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1. Why JAX?
Matteo Hessel (@matteohessel)



What is JAX?

JAX is a Python library designed for high-performance numerical computing

Among its key ingredients it supports:

● Differentiation: 
○ Forward and reverse mode automatic differentiation of arbitrary numerical functions, 
○ E.g:  , ,  and .

● Vectorisation: 
○ SIMD programming via automatic vectorisation,
○ E.g:  , .

● JIT-compilation: 
○ XLA is used to just-in-time (JIT)-compile and execute JAX programs,
○ faster CPU code, and transparent GPU and Cloud TPU acceleration..
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What is JAX?

All these are implemented as composable program transformations
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What is JAX?

All these are implemented as composable program transformations

Consider a numerical function:

def fn(x,y):
  return x**2 + y
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What is JAX?

All these are implemented as composable program transformations

Consider a numerical function:

def fn(x,y):
  return x**2 + y

The value   fn  is evaluated like any python function

fn(1., 2.)  # (1**2 + 2) = 3
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What is JAX?

All these are implemented as composable program transformations

Consider a numerical function:

def fn(x,y):
  return x**2 + y

The gradient   df_dx = grad(fn)  is also a function

df_dx(1., 2.)  # df_dx = 2*x = 2*1 = 2
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What is JAX?

All these are implemented as composable program transformations

Consider a numerical function:

def fn(x,y):
  return x**2 + y

The second-order gradient   df2_dx = grad(grad(fn))  is also a function

df2_dx(1., 2.)  # df2_dx = d(2*x)_dx = 2
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What is JAX?

All these are implemented as composable program transformations

Consider a numerical function:

def fn(x,y):
  return x**2 + y

The compiled second-order gradient   df2_dx = jit(grad(grad(fn)))  is also a function

df2_dx(1., 2.)  # 2, also traces the code and compiles it
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What is JAX?

All these are implemented as composable program transformations

Consider a numerical function:

def fn(x,y):
  return x**2 + y

The compiled second-order gradient   df2_dx = jit(grad(grad(fn)))  is also a function

df2_dx(1., 2.)  # 2, also traces the code and compiles it

df2_dx(1., 2.)  # 2, executes the XLA pre-compiled code

But a much faster one after the first execution :)
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What is JAX?

All these are implemented as composable program transformations

Consider a numerical function:

def fn(x,y):
  return x**2 + y

The batched compiled second-order gradient   df2_dx = vmap(jit(grad(grad(fn))))  is also a function

xs = jnp.ones((batch_size,))

df2_dx(xs, 2 * xs)  # [2, 2], if batch_size=2
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What is JAX?

All these are implemented as composable program transformations

Consider a numerical function:

def fn(x,y):
  return x**2 + y

So is its multi-gpu batched compiled second-order gradient   df2_dx = pmap(vmap(jit(grad(grad(fn)))))

xs = jnp.ones((num_gpus, batch_size,))

df2_dx(xs, 2 * xs)  # [[2, 2], [2, 2]], if batch_size=2 and num_gpus=2
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Why JAX?

JAX is simple but very flexible

● API for numerical functions is fully consistent with NumPy,

● Both Python and NumPy are widely used and familiar,

● Few abstractions (grad, jit, vmap, pmap) but powerful and composable! 

● The functional programming style helps writing code that “looks like the math”

● Not a vertically integrated but with a rich ecosystem and community around it

● Battle tested extensively in the past year on projects ranging from Optimisation, SL, GANs, RL, …
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2. Our JAX 
Ecosystem
David Budden (@davidmbudden)



Why an Ecosystem?

DeepMind Researchers have had great initial success with JAX

● How can we continue to support and accelerate their work?

Considerations

● JAX is not a vertically integrated ML framework (this is a good thing!)
● Needs to support rapidly evolving DeepMind Research requirements
● Where possible, strive for consistency + compatibility with

○ Our TF ecosystem (Sonnet, TRFL, ...)
○ Our research frameworks (Acme, ...)

