DeepMind

JAX at
DeepMind

NeurlIPS 2020

Matteo Hessel, David Budden, Mihaela Rosca, Junhyuk Oh,
Fabio Viola, Theophane Weber, Paige Bailey

o

DeepMind

1. Why JAX?

Matteo Hessel (@matteohessel)

o

What is JAX?

JAX is a Python library designed for high-performance numerical computing

Among its key ingredients it supports:

e Differentiation:
o Forward and reverse mode automatic differentiation of arbitrary numerical functions,
o E.g: grad, hessian, jacfwd and jacrev.

e Vectorisation:
o SIMD programming via automatic vectorisation,
o E.g: vmap, pmap.

e JIT-compilation:

o XLAis used to just-in-time (JIT)-compile and execute JAX programs,
o faster CPU code, and transparent GPU and Cloud TPU acceleration..

Matteo Hessel (@matteohessel) Join the discussion on Twitter (#JAXecosystem)

O

What is JAX?

All these are implemented as composable program transformations

Matteo Hessel (@matteohessel) Join the discussion on Twitter (#JAXecosystem)

O

What is JAX?

All these are implemented as composable program transformations

Consider a numerical function:

def fn(x,y):

return x**2 + vy

Matteo Hessel (@matteohessel) Join the discussion on Twitter (#JAXecosystem)

O

What is JAX?

All these are implemented as composable program transformations

Consider a numerical function:

def fn(x,y):

return x**2 + vy

The value fn is evaluated like any python function

fn(1., 2.) # (1%*2 + 2) = 3

Matteo Hessel (@matteohessel) Join the discussion on Twitter (#JAXecosystem)

O

What is JAX?

All these are implemented as composable program transformations

Consider a numerical function:

def fn(x,y):

return x**2 + vy

The gradient df_dx = grad(fn) isalso afunction

df_dx(1., 2.) # df_dx = 2%x = 2%1 = 2

Matteo Hessel (@matteohessel) Join the discussion on Twitter (#JAXecosystem)

O

What is JAX?

All these are implemented as composable program transformations

Consider a numerical function:

def fn(x,y):

return x**2 + vy

The second-order gradient df2_dx

grad(grad(fn)) is also afunction

df2_dx(1., 2.) # df2_dx = d(2*x)_dx = 2

Matteo Hessel (@matteohessel) Join the discussion on Twitter (#JAXecosystem)

O

What is JAX?

All these are implemented as composable program transformations

Consider a numerical function:

def fn(x,y):

return x**2 + vy

The compiled second-order gradient df2_dx = jit(grad(grad(fn))) isalso afunction

df2_dx(1., 2.) # 2, also traces the code and compiles it

Matteo Hessel (@matteohessel) Join the discussion on Twitter (#JAXecosystem)

O

What is JAX?

All these are implemented as composable program transformations

Consider a numerical function:

def fn(x,y):

return x**2 + vy

The compiled second-order gradient df2_dx = jit(grad(grad(fn))) isalso afunction

df2_dx(1., 2.) # 2, also traces the code and compiles it
df2_dx(1., 2.) # 2, executes the XLA pre-compiled code

But a much faster one after the first execution :)

Matteo Hessel (@matteohessel) Join the discussion on Twitter (#JAXecosystem)

O

What is JAX?

All these are implemented as composable program transformations

Consider a numerical function:

def fn(x,y):

return x**2 + vy

The batched compiled second-order gradient df2_dx = vmap(jit(grad(grad(fn)))) is also afunction

xs = jnp.ones((batch_size,))

df2_dx(xs, 2 * xs) # [2, 2], if batch_size=2

Matteo Hessel (@matteohessel) Join the discussion on Twitter (#JAXecosystem)

O

What is JAX?

All these are implemented as composable program transformations

Consider a numerical function:

def fn(x,y):

return x**2 + vy

So is its multi-gpu batched compiled second-order gradient df2_dx = pmap(vmap(jit(grad(grad(fn)))))

xs = jnp.ones((num_gpus, batch_size,))

df2_dx(xs, 2 * xs) # [[2, 2], [2, 2]], if batch_size=2 and num_gpus=2

Matteo Hessel (@matteohessel) Join the discussion on Twitter (#JAXecosystem)

O

Why JAX?

