) + -1*d(a l) = d(p c) + -1*d(p i) (∠a l e = ∠i p c)      2 ×    d(i b) + -1*d(e b) = 0        (48: e i b are collinear)     -1 ×    d(i b) + -1*d(a b) = d(c b) + -1*d(i b)        (19: ∠a b i = ∠i b c)    1/2 ×    d(o b) + -1*d(c b) = d(c b) + -1*d(o c)        (60: ∠c b o = ∠o c b)   -1/2 ×    d(o b) + -1*d(a b) = d(a b) + -1*d(o a)        (11: ∠a b o = ∠o a b)      1 ×    d(e b) + -1*d(e l) = d(l b) + -1*d(e b)        (52: ∠l e b = ∠e b l)      1 ×    d(l b) + -1*d(a l) = 0        (2: a l b are collinear)     -2 ×    d(a b) + -1*d(a l) = 0        (2: a l b are collinear)    1/2 ×    d(p c) + -1*d(o c) = d(o p) + -1*d(p c)        (9: ∠o c p = ∠c p o)     -1 ×    d(p i) + -1*d(p a) = 0        (58: p a i are collinear)    1/2 ×    d(o p) + -1*d(p a) = d(p a) + -1*d(o a)        (62: ∠a p o = ∠o a p) 64. ∠a e l = ∠p i c (by calculation 2 19 32 45 48 52 55 58)   d(e l) + -1*d(e a) = d(c i) + -1*d(p i) (∠a e l = ∠p i c)    1/2 ×    d(e a) + -1*d(a l) = d(e l) + -1*d(e a)        (55: ∠l a e = ∠a e l)     -1 ×    d(a b) + -1*d(a l) = 0        (2: a l b are collinear)    1/2 ×    d(c i) + -1*d(c b) = d(c a) + -1*d(c i)        (45: ∠b c i = ∠i c a)      1 ×    d(i b) + -1*d(e b) = 0        (48: e i b are collinear)   -1/2 ×    d(i b) + -1*d(a b) = d(c b) + -1*d(i b)        (19: ∠a b i = ∠i b c)    1/2 ×    d(e b) + -1*d(e l) = d(l b) + -1*d(e b)        (52: ∠l e b = ∠e b l)    1/2 ×    d(l b) + -1*d(a l) = 0        (2: a l b are collinear)      1 ×    d(i a) + -1*d(p i) = 0        (58: p a i are collinear)   -1/2 ×    d(i a) + -1*d(a b) = d(c a) + -1*d(i a)        (32: ∠b a i = ∠i a c) 65. |l a| / |a e| = |p c| / |c i| (by similar triangles aa 63 64) 66. |a l| / |a i| = |c p| / |c x| (by calculation 30 42 43 47 57 65)   |a l| / |i a| = |a l| * |x b| / |i x| / |i b| (by 43: |b x| / |x i| = |b i| / |i a|)                 = |a l| / |i x| * |i b| / |a b| (by 42: |b x| / |b i| = |b i| / |b a|)                 = |a l| / |i x| / |a b| * |y b| / |i y| * |i d| (by 30: |b y| / |y i| = |b i| / |i d|)                 = |a l| / |i x| * |i d| / |e a| (by 57: |b a| / |a e| = |b y| / |y i|)                 = |i x|^-1 * |i d| * |c p| / |c i| (by 65: |l a| / |a e| = |p c| / |c i|)                 = |c p| / |c x| (by 47: |c x| / |x i| = |c i| / |i d|) 67. ∠p c x = ∠i a l (by calculation 2 9 11 14 58 60 62)   d(c x) + -1*d(p c) = d(a l) + -1*d(i a) (∠p c x = ∠i a l)      1 ×    d(c b) + -1*d(c x) = 0        (14: x b c are collinear)    1/2 ×    d(o b) + -1*d(c b) = d(c b) + -1*d(o c)        (60: ∠c b o = ∠o c b)   -1/2 ×    d(o b) + -1*d(a b) = d(a b) + -1*d(o a)        (11: ∠a b o = ∠o a b)    1/2 ×    d(p c) + -1*d(o c) = d(o p) + -1*d(p c)        (9: ∠o c p = ∠c p o)     -1 ×    d(a b) + -1*d(a l) = 0        (2: a l b are collinear)     -1 ×    d(i a) + -1*d(p a) = 0        (58: p a i are collinear)    1/2 ×    d(o p) + -1*d(p a) = d(p a) + -1*d(o a)        (62: ∠a p o = ∠o a p) 68. c → p → x and i → l → a are of same clock direction. (by diagram check) 69. ∠c p x = ∠i l a (by similar triangles sas 66 67 68) 70. ∠c b p = ∠p c b (by