
JAX at
DeepMind
NeurIPS 2020

Matteo Hessel, David Budden, Mihaela Rosca, Junhyuk Oh,
Fabio Viola, Theophane Weber, Paige Bailey

1. Why JAX?
Matteo Hessel (@matteohessel)

What is JAX?

JAX is a Python library designed for high-performance numerical computing

Among its key ingredients it supports:

● Differentiation:
○ Forward and reverse mode automatic differentiation of arbitrary numerical functions,
○ E.g: , , and .

● Vectorisation:
○ SIMD programming via automatic vectorisation,
○ E.g: , .

● JIT-compilation:
○ XLA is used to just-in-time (JIT)-compile and execute JAX programs,
○ faster CPU code, and transparent GPU and Cloud TPU acceleration..

Matteo Hessel (@matteohessel) Join the discussion on Twitter (#JAXecosystem)

What is JAX?

All these are implemented as composable program transformations

Matteo Hessel (@matteohessel) Join the discussion on Twitter (#JAXecosystem)

What is JAX?

All these are implemented as composable program transformations

Consider a numerical function:

def fn(x,y):
 return x**2 + y

Matteo Hessel (@matteohessel) Join the discussion on Twitter (#JAXecosystem)

What is JAX?

All these are implemented as composable program transformations

Consider a numerical function:

def fn(x,y):
 return x**2 + y

The value fn is evaluated like any python function

fn(1., 2.) # (1**2 + 2) = 3

Matteo Hessel (@matteohessel) Join the discussion on Twitter (#JAXecosystem)

What is JAX?

All these are implemented as composable program transformations

Consider a numerical function:

def fn(x,y):
 return x**2 + y

The gradient df_dx = grad(fn) is also a function

df_dx(1., 2.) # df_dx = 2*x = 2*1 = 2

Matteo Hessel (@matteohessel) Join the discussion on Twitter (#JAXecosystem)

What is JAX?

All these are implemented as composable program transformations

Consider a numerical function:

def fn(x,y):
 return x**2 + y

The second-order gradient df2_dx = grad(grad(fn)) is also a function

df2_dx(1., 2.) # df2_dx = d(2*x)_dx = 2

Matteo Hessel (@matteohessel) Join the discussion on Twitter (#JAXecosystem)

What is JAX?

All these are implemented as composable program transformations

Consider a numerical function:

def fn(x,y):
 return x**2 + y

The compiled second-order gradient df2_dx = jit(grad(grad(fn))) is also a function

df2_dx(1., 2.) # 2, also traces the code and compiles it

Matteo Hessel (@matteohessel) Join the discussion on Twitter (#JAXecosystem)

What is JAX?

All these are implemented as composable program transformations

Consider a numerical function:

def fn(x,y):
 return x**2 + y

The compiled second-order gradient df2_dx = jit(grad(grad(fn))) is also a function

df2_dx(1., 2.) # 2, also traces the code and compiles it

df2_dx(1., 2.) # 2, executes the XLA pre-compiled code

But a much faster one after the first execution :)

Matteo Hessel (@matteohessel) Join the discussion on Twitter (#JAXecosystem)

What is JAX?

All these are implemented as composable program transformations

Consider a numerical function:

def fn(x,y):
 return x**2 + y

The batched compiled second-order gradient df2_dx = vmap(jit(grad(grad(fn)))) is also a function

xs = jnp.ones((batch_size,))

df2_dx(xs, 2 * xs) # [2, 2], if batch_size=2

Matteo Hessel (@matteohessel) Join the discussion on Twitter (#JAXecosystem)

What is JAX?

All these are implemented as composable program transformations

Consider a numerical function:

def fn(x,y):
 return x**2 + y

So is its multi-gpu batched compiled second-order gradient df2_dx = pmap(vmap(jit(grad(grad(fn)))))

xs = jnp.ones((num_gpus, batch_size,))

df2_dx(xs, 2 * xs) # [[2, 2], [2, 2]], if batch_size=2 and num_gpus=2

Matteo Hessel (@matteohessel) Join the discussion on Twitter (#JAXecosystem)

Why JAX?

JAX is simple but very flexible

● API for numerical functions is fully consistent with NumPy,

● Both Python and NumPy are widely used and familiar,

● Few abstractions (grad, jit, vmap, pmap) but powerful and composable!

● The functional programming style helps writing code that “looks like the math”

● Not a vertically integrated but with a rich ecosystem and community around it

● Battle tested extensively in the past year on projects ranging from Optimisation, SL, GANs, RL, …

Matteo Hessel (@matteohessel) Join the discussion on Twitter (#JAXecosystem)

2. Our JAX
Ecosystem
David Budden (@davidmbudden)

Why an Ecosystem?

DeepMind Researchers have had great initial success with JAX

● How can we continue to support and accelerate their work?

Considerations

● JAX is not a vertically integrated ML framework (this is a good thing!)
● Needs to support rapidly evolving DeepMind Research requirements
● Where possible, strive for consistency + compatibility with

○ Our TF ecosystem (Sonnet, TRFL, ...)
○ Our research frameworks (Acme, ...)