JAX is simple but very flexible

e APl for numerical functions is fully consistent with NumPy,

e Both Python and NumPy are widely used and familiar,

e Few abstractions (grad, jit, vmap, pmap) but powerful and composable!

e The functional programming style helps writing code that “looks like the math”

e Not a vertically integrated but with a rich ecosystem and community around it

e Battle tested extensively in the past year on projects ranging from Optimisation, SL, GANs, RL, ...

Matteo Hessel (@matteohessel) Join the discussion on Twitter (#JAXecosystem)

O

DeepMind

2. Our JAX
Lcosystem

David Budden (@davidmbudden)

O

Why an Ecosystem?

DeepMind Researchers have had great initial success with JAX

e How can we continue to support and accelerate their work?

Considerations

e JAXis not a vertically integrated ML framework (this is a good thing!)
e Needs to support rapidly evolving DeepMind Research requirements
e Where possible, strive for consistency + compatibility with

o Our TF ecosystem (Sonnet, TRFL, ...)

o Our research frameworks (Acme, ...)

DeepMind JAX Ecosystem

e Libraries of reusable and un-opinionated JAX components
e FEach library does one thing well and supports incremental buy-in
e Open source everything to enable research sharing + reproducibility

David Budden (@davidmbudden) Join the discussion on Twitter (#JAXecosystem)

O

Haiku

Haiku is a tool
For building neural networks
Think: "Sonnet for JAX"

Motivation

e JAX programs are functional

e NN params/state better fit the OO paradigm

Haiku (github.com/deepmind/dm-haiku)

e Converts stateful modules to pure functions

e API-matches Sonnet, porting from TF is trivial

import jax
import haiku as hk

@hk.transform
def loss_fn(images, labels):
model = hk.nets.MLP([1000, 100, 10])
logits = model(images)
labels = one_hot(labels, 1000)
return losses.softmax_cross_entropy(logits, labels)

images, labels = next(dataset)
params = loss_fn.init(rng_key, images, labels)
loss = loss_fn.apply(params, images, labels)

o Have reproduced AlphaGo, AlphaStar, AlphaFold, ...

e Mature APl and widely adopted

David Budden (@davidmbudden)

Join the discussion on Twitter (#JAXecosystem)

O

http://github.com/deepmind/dm-haiku

Optax

M . . . - t .
The artist formerly known as jax.experimental.optix Rt e
import optax

. . arams = ... // a JAX tree
Motivation P
o Gradient ing is fund tal to ML R h Opt = optax.adam(learning_rate=1e-4)
raaient processing Is runaamental to esearc state = [N (params)

e Like NNs, optimizers are stateful
@jax.jit
def step(state, params, data):
dloss_dparams = jax.grad(loss_fn)(*data)
Optax (github.com/deepmind/optax) updates, state = opteupdate(dloss_dparams, state)
params = optax.apply_updates(params, updates)
return state, params

e Gradient processing and optimization library
e Comprehensive library of popular optimizers for data in dataset:

. . . state, params = step(state, params, data)
e Simplifies gradient-based updates of NN params

o Compatible with all popular JAX NN libraries

e Mature APl and widely adopted

David Budden (@davidmbudden) Join the discussion on Twitter (#JAXecosystem)

O

https://github.com/deepmind/optax

RLax

'RLax is the best RL textbook I've read!"
- Anonymous

Motivation

e Reinforcement Learning is hard, getting it wrong is easy

e Want a common substrate for sharing new ideas

RLax (github.com/deepmind/rlax)

Library of mathematical operations related to RL

e Emphasis on readability

e Building blocks rather than complete algorithms
o But, lots of full agent examples available
e Widely adopted for RL research

import jax
import optax
import rlax

def loss_fn(params, o_tm1, a_tm1, r_t, d_t, o_t):
g_tm1 = network.apply(params, o_tm1)
g_t = network.apply(params, o_t)
td_error = rlax.q_learning(q_tm1, a_tm1, r_t, d_t, q_t)
return rlax.12_loss(td_error)

@jax.jit

def learn(state, params, transition):
dloss_dparams = jax.grad(loss_fn)(*transition)
updates, state = opt.update(dloss_dparams, state)
params = optax.apply_updates(params, updates)
return state, params

O

David Budden (@davidmbudden) Join the discussion on Twitter (#JAXecosystem)

http://github.com/deepmind/rlax

The Future

Our ecosystem is evolving rapidly

e Graph neural networks (github.com/deepmind/jraph)
e Testing & reliability (github.com/deepmind/chex)

e .. plus others coming soon!

