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The ability to leverage heterogeneous robotic experience from different robots and tasks to quickly
master novel skills and embodiments has the potential to transform robot learning. Inspired by recent
advances in foundation models for vision and language, we propose a foundation agent for robotic
manipulation. This agent, named RoboCat, is a visual goal-conditioned decision transformer capable
of consuming multi-embodiment action-labelled visual experience. This data spans a large repertoire
of motor control skills from simulated and real robotic arms with varying sets of observations and
actions. With RoboCat, we demonstrate the ability to generalise to new tasks and robots, both zero-shot
as well as through adaptation using only 100–1000 examples for the target task. We also show how a
trained model itself can be used to generate data for subsequent training iterations, thus providing a
basic building block for an autonomous improvement loop. We investigate the agent’s capabilities, with
large-scale evaluations both in simulation and on three different real robot embodiments. We find that
as we grow and diversify its training data, RoboCat not only shows signs of cross-task transfer, but also
becomes more efficient at adapting to new tasks.

1. Introduction
Much of real-world robot learning research has
focused on developing agents for one task at a
time. This is because, even though the cost of
task design and robot experience generation is
very high, leveraging heterogeneous robot data
at scale has remained a challenging problem in
the field of robotics.
The advent of high-capacity models, such as

the transformer model (Vaswani et al., 2017),
has enabled recent successes for multi-task learn-
ing in language and vision. These developments
have led to progress in modelling multi-modal be-
haviour and predicting actions with a generalist
agent, Gato (Reed et al., 2022), being able to play
Atari, caption images, chat, and show some, albeit
limited, robotic manipulation capabilities. Specif-
ically in robotics, recent works (Brohan et al.,
2022; Driess et al., 2023) have focused on bridg-
ing the gap between large pretrained language

models and vision-based manipulation by train-
ing language-conditioned transformer policies to
solve multiple simple, visually-diverse tasks that
have the same observation and action spaces.
In this work, we propose RoboCat, a self-

improving foundation agent for vision-based
robotic manipulation, instantiated as a large
transformer sequence model. Inspired by founda-
tion models in other domains (Bommasani et al.,
2022), we ultimately aim for a foundation agent
for manipulation to be a multi-embodiment agent
trained on a large set of robotic episodic expe-
rience that enables it to quickly adapt, via fine-
tuning, to a broad set of new downstream tasks.
As a step towards this, we trained RoboCat on a
very large dataset of precise and dexterous vision-
based tasks performed with embodiments that
have different degrees of freedom, various obser-
vation and action specifications, and operate at
different control frequencies. Our agent is able
to successfully adapt to new tasks and robots via
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Train RoboCat: a multi-task, multi-embodiment, 
visual goal-conditioned agent
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Figure 1 | The self-improvement process. RoboCat is a multi-task, multi-embodiment visual goal-conditioned
agent that can iteratively self-improve. Given a version of this generalist agent, it can adapt to new tasks
with 100–1000 demonstrations, and be deployed to generate much more data for a given task. The resulting
trajectories are then added to the training dataset for the next iteration of RoboCat, increasing the generalist’s
repertoire of skills and improving performance across tasks.

fine-tuning on a small dataset of new episodic ex-
perience of between 100 to 1000 demonstrations,
significantly reducing the cost of acquiring new
skills and onboarding new embodiments. We fur-
ther use the fine-tuned RoboCat models to gather
additional data that is later added to train new
iterations of our agent. This self-improvement pro-
cess, illustrated in Figure 1, makes for a more ca-
pable agent, and improves its cross-task transfer
and fine-tuning capabilities to even more tasks.
RoboCat is based on Gato and a VQ-GAN en-

coder (Esser et al., 2021), which is pretrained
on a broad set of images and enables fast itera-
tion. We specify tasks via visual goal-conditioning,
which has the desirable property that any image
in a trajectory can be labelled as a valid “hind-
sight goal” (Andrychowicz et al., 2017) for all
time steps leading up to it. This means that hind-
sight goals in existing data can be extracted with-
out additional human supervision and that even
suboptimal data collected by the agent can be
incorporated back into the training set for self-
improvement. Additionally, visual goals provides
an intuitive interface to indicate the robot the
task that it should do.
Our main contributions in this work are out-

lined below: (1) we demonstrate, for the first
time, that a large transformer sequence model
can solve a large set of dexterous tasks onmultiple
real robotic embodiments with differing observa-

tion and action specifications; (2) we investigate
RoboCat’s capabilities in adapting to unseen tasks,
with just a small dataset of expert demonstrations,
lowering the bar of learning a new skill, compared
to baselines; (3) we show that it is possible to in-
corporate these skills back to the generalist with
a simple but effective self-improvement process;
and (4) we show that by scaling and broadening
the training data, RoboCat performs better on
training tasks and is more efficient at fine-tuning.
The rest of the paper is structured as fol-

lows. We first describe RoboCat and the self-
improvement loop in Section 2. We introduce the
embodiments, tasks, and object sets that we have
used in this work in Section 3. We describe our
experimental setup for both training and evalua-
tion in Section 4, before we present our extensive
experiments to support our claims in Section 5.
We finally discuss our work in the context of re-
lated work in Section 6, and discuss RoboCat’s
potential avenues for future work in Section 7.

2. RoboCat
We introduce RoboCat, a self-improving founda-
tion agent for robotic manipulation that can per-
form multiple tasks and control multiple embod-
iments in simulation and the real world. In this
section, we describe each phase of the RoboCat
training process, summarised in Figure 1.

2



RoboCat: A Self-Improving Foundation Agent for Robotic Manipulation

2.1. Training and task specification

We consider vision-based tabletop object manipu-
lation tasks. Each task is defined by its (uncount-
ably infinite) set of valid start and end states, and
an episode is evaluated for task success by check-
ing if the last state is in the set of valid end states.
For example, for the task “Insert the apple into the
bowl”, the set of valid start states is all states with
an apple outside a bowl, and the set of valid end
states is all states with the apple inside the bowl.
We exclusively consider tasks where success can
be determined from only the end state.
We want to train an agent that performs a task

when conditioned on an image of a valid end state
of that task. Our goal-conditioned agent is repre-
sented by a policy 𝜋(𝑎𝑡 |𝑜𝑡, 𝑔𝑡), where 𝑎𝑡 denotes
the action vector, 𝑜𝑡 = (𝑥𝑡, 𝐼𝑡) are the propriocep-
tive observation (e.g. robot joint positions and
velocities) and image observation, respectively,
and 𝑔𝑡 is an image of the desired task we want
to solve. Note that the goal image is an example
of the task being solved and it does not indicate
a specific state that the agent should reach. The
goal image effectively indicates the task that the
agent should do and the agent is only evaluated
for task success.
We model 𝜋(𝑎𝑡 |𝑜𝑡, 𝑔𝑡) via an autoregressive

transformer model (Vaswani et al., 2017),

𝜋(𝑎𝑡 |𝑜𝑡, 𝑔𝑡) = 𝑃𝜃(𝑎𝑡 |𝑥<𝑡, 𝐼<𝑡, 𝑔<𝑡), (1)

where the subscript < 𝑡 denotes observations and
goal images prior to time step 𝑡. Note that the
dimensionality of the actions and proprioception
observations vary across embodiments. Internally,
the autoregressive model operates with tokenised
inputs and outputs.
For training, we assume access to a datasetD =

{𝜏𝑖} |D |
𝑖=1 of trajectories that are transformed into

a dataset of tokenised trajectories D̂ = {𝜏𝑖} |D |
𝑖=1 .

In addition, during tokenisation, the trajectories
are augmented with goal images. Concretely, a
tokenised trajectory 𝜏 ∈ D̂ is represented as

𝜏 =

(
𝑥1:𝐿1 , 𝐼1:𝑀1 , 𝑔1:𝑁1 , 𝑎

1:𝑄
1 , ..., 𝑥1:𝐿𝑇+1, 𝐼

1:𝑀
𝑇+1 , 𝑔

1:𝑁
𝑇+1

)
,

(2)
where 𝐿, 𝑀, 𝑁, 𝑄 denote the number of tokens re-
quired to encode proprioceptive inputs, images,

goals, and actions, respectively, and 𝑇 is the num-
ber of transitions in the trajectory. Note that 𝐿
and 𝑄 vary by embodiment. The goal observa-
tions 𝑔𝑡 are fixed within a trajectory and repeated
for each time step.
A natural choice for a goal image is a hindsight

goal. Since, by definition, a trajectory always “suc-
ceeds” at reaching its own last image, we can use
the last image of the same episode as the goal
image, 𝑔𝑖𝑡 = 𝐼 𝑖

𝑇+1, for any trajectory 𝜏𝑖. Alterna-
tively, we can also consider goal selection using
a semantically-equivalent goal. That is, for any
successful episode 𝜏𝑖, we can select the last im-
age of a different episode that succeeded at the
same task, 𝑔𝑖𝑡 = 𝐼

𝑗

𝑇+1, where 𝜏 𝑗 is another success-
ful episode from the dataset D, as measured by
a success detector or reward function for a given
task. We train with both sources of goals for suc-
cessful episodes, and use only hindsight goals for
unsuccessful episodes. Details on how we weight
the different tasks and goal sources are available
in Appendix E.2.

2.1.1. Architecture and pretraining

Our model is based on the transformer architec-
ture described in Gato (Reed et al., 2022). For
tokenisation of proprioceptive observations and
agent actions, we follow the same procedure as in
Reed et al. (2022). For image tokenisation, how-
ever, we instead use a pretrained and frozen VQ-
GAN (Esser et al., 2021), which allows for faster
training of the generalist, as the image can be to-
kenised once in advance. The VQ-GAN, similarly
to a VQ-VAE (van den Oord et al., 2017), consists
of an encoder that encodes an input image into a
series of latent vectors and a decoder (which we
do not use after training). The encoded vectors
are discretised via a nearest neighbour lookup
in a codebook of quantised embeddings. Each
image is tokenised into an 8 × 8 grid of tokens.
We pretrain our VQ-GAN encoder on a diverse

collection of images as we find this improves
generalisation. Specifically, the dataset we train
our encoder on consists of images from Ima-
geNet (Deng et al., 2009), images from the con-
trol tasks in Reed et al. (2022) including Atari and
MuJoCo locomotion tasks, as well as images from
our visual robotic manipulation dataset. These
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datasets, training details, as well as extensive ab-
lations that informed our design choices can be
found in Appendix D.
To train the agent model we use a dataset D̂

containing the joint collection of data from all
tasks and utilise a standard token prediction loss.
While Gato only predicted actions, we find that,
when a VQ-GAN is used, performance is improved
by additionally training for predicting future im-
age tokens as produced by the VQ-GAN encoder
(Appendix D.3). Specifically, we predict image
tokens 𝑘 = 5 time steps into the future as images
one step apart can look very similar.
Combining the action and observation predic-

tion losses, at the token level, we obtain the fol-
lowing objective to train the model 𝑃𝜃:

L(𝜃,D) = 𝔼
𝜏∼D̂


𝑇∑︁
𝑡=1

𝑄∑︁
𝑞=1
log 𝑃𝜃(𝑎𝑞𝑡 |𝑥1:𝐿<𝑡 , 𝐼

1:𝑀
<𝑡 , 𝑔1:𝑁<𝑡 )

+
𝑇+1−𝑘∑︁
𝑡=1

𝑀∑︁
𝑚=1
log 𝑃𝜃(𝐼𝑚𝑡+𝑘 |𝑥1:𝐿≤𝑡 , 𝐼

1:𝑚
≤𝑡 , 𝑔1:𝑁<𝑡 )

]
. (3)

Note that, in practice, instead of conditioning
on the full history of observations (as indicated
by the subscript < 𝑡), we use a fixed total token
length of 1024 for the model (which corresponds
to roughly 3 time steps of history).

2.1.2. Fine-tuning and self-improvement

A key contribution of our work is our study into
how RoboCat agents can be fine-tuned and self-
improved given a relatively small number of
demonstrations. This capability is especially cru-
cial in a real robotics context—unlike in simula-
tion, data is bottlenecked by real-time operation
per robot, and high-quality supervision is scarce.

Fine-tuning To perform fine-tuning and self-
improvement we first collect 100–1000 demon-
strations per task via teleoperation. The generalist
RoboCat agent is fine-tuned on these demonstra-
tions, which are tokenised and augmented with
goal images in the same way as for the generalist
training. Formally, we perform the optimisation
𝜃
𝑦

ft = argmax𝜃 L(𝜃,D 𝑦

demo) where D 𝑦

demo is the
demonstration data for the task 𝑦 that we want to
fine-tune on, and 𝜃 is initialised with the weights

from pretraining (Section 2.1.1). At the end of
this fine-tuning step, we obtain an agent that is
specialised to the new task but that may lose per-
formance on the original training tasks.
Self-improvement In order to integrate new
tasks into a new generalist, we deploy the fine-
tuned policies 𝑃𝜃𝑦

ft
to autonomously collect a large

dataset of additional trajectories for each of the
self-improvement tasks 𝑦 ∈ Y. After data col-
lection, we perform hindsight goal relabelling as
described in Section 2.1. Note that, when us-
ing semantically-equivalent goals, we require a
reward function to determine the successful tra-
jectories for a given task. For this purpose, we
employ learned reward models as described in
the next section. The resulting relabelled trajec-
tories form a self-improvement dataset D 𝑦

imp for
the task we want to improve. Finally, using this
data, we can construct a new training dataset
for training the next iteration of our generalist
RoboCat agent. We combine all trajectories with
the previous data to form the next dataset,

Dnext = D ∪
⋃
𝑦∈Y

(
D 𝑦

demo ∪ D 𝑦

imp
)
, (4)

which is then used to train a new VQ-GAN
model, after which we continue with the next
iteration of training a new generalist 𝜃next =

argmax𝜃 L(𝜃;Dnext).

2.2. Real-world deployment

In order to integrate the new task into a new gen-
eralist, we deploy the fine-tuned policy on a real
robot to collect a large dataset on the new task
using images from the demonstrations as goal
images. Collecting real-world data autonomously
presents two challenges: success classification
and task resets.
Success detection via reward models While
final evaluation numbers are counted manu-
ally for accuracy, automated success detection
is necessary for the hindsight goal relabelling
of semantically-equivalent goals described above
during training. In addition, success detection is
necessary for determining when a reset is needed.
To this end, we train vision-based reward mod-
els to detect when a task has succeeded. We first
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Training Embodiments

Sim Panda 7-DoF Real Sawyer 5-DoF Real Panda 7-DoFSim Sawyer 7-DoF Real KUKA 14-DoF

Held-Out Embodiment

Figure 2 | RoboCat supports multiple robotic embodiments and control modes. These are all the different
embodiments RoboCat is tested on, and the dimensionality of the action it needs to output for each. All robot
arms have a Robotiq parallel gripper attached to them, with the exception of the KUKA arm which has a
proprietary three-finger hand. Unlike the Panda and Sawyer embodiments, the KUKA embodiment was not
seen during training and is only used during fine-tuning.

collect human demonstrations and data from poli-
cies trained to perform the task (e.g. evaluation
episodes of a RoboCat policy). These episodes are
annotated via a crowd-sourcing interface, where
annotators mark the time step after which the
task is solved in each episode (if at all), resulting
in binary annotations. These are then used to
train a binary classifier that can be used to detect
task success from image observations at any given
time step.