DeepMind JAX Ecosystem

● Libraries of reusable and un-opinionated JAX components
● Each library does one thing well and supports incremental buy-in
● Open source everything to enable research sharing + reproducibility
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Haiku

Haiku is a tool
For building neural networks
Think: "Sonnet for JAX"

Motivation

● JAX programs are functional

● NN params/state better fit the OO paradigm

Haiku (github.com/deepmind/dm-haiku)

● Converts stateful modules to pure functions

● API-matches Sonnet, porting from TF is trivial

○ Have reproduced AlphaGo, AlphaStar, AlphaFold, ...

● Mature API and widely adopted

import jax
import haiku as hk

@hk.transform
def loss_fn(images, labels):
  model = hk.nets.MLP([1000, 100, 10])
  logits = model(images)
  labels = one_hot(labels, 1000)
  return losses.softmax_cross_entropy(logits, labels)

images, labels = next(dataset)
params = loss_fn.init(rng_key, images, labels)
loss = loss_fn.apply(params, images, labels)
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Optax

The artist formerly known as jax.experimental.optix

Motivation

● Gradient processing is fundamental to ML Research

● Like NNs, optimizers are stateful

Optax (github.com/deepmind/optax)

● Gradient processing and optimization library

● Comprehensive library of popular optimizers

● Simplifies gradient-based updates of NN params

○ Compatible with all popular JAX NN libraries

● Mature API and widely adopted

import jax
import optax

params = ... // a JAX tree

opt = optax.adam(learning_rate=1e-4)
state = opt.init(params)

@jax.jit
def step(state, params, data):
  dloss_dparams = jax.grad(loss_fn)(*data)
  updates, state = opt.update(dloss_dparams, state)
  params = optax.apply_updates(params, updates)
  return state, params

for data in dataset:
  state, params = step(state, params, data)
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RLax

"RLax is the best RL textbook I've read!" 
- Anonymous

Motivation

● Reinforcement Learning is hard, getting it wrong is easy

● Want a common substrate for sharing new ideas

RLax (github.com/deepmind/rlax)

● Library of mathematical operations related to RL

● Emphasis on readability

● Building blocks rather than complete algorithms

○ But, lots of full agent examples available

● Widely adopted for RL research

import jax 
import optax
import rlax

def loss_fn(params, o_tm1, a_tm1, r_t, d_t, o_t):
  q_tm1 = network.apply(params, o_tm1)
  q_t = network.apply(params, o_t)
  td_error = rlax.q_learning(q_tm1, a_tm1, r_t, d_t, q_t)
  return rlax.l2_loss(td_error)

@jax.jit
def learn(state, params, transition):
  dloss_dparams = jax.grad(loss_fn)(*transition)
  updates, state = opt.update(dloss_dparams, state)
  params = optax.apply_updates(params, updates)
  return state, params
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Our ecosystem is evolving rapidly

● Graph neural networks (github.com/deepmind/jraph)
● Testing & reliability (github.com/deepmind/chex) 
● ... plus others coming soon!

Checkout examples using DeepMind’s JAX ecosystem

● Supervised Learning (github.com/deepmind/jaxline)
● Reinforcement learning (github.com/deepmind/acme)

Others are also building great stuff with JAX

● Neural Networks (github.com/google/flax)
● Molecular Dynamics (github.com/google/jax-md)
● Chemical Modelling (github.com/deepchem/jaxchem)

The Future
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3. Generative 
Models & GANs
Mihaela Rosca



GAN intro

G(z)

generated data
G(z)

generator G

  G

real data x ~ P*(x)   D real or generated?