Checkout examples using DeepMind’s JAX ecosystem

e Supervised Learning (github.com/deepmind/jaxline)
e Reinforcement learning (github.com/deepmind/acme)

Others are also building great stuff with JAX

e Neural Networks (github.com/google/flax)
e Molecular Dynamics (github.com/google/jax-md)
e Chemical Modelling (github.com/deepchem/jaxchem)

David Budden (@davidmbudden) Join the discussion on Twitter (#JAXecosystem)

O

https://github.com/deepmind/jraph
https://github.com/deepmind/chex
https://github.com/deepmind/jaxline
https://github.com/deepmind/acme
https://github.com/google/flax
https://github.com/google/jax-md
https://github.com/deepchem/jaxchem

DeepMind

3. Generative
Models & GANs

Mihaela Rosca

o

Slide thanks to Jeff Donahue.

GAN intro

real data x ~ P*(x) D real or generated?

generator G generated data

G

O

Join the discussion on Twitter (#JAXecosystem)

GANSs - Gradients as first order citizens

for _ in range(num_disc_updates):
rng, rng_disc = jax.random.split(rng, 2)
discigrads - jax.grad(gan.disc_loss)(params.disc, params.gen, data_batch, rng_disc)
disc_update, disc_opt_state = .update(discigrads, opt_state.disc)

new_disc_params = optax.apply_updates(params.disc, disc_update)

for _ in range(num_gen_updates):
rng, rng_gen = jax.random.split(rng, 2)
gen_grads = jax.grad(gan.gen_loss)(params.gen, new_disc_params, data_batch, rng_gen)

gen_update, gen_opt_state = .update(genigrads, opt_state.gen) @

new_gen_params = optax.apply_updates(params.gen, gen_update)

Gradient as first order citizens - easy tracking

for _ in range(num_disc_updates):

rng, rng_disc = jax.random.split(rng, 2)

= jax.grad(gan.disc_loss)(params.disc, params.gen, data_batch, rng_disc)
disc_update,\ disc_opt_state = optimizers.disc.update(disc_grads, opt_state.disc)

new_disc_para = optax.apply_updates(params.disc, disc_update)

Direct access to gradients (not hidden inside the optimizer)!
Can easily track gradients at different layers, effect of regularizers on gradients, etc.

With haiku, disc_grads is a dictionary from module name to variables:

disc_grads= {

‘disc_net/layer1’: {‘w’': jnp.array(...)}, {‘b’: jnp.array(...)}, @
‘disc_net/layer2’: {‘w’': jnp.array(...)}, {‘b’: jnp.array(...)},

Having more control - easier to make the right decisions

def disc_loss(self, disc_params, gen_params, state, data_batch, rng):

samples, gen_state = self.sample(gen_params, state.gen, rng, data_batch.shape[0])

disc_inputs = jnp.concatenate((data_batch, samples), axis=9)
disc_outpus, disc_state = self.disc.apply(disc_params, state.disc, disc_inputs)

data_disc_output, samples_disc_output = jnp.split(disc_outpus, [data_batch.shape[0],], axis=90)

loss = cross_entropy_disc_loss(data_disc_output, samples_disc_output)
state = (disc_state, gen_state)

return loss, state

O

Mihaela Rosca Join the discussion on Twitter (#JAXecosystem)

Having more control - easier to make the right decisions

def disc_loss(self, disc_params, gen_params, state, data_batch, rng):

samples, _ = self.sample(gen_params, state.gen, rng, data_batch.shape[0])

disc_inputs = jnp.concatenate((data_batch, samples), axis=9)
disc_outpus, disc_state = self.disc.apply(disc_params, state.disc, disc_inputs)

data_disc_output, samples_disc_output = jnp.split(disc_outpus, [data_batch.shape[0],], axis=90)

loss = cross_entropy_disc_loss(data_disc_output, samples_disc_output)
state = (disc_state, state.gen)

return loss, state

O

Mihaela Rosca Join the discussion on Twitter (#JAXecosystem)

Functional approach makes code close to math

Reparametrization trick (GANs, VAEs, etc):

V@Epe(x)f(x) —]Ep(e)vef(QQ(e))v X = 4o (6)

def reparametrized_jacobians(function, params, dist_builder, rng, num_samples):
def surrogate(params):
dist = dist_builder(*params)

return jax.vmap(function)(dist.sample((num_samples,), seed=rng))

return jax.jacfwd(surrogate)(params)

S~

Bonus! Easily to get jacobians - grad for each batch element!