Autonomous resets with policy pools Reset-
ting the environment for a single task requires
bringing the state from the end state back into
the set of valid start states for that task. How-
ever, manually programming such reset routines
is a highly non-trivial endeavour (in many cases
performing a reset is almost as complicated as
solving the task itself) leaving us with a problem
for autonomous data collection. We solve this
issue by observing that the set of end states for
some tasks overlap with the set of start-states of
other tasks. Thus we can “re-use” tasks trained for
a given task as reset mechanisms for tasks whose
end states overlap with the valid start states for
another task. We implement an autonomous re-
set mechanism based on this observation that we
refer to as a policy pool. A policy pool is simply
a collection of policies (or policies implicitly de-
fined by a pool of goal images) with overlapping
start and end states. In each episode, we then
pick a policy from this pool to be run next and

record its trajectory and success. By pooling mul-
tiple policies in this way, we can get automated
resets, increase the robot utilisation (by reducing
the need for explicit human resets) and increase
the diversity of initial conditions for evaluation
and data collection. We utilise two types of policy
pools in our evaluations: stateless policy pools,
in which the policies are executed in some order
regardless of the state of the environment (e.g.
for lifting tasks); and a state-based policy pool,
which samples the next policy to execute based
on the state of the environment (e.g. performing
a remove task when the initial state corresponds
to a successful insertion). In the latter case, the
trained reward models are used to evaluate the
state of the tabletop and determine which policies
are eligible for next execution. More details are
provided in Appendix F.2.

3. Tasks and Data
One of the main contributions of this work is
to demonstrate that RoboCat can learn diverse
and dexterous behaviours to solve a large set
of tasks. The tasks we use require fine motor
skills and hand-eye coordination, and the un-
derstanding of complex affordances and multi-
object interactions. Additional diversity in the
data is obtained through the use of multiple sim-
ulated and real embodiments and different ap-
proaches to data generation: RL-trained expert
trajectories, human-teleoperated demonstrations,
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(a) RGB objects (b) NIST-i gears and base (c) YCB fruit, YCB-i vegetables, bowl (d) Shape-matching objects
Figure 3 | The real-world object sets used by RoboCat. The first two object sets are used to systematically
study structure-building and insertion affordances, respectively. The other object sets are store-bought objects
that add visual diversity and challenge the agent with various lifting, insertion, and removal tasks.

as well as self-generated data from RoboCat (see
Section 2.1.2). In this section, we provide an
overview of the embodiments, object sets, tasks,
and datasets that we refer to in this paper.

3.1. Embodiments

The embodiments used in this work, shown in Fig-
ure 2, are all in a standardised cage (see Lee et al.
(2021)), which contains a “basket” that defines
the robot arm’s workspace. RoboCat was trained
with data from Rethink Sawyer arms controlled
with 7-DoF (simulation) and 5-DoF (real), and
Franka Panda robot arms controlled with 7-DoF
(simulation and real), all fitted with a Robotiq par-
allel gripper. RoboCat is also able to control KUKA
14-DoF arms, which are fitted with a new, custom-
made, three-finger robot hand1—an embodiment
that was only seen during the fine-tuning phase.
In total, we used 36 real robots in this work: 15
Panda, 17 Sawyer, and 4 KUKA arms.
The simulated Panda and Sawyer embodiments

are analogous to the real ones, though they are
only coarsely aligned. We did not perform any
careful system identification and the images ren-
dered from the simulation were not visually real-
istic. We randomised the physics parameters in
simulation but we did not randomise the visual
appearance of the scene. More details available
in Appendix C.

3.2. Object sets

We use different object sets and a total of 134
objects to enable a variety of complex behaviours
and affordances (see Figure 3). The first two
sets of objects are 3D-printed and have been de-
signed to systematically study types of robotic
1 Details of this robot handwill be released in the near future.

manipulation that involve multi-object interac-
tion, specifically, structure-building (RGB objects)
and insertion (NIST-i gears). The other sets in-
clude objects that can be readily purchased.

RGB objects These 116 objects with parametri-
cally defined shapes (only a subset shown in Fig-
ure 3(a)) were introduced as a benchmark (Lee
et al., 2021) to systematically study the physical
understanding of multi-object interactions in the
context of stacking: To solve the benchmark an
agent needs to understand which shapes in which
poses can be reliably stacked on top of each other.
We use them here to additionally study related
structure-building tasks. The basket always con-
tains a triplet of these objects, with respective
colours red, green, and blue.

NIST-i gears and 3-peg base This set of objects
is first introduced in this work to aid a systematic
study of the insertion affordance. Inspired by the
NIST benchmark for robotic manipulation (Kim-
ble et al., 2020), we designed three gears, differ-
ent in sizes (small, medium, large), which are to
be used in conjunction with a 3-peg base. The
pegs are spaced such that successful meshing re-
quires a specific allocation of the gears to the pegs
(see Figure 3(b)). In the real world, the shafts
are metallic and the base is not fixed to the bas-
ket, which significantly increases the difficulty of
the task. In simulation, the base is fixed. In both
cases, there is a 1mm tolerance when inserting a
gear. See Appendix B.1.4 for more details.

YCB fruits, YCB-i vegetables, and bowl In this
work, we use a subset of the YCB object set (Calli
et al., 2017), namely the fruit (apple, banana,
peach, lemon, strawberry), shown in Figure 3(c).
The YCB-i vegetables (carrot, cucumber, pepper,
potato) and bowl, also shown in Figure 3(c), are
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RGB pyramid
(Panda 7-DoF)

Gear insertion
(Panda 7-DoF)

RGB tower
(Sawyer 5-DoF)

Vegetable lifting
(Sawyer 5-DoF)

Gear insertion
(Panda 7-DoF)

Fruit insertion
(Panda 7-DoF)

Shape insertion
(Panda 7-DoF)

Gear lifting
(KUKA 14-DoF)

Figure 4 | Example goal images. These images correspond to a subset of the embodiments, task families, and
object sets used by RoboCat. The first two images correspond to simulated embodiments and the remaining
images to real-world embodiments. See Figure 12 for more examples.

inspired by, but not part of, the official YCB bench-
mark. This collection of textured and geometri-
cally different objects introduces additional visual
diversity and allows us to benchmark RoboCat on
tasks with everyday objects.

Shape-matching objects and base These
wooden objects are parts of a real shape-
matching cube, used by toddlers to practice
fine-motor control skills and 3D shape under-
standing. We used three shapes (circle, pentagon,
square) and the shape matching cube lid, shown
in Figure 3(d). The lid is used as a base with
matching holes that can be used for insertion
and removal tasks. These objects are used to
further study the insertion affordance. Unlike
the NIST-i gears, this toy often requires difficult
reorientations to get the objects in the correct
orientation for insertion.

3.3. Task families

We consider a total of 253 different task variations
which we group into task families. We define a
task family to be a group of tasks that utilise the
same skill or sequence of skills. For example,
lifting the large NIST-i gear and lifting the YCB
apple are two different task variations from the
same task family. We provide a complete list of
the task families in Table 1.
The task families stacking, tower building,

pyramid building, and inverted pyramid build-
ing consist of building structures with either RGB
objects or gears. They differ in difficulty, but in all
cases require dexterous and precise movements
to ensure that the structure remains stable af-
ter completion. The lifting task family consists
of picking up a specific object in a basket with
multiple objects. The objects are either fruits,
vegetables, or gears. The motivation behind the

lifting tasks is to study goal understanding and
generalisation to new embodiments and objects.
The insertion and removal task families come in
three flavours, either involving fruits and bowl,
gears and 3-peg base, or shape-matching objects
and base. We treat them as separate task fami-
lies since they require different skills. The latter
two require precise positioning into low-tolerance
pegs or base, and shape-matching requires shape
understanding and often reorientation. The bowl
and bases can freely move in the real world, which
substantially increases the complexity of those
tasks. For all insertion and removal tasks, we use
no resets other than the learnt respective removal
and insertion tasks.
Each task variation refers to the combination

of a specific embodiment (e.g. sim Sawyer vs real
Panda), task family, object set (e.g. RGB triplet
1 vs NIST-i gears), and perceptual variation (e.g.
stacking red-on-blue vs green-on-red objects). Ex-
ample goal images corresponding to specific task
variations are shown in Figure 4.

3.4. Data sources

RoboCat is trained on both expert and non-expert
data. Different subsets of the data are collected
in different ways. We use three types of data
generation: (i) data produced by specialist RL
agents, particularly employed in simulation; (ii)
human teleoperated expert data, mostly used for
the physical world tasks; and (iii) self-generated
data. The primary difference between the two
expert types of trajectories is that agent data pro-
vides fairly smooth and efficient trajectories due
to the way the RL agent acts in the world, while
teleoperated data often includes pauses as teleop-
eraters employ behaviours similar to a bang-bang
controller. The self-generated data is obtained by
running extensive evaluations whenever a new
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version of RoboCat is available: the data collected
this way is saved and then reused for the next
RoboCat training. This data is collected from
Robocat agents fine-tuned on teleoperated ex-
pert data. Therefore, the self-generated data re-
semble the teleoperation behaviours. We provide
further details about the nature of the data in
Appendix B.2.

4. Experimental Setup
4.1. RoboCat training tasks

RoboCat is trained on 240 tasks and fine-tuned
on a further 13 tasks, for a total of 253 tasks. This
includes data from 2 simulated and 3 real-world
embodiments, 5 simulated and 11 real task fami-
lies, and 123 simulated and 130 real objects. Ta-
ble 1 summarises the tasks, organised separately
for training and fine-tuning tasks.

4.2. Training and fine-tuning

We train our generalists following the procedure
outlined in Reed et al. (2022) except for differ-
ences in the encoder where applicable. Most
of the experimental results are based on mod-
els with a 1.18B-parameter decoder-only trans-
former (Vaswani et al., 2017) with 24 layers, an
embedding size of 2048, and a post-attention
feedforward hidden size of 8196. To allow for
more extensive experimentation, we use smaller
models with 364M parameters for some ablations.
We fine-tune our generalists on a set of di-

verse real tasks using a limited number of human
teleoperation demonstrations, between 100 and
1000 demonstrations for each task.

4.3. Evaluation

For each of the simulated and real tasks, we eval-
uate each model by averaging over 100 episodes
(or more, if specified), using a different goal im-
age for each episode as well as randomised initial
states of the environment. The episode length
and control frequency varies from task to task, al-
ways matching the length of the expert data used
for training. The control frequency of training
data is not provided to the agent during training,
since it may not be known or readily available.

Table 14 in Appendix F report the episode length
and control frequency used for each task family
in simulation and real.
When fine-tuning a generalist to a specific real-

world task, it can be difficult to determine the
optimal number of fine-tuning steps, since there
is no reliable real-time measure of success. To
address this in a systematic and reproducible way,
we employ the following evaluation protocol for
each task: we first evaluate the checkpoint every
5000 steps for 25 episodes each to assess the best
performing checkpoint, and then evaluate that
checkpoint for 100 episodes to measure the final
performance.

4.4. Baselines

In order to contextualise the difficulty of the tasks,
we compare RoboCat to high capacity, pretrained
vision foundation models (VFMs). These present
an alternative approach to training robot policies:
instead of training a single agent on a diverse set
of tasks, we can take a readily-available powerful
vision model and fine-tune it on each task sep-
arately. We trained and evaluated 59 different
VFM baselines (see Appendix G.2 for the com-
plete list) on a subset of tasks in simulation and
selected the best two as the main baselines for
these experiments: the 438M parameter NFNet-
f6 model (Brock et al., 2021) pretrained with
CLIP (Radford et al., 2021) and the 197M param-
eter Swin-L model (Liu et al., 2021), also pre-
trained with CLIP. For each comparison, the VFM
models are trained with the same behavioural
cloning loss and the same successful episodes that
the RoboCat model uses for a given task variant.

5. Experiments
The evaluations and comparisons we present in
this section investigate the following questions:

1. Can RoboCat learn from heterogeneous data
and solve a large set of tasks, specified with
visual goals and requiring dexterity on mul-
tiple physical and simulated embodiments?
(Section 5.1)

2. Can RoboCat adapt, with a small number of
demonstrations, to challenging new scenar-
ios such as unseen tasks, new objects, and
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Embodiment Task Family Object Set
Training
Task

Variations

Evaluation
Task

Variations

Average
Task

Success

Tr
ai
ni
ng

Si
mu
lat
ion

Sawyer 7-DoF Stacking RGB objects & NIST-i gears 28 & 5 28 & 5 82%

Panda 7-DoF

Stacking RGB objects & NIST-i gears 30 & 6 30 & 6 80%
Tower building RGB objects & NIST-i gears 8 & 3 8 & 3 60%
Pyramid building RGB objects 30 30 65%

Lifting NIST-i gears 3 3 88%
Insertion-peg NIST-i gears 3 3 75%

Re
al
W
or
ld

Sawyer 5-DoF

Stacking (red on blue) RGB objects 92 5 80%
Stacking (blue on green) RGB objects 1 1 45% 

Self-im
provem

enttasks

Tower building RGB objects 1 1 23%
Inverted pyramid building RGB objects 1 1 17%

Lifting YCB-i vegetables 4 4 54%

Panda 7-DoF
Lifting YCB fruits 16 4 54%
Lifting NIST-i gears 3 3 94%

Insertion-peg NIST-i gears 3 3 77%
Removal-peg NIST-i gears 3 3 97%

Fi
ne

-t
un

in
g

Re
al
W
or
ld

Panda 7-DoF
Insertion-bowl YCB fruits and YCB-i bowl 3 3 84% / 84%
Removal-bowl YCB fruits and YCB-i bowl 3 3 64% / 72%
Insertion-base Shape-matching objects 3 3 6% / 13%
Removal-base Shape-matching objects 3 3 70% / 99%

KUKA 14-DoF Lifting NIST-i gears 1 1 56% / 86%

Table 1 | RoboCat performance on evaluation tasks. This table lists the tasks used for training and fine-tuning,
and highlights the set of tasks used in the self-improvement process. The success rates are averaged across all
the respective evaluation task variations. For fine-tuning experiments, we report success rates when fine-tuning
on 500 and 1000 demonstrations, respectively. Note that data from the fine-tuning tasks are unseen during the
generalist training and the fine-tuned agent only uses up to 1000 demonstrations alone for these new tasks.

new embodiments with unseen morphology
and action spaces? (Section 5.1)

3. Does RoboCat exhibit cross-task transfer
and generalisation to held-out tasks? (Sec-
tion 5.2)

4. Can RoboCat self-improve by autonomously
collecting data and integrating that new
data into the next RoboCat iteration? (Sec-
tion 5.3)

5.1. Overall RoboCat performance

We evaluated RoboCat over all the training tasks
and we report task success rates averaged within
each embodiment, task family, and object set,
in Table 1 (see Appendix G.1 for per-task suc-
cess rates). The tasks are broadly categorised
into training (which include the tasks from the
self-improvement process) and fine-tuning tasks.
The RoboCat generalist agent was trained on all
of these training tasks and then evaluated on a
total of 141 training task variations. We demon-
strate that a single RoboCat agent is able to per-
form all of these tasks, which involve multiple
embodiments—in simulation and the real world—
and multiple task families and objects sets.