calculation 6 9 11 12 32 58 60 62)   d(p b) + -1*d(c b) = d(c b) + -1*d(p c) (∠c b p = ∠p c b)   -1/2 ×    d(p b) + -1*d(o b) = d(o p) + -1*d(p b)        (6: ∠o b p = ∠b p o)      2 ×    d(i a) + -1*d(p a) = 0        (58: p a i are collinear)     -1 ×    d(i a) + -1*d(a b) = d(c a) + -1*d(i a)        (32: ∠b a i = ∠i a c)    1/2 ×    d(o b) + -1*d(a b) = d(a b) + -1*d(o a)        (11: ∠a b o = ∠o a b)    1/2 ×    d(o c) + -1*d(c a) = d(c a) + -1*d(o a)        (12: ∠a c o = ∠o a c)     -1 ×    d(o p) + -1*d(p a) = d(p a) + -1*d(o a)        (62: ∠a p o = ∠o a p)     -1 ×    d(o b) + -1*d(c b) = d(c b) + -1*d(o c)        (60: ∠c b o = ∠o c b)   -1/2 ×    d(p c) + -1*d(o c) = d(o p) + -1*d(p c)        (9: ∠o c p = ∠c p o) 71. |p b| = |p c| (by isosceles triangle 70) 72. ∠y c i = ∠i c a (by calculation 17 45)   d(c i) + -1*d(c y) = d(c a) + -1*d(c i) (∠y c i = ∠i c a)     -1 ×    d(c i) + -1*d(c b) = d(c a) + -1*d(c i)        (45: ∠b c i = ∠i c a)      1 ×    d(c y) + -1*d(c b) = 0        (17: b x d y c are collinear) 73. ∠y i c = ∠i a c (by calculation 17 21 28 32 45)   d(c i) + -1*d(i y) = d(c a) + -1*d(i a) (∠y i c = ∠i a c)   -1/2 ×    d(c i) + -1*d(c b) = d(c a) + -1*d(c i)        (45: ∠b c i = ∠i c a)    1/2 ×    d(i y) + -1*d(y d) = d(t2 y) + -1*d(i y)        (28: ∠d y i = ∠i y t2)    1/2 ×    d(t2 y) + -1*d(a b) = 0        (21: y t2 || a b)    1/2 ×    d(y d) + -1*d(c b) = 0        (17: b x d y c are collinear)   -1/2 ×    d(i a) + -1*d(a b) = d(c a) + -1*d(i a)        (32: ∠b a i = ∠i a c) 74. |c y| / |c i| = |c i| / |c a| (by similar triangles aa 72 73) 75. |c y| / |y i| = |c i| / |i a| (by similar triangles aa 72 73) 76. ∠c a b = ∠k a l (by calculation 1 2)   d(a b) + -1*d(c a) = d(a l) + -1*d(k a) (∠c a b = ∠k a l)     -1 ×    d(a b) + -1*d(a l) = 0        (2: a l b are collinear)      1 ×    d(c a) + -1*d(k a) = 0        (1: a k c are collinear) 77. |a k| = |c k| (by assumption) 78. |c k| / |c o| = |a k| / |a o| (by calculation 7 77)   |k c| / |o c| = |o c|^-1 * |k a| (by 77: |a k| = |c k|)                 = |k a| / |o a| (by 7: |o a| = |o c|) 79. |o k| / |o c| = |o k| / |o a| (by calculation 7)   |o k| / |o c| = |o k| / |o a| (by 7: |o a| = |o c|) 80. c → k → o and o → k → a are of same clock direction. (by diagram check) 81. ∠c k o = ∠o k a (by similar triangles sss 78 79 80) 82. |b l| / |b o| = |a l| / |a o| (by calculation 3 53)   |b l| / |b o| = |b l| / |a o| (by 3: |o a| = |o b|)                 = |a o|^-1 * |a l| (by 53: |a l| = |b l|) 83. |o l| / |o b| = |o l| / |o a| (by calculation 3)   |o l| / |o b| = |o l| / |o a| (by 3: |o a| = |o b|) 84. b → l → o and o → l → a are of same clock direction. (by diagram check) 85. ∠b l o = ∠o l a (by similar triangles sss 82 83 84) 86. ∠a l o = ∠a k o (by calculation 1 2 81 85)   d(o l) + -1*d(a l) = d(o k) + -1*d(k a) (∠a l o = ∠a k o)   -1/2 ×    d(o l) + -1*d(l b) = d(a l) + -1*d(o l)        (85: ∠b l o = ∠o l a)   -1/2 ×    d(l b) + -1*d(a l) = 0        (2: a l b are collinear)    1/2 ×    d(o k) + -1*d(c k) = d(k a) + -1*d(o k)        (81: ∠c k o = ∠o k a)    