O

DeepMind

4, Meta-gradients

Junhyuk Oh (@junh_oh)

o

Discovering RL Algorithms (Oh et al., NeurIPS 2020)

Goal: Meta-learn a RL update rule from a distribution of agents and environments.

[Update rule (LPG) 7]]

A

Lifetime with environment &

Technical Challenges

e Parallel: Simulate independent learning agents, each of which is interacting with its own environment.

e Synchronous: Apply the same update rule (i.e., meta-learner) to all learning agents.
e Meta-gradient: Calculate meta-gradient over the update procedure.

e Scalability: Increase the number of learning agents without introducing extra cost.

Junhyuk Oh (@junh_oh) Join the discussion on Twitter (#JAXecosystem)

O

How did we implement?

[Step 1] Implement a single update rule / single agent / single JAX environment interactions.

Junhyuk Oh (@junh_oh)

[Update Rule }

A A

Agent }

SR

A A

[JAX Env }

Join the discussion on Twitter (#JAXecosystem)

O

How did we implement?

[Step 1] Implement a single update rule / single agent / single JAX environment interactions.

[Step 2] Add vmap to implement a single update rule / single agent / multi JAX environment interactions.

[Update Rule }

A A

Agent }

A A L

N)
\\\Q\o
JAX Env }

|
(

Junhyuk Oh (@junh_oh) Join the discussion on Twitter (#JAXecosystem)

How did we implement?

[Step 1] Implement a single update rule / single agent / single JAX environment interactions.

[Step 2] Add vmap to implement a single update rule / single agent / multi JAX environment interactions.

[Step 3] Add vmap to implement a single update rule / multi agent / multi JAX environment interactions.

[Update Rule }

=

. 2\,
\{[JAX Env \}\/

Junhyuk Oh (@junh_oh) Join the discussion on Twitter (#JAXecosystem)

A A

N

Agent

O

How did we implement?

[Step 1] Implement a single update rule / single agent / single JAX environment interactions.

[Step 2] Add vmap to implement a single update rule / single agent / multi JAX environment interactions.

[Step 3] Add vmap to implement a single update rule / multi agent / multi JAX environment interactions.

[Step 4] Add pmap to implement multiple copies of them across TPU cores with a shared update rule.

TPU core #1

TPU core #2

TPU core #3

TPU core #4

Update Rule

Update Rule

'f_%"

'f_%"

Update Rule

'f_%"

Junhyuk Oh (@junh_oh)

pmap

Join the discussion on Twitter (#JAXecosystem)

O

Pseudocode and Result

def inner_update(params, meta_params, rng, env_state):

def inner_loss(params, meta_params, rng, env_state):
Generate rollout and apply update rule.
rollout = jax.vmap(do_rollout, in_axes=(None, 0, 0))(
params, rng, env_state)
return jax.vmap(apply_update_rule, in_axes=(None, 0))(
meta_params, rollout)

Calulate gradient and update parameters.

g = jax.grad(inner_loss)(params, rollout, meta_out)
new_params = jax.tree_multimap(lambda p, g: p - g, params, @)
return new_params

def meta_grad(meta_params, params, rng, env_state):

def outer_loss(meta_params, params, rng, env_state):
new_params = jax.vmap(inner_update, in_axes=(0, None, 0, 0))(
params, meta_params, rng, env_state)
return jax.vmap(validate, in_axes=(0, None))(new_params, meta_params)

Calulate meta-gradient.
meta_g = jax.grad(outer_loss)(meta_params, params, rng, env_state)
return jax.lax.pmean(meta_g, ‘i’)

Using 16-core TPUv2
1K parallel learning agents
60K parallel environments
1 shared update rule

3M steps per second

Junhyuk Oh (@junh_oh) Join the discussion on Twitter (#JAXecosystem)

O

Summary

Goal: Meta-learn a RL update rule from a distribution of agents and environments.