For the fine-tuning tasks, the RoboCat gener-
alist agent was fine-tuned to individual task vari-
ations and then each fine-tuned agent was eval-
uated on its respective task. We fine-tuned on
either 500 or 1000 demonstrations and report
results for both cases also in Table 1. RoboCat
is able to fine-tune to tasks that not only include
previously unseen task families (e.g. fruit inser-
tion into a bowl), but also new object sets (e.g.
shape-matching set) and a previously unseen em-
bodiment (real KUKA 14-DoF robot).
In Figure 5, we compare RoboCat to visual foun-

dation model (VFM) baselines trained on each
task independently. In simulation, we only ran
these baselines for one task from each task family
due to the large number of task variations in sim-
ulation, whereas for the real-world tasks, we ran
them on all of the task variations. The simulation
results in Figure 5(a) show that the VFM agents
are competitive on the Panda stacking task, but
are outperformed by RoboCat on the other simu-
lated building tasks. As shown in Figure 5(b), this
is even more apparent in the real-world lifting,
insertion, and removal tasks, where the VFM base-
lines are significantly outperformed by RoboCat.
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0%

25%

50%

75%

100%

Sawyer 5-DoF
RGB stacking
(single task)

Panda 7-DoF
RGB stacking
(single task)

Panda 7-DoF
RGB tower

(single task)

Panda 7-DoF
RGB pyramid
(single task)

NFNet-f6-CLIP Swin-l-CLIP RoboCat

(a) Simulation training tasks (single variants)
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25%

50%

75%

100%

Sawyer 5-DoF
RGB tower 

building

Sawyer 5-DoF
RGB inverted 

pyramid

Sawyer 5-DoF
Vegetable

lifting

Panda 7-DoF
Fruit
lifting

Panda 7-DoF
Gear

lifting

Panda 7-DoF
Gear

insertion

Panda 7-DoF
Gear

removal

NFNet-f6-CLIP Swin-l-CLIP RoboCat

(b) Real-world training tasks (averages per task family grouping)
Figure 5 | RoboCat compared to VFM baselines on training tasks. RoboCat performs better on the vast
majority of training tasks, compared to equivalent single-task baseline agents trained on the same data for
each task. We compare here with the best-performing visual foundation model-based agents, chosen out of 59
strong baselines. In the real world, where we have limited data compared to simulation, RoboCat is able to
take advantage of multi-task joint training and performs significantly better than the baselines.

For fine-tuning experiments, where only up
to 1000 demonstrations are available per task,
we compare fine-tuned RoboCat agents to VFM
agents that are trained with only 1000 demonstra-
tions. The results in Figure 6 show that the VFM
baselines perform very poorly whereas the fine-
tuned RoboCat agents perform well even when
only using 500 demonstrations. Since the VFM
agents are trained for single tasks, they are unable
to leverage the large amounts of existing training
data as done by RoboCat.
Lastly, in Table 2, we compare to previously

reported performance on the real Sawyer 5-
DoF stacking tasks, which are part of the RGB-
Stacking Benchmark (Lee et al., 2021). This
allows us to compare RoboCat performance on
these tasks with vision-based BC-IMP special-
ists (Lee et al., 2021), as well as the Gato general-
ist (Reed et al., 2022). The latter allows us to com-
pare the benefit of training on diverse robotic ma-
nipulation data rather than training on tasks from
vastly different domains such as Atari or VQA. Al-
though the relative success rates vary per object
triplet, RoboCat is comparable to prior methods
on average on this benchmark, despite being able
to solve many other manipulation tasks.
We demonstrate that RoboCat, by using visual

goals, is able to learn from heterogeneous data
and perform a large set of tasks on multiple em-
bodiments, and can quickly adapt—using a lim-
ited number of demonstrations—to unseen tasks,
new object sets, and new embodiments.

0%

25%

50%

75%

100%

Real Panda 7-DoF
Fruit insertion

into bowl

Real Panda 7-DoF
Fruit removal

from bowl

Real KUKA 14-DoF
Gear lifting

NFNet-f6-CLIP (1000) Swin-1-CLIP (1000)
RoboCat (500) RoboCat (1000)

Figure 6 | RoboCat fine-tuning compared to VFM
baselines. RoboCat efficiently adapts to each of these
previously unseen tasks which include unseen object
sets and a new 14-DoF embodiment, whereas the vi-
sual foundation model-based baselines agents perform
very poorly. The number of fine-tuning episodes are
shown in parentheses for each method.

Method T1 T2 T3 T4 T5 Average
RoboCat 87% 70% 82% 93% 68% 80%
BC-IMP 75% 61% 74% 95% 88% 79%
Gato 58% 59% 81% 96% 96% 78%

Table 2 | RGB Stacking Mastery Benchmark. Robo-
Cat performs, on average, similarly to prior works BC-
IMP (Lee et al., 2021) and Gato (Reed et al., 2022)
on this stacking benchmark, despite also being able to
solve many other manipulation tasks. All three meth-
ods were evaluated on the same Sawyer robots with
identical conditions, evaluation protocol, and success-
ful episodes visually counted.
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Embodiment Task Family Object Sets Training Task
Variations

Held-out Task
Variations

Simulation
Sawyer 7-DoF Stacking RGB objects, NIST-i gears 23 10

Panda 7-DoF
Stacking RGB objects, NIST-i gears 30 6

Tower building RGB objects, NIST-i gears 11 0
Pyramid building RGB objects 30 0

Real World Sawyer 5-DoF Stacking RGB objects 4 1
(a) Training tasks used by RoboCat-lim, with specific objects and task variations explicitly held out

Generalisation Axis Embodiment Task Family Object Set Evaluation
Task Variations

Perceptual variation
(Stacking blue on green)

Sim Sawyer 7-DoF Stacking RGB, NIST-i 6
Sim Panda 7-DoF 6

Objects
(Sawyer Stacking triplet 5)

Sim Sawyer 7-DoF Stacking RGB triplet 5 5
Real Sawyer 5-DoF 1

Behaviour source
(Demonstration data) Real Sawyer 5-DoF Stacking RGB triplet 1 1

Sim-to-real
(Tasks seen in simulation) Real Panda 7-DoF Stacking RGB triplet 5 1

Tower building RGB triplet 5 1
Task family Real Sawyer 5-DoF Inverted pyramid building RGB custom triplet 1
Embodiment Real KUKA 14-DoF Lifting NIST-i large gear 1

(b) Fine-tuning tasks used by RoboCat-lim, grouped by generalisation axis

0%

25%

50%

75%

100%

Perceptual variation:
Sim Sawyer 7-DoF

RGB stacking
(blue on green)

Perceptual variation:
Sim Panda 7-DoF

RGB stacking
(blue on green)

Objects:
Sim Sawyer 7-DoF

RGB stacking
(triplet 5)

Demonstration data:
Real Sawyer 5-DoF

RGB stacking
(blue on green)

Sim-to-real:
Real Panda 7-DoF

RGB stacking

Sim-to-real:
Real Panda 7-DoF

RGB tower
building

Task family:
Real Panda 7-DoF

RGB inverted
pyramid building

Embodiment:
Real KUKA 14-DoF

Gear lifting

RoboCat-lim (0) RoboCat-lim (100) RoboCat-lim (500) RoboCat-lim (1000)

(c) RoboCat-lim 0-shot and k-shot fine-tuning performance by generalisation axis

Figure 7 | Generalisation and adaptation study for RoboCat-lim. RoboCat-lim can be effectively fine-tuned,
given a limited number of demonstrations, to tasks that are novel in terms of objects or task variants, and even
to a completely new robot embodiment.

5.2. Generalisation and adaptation

In order to analyse how RoboCat agents gener-
alise and adapt, we trained a separate model of
the same size but on only a subset of structure-
building tasks (stacking, tower, and pyramid)
with specific objects and task variations explic-
itly held out. The training and held-out tasks are
listed in Figure 7(a). We refer to this limited-
dataset model as RoboCat-lim. This enables us
to investigate generalisation and adaptation of
this agent along specific axes (see Figure 7(b)).
Furthermore, since the training tasks for RoboCat-
lim is a subset of those used by the final RoboCat

model, we are able to evaluate the effect of train-
ing on more tasks.
First, we measure how RoboCat-lim generalises

0-shot and k-shot to the held-out tasks, sum-
marised in Figure 7(c). In simulation, RoboCat-
lim generalises 0-shot to a held-out object set
on the Sawyer (third plot from the left) and the
blue-on-green stacking task variant on the Panda
(second plot), but does not generalise to that
same task variant on the Sawyer embodiment
(first plot). However, in both simulation and the
real world, the model is effective at fine-tuning to
this task variant with as little as 100 demonstra-
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Data Source
Task Success

100 episodes 500 episodes
Expert agent data 63% 84%
Demonstration data 82% 88%

Table 3 | RoboCat-lim fine-tuning using different
sources of data. Despite RoboCat-lim only being
trained on agent data originally, the model can be
fine-tuned with either agent or human demonstration
data. The 0-shot success rate for this task is 0%. This
task is the held-out real-world perceptual variant of
blue-on-green stacking.

tions. On the real-world blue-on-green stacking
variant (fourth plot), RoboCat-lim achieves 88%
when fine-tuning on 500 demonstrations, com-
pared to the 60% success reported for Gato on the
same data2. The remaining cases show RoboCat’s
ability to adapt to real-world variants of previ-
ously seen simulation tasks (both stacking and
tower building), the challenging inverted pyramid
building task family (for which even teleopera-
tor success is only 52%), and to the real-world
dexterous KUKA embodiment with nearly 80%
success. Overall, RoboCat-lim adapts with only
100–500 episodes in almost all settings, including
different data sources (agent vs demonstrations;
see Table 3), and an entirely unseen embodiment
with twice as many degrees of freedom than seen
in training.
We also compare RoboCat-lim to the VFM-

based agents for few-shot fine-tuning on a couple
of individual tasks in simulation. The results in
Figure 8 show that our model can learn the tasks
with significantly less data than the baselines.
Finally, we measure how much RoboCat bene-

fits from its diverse training set, which includes
all the tasks used for RoboCat-lim, the simulated
structure building tasks held out from RoboCat-
lim, all of the additional real-world data for the
self-improvement tasks, and both simulated and
real-world NIST-i gears tasks (lifting, insertion,
and removal). In Figure 9(a), we compare Robo-
Cat with RoboCat-lim specifically on the tasks that
the limited model was trained on. Rather than
its performance being negatively impacted due
2 The Gato model was fine-tuned with additional simulation
episodes of the task, but was not originally trained with
the object set in this task.

Figure 8 | RoboCat-lim 0-shot and k-shot fine-tuning
compared to VFM baselines. RoboCat-lim performs
better than the baselines given the same number of
episodes on a new task, even for a task in which
RoboCat-lim gets 0-shot 0% success. This shows that
the model can quickly adapt by reusing information
from the tasks and embodiments seen during train-
ing. The number of fine-tuning episodes are shown in
parentheses for each method. The results here are for
single task variants, unlike the results in Figure 7(c).

to the additional training tasks, RoboCat exhibits
positive transfer across its training tasks and out-
performs the more specialised RoboCat-lim. This
trend of positive transfer also holds when adapt-
ing to new real-world tasks, e.g. as RoboCat was
trained on real-world fruit and vegetable lifting
data, it adapts better to the insertion and removal
tasks with the fruits and bowl (Figure 9(b)).

5.3. Self-improvement via RoboCat fine-
tuning and self-generation of data

In this section, we demonstrate the key ability of
RoboCat to perform self-improvement. That is,
to fine-tune to a new task with a limited number
of demonstrations, self-generate a larger amount
of experience, and retrain a more capable gener-
alist with this additional data. This represents a
first step towards a foundation agent which can
iteratively learn new tasks.
To perform self-improvement, we fine-tuned

older RoboCat-lim equivalent models to a num-
ber of real-world tasks using human-teleoperated
data (specifically, blue-on-green stacking, tower
and inverted pyramid building, and vegetable
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(a) Training tasks used by RoboCat-lim (subset of tasks used by RoboCat)
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Real Panda 7-DoF
Fruit removal

from bowl

RoboCat-lim (500) RoboCat-lim (1000)
RoboCat (500) RoboCat (1000)

(b) Real-world fine-tuning tasks
Figure 9 | Positive transfer across tasks: RoboCat-lim vs RoboCat. Training on more tasks (RoboCat) improves
performance on the limited training tasks compared to only training on these limited tasks (RoboCat-lim). In
addition, RoboCat is better when fine-tuning to the insertion and removal tasks. The reported numbers are
averages of task variants within each grouping.

and fruit lifting tasks), and then generated large
amounts of data autonomously with these poli-
cies. All of this data was part of the dataset used
to train the main generalist shown in Section 5.1.
We first perform a smaller experiment with

a subset of the tasks, to provide a proof-of-
concept of self-improvement, and carefully isolate
and evaluate the contribution of self-generated
data alone. We train a smaller 364M model on
the structure-building tasks (i.e. those used for
RoboCat-lim) and 500 demonstrations from only
a few self-improvement tasks: fruit lifting (apple,
banana, and peach) and blue-on-green Sawyer
stacking. This represents a baseline of directly in-
corporating the few available demonstrations into
the training data for the generalist. We also train
a 364M “self-improved” model that additionally
sees the self-generated data for these tasks. The
results in Figure 10 show that the self-improved
agent outperforms the baseline agent in all four
of these tasks. In other words, given demonstra-
tions of a task, the self-improvement procedure
(fine-tuning and self-generating additional data)
is significantly better than using the demonstra-
tions directly in training the generalist.
Next, we demonstrate self-improvement at

scale: we incorporate self-generated data from

numerous task-specific RoboCat-lim fine-tuned
agents to yield a stronger generalist. This is the
process by which we obtained the main RoboCat
generalist presented in Section 5.1.
Figure 11 shows the performance of these self-

data-generating agents, compared with the per-
formance of the full RoboCat generalist. For most
cases, the RoboCat generalist performance is sim-
ilar to or even better than that of the agents gen-
erating the data. These results highlight the po-
tential for RoboCat to self-improve and grow its
multi-task capabilities, as we have also seen from
other experiments. By self-generating data and
incorporating additional data from a diverse set
of tasks, the resulting agent has better generali-
sation and fine-tuning capabilities on a broader
set of real-world tasks.

5.4. Further ablations

We report a number of additional ablations and
evaluations in the appendix. These include ab-
lating the choices for VQ-GAN tokeniser and ob-
servation prediction (Appendix D.3), evaluations
over many different vision model baselines (Ap-
pendix G.2) and ablations of the NIST-i environ-
ment (Appendix G.3).
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Figure 10 | RoboCat-lim trained
with additional demonstrations vs
with additional demonstrations and
self-generated data.

Figure 11 | RoboCat compared with the performance of the data-
generating agents or the combined performance of these and the
demonstrations, the latter of which is used for training RoboCat.

6. Related Work
6.1. Transformers for decision making

Transformers (Vaswani et al., 2017) have shown
impressive results at scale in domains like vi-
sion (Dosovitskiy et al., 2020; He et al., 2022),
language (Brown et al., 2020; Devlin et al.,
2018; Vaswani et al., 2017) and speech (Rad-
ford et al., 2022). Inspired by these successes,
earlier efforts to leverage Transformers for de-
cision making focused on improving their train-
ing stability for RL (Parisotto et al., 2020), us-
ing self-attention for improving relational reason-
ing (Zambaldi et al., 2018), one-shot imitation
learning (Dasari and Gupta, 2021), fast adap-
tation to novel tasks (Ritter et al., 2020), on
the fly adaptation in 3D environments (Team
et al., 2023), 3D reasoning (Shridhar et al.,
2023), and multi-embodiment continuous con-
trol (Gupta et al., 2022; Kurin et al., 2020). How-
ever, these works leverage the Transformer ar-
chitecture within the framework of standard RL
and imitation algorithms. Recently, generative
pretraining for sequence modeling has been ex-
tended to offline RL (Chen et al., 2021; Jan-
ner et al., 2021), where a Transformer model
is trained to autoregressively maximise the like-
lihood of trajectories in the offline dataset for
specialist agents with low-dimensional states.

Building on this, Jiang et al. (2022); Lee et al.
(2022); Reed et al. (2022) train multi-task gener-
alist agents with high-dimensional image obser-
vations. Our work is closely related to Gato (Reed
et al., 2022) but differs in the variety and scale of
robotic tasksmastered by a single agent. We show
positive transfer between tasks and fast adapta-
tions to many real world robot tasks.