Join the discussion on Twitter (#JAXecosystem)
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GANs - Gradients as first order citizens 

    for _ in range(num_disc_updates):

      rng, rng_disc = jax.random.split(rng, 2)

      disc_grads = jax.grad(gan.disc_loss)(params.disc,   params.gen, data_batch, rng_disc)

      disc_update, disc_opt_state = optimizers.disc.update(disc_grads, opt_state.disc)

      new_disc_params = optax.apply_updates(params.disc, disc_update)

  for _ in range(num_gen_updates):

      rng, rng_gen = jax.random.split(rng, 2)

      gen_grads = jax.grad(gan.gen_loss)(params.gen, new_disc_params, data_batch, rng_gen)

      gen_update, gen_opt_state = optimizers.gen.update(gen_grads, opt_state.gen)

      new_gen_params = optax.apply_updates(params.gen, gen_update)



Gradient as first order citizens - easy tracking 

Direct access to gradients (not hidden inside the optimizer)!
 Can easily track gradients at different layers, effect of regularizers on gradients, etc.

With haiku, disc_grads is a dictionary from module name to variables:
disc_grads=  {

‘disc_net/layer1’: {‘w’: jnp.array(...)}, {‘b’: jnp.array(...)},

     ‘disc_net/layer2’: {‘w’: jnp.array(...)}, {‘b’: jnp.array(...)},

    for _ in range(num_disc_updates):

      rng, rng_disc = jax.random.split(rng, 2)

      disc_grads = jax.grad(gan.disc_loss)(params.disc, params.gen, data_batch, rng_disc)

      disc_update, disc_opt_state = optimizers.disc.update(disc_grads, opt_state.disc)

      new_disc_params = optax.apply_updates(params.disc, disc_update)



Having more control - easier to make the right decisions

def disc_loss(self, disc_params, gen_params, state, data_batch, rng):

  samples, gen_state = self.sample(gen_params, state.gen, rng, data_batch.shape[0])

  disc_inputs = jnp.concatenate((data_batch, samples), axis=0)

  disc_outpus, disc_state = self.disc.apply(disc_params, state.disc, disc_inputs)

  data_disc_output, samples_disc_output = jnp.split(disc_outpus, [data_batch.shape[0],], axis=0)

    

  loss = cross_entropy_disc_loss(data_disc_output, samples_disc_output)

  state = (disc_state, gen_state)

  return loss, state
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Having more control - easier to make the right decisions

 def disc_loss(self, disc_params, gen_params, state, data_batch, rng):

  samples, _ = self.sample(gen_params, state.gen, rng, data_batch.shape[0])

  disc_inputs = jnp.concatenate((data_batch, samples), axis=0)

  disc_outpus, disc_state = self.disc.apply(disc_params, state.disc, disc_inputs)

  data_disc_output, samples_disc_output = jnp.split(disc_outpus, [data_batch.shape[0],], axis=0)

    

  loss = cross_entropy_disc_loss(data_disc_output, samples_disc_output)

  state = (disc_state, state.gen)

  return loss, state
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Functional approach makes code close to math

Reparametrization trick (GANs, VAEs, etc):

def reparametrized_jacobians(function, params, dist_builder, rng, num_samples):

  def surrogate(params):

    dist = dist_builder(*params)

    return jax.vmap(function)(dist.sample((num_samples,), seed=rng))

  return jax.jacfwd(surrogate)(params)

Bonus! Easily to get jacobians - grad for each batch element!



4. Meta-gradients
Junhyuk Oh (@junh_oh)



Discovering RL Algorithms (Oh et al., NeurIPS 2020)

Goal: Meta-learn a RL update rule from a distribution of agents and environments.

● Parallel: Simulate independent learning agents, each of which is interacting with its own environment.

● Synchronous: Apply the same update rule (i.e., meta-learner) to all learning agents.

● Meta-gradient: Calculate meta-gradient over the update procedure.

● Scalability: Increase the number of learning agents without introducing extra cost.

Junhyuk Oh (@junh_oh) Join the discussion on Twitter (#JAXecosystem)

Technical Challenges



How did we implement?

Agent

JAX Env

Update Rule

[Step 1] Implement a single update rule / single agent / single JAX environment interactions.