1/2 ×    d(c k) + -1*d(k a) = 0        (1: a k c are collinear) 87. l k a o are concyclic (by inscribed angle 86) 88. ∠l k o = ∠l a o (by inscribed angle 87) 89. ∠c b a = ∠k l a (by calculation 1 11 12 60 81 88)   d(a b) + -1*d(c b) = d(a l) + -1*d(k l) (∠c b a = ∠k l a)   -1/2 ×    d(o b) + -1*d(c b) = d(c b) + -1*d(o c)        (60: ∠c b o = ∠o c b)    1/2 ×    d(o b) + -1*d(a b) = d(a b) + -1*d(o a)        (11: ∠a b o = ∠o a b)    1/2 ×    d(o c) + -1*d(c a) = d(c a) + -1*d(o a)        (12: ∠a c o = ∠o a c)      1 ×    d(c a) + -1*d(k a) = 0        (1: a k c are collinear)      1 ×    d(o k) + -1*d(k l) = d(o a) + -1*d(a l)        (88: ∠l k o = ∠l a o)   -1/2 ×    d(o k) + -1*d(c k) = d(k a) + -1*d(o k)        (81: ∠c k o = ∠o k a)   -1/2 ×    d(c k) + -1*d(k a) = 0        (1: a k c are collinear) 90. |a c| / |a b| = |a k| / |a l| (by similar triangles aa 76 89) 91. |a k| / |a i| = |b p| / |b y| (by calculation 57 65 71 74 75 90)   |k a| / |i a| = |k a| / |i a| * |p b| / |p c| (by 71: |p b| = |p c|)                 = |k a| / |i a| * |p b| / |a l| * |e a| / |c i| (by 65: |l a| / |a e| = |p c| / |c i|)                 = |i a|^-1 * |p b| * |e a| / |c i| * |c a| / |a b| (by 90: |a c| / |a b| = |a k| / |a l|)                 = |i a|^-1 * |p b| * |e a| * |c i| / |a b| / |c y| (by 74: |c y| / |c i| = |c i| / |c a|)                 = |p b| * |e a| / |a b| / |i y| (by 75: |c y| / |y i| = |c i| / |i a|)                 = |p b| / |y b| (by 57: |b a| / |a e| = |b y| / |y i|) 92. ∠p b y = ∠i a k (by calculation 1 6 12 17 58 60 62)   d(y b) + -1*d(p b) = d(k a) + -1*d(i a) (∠p b y = ∠i a k)      1 ×    d(c b) + -1*d(y b) = 0        (17: b x d y c are collinear)    1/2 ×    d(o b) + -1*d(c b) = d(c b) + -1*d(o c)        (60: ∠c b o = ∠o c b)   -1/2 ×    d(o c) + -1*d(c a) = d(c a) + -1*d(o a)        (12: ∠a c o = ∠o a c)    1/2 ×    d(p b) + -1*d(o b) = d(o p) + -1*d(p b)        (6: ∠o b p = ∠b p o)     -1 ×    d(c a) + -1*d(k a) = 0        (1: a k c are collinear)     -1 ×    d(i a) + -1*d(p a) = 0        (58: p a i are collinear)    1/2 ×    d(o p) + -1*d(p a) = d(p a) + -1*d(o a)        (62: ∠a p o = ∠o a p) 93. b → p → y and i → k → a are of same clock direction. (by diagram check) 94. ∠b p y = ∠i k a (by similar triangles sas 91 92 93) 95.  d(i l) - d(i k) + d(p x) - d(p y)  + 180 = 0 (by calculation 1 2 6 9 11 12 69 94)   d(i l) + -1*d(k i) + d(p x) + -1*d(p y) = 0 ( d(i l) - d(i k) + d(p x) - d(p y)  + 180 = 0)     -1 ×    d(p x) + -1*d(p c) = d(a l) + -1*d(i l)        (69: ∠c p x = ∠i l a)   -1/2 ×    d(p c) + -1*d(o c) = d(o p) + -1*d(p c)        (9: ∠o c p = ∠c p o)      1 ×    d(a b) + -1*d(a l) = 0        (2: a l b are collinear)    1/2 ×    d(o b) + -1*d(a b) = d(a b) + -1*d(o a)        (11: ∠a b o = ∠o a b)      1 ×    d(p y) + -1*d(p b) = d(k a) + -1*d(k i)        (94: ∠b p y = ∠i k a)    1/2 ×    d(p b) + -1*d(o b) = d(o p) + -1*d(p b)        (6: ∠o b p = ∠b p o)     -1 ×    d(c a) + -1*d(k a) = 0        (1: a k c are collinear)   -1/2 ×    d(o c) + -1*d(c a) = d(c a) + -1*d(o a)        (12: ∠a c o = ∠o a c)