6.2. Visual pretraining for control

The use of pretrained visual representations
presents a promising approach for efficient robot
policy learning, requiring less robot-specific data.
Early efforts focused on using supervised pre-
training for navigation (Chen et al., 2020a; Sax
et al., 2018; Zhou et al., 2019) and manipula-
tion (Chen et al., 2020a; Yen-Chen et al., 2020;
Zhou et al., 2019) domains. Building on the
progress in self-supervised representation learn-
ing, multiple recent works have shown that frozen
visual encoders, trained through self-supervision
on internet-scale datasets, can enable sample-
efficient behavior cloning (Majumdar et al., 2023;
Nair et al., 2022; Parisi et al., 2022; Radosavovic
et al., 2023; Sharma et al., 2023) and on-policy
reinforcement learning (Khandelwal et al., 2022;
Majumdar et al., 2023; Xiao et al., 2022). In this
work we use a frozen pretrained VQ-GAN (Esser
et al., 2021; van den Oord et al., 2017) trained on
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a diverse collection of images to speed up train-
ing time significantly, and combine the VQ-GAN
tokens with future frame prediction (Gupta et al.,
2023) for sample efficient transfer learning. Con-
currently, Kotar et al. (2023) also finds similar
generalisation benefits of using the combination
of VQ-GAN tokens and future frame prediction
during policy learning for the navigation domain.

6.3. Goal-conditioned policies

Goal conditioned agents have long been of inter-
est in policy learning (Kaelbling, 1993; Schaul
et al., 2015). Hindsight goal relabelling is a pop-
ular method for annotating arbitrary trajectories
with goals (Andrychowicz et al., 2017). Learning
from visual goals is challenging as images contain
a lot of information that may be unrelated to the
desired goal-conditioned behavior, such as light-
ing or positions of distractors (Pinto et al., 2018).
As we are primarily concerned with goal images
as task specification in a behaviour cloning setting,
this work does not address the question of goal
distance, goal generation, or exploration. Unlike
Nair et al. (2018), we assume a dataset of goal
images is available during evaluation and data
collection, as we only deploy our goal-conditioned
agent for data collections on tasks for which we
had teleoperated episodes to learn from. Davchev
et al. (2022) also utilised a dataset of goals, boot-
strapped from demonstrations. However, they do
not work with images. Similar to RoboCat, Groth
et al. (2021) also instruct a behaviour-cloned pol-
icy with goal images but rely on explicit inductive
biases in the network architecture to infer the
task. Ghosh et al. (2019) propose iterated goal
conditioned learning as a form of reinforcement
learning, which is similar to our self-improvement
step.

6.4. Generalist robotic agents

Recent works have looked at the problem of
training generalist robot agents. RT-1 takes lan-
guage instructions to perform a variety of ob-
ject manipulation tasks (Brohan et al., 2022).
While RT-1 trains on data from two different
robots, they have the same action specification.
PaLM-E demonstrates that large visual-question-
answering can serve as planners for robotics tasks.

Rather than directly controlling different robots,
PaLM-E outputs language instructions (such as
“Pick the green rice chip bag from the drawer.")
to pretrained lower-level controllers (Driess et al.,
2023).
In this work, we look to solve tasks in both

sim and the real-world, covering a wide set of be-
haviours and affordances, incorporating precision
and dexterity, and embracing high-dimensional
low-level control over multiple real and sim em-
bodiments. To our knowledge, RoboCat is the
first work to natively support multiple real world
robotic embodiments with different observation
and action specifications. We also demonstrate
the ability to self-improveby finetuning to new
tasks and generating data for use in retrain-
ing; a unique capability over all of the methods
we surveyed. Finally, we focus on visual goal-
conditioning in this work, but could also enable
more flexible task specification in future, such
as language conditioning or full demonstrations;
this is already facilitated by some of the other
methods.

7. Summary and Future Work
In this report, we have presented RoboCat, a foun-
dation agent for vision-based robotic manipula-
tion. RoboCat is able to solve a large and diverse
set of tasks specified via goal images; across dif-
ferent task families, embodiments, control modes,
and objects; in both simulation and the real world,
and from different sources of data. RoboCat is
additionally able to quickly adapt, via fine-tuning
on 100–1000 demonstrations, to a wide set of
downstream tasks and across many different axes
of generalisation. More importantly, we can use
such adapted agents to generate data that can
be added to RoboCat’s training dataset for fu-
ture iterations of the agent, a process we call
self-improvement. We have thoroughly investi-
gated our agent’s capabilities both in simulation
and the real world with tens of thousands of real
evaluations on 36 real robots of 3 different types.
We have shown that the cost of acquisition of new
skills is dramatically lower compared to single-
task baselines, even when those are based on
visual foundation models. Finally, we have ob-
served that by scaling and diversifying its training
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data we get a RoboCat agent that performs bet-
ter on training tasks and adapts better to unseen
ones.
Future work could look into enabling flexible

and multi-modal task specification. Incorporating
relevant existing, freely-available datasets with
language annotations would be a first good step.
Another research avenue could explore improv-
ing both training and fine-tuning capabilities of
such a model with reinforcement learning (RL),
since RoboCat in its current form only employs
behaviour cloning. While visual goal specification
already allows the agent to learn from failures
and sub-optimal data, incorporating RL would
enable both learning with rewards and learning
online with real-world interaction.

Broader Impact
This work presents progress on training gener-
alist agents for robotic manipulation. While our
work only presents a recipe, and first steps, in an
emerging area, the potential impact on society
from generalist robotic agents calls for increased
interdisciplinary research into their risks and ben-
efits. To provide an easily accessible reference for
RoboCat’s intended use-case and potential short-
comings we include a model card in Appendix A.
We emphasise that the model is for research use
only and not currently deployed in any produc-
tion scenario to any users, and thus expect no
immediate societal impact.
In general, RoboCat inherits many of the safety

concerns discussed in Gato (Reed et al., 2022);
on which it is based. In addition, since RoboCat
takes actions in the physical world—and on mul-
tiple embodiments—it may pose new challenges
with respect to safety. For example, physical em-
bodiments and imitation from human data can
cause humans to anthropomorphise the agent;
leading to a potentially misplaced trust and un-
derappreciation for inherent dangers that come
from interacting with robots3. Additionally, cross-
embodiment transfer from one robot to another
can lead to undesired movements (such as high
gain motor actuation). Considerations with re-
3We note that we utilise a force-torque compliant controller
with built in safety mechanisms.

spect to general AGI safety (Bostrom, 2014) may
also require updating when considering agents
with multiple embodiments.
We consider that value alignment (Russell,

2019) with human preferences (as e.g. expressed
via reward labelling in this work) is crucial for a
safe evolution of this technology. While our re-
ward labelling process to determine successful
and desired behaviours is a starting point for this,
future work should consider adapting alignment
techniques successfully used for language mod-
els to our setting (Bai et al., 2022; Kenton et al.,
2021; Ouyang et al., 2022).
Finally, the self-improvement loop we designed

for RoboCat allows us to improve the model over
time by re-training on data collected from de-
ploying a previous version to our robots. Such
a self-improvement loop poses additional chal-
lenges with respect to AGI safety since it, par-
tially, implements a reinforcement learning loop;
which comes with its own safety concerns (see
e.g. Omohundro (2008); Turner et al. (2021)).
While further work is needed into AGI safety for
reinforcement learning robotic systems, it is im-
portant to note that unlike in a reinforcement
learning scenario, the self-improvement capabili-
ties of RoboCat are not autonomous and no learn-
ing takes place while interacting with the physi-
cal world. That is, data collection is started and
stopped by humans and uses frozen versions of
RoboCat. Learning an improved version is imple-
mented as a supervised learning problem from a
fixed data-source and is entirely decoupled from
data collection.
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Appendix

A. Model Card

Model details

Organisation Google DeepMind
Model date June 2023
Model type Transformer with VQ-GAN encoder for multi-task, multi-embodiment behaviour cloning from human, agent

and self-generated data.
Model version Initial release.
Feedback on the model konstantinos@google.com, giuliavezzani@google.com

Intended uses

Primary intended uses Research into learning to accomplish a wide variety of tasks from expert demonstrations or multiple real
robot embodiments for manipulation.

Primary intended users Google DeepMind Researchers.
Out-of-scope uses Not intended for commercial or production use. Military uses are strictly prohibited.

Factors

Relevant factors Salient factors that may alter model performance are: agent embodiment in control data, training data token
amount and diversity, performance of expert in training data and goal conditioning. Quality of policy used for
self-generated data collection. Quality of the VQ-GAN encoder. Zero-shot evaluation on held-out robots.

Evaluation factors Reported factors are: number of input tokens, importance of different tokenisation schemes, agent perfor-
mance.

Metrics

Model performance
measures

We chose to report success at the task (measured as having solved the task at the end of an episode) in an
episodic evaluation setting. Held out tasks are used to assess generalisation, ablations show importance of
different components.

Decision thresholds N/A
Approaches to
uncertainty and
variability

The reported values do not take into consideration model uncertainty as they are evaluations of a single
model and its ablations. It is prohibitive for us to evaluate models from multiple training runs as this would
involve constantly training and evaluating robots. We account for noise in the evaluation by averaging success
across multiple episodes.

Evaluation Data

Datasets RoboCat is evaluated on in and out of distribution on simulated and real Robot tasks control tasks, see
Section 3 for further details regarding the tasks.

Training Data

Datasets We use a diverse and large number of datasets for training RoboCat. These include data from agent experience,
human demonstrations and self-generated data on both simulated and real world robot environments. See
Section 3.4 for details on our training datasets.

Motivation Create a multi-modal, multi-task, multi-embodiment generalist policy by collecting as much, diverse, data as
possible. Joint training on all the datasets has produced a single network, RoboCat capable of performing
these tasks.

Pre-processing The multi-modal training data is tokenised into a stream of discrete embeddings. See Section 2.1.
Quantitative Analyses

Unitary results We present several evaluations of RoboCat on a variety of manipulation tasks. See Section 5 for an analysis of
the model capabilities and ablations.

Ethical Considerations

RoboCat is an early research model that has not yet been evaluated for deployment and safety of use outside a pure research setting.
Caveats and Recommendation

Future work The interaction of diverse training data domains and the different affordances faced in evaluation is poorly
understood, and potential ethical and safety risks arise as the generalist’s capabilities grow.
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B. Tasks and Data
In this section, we provide an extensive descrip-
tion of the tasks and data RoboCat has been
trained and fine-tuned on.

B.1. Task families

In total, we consider 253 different task variations,
each of which can have an infinite number of state
configurations describing it (see Table 5) and can
be grouped in different task families. Figure 12
collects examples of the goal images used for each
task family.

B.1.1. Lifting objects

We include a handful of lifting tasks performed
in the physical world and three in simulation. A
lifting task is defined as grasping and lifting an
object off the basket surface until the natural end
of the episode. Our aim with this task family is to
primarily study goal understanding and generali-
sation to new embodiments and tasks. This task
family includes four variants for the YCB fruits
(see Figure 12(n) for an example of goal image),
vegetable objects (see Figure 12(m)) and seven
variants for NIST-i gears. For the three NIST-i
gears we include lifting in simulation (see Fig-
ure 12(h)) and in real with the Panda 7DoF (see
Figure 12(o). We also include lifting the large
gear with the KUKA 14DoF (see Figure 12(v)).

B.1.2. Building structures

For the RGB-objects and NIST-i objects that are
coloured in red, green, and blue4, we use a set of
structure-building tasks. These are difficult due
to the non-cubic shapes of the objects: without
orienting the objects correctly, they can easily
slide off of each other.

• Stacking: A top and bottom object are spec-
ified and must be stacked stably. This task
family has 6 variations for triplet. Although
stacking cuboids is relatively easy, RGB ob-
jects stacking requires an agent to come up
with strategies beyond simple pick-and-place.
These strategies differ for each task variation,

4 NIST-i gears are coloured according to their sizes: red,
green, and blue for small, medium, and large, respectively.

as well. We consider this task both in simu-
lation (see Figure 12(a) – (d) for examples
of goal images) and in the real-world (see
Figure 12(j)).

• Tower Building: This requires two stacks
to build a tower out of 3 objects. For this task
family, we consider only a subset of all the
variations we could have per triplet. Some
variations have been particularly challenging
to solve with reinforcement learning agents
and therefore we did not collect training data
for them. We consider this task in simulation
(see Figure 12(e)) and, for one variant, also
in the real-world (see Figure 12(k)).

• Pyramid Building: Two objects must be
placed close to each other and a third on top
of both. We consider this task family only in
simulation (see Figure 12(g)).

• Inverted Pyramid Building: This task fam-
ily requires to place two objects on top of a
third one. We consider only one task varia-
tion where the bottom object is wider while
the other two objects can barely fit on top
of the bottom object. The difficulty of this
task comes from the fact that the robot needs
to be very precise in placing the top objects
such that stacking them becomes successful
and stable. We only consider this task in the
real world (see Figure 12(l)).

B.1.3. Inserting and removing objects

We introduce pairs of insertion and removal tasks
of quite different flavours using the YCB, NIST-i,
and the Shape Matching Objects.

• Inserting and removing fruit in/from a
bowl: For this task family we use the YCB
strawberry, lemon, and peach, and the YCB-i
bowl. When inserting the different fruits,
the bowl can start either empty or with
other fruits in it. This task family has 6
variants: inserting/removing {strawberry,
lemon, peach} in/from the bowl (see Fig-
ure 12(r) and Figure 12(s) for examples of
insertion and removal respectively).

• Inserting and removing shapes in/from
board: This task requires a given object from
the Shape Matching Objects to be inserted
into the correct shape in the board. This task
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Embodiment Task Family Object Set
Training
Task

Variations

Source of
Data

Number of
Training
Episodes

Example
Goal
Image

Si
mu
lat
ion

Sawyer
7-DoF

Stacking RGB objects 28 RL 1 022304

Stacking NIST-i gears 5 RL 182 650

Panda
7-DoF

Stacking RGB objects 30 RL 1 012142

Stacking NIST-i gears 6 RL 129 664

Tower building RGB objects 8 RL 99 725

Tower building NIST-i gears 3 RL 42 805

Pyramid building RGB objects 30 RL 603 133

Lifting NIST-i gears 3 Teleop 421 638

Insertion-peg NIST-i gears 3 Teleop 285 690

Re
al
W
or
ld

Sawyer
5-DoF

Stacking RGB objects 93 RL, Teleop, RoboCat 51 553

Tower building RGB objects 1 Teleop, RoboCat 15 241

Inverted pyramid
building RGB objects 1 Teleop, RoboCat 15 155

Lifting YCB-i vegetables 4 Teleop, RoboCat 55 325

Panda
7-DoF

Lifting YCB fruits 16 Teleop, RoboCat 49 957

Lifting NIST-i gears 3 Teleop 25 566

Insertion-peg NIST-i gears 3 Teleop 21 933

Removal-peg NIST-i gears 3 Teleop 24 803

Insertion-bowl YCB fruits and
YCB-i bowl 3 Teleop 1000

Removal-bowl YCB fruits and
YCB-i bowl 3 Teleop 1000

Insertion-base Shape-matching objects 3 Teleop 1000

Removal-base Shape-matching objects 3 Teleop 1000

KUKA
14-DoF Lifting NIST-i gears 1 Teleop 1000

Table 5 | The tasks that the final RoboCat agent either trains on or fine-tunes to.
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poses several challenges: 1) the agent has to
understand the right shape for the desired
object; 2) it has to reorient it, in order to
properly fit into its shape; 3) the board can
move, making the task even more challeng-
ing (see Figure 12(t) and Figure 12(u) for
examples of insertion and removal respec-
tively).