40 4

[Update rule (LPG) 7]]

A

Lifetime with environment &£
é n : n - n) Learned Policy Gradient
i { = Evaluate

Technical Challenges

30 1

20 1

Games where agent > human

Training environments

e Parallel: Simulate independent learning agents, each of which is interacting with its own environment.
e Synchronous: Apply the same update rule (i.e., meta-learner) to all learning agents.
e Meta-gradient: Calculate meta-gradient over the update procedure.

e Scalability: Increase the number of learning agents without introducing extra cost.

— JAX + TPU helped address the above without requiring much engineering effort. @

DeepMind

5. Search

{Fabio Viola (@fabiointheuk), Theophane Weber(@theophaneweber)}

o

Shifting gears a bit: search and model-based RL in jax

So far, we have mostly looked at applications of Jax which leverage its gradient computation capabilities.
Is this all we can use Jax for?

Here we showcase another application where Jax enables fast research iteration:

\

act

update

observe

Monte-Carlo Tree Search in a model-based RL setting, as seen in alphazero/muzero
Challenges:

e Integration of control logic and neural network machinery (tricky to debug!)
e Scalability and parallelism

e Typical model-based RL issues around data (use of replay, synthetic data, use of data for policy vs model, etc)

O

Why implement a model/search-based RL

algorithm?

“Model-free algorithms are in turn far from

the state of the art in domains that

require precise and sophisticated

lookahead, such as chess and Go”
-Schrittwieser et al. (2019)

“By employing search, we can find strong
move sequences potentially far away
from the apprentice policy, accelerating
learning in complex scenarios”

-Anthony et al. (2017)

“...predictive models can enable a real
robot to manipulate previously unseen
objects and solve new tasks”

-Ebert et al. (2018)

{Fabio Viola (@fabiointheuk), Theophane Weber}

“Model-based planning is an essential
ingredient of human intelligence, enabling
flexible adaptation to new tasks and
goals”

-Lake et al. (2016)

“..a flexible and general strategy such as
mental simulation allows us to reason
about a wide range of scenarios, even
novel ones..”

-Hamrick (2017)

“.[models] enable better

across states, remain valid across tasks in

the same environment, and exploit

additional unsupervised learning signals...”
-Weber et al. (2017)

Join the discussion on Twitter (#JAXecosystem)

O

Abraham (2020). The Cambridge Handbook of the Imagination. Laskin, Emmons, Jain, Kurutach, Abbeel, & Pathak (2020). Sparse Graphical Memory for Robust Planning. arXiv.

Agostinelli et al. (2019). Solving the Rubik's Cube with Deep Reinforcement Learning and Search NMI. Levine, Wagener, & Abbeel (2015). Learning Contact-Rich Manipulation Skills with Guided Pollcy Search. ICRA 2015.
Allen et al. (2019). The tools challenge: Rapid trial-and-error learning in physical problem SO a Levine et al (2020). Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Op i
Amos et al (2018)4 r End-to-end Planning and Control. NeurlP Lin et al (2020). Model-| —Relnforcement Learning. aerv

Amos et al Entropy Method. arXiv. Lowrey et al. (2019) 8

Anthony \th Deep Learning and Tree Lu, Mordatch, & 3
Bellem oration and intrinsic my

Buesj nerative Models fq

Bur; composition al

By, - \019.