Junhyuk Oh (@junh_oh) Join the discussion on Twitter (#JAXecosystem)



How did we implement?

Agent

Env

Update Rule

[Step 1] Implement a single update rule / single agent / single JAX environment interactions.

[Step 2] Add vmap to implement a single update rule / single agent / multi JAX environment interactions.

EnvEnvJAX Env

vmap
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How did we implement?

Update Rule

[Step 1] Implement a single update rule / single agent / single JAX environment interactions.

[Step 2] Add vmap to implement a single update rule / single agent / multi JAX environment interactions.

[Step 3] Add vmap to implement a single update rule / multi agent / multi JAX environment interactions.

Agent

EnvEnvEnvEnv

vmap

Agent

EnvEnvEnvEnv

vmap

Agent

EnvEnvEnvEnv

vmap

Agent

EnvEnvEnvJAX Env

vmap

vmap
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How did we implement?

[Step 1] Implement a single update rule / single agent / single JAX environment interactions.

[Step 2] Add vmap to implement a single update rule / single agent / multi JAX environment interactions.

[Step 3] Add vmap to implement a single update rule / multi agent / multi JAX environment interactions.

[Step 4] Add pmap to implement multiple copies of them across TPU cores with a shared update rule.

Update Rule
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EnvEnvEnvJAX Env

vmap

vmap
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Agent

EnvEnvEnvJAX Env
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vmap
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vmap

Update Rule

Agent

EnvEnvEnvEnv
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EnvEnvEnvEnv
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Agent

EnvEnvEnvJAX Env

vmap

vmap

pmap

TPU core #1 TPU core #2 TPU core #3 TPU core #4
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Pseudocode and Result

def inner_update(params, meta_params, rng, env_state):

  def inner_loss(params, meta_params, rng, env_state):
    # Generate rollout and apply update rule.
    rollout = jax.vmap(do_rollout, in_axes=(None, 0, 0))(
        params, rng, env_state)
    return jax.vmap(apply_update_rule, in_axes=(None, 0))(
        meta_params, rollout)

  # Calulate gradient and update parameters.
  g = jax.grad(inner_loss)(params, rollout, meta_out)
  new_params = jax.tree_multimap(lambda p, g: p - g, params, g)
  return new_params

def meta_grad(meta_params, params, rng, env_state):

  def outer_loss(meta_params, params, rng, env_state):
    new_params = jax.vmap(inner_update, in_axes=(0, None, 0, 0))(
        params, meta_params, rng, env_state)
    return jax.vmap(validate, in_axes=(0, None))(new_params, meta_params)

  # Calulate meta-gradient.
  meta_g = jax.grad(outer_loss)(meta_params, params, rng, env_state)
  return jax.lax.pmean(meta_g, ‘i’)

Using 16-core TPUv2

1K parallel learning agents

60K parallel environments

1 shared update rule

3M steps per second
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Summary

Goal: Meta-learn a RL update rule from a distribution of agents and environments.

Technical Challenges

● Parallel: Simulate independent learning agents, each of which is interacting with its own environment.

● Synchronous: Apply the same update rule (i.e., meta-learner) to all learning agents.

● Meta-gradient: Calculate meta-gradient over the update procedure.

● Scalability: Increase the number of learning agents without introducing extra cost.

→ JAX + TPU helped address the above without requiring much engineering effort. 



5. Search
{Fabio Viola (@fabiointheuk), Theophane Weber(@theophaneweber)}



So far,  we have mostly looked at applications of Jax which leverage its gradient computation capabilities.

Is this all we can use Jax for?

Here we showcase another application where Jax enables fast research iteration: 

Monte-Carlo Tree Search in a model-based RL setting, as seen in alphazero/muzero

Challenges:

● Integration of control logic and neural network machinery (tricky to debug!)

● Scalability and parallelism

● Typical model-based RL issues around data (use of replay, synthetic data, use of data for policy vs model, etc)

Shifting gears a bit: search and model-based RL in jax



Why implement a model/search-based RL 
algorithm?