• Inserting and removing NIST-i gears
on/from shafts (NIST-i): In this task, a
specific gear must be precisely inserted in
a particular shaft. This task poses several
changes as the gears are hard to manipulate,
the tolerance for the shafts is low and, in the
real-world version of this task, the base of the
shafts is not anchored and therefore it can
freely move. See Figure 12(p) Figure 12(q)
for examples of insertion and removal respec-
tively in real, and Figure 12(i) for an example
of insertion in simulation.

B.1.4. NIST-i tasks

In this paragraph we provide some extra details
on the NIST-i tasks.

Comparison of NIST-i to NIST The primary dif-
ferences between our NIST-i task and the official
NIST benchmark (Kimble et al., 2020) are three-
fold: i) unlike the NIST board, our base is not
fixed allowing it to freely move around the robot
cell; ii) the NIST-i gears are red as opposed to
white with a peg board that is black as opposed
to metallic; and iii) the tolerance between the
shafts and gear holes is smaller for the original
NIST board. The insertion tolerance of the phys-
ical NIST-i gears is 1mm as opposed to the sub-
millimeter tolerance for the actual NIST board
which ranges between 0.029mm 0.005mm. In
the simulated NIST-i environment, we used a
green board with blue pegs and a 1mm inser-
tion tolerance. In the KUKA 14DoF environment
the NIST-i object set also includes two green pegs
and an additional base. These extra objects serve
as distractions for the task of lifting the large gear.

Comparison of simulated and physical tasks
In this work the simulated and physical version
of the NIST-i tasks have different colours (see
Figure 26). For instance, when stacking with

NIST-i gears in simulation we found that teleoper-
ation using only red gears was quite challenging
for the human demonstrators mostly due to the
reduced depth perception. The red-green-blue
setup for stacking tasks is nicer for contrast and
therefore for people to collect data. In addition
to this, for insertion/removal tasks we chose to
fix the base in simulation, primarily for simplicity.
Early on this project, we used the simulated en-
vironment as a testing ground, so we wanted to
simplify the problem. Specifically, by fixing the
gear base we could guarantee two things: i) this
makes the task easier for raters and for agents
(see Appendix G.3.1); and ii) it also makes the
simulation run much faster while having a freely
moving base makes the sim slower and overall
more complex.

B.2. Data sources

This section provides further details on how Robo-
Cat training data has been generated.

RL-agent data For all our structure building
tasks in simulation we trained expert policies,
per task variation, via off-policy RL with a shaped
reward for each. We used the MPO algorithm (Ab-
dolmaleki et al., 2018) for this purpose, but any
RL algorithm could have been used. We found
training directly from state to be significantly
faster than training from vision and thus gener-
ated all our simulation structure building datasets
from state-based agents. It is important to note
that when training RoboCat on this data, we dis-
card any privileged information, such as the ob-
ject poses, that would not be readily available in
our real-world tasks. The data for the real Sawyer
5-DoF stacking tasks was also generated by RL
agents using simulation-to-reality transfer and
offline RL, as discussed in Lee et al. (2021). Ta-
ble 6 shows the number of successful and failed
episodes obtained from RL agents for these tasks.

Human teleoperation The rest of the data were
either collected by human teleoperation or by a
RoboCat agent fine-tuned on such data.
Human teleoperators, recruited via Google’s

internal labelling team and paid an hourly rate,
collected demonstrations by controlling the robot
arm and gripper with a 3DConnexion Space-
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Mouse compact and a web-based UI. The web
UI is similar to the one used by Abramson et al.
(2021) and enabled us to work with participants
from around the globe. We worked with over
100 participants from 4 different countries to col-
lect over 4000 hours of human demonstrations
across many of our tasks. Remote teleoperators
could use the basket and wrist cameras to oper-
ate the arm while on-site teleoperators would sit
next to the robots while controlling them. We
noticed that on-site teleoperators achieve higher
success rates than their remote counterparts, but
the human baselines reported in this paper are
aggregated across all locales.
During each episode, we showed a different lan-

guage instruction to the teleoperator in the web
UI, like “lift the apple”. Some episodes were used
for training or calculating human baselines, while
other episodes helped ensure we had diverse start-
ing configurations for the following episodes. Em-
pirically, we found that these “shuffle” episodes
made our agents more robust.
We also worked with the same pool of partici-

pants and used the same setup to collect data in
simulation for human baselines.
Table 7 reports the numbers of successful and

failed human teleoperations collected for the
NIST-i tasks, both in simulation and with the real
robots. Table 8 shows the number of successful
and failed human teleoperations collected on the
real robot for the tasks used for self-improving
RoboCat. Table 9 shows instead the number of
successful episodes collected and used for fine-
tuning our final RoboCat agent. Finally, Table 10
reports the teleoperators success rates for each
real robot task to contextualize the quality of the
data and the difficulty of teleoperating each task.

Self-generated data Once human teleoperation
had generated a minimum number of success-
ful episodes for a given task variation, we fine-
tuned a RoboCat agent on 500 or 1000 success-
ful episodes, as explained in Section 2.1.2. We
then used this specialised agent to gather, au-
tonomously, more data for the same task variation.
This self-generated RoboCat data, combined with
all demonstrations that ended up being collected
4 https://3dconnexion.com/uk/spacemouse/

for that task variation, were used to train our fi-
nal RoboCat agent. The total number of episodes
collected via the self-generation process can be
found in Table 8.

C. Embodiments and Environ-
ments

In this section we describe the physical embodi-
ments used, shown in Figure 2 in the paper, and
the environments they are in, both in simulation
and in the real world. Each embodiment consists
of a arm and an end-effector, described in the
following paragraphs. Table 11 shows the sub-
set of proprioception observations used for each
embodiment both during RoboCat training and
evaluation.
We use 3 different arms for our experiments:

the Sawyer from Rethink Robotics, the Panda
Franka Emika, and the KUKA LBR IIWA14 arm.
Across these setups, we use different controllers
and end-effectors. And though all arms have
the same degrees of freedom, their dynamics
and state distributions are significantly different
given differences between arm link lengths and
their controllers. In addition, we sometimes con-
strain the Sawyer’s degrees of freedom (see Sec-
tion 3.1).
For each arm, we did not align the simulation

and real environments. For instance, we have
different observations and the controllers are of-
ten different between simulation and reality. We
also did not perform system identification for any
embodiment to try to align the control dynamics
of the simulated system with the real world. In
simulation, we use physics randomisation but no
visual randomisation.
Although the combination of different arms,

end-effectors and discrepancies between simula-
tion and real-world provides a total of 5 different
embodiments, in the next sections we organise
information by grouping it per robot arm.
All the environments for the arms are writ-

ten with DeepMind’s open-source MoMa library5,
4 The Sawyer is now developed and retailed by the Hahn
Group.
5 https://github.com/deepmind/dm_robotics/
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Embodiment Task Family Object Set Variant Human teleop demos
Successes Failures

Panda 7-DoF
(Simulation)

Lifting

NIST-i gears

Small 120701 18385
Medium 122409 16517
Large 126481 17145

Insertion-peg
Small 54813 30513
Medium 70638 30895
Large 84859 13972

Panda 7-DoF
(Real World)

Lifting
Small 8282 210
Medium 7850 193
Large 8791 240

Insertion-peg
Small 6618 889
Medium 6715 601
Large 6558 552

Removal-peg
Small 6699 1993
Medium 6634 1642
Large 6375 1460

Table 7 | Quantities of human demonstrations collected for the NIST-i tasks in simulation and with real
robots.

Embodiment Task Family Object Set Variant Human teleop demos Agent trajectories
Successes Failures Successes Failures

Sawyer 5-DoF
(Real World)

Lifting YCB-i vegetables
Carrot 2819 1389 3195 6438
Cucumber 3162 1007 4052 5676
Pepper 1938 2317 2217 7122
Potato 2553 1570 2768 7102

Stacking RGB objects Blue-on-green, triplet 1 424 0 4159 3853
Tower building RGB objects Red-on-blue-on-green, triplet 5 926 1821 4718 7776

Inverted pyramid building RGB objects Red-and-blue-on-green, blocks 1409 1510 1081 11155

Panda 7-DoF
(Real World) Lifting YCB fruits

Apple 1956 121 8117 6058
Banana 2320 90 4556 6352
Peach 2200 98 2409 11125

Strawberry 2052 137 195 2171

Table 8 | Quantities of human demonstrations and self-generated data.

Embodiment Task Family Object Set Variant Human teleop demos
Successes Failures

Panda 7-DoF
(Real World)

Insertion-bowl YCB fruits and
YCB-i bowl

Lemon 4039 557
Peach 2807 355

Strawberry 1958 394

Removal-bowl YCB fruits and
YCB-i bowl

Lemon 2630 419
Peach 2661 417

Strawberry 1889 385

Insertion-base Shape-matching objects
Pentagon 2531 469
Circle 2526 376
Square 1492 383

Removal-base Shape-matching objects
Pentagon 2684 313
Circle 2534 336
Square 1688 284

KUKA 14-DoF
(Real World) Lifting NIST-i gears Large 1956 121

Table 9 | Quantities of human demonstrations collected for final fine-tuning tasks. Note that for fine-tuning
we only used a subset, either 500 or 1000, of successful episodes and no failed episodes.
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(a) RGB stacking
(Sawyer 7-DoF)

(b) Gear stacking
(Sawyer 7-DoF)

(c) RGB stacking
(Panda 7-DoF)

(d) Gear stacking
(Panda 7-DoF)

(e) RGB tower
building
(Panda 7-DoF)

(f) Gear tower
building
(Panda 7-DoF)

(g) RGB pyramid
(Panda 7-DoF)

(h) Gear lifting
(Panda 7-DoF)

(i) Gear insertion
(Panda 7-DoF)

(j) RGB stacking
(Sawyer 5-DoF)

(k) RGB tower
building
(Sawyer 5-DoF)

(l) RGB inverted
pyramid building
(Sawyer 5-DoF)

(m) Vegetable lifting
(Sawyer 5-DoF)

(n) Fruit lifting
(Panda 7-DoF)

(o) Gear lifting
(Panda 7-DoF)

(p) Gear insertion
(Panda 7-DoF)

(q) Gear removal
(Panda 7-DoF)

(r) Fruit insertion into
bowl (Panda 7-DoF)

(s) Fruit removal
from bowl
(Panda 7-DoF)

(t) Shape insertion
(Panda 7-DoF)

(u) Shape removal
(Panda 7-DoF)

(v) Gear lifting
(KUKA 14-DoF)

Figure 12 | Example goal images. These are larger versions of the goal images shown in Table 5 (in order)
corresponding to each embodiment, task family, and object set combination. Images (a)–(i) correspond to tasks
in simulation and images (j)–(v) correspond to tasks in the real world.
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Embodiment Control Frequency Task Family Episode Length Number of Steps Success Rate

Panda 7-DoF
(Real World) 10Hz

Stacking 60 s 600 96.5%
Tower Building 81.6%
Fruit Lifting

30 s 300
95.4%

Fruit Inserting 90.0%
Fruit Removing 89.1%
Gear Lifting

120 s 1200
93.8%

Gear Inserting 76.7%
Gear Removing 84.3%
Shape Inserting 30 s 300 84%
Shape Removing 30 s 300 88%

Sawyer 5-DoF
(Real World)

10Hz Stacking 40 s 400 74.3%

20Hz
Vegetable lifting 20 s 1200 63.2%
Tower Building 60 s 1200 50.0%
Inverted Pyramid 120 s 2400 52.6%

KUKA 14-DoF
(Real World) 10Hz Gear lifting 60 s 600 88.4%

Table 10 | Human teleoperator success rates on real robot tasks. This table also reports the control frequency,
episode length and number of steps used during human teleoperation for each task.

unless otherwise specified below. MoMa uses
MuJoCo (Todorov et al., 2012) underneath as
a physics engine for the simulation environments
and a forward kinematics library for the real ones.

C.1. Robot arms

C.1.1. Sawyer

The Rethink Sawyer arm is fitted with a Robotiq
2F-85 gripper. In simulation, the environment
exposes a 7-DoF action space: 6-DoF end-effector
Cartesian velocity control and a 1-DoF velocity
command to control the aperture of the parallel
gripper. The 6-DoF Cartesian control builds on
top of 7-DoF joint integration actuators whose
dynamics are not aligned with their real-world
counterparts.
For the real robots, we follow the RGB Stacking

benchmark (Lee et al., 2021). The environment
exposes a simplified 5DoF action space consisting
of a 4-DoF end-effector Cartesian velocity con-
trol and the same 1-DoF velocity control for the
gripper. The action is reduced by restricting the
gripper to be oriented vertically (3D translation
and 1D rotation along the vertical axis). This
Cartesian end-effector controller builds on top of
the Sawyer’s pure joint velocity controller. The
real Sawyer environment is the only one which
does not use DeepMind’s MoMa library.
In both simulation and the real world, besides

the basket cameras (described in Appendix C.2),
tree/main/py/moma

Figure 13 | Example view of the wrist camera. This
image comes from one of the Basler dart cameras
attached to the wrist of the Franka Panda arms, with
resolution 296 × 222.

the full set of available observations comes from
the robot’s proprioception and a Robotiq FT 300
force-torque sensor affixed to the Sawyer’s wrist,
again matching the RGB Stacking benchmark.
See (Lee et al., 2021) for more details on the
setup.

C.1.2. Panda

Like for the Sawyer, the Panda Franka Emika arm
is fitted with a Robotiq 2F-85 gripper. In both
simulation and the real world, the environment
exposes a 7-DoF action space: 6-Dof Cartesian
velocity control that is integrated into a reference
pose that the end-effector tracks, and a 1-DoF
velocity command to control the aperture of the
parallel gripper. In simulation the 6-DoF inte-
grated velocity Cartesian controller builds on top
of a 7-DoF integrated joint velocity controller.
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Whereas in the real world we use a joint torque
controller that tracks the target velocity. In addi-
tion, 2 Basler dart cameras are mounted on the
gripper providing the view shown in Figure 13.
The cameras mounted on the gripper have not
been used to train or evaluate RoboCat.
In both simulation and the real world, the full

set of proprioception observations includes:
• Joint positions, velocities and torques of the
arm.

• Pose and velocity of the tool center point
located between the 2 fingers of the gripper.

• Pose of the integrated reference pose that
the TCP tracks.

• Position and velocity of the fingers of the
gripper.

See Table 11 for the subset of proprioception ob-
servations used for training RoboCat.

C.1.3. KUKA

We use the KUKA LBR IIWA14 in combination
with a 3 fingered robotic hand. We only use this
environment in the real world, not in simulation.
The environment exposes a 14-DoF action space:
6-Dof Cartesian velocity control that is integrated
into a reference pose that the end-effector tracks,
and a 8-DoF abstraction command to control the
fingers of the hand. The 6-DoF integrated velocity
Cartesian controller builds on top of a 7-DoF joint
torque controller that tracks a target joint velocity.
Similarly to the panda, 2 cameras are mounted
on the gripper and, also in this case, they are not
used for training or evaluating RoboCat.
The full set of proprioception observations in-

clude:
• Joint positions, velocities and torques of the
arm.

• Estimated force and torque at the wrist of
the robot used computing the joint torque
sensors of the robot.

• Pose of the integrated reference pose that
the TCP tracks.

• Proprioception of the 3 fingered hand.
Note that we only use a subset of proprioception
observations for training RoboCat which we de-
scribe in Table 11.