Cl ent environ
imization

rcement le

brcement Ld
Di chastic dy
D ed Models.
Du - tigating human
Eber: ed deep RL for vis
Ecoffe or hard-exploration pi
Edwards, ackward Reinforcement Led
Ellis et al. (2 gram Synthesis with a REPL. Neur . ¥ self-supervised prediction. ICM
Eysenbach, Salal 9). Search on the replay buffer: Bridging P . Peters, Mulling, & Altun olicy Search. AAAI 2010.
Farquhar et al (2017). TreeQN and ATreeC: Differentiable Tree-Structured Models for Deep RL. R 2018. Rajeswaran et al. (2017). EPOpt: rning Robust Neural Network Policies Using Model Ensembles. ICLR 2017.
Fazeli et al. (2019). See, feel, act: Hierarchical learning for complex manipulation skills with multisensory fusion. Rajeswaran et al. (2020). A Game Theoretic Framework for Model Based Reinforcement Learning. arXiv.
Science Robotics, 4(26). Sadigh et al. (2016). Planning for autonomous cars that leverage effects on human actions. RSS 2016.
Finn & Levine (2017). Deep visual foresight for planning robot motion. ICRA. Sanchez-Gonzalez et al. (2018). Graph Networks as Learnable Physics Engines for Inference and Control. ICML 2018.
Finn, Goodfellow, & Levine (2016). Unsupervised learning for physical interaction through wdeo prediction. NeurlPS. Savinov, Dosovitskiy, & Koltun (2018) Semi-parametric topological memory for navigation. ICLR 2018.

Framework for Learning-Based Control in Uncertai Schrittwieser et al. (2019). Maste i Go, Chess and Shogi by planning with a learned moda
Segler, Preuss, & Waller,) Bea| syntheses with deep neural networks,

Sharma et al. (202Q . d Discovery of Skills. ICLR.

Shen et al. (2019 L As using Monte Carlo Tree

gold, Reichert, Rabinoy

Fisac et aI (2019). A stems. IEEE

jan neural network dynamics mg
larized policy optlml

al networks ang

amework for Goal-Directed

Kidambi et al (2029 Based Offline Reinforcement Learning. arXiv. 11 Jbject Propertles by Integrating a Physics Eng
Konidaris, Kaelbling, & Lozano-Pérez (2018). From Skills to Symbols: Learning Symbolic Representations for Abstract Yuetal (2020) MOPO Model based Offline Policy Optimization. arXiv.
High-Level Planning. JAIR. Zhang, Lerer, et al. (2018). Composable Planning with Attributes. ICML 2018.
Kurutach et al. (2018). Learning Plannable Representations with Causal InfoGAN. NeurlPS.

MuZero (Schrittwieser et al., 2019)
Shogi Go

glulslz|Eelwnle|
3 21 ; ; .
5| |0 | | | o e (| i
|
i ik
&R & | E | &R E H
5000 4 1 5000 A
4000 - 1 1 4000 1
3000 1 1 1 2 3000 1
(o] ©
W 3
2000 1 ; 1 & 2000 1
1000 1 1 1 1000 4

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 1.0
Millions of Training Steps Millions of Training Steps Millions of Training Steps Millions of Training Steps

{Fabio Viola (@fabiointheuk), Theophane Weber (@theophaneweber)} Join the discussion on Twitter (#JAXecosystem)

Neural-network guided MCTS in muzero

Neurally-guided MCTS:

1. Traverse tree using chosen heuristic
In (alpha/mu)-zero, we use PUCT,
which picks nodes with highest
score, where the score combines
policy prior, action values, and
exploration bonus (derived from visit
counts)

O

{Fabio Viola (@fabiointheuk), Theophane Weber (@theophaneweber)} Join the discussion on Twitter (#JAXecosystem)

Neural-network guided MCTS in muzero

Neurally-guided MCTS:

1. Traverse tree using chosen heuristic
In (alpha/mu)-zero, we use PUCT,
which picks nodes with highest
score, where the score combines
policy prior, action values, and
exploration bonus (derived from visit
counts)

O

{Fabio Viola (@fabiointheuk), Theophane Weber (@theophaneweber)} Join the discussion on Twitter (#JAXecosystem)

Neural-network guided MCTS in muzero

Neurally-guided MCTS:

1. Traverse tree using chosen heuristic
In (alpha/mu)-zero, we use PUCT,
which picks nodes with highest
score, where the score combines
policy prior, action values, and
exploration bonus (derived from visit
counts)

O

{Fabio Viola (@fabiointheuk), Theophane Weber (@theophaneweber)} Join the discussion on Twitter (#JAXecosystem)

Neural-network guided MCTS in muzero

Neurally-guided MCTS:

1. Traverse tree using chosen heuristic
In (alpha/mu)-zero, we use PUCT,
which picks nodes with highest
score, where the score combines
policy prior, action values, and
exploration bonus (derived from visit
counts)

O

{Fabio Viola (@fabiointheuk), Theophane Weber (@theophaneweber)} Join the discussion on Twitter (#JAXecosystem)