“Model-based planning is an essential 
ingredient of human intelligence, enabling 
flexible adaptation to new tasks and 
goals”

-Lake et al. (2016)

“...a flexible and general strategy such as 
mental simulation allows us to reason 
about a wide range of scenarios, even 
novel ones...”

-Hamrick (2017)

“Model-free algorithms are in turn far from 
the state of the art in domains that 
require precise and sophisticated 
lookahead, such as chess and Go”

-Schrittwieser et al. (2019)

“By employing search, we can find strong 
move sequences potentially far away 
from the apprentice policy, accelerating 
learning in complex scenarios”

-Anthony et al. (2017)

“...[models] enable better generalization 
across states, remain valid across tasks in 
the same environment, and exploit 
additional unsupervised learning signals...”

-Weber et al. (2017)

“....predictive models can enable a real 
robot to manipulate previously unseen 
objects and solve new tasks”

-Ebert et al. (2018)

{Fabio Viola (@fabiointheuk), Theophane Weber} Join the discussion on Twitter (#JAXecosystem)
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MuZero (Schrittwieser et al., 2019)
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Neural-network guided MCTS in muzero

Neurally-guided MCTS:

1. Traverse tree using chosen heuristic
In (alpha/mu)-zero, we use PUCT, 
which picks nodes with highest 
score, where the score combines 
policy prior, action values, and 
exploration bonus (derived from visit 
counts)
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Neural-network guided MCTS in muzero

Neurally-guided MCTS:

1. Traverse tree using chosen heuristic
In (alpha/mu)-zero, we use PUCT, 
which picks nodes with highest 
score, where the score combines 
policy prior, action values, and 
exploration bonus (derived from visit 
counts)

2. Expand node:
a. Compute state transition, state 

value, and policy prior by 
calling model (neural network)

b. Add node to tree
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Neural-network guided MCTS in muzero

Neurally-guided MCTS:

1. Traverse tree using chosen heuristic
In (alpha/mu)-zero, we use PUCT, 
which picks nodes with highest 
score, where the score combines 
policy prior, action values, and 
exploration bonus (derived from visit 
counts)

2. Expand node:
a. Compute state transition, state 

value, and policy prior by 
calling model (neural network)

b. Add node to tree
3. Backward step: propagate 

information from new leaf node to all 
ancestors in tree
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Why is implementing efficient MCTS a 
challenging task? 

● Some researchers don't want to use C++ day-to-day, and prefer higher 
level languages, like python

● Performing MCTS in batch in plain python can be slow

● Furthermore, vanilla MCTS is a essentially a sequential algorithm - each 
sim depends on the results of the previous sims - putting further 
constraints on how to parallelize computation*

One possible approach:

● Rely on just in time compilation to bridge the gap between interpreted and 

compiled languages - well aligned with the programming paradigm of JAX!
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Private & ConfidentialWhy implementing search in JAX?

Expected advantages:

● Still performant once jitted and applied to batched data
● Save costs of moving data in and out of the accelerators
● Allows to easily jit and batch both acting and learning of RL agents
● Easiness to write and modify search components*

○ it’s just JAX numpy
○ write for single batch element, use vmap to vectorize
○ nice to be able to inspect your algorithm with python workflow

● Potentially differentiable all the way through 

*mileage may vary



Private & ConfidentialWhy implementing search in JAX?

Expected disadvantages:

● Likely less efficient if no batches (e.g. if deploying a trained RL agent in a single 
environment setup)

● Use some of the accelerator compute and memory is used for the search 
(rather than just reserving all of it for inference)

● Search depth limited by accelerator memory
● Performance of concurrently running multiple searches will be constrained by 

slowest instance

*mileage may vary



Code snippets: search
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Code snippet: node expansion
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6. Questions & 
Debate



Please make sure to share your 
JAX projects on social media 
using the hashtag:

#JAXecosystem

Thank you! 🙌