C.2. Basket and setup

All embodiments, in both simulation and reality,
are mounted in a standardised cage in front of
a standardised basket which defines the robot
arm’s workspace (Lee et al., 2021). The basket’s
base is 25 cm by 25 cm, and it has 2 Basler ace
cameras fixed at its front corners. In the Sawyer
environment, these cameras provide 128 × 128
image observations. In the Panda and KUKA en-
vironments, they provide 296 × 222 images.

C.3. Environment resets

In our real-world environments, for most object
sets, we do not reset the objects between episodes.
Rather, we rely on the next episode’s task to
achieve the “reset.” In between episodes, we only
verify that the physical system still functions and
reset the arm into a new random pose above the
basket. See Appendix F.2 for more details.
However, for RGB objects, we reuse the scripted

resets from the RGB Stacking benchmark (Lee
et al., 2021). The reset uses a blob-based 3D posi-
tion tracker for the RGB objects to locate objects
and then uses a simple scripted pick-and-place
controller to move the objects to new locations in
between episodes.
In simulation, the environment simply places

the objects in new randomised poses at the start
of each episode automatically.

D. VQ-GAN Training Details
D.1. Datasets

RoboCat-lim VQ-GAN We train the RoboCat-
lim VQ-GAN on several sources of data: Ima-
geNet (Deng et al., 2009), images from the Deep-
Mind Control Suite (Tassa et al., 2018), images
from Metaworld (Yu et al., 2020), domain ran-
domised sim sawyer red-on-blue-stacking data
from Lee et al. (2021), and images from the tasks
used to train the RoboCat-lim agent: the sim
panda data and the real sawyer red-on-blue stack-
ing data. Images and reconstructions from these
datasets are shown in Figure 14. Reconstructions
of tasks not included in the VQ-GAN training are
shown in Figure 15.

32



RoboCat: A Self-Improving Foundation Agent for Robotic Manipulation

Embodiment Object set Observation Observation dimensions

Si
mu
lat
ion

Sawyer
7-DoF RGB objects

Joint angles 7
TCP position 3

Gripper joint angle 1
Gripper grasp status 1

Panda
7-DoF

RGB objects

Joint angles 7
TCP position 3

Pose of the integrated reference pose the TCP tracks 7
Gripper position 1
Gripper grasp status 1

NIST-i gears and base
Joint angles 7
TCP pose 7

Gripper position 1
Gripper grasp status 1

Re
al
W
or
ld

Sawyer
5-DoF RGB objects, YCB-i objects

Joint angles 5
Gripper joint angle 1
Pinch pose 7
TCP pose 7

Panda
7-DoF

YCB, YCB-i objects

Joint angles 7
TCP position 3

Pose of the integrated reference pose the TCP tracks 7
Gripper joint angle 1
Gripper grasp status 1

NIST-i gears and base
Joint angles 7
TCP pose 7

Gripper joint angle 1
Gripper grasp status 1

KUKA
14-DoF NIST-it gears and base

Joint angles 7
TCP position 3

TCP orientation (rotation matrix) 9
Pose of the integrated reference pose the TCP tracks 7

Finger joint angles 12 (4 per finger)
Fingertip positions 9 (3per finger)

Fingertip orientations (rotation matrix) 27 (9 per finger)
Fingers clutch slip 15 (5 per finger)

Table 11 | Proprioception observations used for different embodiments and object sets while training RoboCat.
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RoboCat VQ-GAN The RoboCat VQ-GAN was
additionally trained on data from a simulated ver-
sion of the YCB fruit lifting task, the NIST-i gear
task images (real and sim), and real sawyer data
of a red-on-blue agent being run with random
objects in the bin, including YCB fruits and the
vegetables. We didn’t include the YCB fruit lift-
ing/insert/remove and vegetable lifting data from
human teleoperators in the training. Images and
reconstructions from these datasets are shown in
Figure 16. Reconstructions of tasks not included
in the VQ-GAN training are shown in Figure 17.

D.2. Model architecture and loss

The model architecture is derived from Esser
et al. (2021), which combines convolutional lay-
ers with Transformer attention layers to encode
the image. The encoder is a ResNet with 2
groups of 2 blocks, followed by 3 attention lay-
ers. The decoder has 3 attention layers followed
by a ResNet with 2 groups of 3 blocks. The
vector quantiser (van den Oord et al., 2017)
uses 64 embeddings of dimension 128. The
loss is weighted as (0.25 ∗ discretisation_loss +
l2_reconstruction_loss + 0.1 ∗ log_laplace_loss).
We train with a batch size of 64 for 1 million
training steps.

D.3. Ablations for our VQ-GAN design
choices

In this subsection we discuss the ablation experi-
ments that informed certain design choices that
we made regarding the VQ-GAN encoder and
the observation prediction loss that we used. For
these comparisons, we trained smaller models of
62-million parameter on subsets of the 30 Sim
Panda Stacking tasks with RGB Objects. For
these experiments, we only trained the models
with hindsight goals. Also, during evaluation we
always reset our simulation to the first state of
the trajectory that corresponds to the goal image,
which is a much easier task compared to the tasks
described in the rest of this paper. We considered
3 generalisation problems within this context:
red_on_blue where 5 red-on-blue variations
are held out from each triplet; red_on_green
where now the 5 red-on-green variations are the
ones held out; and triplet_1where the 6 stack-

ing task variations of the RGB Triplet 1 are held
out across all variations. In each case, we trained
and ablated separate generalists on the remainder
tasks.
As shown in Figure 19, in the context of these

generalisation problems, a RoboCat model with
the VQ-GAN tokeniser performs much better than
the patch ResNet tokeniser, especially on the held-
out test tasks, but requires both training on a
diverse dataset that includes ImageNet, and the
observation token prediction auxiliary loss.
At the larger 1.18B parameter scale, we com-

pare RoboCat-lim to the patch ResNet tokeniser
used in Gato. Both models are trained on the
same data. We evaluate training task perfor-
mance, as well as zero-shot performance for
various groups of heldout tasks. These groups
include heldout perceptual variations (blue-on-
green stacking), objects (triplet 5 Sawyer stack-
ing), task family (Sawyer pyramid and tower
building), and high difficulty tasks (tasks within
the training families that did not have a suffi-
ciently good expert for inclusion in RoboCattrain-
ing). As shown in Figure 18, the patch ResNet
tokeniser performs better on most training task
families, but generally worse for the different
types of held out tasks. This mirrors our find-
ings with smaller models, which showed VQ-GAN
to be better for generalisation and adaptation.
Predicting future image pixels does not give

us a similar advantage. We compared different
reconstruction targets in Figure 19. Like the de-
coder in MAE (He et al., 2022), we added an ex-
tra linear layer whose number of output channels
equals the number of pixel values in a patch. Out-
put tokens corresponding to observation tokens
were processed via this linear layer to produce a
vector of pixel values in a patch. We used mean
squared error between the predicted (𝑘 = 5) and
original frame in pixel space. The choice of pre-
diction target does not seem to affect the per-
formance on training tasks. However, there is a
huge difference in the generalisation capabilities
of the two methods. Qualitatively we found that
the policy learnt by predicting pixels fails (zero
success rate) as it seems to ignore the goal and
performs a different task.
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Figure 14 | Reconstructions from our RoboCat-lim VQ-GAN on the training datasets. From right to left,
panda sim, sawyer real red-on-blue, sawyer sim (with visual domain randomisation), MetaWorld, DM control,
and ImageNet.

Figure 15 | Reconstructions of tasks not included in the RoboCat-lim VQ-GAN training: YCB fruit lifting
and vegetable lifting. Although the reconstructions are inaccurate, they contain enough information for the
agent to learn the task.
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Figure 16 | Reconstructions from our RoboCat VQ-GAN on the training datasets. From right to left, panda
sim, sawyer real red-on-blue, sawyer sim (with visual domain randomisation), MetaWorld, DM control, and
ImageNet.
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Figure 17 | Reconstructions of tasks not included in the v1.0 VQ-GAN training: YCB fruit insert/remove,
and the 3-fingered gripper. While the vegetables and YCB fruit were seen in the agent play data, the bowl was
not seen at all in the training data.
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Figure 18 | Ablating the VQ-GAN tokeniser vs the patch ResNet used in Gato. The patch ResNet tokeniser
performs better on the training tasks, but worse on the held out tasks.
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Figure 19 | Tokenisation and obs prediction abla-
tions on the red_on_green generalisation problem.
Unless otherwise specified, we use a vocabulary size
of 4096 and image prediction with a time step shift of
𝑘 = 5. We compare the success rate (%) for train and
test tasks to ablate important design decisions. Left:
Predicting future tokens is significantly better than
predicting future pixels. Middle: Increasing VQ-GAN
vocabulary size deteriorates test performance. Right:
Predicting the next token in the current image (𝑘 = 0)
is less beneficial than predicting tokens farther in the
future. We find predicting 𝑘 = 5 time steps in the
future is optimal.

Next, we investigated predicting future VQ-
GAN tokens for the red_on_green generalisa-
tion task, with different 𝑘 values, where 𝑘 repre-
sents the number of time steps ahead at which
we are predicting the next observation token. We
sweep from 𝑘 = 0, i.e. predicting the next token,
to 𝑘 = 10 i.e. predicting the next token of the
observation 10 time steps ahead. As 𝑘 increases,
the performance on the training tasks increases,
but we find diminishing returns as we increase
past 𝑘 = 5. However, we see a 50% relative im-
provement in generalisation performance as we
increase 𝑘 from 0 to 5. Further increase in predic-
tion horizon results in performance degradation.
These results highlight the importance of design-
ing a challenging self-supervision task. There is
a huge amount of spatial and temporal redun-
dancy between consecutive image observations
especially when the agent is operating at 20 Hz.
Despite using VQ-GAN tokens, there can be a
significant overlap of tokens among future con-
secutive frames. Predicting 𝑘 time steps in the
future alleviates this issue and results in strong
generalisation capabilities in this setting.
Finally, we study the effect of the VQ-GAN vo-

cabulary size in Figure 19. Increasing the vocab-
ulary size (𝑉) has no effect on the performance
of the training tasks. However, the generalisation
ability monotonically declines as we increase 𝑉.

E. RoboCat Training Details
E.1. Data processing

The training data for each task contains

• a subset of embodiment proprioception ob-
servations (see Table 11);

• the embodiment actions (see Appendix C.1);
• and two camera images, in particular from
a front left and front right view of the basket
(see Appendix C.2).

Each goal image used in training comes from the
front left camera and correspond to the image
obtained at the end of a training trajectory. All
images, including the goal images, are cropped
and resized to have dimensions 128 × 128 × 3.
We apply image augmentation by randomising
brightness, saturation, contrast, and translation
to the images, as described in Lee et al. (2021).
All actions are scaled to be in [−1, 1]. We trim
trajectories discarding the final steps if no signif-
icant difference is measured with respect to the
final images of the scene. This is based on the
intuition that expert actions that do not generate
any changes in the images should not be used at
training as they likely do not have an effect on
the task at hand (e.g. the robot arm is not moving
or is just hovering around on the objects). The
metric we use to evaluate similarity between im-
ages is the the LPIPS (Learned Perceptual Image
Patch Similarity) (Zhang et al., 2018). The tra-
jectories involving just lifting of objects are also
trimmed in order to have the gripper (and thus
the lifted object) visible in the final image used
as goal image.

E.2. Data weighting

Based on previous experiments we use the fol-
lowing formula to sample the data during train-
ing. For training the RoboCat-lim generalist, by
default every task variant is sampled equally, re-
gardless of how many episodes are available. And
within each task variant, failed episodes and suc-
cessful episodes are also sampled equally. For the
successful episodes, the hindsight goal image is
used half the time and a semantically equivalent
goal image (from a different successful episode of
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the same task variant) is used the other half of the
time. When fine-tuning to a limited number of
demonstrations, we find best performance when
only training on successful episodes. For the final
RoboCat generalist we included NIST-i data only
from successful episodes and with a weighting
three times bigger to mitigate a potential imbal-
ance towards stacking and lifting other object
sets. Similarly, after 1 000 000 training steps we
decreased by half the weight of all simulated data
to focus the remaining training time towards the
real world tasks. Note that these decisions were
preventive and thus keeping all weights equal
may have also been effective.

E.3. Training and fine-tuning parameters

For training all Robocat models we use the
AdamW optimiser (Loshchilov and Hutter, 2017)
with a linear warmup and cosine schedule de-
cay. The linear warmup lasts for 15 000 steps,
starting from and ending at a different minimum
and maximum learning rates depending on the
model (see Table 13). This learning rate is then
cosine decayed by a factor 10 over 2 000000
steps. The AdamW optimiser has parameters
𝛽1 = 0.9, 𝛽2 = 0.95 and 𝜖 = 1𝑒−8. We use a
batch size of 256 and a sequence length of 1024
tokens for all models. We train with an AdamW
weight decay parameter of 0.1. Additionally, we
use stochastic depth (Huang et al., 2016) during
pretraining, where each of the transformer sub-
layers (i.e. each Multi-Head Attention and Dense
Feedforward layer) is skipped with a probability
of 0.1.

Hyper parameter RoboCat RoboCat-lim 400M
Max learning rate 1𝑒−4 5𝑒−6 1𝑒−4
Min learning rate 1𝑒−5 5𝑒−7 1𝑒−5

Table 13 | Learning rates used when training our
models. Note that both RoboCat-lim and RoboCat-lim
(patch) used the same learning rates.

For fine-tuning we use the Adam opti-
miser (Kingma and Ba, 2015) with a constant
learning rate of 1𝑒−5. The Adam optimiser has
parameters 𝛽1 = 0.9, 𝛽2 = 0.95 and 𝜖 = 1𝑒−8. We
use a batch size of 32 and a sequence length of
1024 tokens for all models. We train for up to
50 000 gradient steps. As regularisation, we use

dropout (Srivastava et al., 2014) with a rate of
0.1.

E.4. RoboCat-lim training data

In Section 5.2, we evaluate the properties of the
RoboCat-lim agent and systematically measure its
ability to generalise and fine-tune across a diverse
set of axes: objects, task variants, embodiments,
behaviour sources, task family, and from sim to
real. In this section, we provide more details on
our choice of held-out tasks.
The training tasks for RoboCat-lim are primar-

ily in sim, comprising the simulated structure
building tasks: stacking, pyramid building, and
tower building for the Panda 7DoF; and stacking
for the Sawyer 7DoF. The only real-world data
used in training is the Sawyer 5DoF RGB-stacking
benchmark.
From these training tasks, we also hold out all

blue-on-green stacking tasks and Sawyer stack-
ing with RGB triplet 5. This provides the first
two axes of generalisation: to the unseen per-
ceptual variation (blue-on-green task, which has
not been observed before) and the held-out ob-
jects (triple 5, which has never been seen with
the Sawyer embodiment).
To measure the ability to fine-tune to differ-

ent behaviour sources we use two versions of
data for blue-on-green stacking in the real-world:
from an expert agent, and from human teleop-
eration. These have different state and action
distributions, as (for example) human teleopera-
tors tend to favour quick but constant movements
with pauses between ‘stages’ of a task.
We measure sim-to-real capability with two

tasks on the real panda 7DoF: one from the stack-
ing task family and one from tower building.
We also evaluate the ability to fine-tune to an

unseen task family: inverted pyramid building.
This task is particularly challenging as it requires
careful and precise motion to balance two objects
on top of a third.
Finally, we evaluate embodiment generali-

sation and fine-tuning using the KUKA 14DoF.
While the KUKA 14DoF is a dexterous embodi-
ment with a 3-fingered hand, it also presents a
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considerable challenge for RoboCat training. This
is due to the significantly different observation
and action spaces that it poses compared to all
other tasks in the RoboCat training. For instance,
all training tasks rely on a 1DoF parallel gripper
and have a total of either 5DoF or 7DoF.