Neural-network guided MCTS in muzero

Neurally-guided MCTS:

1. Traverse tree using chosen heuristic
In (alpha/mu)-zero, we use PUCT,
which picks nodes with highest
score, where the score combines
policy prior, action values, and
exploration bonus (derived from visit
counts)

2. Expand node:

a. Compute state transition, state
value, and policy prior by
calling model (neural network)

b. Add node to tree

O

{Fabio Viola (@fabiointheuk), Theophane Weber (@theophaneweber)} Join the discussion on Twitter (#JAXecosystem)

Neural-network guided MCTS in muzero

Neurally-guided MCTS:

1. Traverse tree using chosen heuristic
In (alpha/mu)-zero, we use PUCT,
which picks nodes with highest
score, where the score combines
policy prior, action values, and
exploration bonus (derived from visit
counts)

2. Expand node:

a. Compute state transition, state
value, and policy prior by
calling model (neural network)

b. Add node to tree

3. Backward step: propagate
information from new leaf node to aI@

ancestors in tree
{Fabio Viola (@fabiointheuk), Theophane Weber (@theophaneweber)} Join the discussion on Twitter (#JAXecosystem)

Why is implementing efficient MCTS a
challenging task?

e Some researchers don't want to use C++ day-to-day, and prefer higher
level languages, like python

e Performing MCTS in batch in plain python can be slow

e Furthermore, vanilla MCTS is a essentially a sequential algorithm - each
sim depends on the results of the previous sims - putting further
constraints on how to parallelize computation*

One possible approach:

® Rely onjust in time compilation to bridge the gap between interpreted and
compiled languages - well aligned with the programming paradigm of JAX!

{Fabio Viola (@fabiointheuk), Theophane Weber (@theophaneweber)} Join the discussion on Twitter (#JAXecosystem)

O

Why implementing search in JAX?

Expected advantages:

Still performant once jitted and applied to batched data
Save costs of moving data in and out of the accelerators
Allows to easily jit and batch both acting and learning of RL agents

Easiness to write and modify search components*

o it's just JAX numpy

o write for single batch element, use vmap to vectorize

o nice to be able to inspect your algorithm with python workflow
e Potentially differentiable all the way through

O

*mileage may vary

Private & Confidential

Why implementing search in JAX?

Expected disadvantages:

e Likely less efficient if no batches (e.g. if deploying a trained RL agent in a single
environment setup)

e Use some of the accelerator compute and memory is used for the search
(rather than just reserving all of it for inference)

e Search depth limited by accelerator memory

e Performance of concurrently running multiple searches will be constrained by
slowest instance

o

*mileage may vary

Code snippets: search

def search(self, params, rng_key, root, num_simulations, discount):

def body_fun(sim, loop_state):
rng_key, params, tree = loop_state
rng_key, simulate_key, expand_key = jax.random.split(rng_key, 3)
leaf_indices, unexplored_actions = simulate(
simulate_key, tree, self._action_selection_fn, self._max_depth)
leaf_index = sim + 1
tree = expand(
params, expand_key, tree, self._recurrent_fn, leaf_indices,
unexplored_actions, leaf_index)
tree = backward(tree, leaf_index)
loop_state = rng_key, params, tree
return loop_state

rng_key, _, tree = jax.lax.fori_loop(
0, num_simulations, body_fun, (rng_key, params, tree))

return tree.search_result()

{Fabio Viola (@fabiointheuk), Theophane Weber (@theophaneweber)} Join the discussion on Twitter (#JAXecosystem)

O

Code snippet: node expansion

def expand(
params, rng_key, tree, recurrent_fn, node_indices, actions, next node_index):

embeddings = tree.embeddings[tree.batch_range, node_indices]
step, embeddings = recurrent_fn(params, rng_key, actions, embeddings)
tree = update_node(

tree, next_node_index, step.prior_probs, step.values, embeddings)

O

{Fabio Viola (@fabiointheuk), Theophane Weber (@theophaneweber)} Join the discussion on Twitter (#JAXecosystem)

DeepMind

6. Questions &
Debate

o

DeepMind

A/

Thank you!

Please make sure to share your
JAX projects on social media
using the hashtag:

O