F. Evaluation and Real-World
Deployment

In this section, we provide more details about the
evaluation procedure used in the paper.
We evaluated RoboCat and the baselines with

100 (or more, if specified) episodes for each eval-
uation task, both in simulation and on the real
robot. For the fine-tuning experiments, we ran
shorter evaluations of 25 episodes for different
fine-tuned checkpoints. We then selected the best
checkpoint and ran the 100 episode evaluation
with it.
In simulation, the initial state is randomised by

moving the arm to a randomised initial pose and
by dropping the objects in the basket. In the real
world, the arm position is randomised similarly.
The objects initial positions are either randomised
via a scripted reset or with alternative approaches.
We detailed these processes in Appendix F.2.
For all our evaluations, we use environments

with the control frequencies and episode lengths
that match the ones used for collecting the data
for each task. Table 14 reports this information
for our simulated and real robot tasks.
In the next two sections, we detail the evalua-

tion procedure used the real-world tasks for the
RGB tasks and all other tasks.

F.1. Evaluation for real-world RGB tasks

To evaluate our agent on tasks with the RGB ob-
jects we used the infrastructure implemented in
Lee et al. (2021). We rely on the scripted re-
sets mentioned in Appendix C.3 and follow the
same evaluation procedure, apart from the re-
ward function. We noticed that the reward func-
tion was missing some clear successes. This is
because the reward function defined in Lee et al.
(2021) requires the arm height to end withing
some thresholds. While such a criteria for success

can be fair for RL agents trained to optimise such
a reward, we thought it didn’t represent fairly
the ability of RoboCat to stack the correct objects
and move the arm away to any position. For this
reason, we decided to visually count the successes
during evaluation. For fairness we also visually
recounted the evaluations of Lee et al. (2021)
and Reed et al. (2022).

F.2. Evaluation for real-world tasks with
no rewards or scripted resets

For all the other real tasks in this work we did not
implement a scripted reward model nor a reset
policy. This greatly simplified the implementation
of the tasks, but added significant complexity to
evaluation. Our evaluation system thus consists of
two components. In place of scripted rewards, we
train success detectors from human annotations
to detect when each task has been completed.
For resets we have a general solution that groups
several policies for different tasks together into a
policy pool, with each policy in the pool serving
as a component of the reset policy for its peers.
For instance a policy pool containing the inser-
tion and removal policies for the same object will
allow the removal policy to serve as a reset for
the insertion policy and vice versa.

F.2.1. Success detection

We treat success detection for each task as a per-
time step binary classification problem. For each
task we annotate several episodes with per-time
step success labels using a annotation-efficient
annotation procedure. Our annotation procedure
takes advantage of the following simple obser-
vation: If a task is solved (or not) at time 𝑡 it is
overwhelmingly likely that it is also solved (or
not) at time 𝑡 + 1. Put more simply, there are
relatively few time steps where a task transitions
from unsolved to solved (or vice versa). Rather
than collecting labels for every frame directly, we
ask annotators to mark transition points between
solved and unsolved states and extend these to
per-time step labels by painting the transition
label forward in time until the next annotation.
This strategy dramatically reduces the number of
annotations compared to annotating every frame.
Using this strategy labelling a 1200 time step
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Embodiment Task Family Episode Length Control Frequency Number of Steps

Si
mu
lat
ion Panda 7-DoF

Stacking
20 s 20Hz 200Tower Building

Pyramid Building
Lifting 120 s 10Hz 1200
Inserting 120 s 1200

Sawyer 7-DoF Stacking 20 s 20Hz 400

Re
al
W
or
ld

Panda 7-DoF

Stacking 60 s

10Hz

600Tower Building
Fruit Lifting

30 s 300Fruit Inserting
Fruit Removing
Gear Lifting
Gear Inserting 120 s 1200Gear Removing
Shape matching 30 s 300

Sawyer 5-DoF
Stacking 40 s 10Hz 400

Vegetable lifting 20 s
20Hz

400
Tower Building 60 s 1200
Inverted Pyramid 120 s 2400

KUKA 14-DoF Gear lifting 60 s 10Hz 600Peg lifting

Table 14 | Evaluation setup. Episode length, control frequency and episode number of steps per task on
simulated and real robots.

episode typically requires fewer than five annota-
tions (and frequently requires only one).
Using data annotated in this way we train suc-

cess detectors for each task. Each success detec-
tor is a ResNet-18 backbone with a binary clas-
sification head. To handle occlusions we use the
three basket cameras in the rewardmodel in order
to observe the scene from multiple perspectives.
Each camera image is scaled to 132 × 132 and
further cropped to 128 × 128 before being pro-
cessed separately by the ResNet backbone. The
resulting embeddings from each camera are aver-
aged before being fed to the binary classification
head. At train time we use random cropping and
image augmentation, while at deployment time
we disable the augmentations and take a central
crop of each image.
Once trained the success detectors are used to-

gether with policy pools for resetting our environ-
ments as we describe in Appendix F.2.2. We did
not use success detectors for reporting RoboCat
performance, as they have an accuracy around
90%. To ensure we counted all success from Robo-
Cat we visually assessed when an experiment has
succeeded or failed. In future work, we aim at
improving accuracy of the reward models in order
to automatise also this step of the evaluation.

F.2.2. Policy pools as generalised reset policies

Policy pools are our general solution to resets in
the real world. Their role in our set up is three-
fold: i) policy pool provides resets for non-self-
resetting tasks, ii) generates diverse initial condi-
tions for evaluation, and iii) makes efficient use
of robot time by interleaving the evaluation of
multiple policies at a time.
A policy pool groups together a set of diverse

tasks and allows us to schedule episodes of differ-
ent tasks to be run in sequence. In this simplest
case, we can replicate the standard evaluation
setting by building a pool comprised of a forward
task and its reset, allowing the schedule to alter-
nate between them. However, the policy pool
machinery allows us to extend beyond this simple
setting in several ways.
Each prop set typically affords several tasks,

for example the NIST-i gears set affords nine dis-
tinct tasks: lift, insert, and remove for each of the
three gears. A policy pool allows us to group all
nine of these tasks together and interleave their
execution in arbitrary orders. This is desirable for
two reasons which we discuss next.
From a global perspective this procedure makes

efficient use of robot time, because every episode
is an evaluation of some policy on some task.
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There is no time wasted by running a specialised
behaviour that resets the environment; instead
the evaluation episodes for each task simultane-
ously serves as the reset behaviour for other tasks
in the pool.
From a local perspective this procedure gener-

ates a wider variety of initial conditions than a
single fixed reset policy. From the perspective of
each task its reset is provided by a composition of
all the other tasks in the pool. This has the nice
effect that larger pools (with more diverse tasks)
tend to generate more diverse initial conditions
within each task.
Another extension of the basic setting is that

we can control the ordering of the schedule of
tasks within a policy pool. In practice, this is how
we handle non-self-resetting tasks. In the general
case not all tasks are eligible to be run from all
reachable states of the environment. Returning to
the gears example, an insert task is eligible to be
run only if the corresponding gear is not already
inserted on the target shaft (similarly a remove
task is only eligible when the corresponding gear
is inserted). At the beginning of each episode our
scheduling system for the policy pool uses the
success detectors (Appendix F.2.1) to determine
which tasks are eligible to be run given the state
of the environment, and then randomly chooses
one of these tasks to actually run.
The mapping between tasks and policies within

a policy pool is arbitrary, and need not be 1-1. The
same machinery can be used to implement single
task evaluation (by providing a different policy
for each task in the pool) or multi-task evaluation
(by defining a pool where every task is executed
by the same policy). Given RoboCat is generalist,
when using policy pool we only use the policy
from RoboCat to evaluate any task.

G. Additional Experiments
G.1. Generalist capabilities and expert

performance

In this section, we report more details on the per-
formance of RoboCat on training and fine-tuning
tasks, and we compare it to the success rate of the
training data, defined as percentage of the suc-

cessful episodes among all the training episodes.
Table 15 shows the overall RoboCat performance
per each task variant.

G.1.1. Training tasks

We use RL-trained experts for all of the structure-
building tasks in sim (Panda 7-DoF stacking, pyra-
mid, and tower building; Sawyer 7-DoF stacking,
Figure 20) and in real (Sawyer 5-DoF stacking,
Figure 21). These experts are state-based for
the sim tasks, and vision-based for the real-world
tasks. In the sim case, the vision-based RoboCat
generalist has a performance reduction of 10%
or less compared to the state-based single-task
experts (Figure 20), for all families except tower
building. It is important to note that these experts
were trained via RL with privileged state infor-
mation which included the poses of the target
objects. In contrast, our vision-based generalist
agent discards any privileged state information in
order to perform effectively in the real-world. As
such, we would not expect RoboCat to improve
upon or even match the success rate of the data
for all tasks. On the other hand, when RoboCat
has access to same information as the experts
that generated the data, as for the real tasks Fig-
ure 21, it is able to overcome the performance of
the agents generating data.
Human-teleoperated demonstrations were

used for the NIST-i tasks in both sim and real.
Figure 22 and Figure 23 compare the success rate
of the human teleoperators and RoboCat sepa-
rately for each task variant. In both cases, we can
see that RoboCat on average matches the human
teleoperator performance.
Self-generated data were used together with

a limited number of human-teleoperated demon-
strations to train RoboCat on additional real robot
tasks. Given a limited number of demonstra-
tions for a new task, we first fine-tuned previ-
ous versions of RoboCat to solve this new task.
We then deployed the fine-tuned RoboCat in the
real world to collect more self-generated data
for the specific task. The newly generated data
together with the successful human teleopera-
tions were used in the final generalist. Figure 24
and Figure 25 aim to contextualise the perfor-
mance of RoboCat on these tasks. The ‘gener-
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Tr

ai
ni
ng

Embodiment Task Family Object Set Variations

Si
mu
lat
ion

Sawyer
7-DoF

RB RG GR GB BR BG

Stacking

RGB objects, Triplet 1 62% 88% 85% – 85% 87%
RGB objects, Triplet 2 88% 86% 93% 86% 89% 82%
RGB objects, Triplet 3 83% 81% 85% 95% 91% 85%
RGB objects, Triplet 4 93% 95% 96% 88% 91% 83%
RGB objects, Triplet 5 88% 90% – 87% 75% 94%

NIST-i gears 93% – 87% 80% 83% 90%

Panda
7-DoF

RB RG GR GB BR BG

Stacking

RGB objects, Triplet 1 57% 84% 87% 91% 77% 91%
RGB objects, Triplet 2 83% 88% 82% 79% 89% 81%
RGB objects, Triplet 3 86% 73% 88% 96% 86% 90%
RGB objects, Triplet 4 87% 91% 89% 89% 94% 90%
RGB objects, Triplet 5 94% 85% 84% 88% 87% 84%

NIST-i gears 84% 67% 87% 89% 85% 87%
RBG RGB GRB GBR BRG BGR

Tower
building

RGB objects, Triplet 4 – 71% 73% 74% 74% 75%
RGB objects, Triplet 5 78% 64% – – – –
RGB objects, Triplet 6 60% – – – – 75%

RBG RGB GRB GBR BRB BGR

Pyramid
building

RGB objects, Triplet 1 75% 80% 63% 58% 81% 75%
RGB objects, Triplet 2 71% 65% 71% 63% 75% 73%
RGB objects, Triplet 3 61% 66% 59% 73% 51% 74%
RGB objects, Triplet 4 71% 72% 70% 54% 81% 92%
RGB objects, Triplet 5 63% 60% 80% 78% 73% 71%

Small Medium Large
Lifting NIST-i gears 86% 81% 72%

Insertion-peg NIST-i gears 56% 79% 79%

Re
al
W
or
ld

Sawyer
5-DoF

RB RG GR GB BR BG

Stacking

RGB objects, Triplet 1 87% – – – – 52%
RGB objects, Triplet 2 70% – – – – –
RGB objects, Triplet 3 82% – – – – –
RGB objects, Triplet 4 93% – – – – –
RGB objects, Triplet 5 68% – – – – –

Carrot Cucumber Pepper Potato – –
Lifting YCB-i vegetables 50% 50% 49% 67% – –
Tower RGB Objects, triplet 5 23%

Inverted pyramid RGB Objects, cubes 17%

Fi
ne

-t
un

in
g

Panda
7-DoF

Apple Banana Lemon Peach – –
Lifting YCB fruits 40% 59% 60% 57% – –

Small Medium Large
Lifting NIST-i gears 92% 94% 95%

Insertion-peg NIST-i gears 65% 78% 88%
Removal-peg NIST-i gears 96% 97% 98%

Fi
ne

-t
un

in
g

Re
al
W
or
ld Panda

7-DoF

Lemon Peach Strawberry

Insertion-bowl YCB fruits and
YCB-i bowl 84%/82% 76%/86% 92%/84%

Removal-bowl YCB fruits and
YCB-i bowl 60%/62% 69%/76% 64%/77%

Circle Pentagon Square
Insertion-base Shape-matching objects 7%/19% 6%/10% 4%/11%
Removal-base Shape-matching objects 47%/98% 87%/98% 75%/100%

KUKA
14-DoF Lifting NIST-i gears 56 %/86 %

Table 15 | Per-task RoboCat performance on training and fine-tuning tasks. This Table expands Table 1 by
providing the success rate for each task variant instead of the average per task families. Fine-tuning results are
reported for 500 and 1000 demonstrations respectively, separated by a slash.
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ated + demos’ numbers refer to the percent-
age of successful episodes among the total num-
ber of episodes used to train RoboCat on these
tasks. Successful episodes include successful self-
generated episodes and successful teleoperations.
We use failed self-generated episodes, but not
failed demonstrations. On average RoboCat per-
formance matches the success rate of the training
data, overcoming it in some cases (see lifting ba-
nana, peach, strawberry Figure 24 and potato
Figure 25).

G.1.2. Fine-tuning performance

Figure 27 compares the success rate of the human
teleoperators to contextualise the fine-tuning re-
sults. In general, we see how fine-tuning on more
demonstrations in general improves performance,
sometimes reaching similar performance as the
human teleoperators. This does not apply to the
insert tasks, which result very challenging for
our agents due to the required reorientation and
shape understanding.

G.2. Visual foundation baselines

We consider four different network architec-
tures as baseline methods for manipulation tasks:
ResNet (He et al., 2016), normaliser-free net-
works (NFNets) (Brock et al., 2021), vision trans-
formers (ViTs) (Dosovitskiy et al., 2020), and
the ViT variant Swin transformers (Liu et al.,
2021). Within each category, we used the follow-
ing models: ResNet-50, ResNet-101, ResNet-200,
NFNet-f0, NFNet-f3, NFNet-f6, ViT-b, ViT-l, Swin-
b, Swin-l, and Swin-s. Each model was pretrained
on a selection of datasets: ImageNet 1k (Deng
et al., 2009), ImageNet 21k (Ridnik et al., 2021),
Microsoft COCO (Lin et al., 2014), and the JFT
Dataset (Riquelme et al., 2021). We also eval-
uated the use of CLIP (Radford et al., 2021),
masked auto-encoder (MAE) (He et al., 2022),
SimCLR (Chen et al., 2020b), BYOL (Grill et al.,
2020), DetCon (Hénaff et al., 2021), Odin (Hé-
naff et al., 2022), and DINO (Caron et al., 2021).
One common way to use pretrained visual mod-

els for control tasks is to add a learned policy
head (Nair et al., 2022; Parisi et al., 2022). The
image input is first embedded by the foundation
model. The output embedding is then concate-

nated with any proprioception information and
fed into the policy head. The policy head con-
sists of two multi-layer perceptrons (MLPs), each
with 256 parameters. The output of the top MLP
is then used by a linear policy head to generate
the robot action. We use behaviour cloning with
mean squared loss as the optimisation objective.

model obj dataset pretrain

nfnet-f0 Supervised ImageNet-1k imagenet1k-supervised
nfnet-f0 Supervised JFT-4B jft4b-8epochs-supervised
nfnet-f0 CLIP ImageNet-1k f0-clip-4dataset-lowres
nfnet-f0 CLIP ImageNet-1k f0-clip-align
nfnet-f0 CLIP ImageNet-1k f0-clip-4dataset
nfnet-f0 CLIP ImageNet-1k f0-clip-align-stock
nfnet-f1 Supervised ImageNet-1k imagenet1k-supervised
nfnet-f1 Supervised JFT-4B jft4b-8epochs-supervised
nfnet-f2 Supervised ImageNet-1k imagenet1k-supervised
nfnet-f3 Supervised JFT-4B jft4b-8epochs-supervised
nfnet-f3 Supervised ImageNet-1k imagenet1k-supervised
nfnet-f3plus Supervised JFT-4B jft4b-8epochs-supervised
nfnet-f4 Supervised ImageNet-1k imagenet1k-supervised
nfnet-f5 Supervised ImageNet-1k imagenet1k-supervised
nfnet-f5 CLIP ImageNet-1k f5-clip-align
nfnet-f6 CLIP ImageNet-1k f6-clip-align-stock-sum_grads
nfnet-f6 CLIP ImageNet-1k f6-clip-4dataset
nfnet-f6 CLIP ImageNet-1k f6-clip-align
nfnet-f6 Supervised ImageNet-1k imagenet1k-supervised
nfnet-f7 Supervised JFT-4B jft4b-4epochs-supervised
nfnet-f7plus Supervised JFT-4B jft4b-4epochs-supervised
ResNet-101 Supervised ImageNet-1k imagenet1k-supervised
ResNet-101 DetCon ImageNet-1k imagenet1k-detcon
ResNet-101 BYOL ImageNet-1k imagenet1k-byol
ResNet-200 DetCon ImageNet-1k imagenet1k-detcon
ResNet-200 BYOL ImageNet-1k imagenet1k-byol
ResNet-50 ODIN ImageNet-1k imagenet1k-odin
ResNet-50 Supervised ImageNet-1k imagenet1k-supervised
ResNet-50 DetCon ImageNet-1k imagenet1k-detcon-coco-finetune
ResNet-50 BYOL ImageNet-1k imagenet1k-byol-lowres
ResNet-50 DetCon ImageNet-1k imagenet1k-detcon
ResNet-50 BYOL ImageNet-1k imagenet1k-byol
swin-b Supervised ImageNet-1k imagenet1k-supervised
swin-e CLIP JFT-4B swin-e-clip-align-stock-jft
swin-h CLIP ImageNet-1k swin-h-clip-align-stock-highres
swin-h CLIP ImageNet-1k swin-h-clip-align-stock-lowres
swin-l CLIP ImageNet-1k swin-l-clip-align-stock
swin-s Supervised ImageNet-1k imagenet1k-supervised
swin-s ODIN ImageNet-1k imagenet1k-odin
swin-t ODIN ImageNet-1k imagenet1k-odin
swin-t Supervised ImageNet-1k imagenet1k-supervised
vit-b Supervised JFT-4B b16-224-jft-pretrain
vit-b Supervised ImageNet-21k b16-224-i21k-pretrain-augreg
vit-b Supervised ImageNet-21k b16-224-i21k-pretrain
vit-b Supervised ImageNet-1k b16-224-i21k-pretrain-i1k-finetune
vit-b Supervised ImageNet-1k b16-384-i21k-pretrain-i1k-finetune
vit-b MAE ImageNet-1k b16-224-i1k-mae-pretrain
vit-b Supervised ImageNet-1k b16-224-i1k-pretrain
vit-deit-b MAE ImageNet-1k b16-224-i1k-mae-pretrain
vit-deit-l MAE ImageNet-1k l16-224-i1k-mae-pretrain
vit-dino-b MAE ImageNet-1k b16-224-i1k-mae-pretrain
vit-l Supervised ImageNet-1k l16-224-i1k-pretrain
vit-l Supervised ImageNet-1k l16-384-i21k-pretrain-i1k-finetune
vit-l Supervised ImageNet-21k l16-224-i21k-pretrain
vit-l Supervised ImageNet-1k l16-384-jft-pretrain-i1k-finetune
vit-l MAE ImageNet-1k l16-224-i1k-mae-pretrain
vit-l Supervised JFT-4B l16-224-jft-pretrain
vit-l Supervised ImageNet-1k l16-224-i21k-pretrain-i1k-finetune
vit-mae-b MAE ImageNet-1k b16-224-i1k-mae-pretrain

Table 16 | Details of the baseline methods: including
the model name, training objectives and pretaining
dataset.

We fine-tuned a total of 59 combinations of
the above methods and evaluated on a subset of
RoboCat tasks. Then, we selected the top rep-
resentatives of each of the network architecture
categories and evaluated them on more tasks.
For the sake of clarity, we only report the top two
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Figure 20 | RoboCat vs experts performance: Panda 7-DoF structure-building training tasks (sim). RoboCat
performance compared to the success rate of the training data for each task family.
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Figure 21 | RoboCat vs experts performance: Sawyer 5-DoF RGB stacking tasks (real). This plot compares
the performance of RoboCat on the real stacking tasks with respect to the overall success rate of the training
data available for each task variant.

methods in the main paper. We use the average
final policy success rate as the performance met-
ric in our experiments. Each experiment ran for
100 episodes, with each episode lasting 400 time
steps.
We fine-tuned the models with different data

limitations: 500 demonstrations, 1000 demon-
strations, and more than 10 000 demonstrations.
Training took 200 000 training steps for all mod-
els. We validated the models in simulation during

training and selected the best model snapshot
based on the validation success rate for further
comprehensive evaluation. We tried both freez-
ing and non-freezing scenarios for the parameters
of the pretrained models. Since the non-frozen
pretrained model performed much better, we only
report the results for non-frozen models.
Table 17 shows the success rate of all baseline

methods on a heldout task. Then we took the
top representative methods of each network ar-
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Figure 22 | RoboCat vs teleoperation performance: Panda 7-DoF NIST-i tasks (sim). RoboCat compared
with the success rate of the data collected by human teleoperators, for each task variant.
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Figure 23 | RoboCat vs teleoperation performance: Panda 7-DoF NIST-i tasks (real). RoboCat compared
with the success rate of the data collected by human teleoperators, for each task variant.

chitecture and further evaluated them on other
tasks with limited data: 500, 1000, and more
than 10000. We also evaluated these methods
on a subset of the training tasks.

G.3. NIST-i extended study

We evaluate the complexity and some design de-
cisions made for the NIST-i tasks using RoboCat.

We find that fixing the base in the physical world
can have interesting implications, more cameras
can lead to improved performance and using data
from largely unrelated tasks can lead to increased
performance on NIST-i, suggesting indications of
positive skill transfer.
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Figure 24 | RoboCat vs training data: Panda 7-DoF YCB lifting tasks (self-improvement, real). This plot
compares the performance of RoboCat on the self-improvement tasks with respect to the overall success rate of
the training data available for these tasks (self-generated data and successful human teleoperations).
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Figure 25 | RoboCat vs training data: Sawyer 5-DoF RGB and YCB tasks (self-improvement, real). This
plot compares the performance of RoboCat on the self-improvement tasks with respect to the overall success
rate of the training data available for these tasks (self-generated data and successful human teleoperations).

final_success
Model nfnet-f0 nfnet-f3 nfnet-f6 swin-b swin-l swin-s vit-dino-b vit-l
Training Objective CLIP Supervised CLIP Supervised CLIP Supervised MAE MAE
Dataset ImageNet-1k JFT-4B ImageNet-1k ImageNet-1k ImageNet-1k ImageNet-1k ImageNet-1k ImageNet-1k

# Demo Task

more than 10000 panda_7-DoF_stacking_BG_set_1 0.92 0.86 0.87 0.91 0.93 0.91 0.81 0.87
panda_7-DoF_stacking_RG_set_1 0.83 0.51 0.78 0.81 0.92 0.81 0.75 0.62
sawyer_5-DoF_stacking_set_5_RB 0.79 0.79 0.78 0.79 0.87 0.76 0.71 0.70
sawyer_7-DoF_stacking_BG_set_1 0.83 0.80 0.88 0.91 0.90 0.84 0.77 0.82

1000 panda_7-DoF_inv_pyra_GRB_set_4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
panda_7-DoF_stacking_BG_set_1 0.25 0.40 0.60 0.24 0.49 0.20 0.02 0.07
panda_7-DoF_stacking_RG_set_1 0.20 0.31 0.33 0.25 0.28 0.25 0.03 0.12
panda_7-DoF_tower_GRB_set_4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
panda_7-DoF_tower_RBG_set_5 0.04 0.08 0.14 0.08 0.16 0.06 0.01 0.03
sawyer_5-DoF_stacking_set_5_RB 0.66 0.76 0.74 0.62 0.70 0.43 0.24 0.30
sawyer_7-DoF_stacking_BG_set_1 0.39 0.50 0.56 0.36 0.58 0.36 0.06 0.11

500 panda_7-DoF_stacking_BG_set_1 0.09 0.19 0.36 0.08 0.06 0.09 0.01 0.03
sawyer_5-DoF_stacking_set_5_RB 0.33 0.55 0.64 0.18 0.16 0.08 0.03 0.05
sawyer_7-DoF_stacking_BG_set_1 0.10 0.24 0.37 0.13 0.20 0.14 0.01 0.02

training set panda_7-DoF_pyramid_GRB_set_3 0.28 0.28 0.35 0.27 0.33 0.21 0.15 0.19
panda_7-DoF_stacking_BG_set_1 0.63 0.69 0.70 0.62 0.73 0.58 0.41 0.46
panda_7-DoF_stacking_GB_set_2 0.48 0.61 0.64 0.52 0.56 0.50 0.38 0.41
panda_7-DoF_tower_GRB_set_5 0.37 0.40 0.55 0.37 0.42 0.40 0.22 0.31

Table 17 | Evaluation of baselines on training and held-out tasks with limited number of demonstrations.

G.3.1. Task complexity

So far, we considered a fixed base in simulation
and a freely moving base in the physical world

(see Table B.1 for details). We argue that a mov-
ing base leads to both a harder task in the physical
world and provides a more diverse set of tasks for
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(a) Simulated NIST-i
environment.

(b) Fixed base NIST-i
environment.

(c) Inverted fixed base NIST-i
environment.

(d) Moving base NIST-i
environment.

Figure 26 | The different types of NIST-i based envi-
ronments we ablate performance against. Note, in
the main paper we report performance against envi-
ronments from (a) and (d) only.

training. We challenge this argument in this sec-
tion. We do this by fixing the base to the basket in
the same orientation as what we do for simulation
and measure if this new setting is easier to solve.
Figure 26 illustrates the different environments.
Note that at train time we only use demonstra-
tions from Figure 26(a) and Figure 26(d).

Base Location NIST-i task
Insert Remove

Fixed base 64% 100%
Inverted fixed base 40% 99%
Moving base 38% 97%

Table 18 | Real-world NIST-i task ablation. Average
success over all three NIST-i gear sizes. A 400M agent
performs much better on the fixed base environment.

Table 18 reports the performance of a smaller,
400M agent, trained on the same data as RoboCat-
lim. We observe that despite not having fixed base
data from the physical world, the agent performs
a lot better on the fixed-based task as opposed to
the other two tasks. This suggests that the fixed
base environment is easier possibly due to its sim-
ilarity with the simulated environment, suggest-
ing positive skill transfer from simulation data.

G.3.2. Data bias

Appendix G.3.1 showed that there may be some
positive transfer across similar tasks on a smaller
400M based agent. However, the performance
reported in that section could also be due to data
bias. That is, it could be that the collected demon-
strations from raters might be primarily centred
around the middle of the basket with the peg base
orientated similarly to the one in the simulated
data. This itself would interfere with the hypoth-
esis for positive skill transfer in favour of having
data bias. To test this, we utilise specialist be-
haviour cloning agents (Specialist BC) that we
separately train on each NIST-i task using only the
subset of NIST-i training data belongs to that spe-
cific task. Behaviour cloning agents are known
to overfit to the training data, leading to poor
generalisation (Osa et al., 2018). If the reported
performance in Table 18 is due to data bias, then
we expect to see the same type of improved per-
formance of a specialist BC agent when evaluated
on the fixed based tasks as opposed to the moving
base tasks.

Base Location Specialist BC
NIST-i Insert Task

Fixed base 8%
Moving base 13%

Table 19 | Real-world NIST-i data bias. Average suc-
cess over all three NIST-i gear sizes. The agents have
similar perform on both fixed and moving base envi-
ronments. No evidence for data bias.

Table 19 shows that having a fixed or moving
base results in a negligible difference in the per-
formance for the specialist BC agents. In fact, the
relationship between the performance on fixed
and moving base is inverted (all training data is
collected while having a moving base). This in-
dicates that for both the fixed and moving base
tasks there is no particular data bias towards the
peg base being situated in the centre and oriented
in the same way as in simulation.

G.3.3. Skill transfer

So far, we showed that there are some indications
of skill transfer for the smaller 400M generalist.
In this section, we study to what extent this holds
for our final RoboCat agent. Notably, we use the
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NIST-i Insert Task 400M error RoboCat error Reduction factor
Fixed base 0.36 0.13 2.77
Moving base 0.62 0.23 2.70

Table 20 | Skill transfer analysis. Average accumu-
lated error over all three NIST-i gear sizes. Moving
from the 400M model to the full RoboCat agent elimi-
nates just under two thirds of the gear insertion fail-
ures in both the fixed and the moving base settings,
indicating a smaller performance gap for the RoboCat.

same NIST-i insertion data for training both the
400M and RoboCat models. However, our final
version of RoboCat is trained on a larger num-
ber of tasks and is of bigger capacity (1.2B). In
this sense, a successful skill transfer would close
the gap between the achieved performance on
the fixed and moving base environments for the
final generalist. This is what we observe in Ta-
ble 20. Specifically, moving from the 400M model
to the full RoboCat agent eliminates just under
two thirds of the gear insertion failures in both
the fixed base and the moving base setting. This
indicates that indeed training a bigger model on
more data that involves different types of bring
to pose tasks can be beneficial for solving the
moving base insertion tasks. Moreover, the addi-
tive performance gap for RoboCat depending on
the base state is much smaller than the additive
performance gap for the 400M agent suggesting
again indications of positive skill transfer.

G.3.4. Additional observations

Finally, in the process of finding the best perform-
ing specialist BC agent we noticed that including
the wrist cameras to the observation of the agent
significantly improved the performance of our spe-
cialists. That is, instead of using just two camera
observations, as we do for RoboCat, using a total
of four camera observations - two from the basket
and two from the wrist of the robot, was very
beneficial for a specialist BC agent (see Table 21).

Performance of NIST-i task
Insert Remove

Specialist BC (2 cameras) 13% 24%
Specialist BC (4 cameras) 36% 54%

Table 21 | Dependency on the number of cameras.
Average performance over all three NIST-i gear sizes.
More cameras have a significant effect on the special-
ist’s performance.

An exciting direction for future research is to
understand the effect of different camera obser-
vations for contact-rich manipulation tasks in the
context of RoboCat.
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(a) Panda 7-DoF insert and remove tasks with YCB and YCB-i objects (real).
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(b) Panda 7-DoF insert and remove tasks with shape matching objects (real).
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(c) KUKA 14-DoF gear lifting task (real).

Figure 27 | Final performance on each fine-tuning task.
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