DeepMind JAX Ecosystem

● Libraries of reusable and un-opinionated JAX components
● Each library does one thing well and supports incremental buy-in
● Open source everything to enable research sharing + reproducibility

David Budden (@davidmbudden) Join the discussion on Twitter (#JAXecosystem)

Haiku

Haiku is a tool
For building neural networks
Think: "Sonnet for JAX"

Motivation

● JAX programs are functional

● NN params/state better fit the OO paradigm

Haiku (github.com/deepmind/dm-haiku)

● Converts stateful modules to pure functions

● API-matches Sonnet, porting from TF is trivial

○ Have reproduced AlphaGo, AlphaStar, AlphaFold, ...

● Mature API and widely adopted

import jax
import haiku as hk

@hk.transform
def loss_fn(images, labels):
 model = hk.nets.MLP([1000, 100, 10])
 logits = model(images)
 labels = one_hot(labels, 1000)
 return losses.softmax_cross_entropy(logits, labels)

images, labels = next(dataset)
params = loss_fn.init(rng_key, images, labels)
loss = loss_fn.apply(params, images, labels)

David Budden (@davidmbudden) Join the discussion on Twitter (#JAXecosystem)

http://github.com/deepmind/dm-haiku

Optax

The artist formerly known as jax.experimental.optix

Motivation

● Gradient processing is fundamental to ML Research

● Like NNs, optimizers are stateful

Optax (github.com/deepmind/optax)

● Gradient processing and optimization library

● Comprehensive library of popular optimizers

● Simplifies gradient-based updates of NN params

○ Compatible with all popular JAX NN libraries

● Mature API and widely adopted

import jax
import optax

params = ... // a JAX tree

opt = optax.adam(learning_rate=1e-4)
state = opt.init(params)

@jax.jit
def step(state, params, data):
 dloss_dparams = jax.grad(loss_fn)(*data)
 updates, state = opt.update(dloss_dparams, state)
 params = optax.apply_updates(params, updates)
 return state, params

for data in dataset:
 state, params = step(state, params, data)

David Budden (@davidmbudden) Join the discussion on Twitter (#JAXecosystem)

https://github.com/deepmind/optax

RLax

"RLax is the best RL textbook I've read!"
- Anonymous

Motivation

● Reinforcement Learning is hard, getting it wrong is easy

● Want a common substrate for sharing new ideas

RLax (github.com/deepmind/rlax)

● Library of mathematical operations related to RL

● Emphasis on readability

● Building blocks rather than complete algorithms

○ But, lots of full agent examples available

● Widely adopted for RL research

import jax
import optax
import rlax

def loss_fn(params, o_tm1, a_tm1, r_t, d_t, o_t):
 q_tm1 = network.apply(params, o_tm1)
 q_t = network.apply(params, o_t)
 td_error = rlax.q_learning(q_tm1, a_tm1, r_t, d_t, q_t)
 return rlax.l2_loss(td_error)

@jax.jit
def learn(state, params, transition):
 dloss_dparams = jax.grad(loss_fn)(*transition)
 updates, state = opt.update(dloss_dparams, state)
 params = optax.apply_updates(params, updates)
 return state, params

David Budden (@davidmbudden) Join the discussion on Twitter (#JAXecosystem)

http://github.com/deepmind/rlax

Our ecosystem is evolving rapidly

● Graph neural networks (github.com/deepmind/jraph)
● Testing & reliability (github.com/deepmind/chex)
● ... plus others coming soon!

Checkout examples using DeepMind’s JAX ecosystem

● Supervised Learning (github.com/deepmind/jaxline)
● Reinforcement learning (github.com/deepmind/acme)

Others are also building great stuff with JAX

● Neural Networks (github.com/google/flax)
● Molecular Dynamics (github.com/google/jax-md)
● Chemical Modelling (github.com/deepchem/jaxchem)

The Future

David Budden (@davidmbudden) Join the discussion on Twitter (#JAXecosystem)

https://github.com/deepmind/jraph
https://github.com/deepmind/chex
https://github.com/deepmind/jaxline
https://github.com/deepmind/acme
https://github.com/google/flax
https://github.com/google/jax-md
https://github.com/deepchem/jaxchem

3. Generative
Models & GANs
Mihaela Rosca

GAN intro

G(z)

generated data
G(z)

generator G

 G

real data x ~ P*(x) D real or generated?

Join the discussion on Twitter (#JAXecosystem)

Slide thanks to Jeff Donahue.

GANs - Gradients as first order citizens

 for _ in range(num_disc_updates):

 rng, rng_disc = jax.random.split(rng, 2)

 disc_grads = jax.grad(gan.disc_loss)(params.disc, params.gen, data_batch, rng_disc)

 disc_update, disc_opt_state = optimizers.disc.update(disc_grads, opt_state.disc)

 new_disc_params = optax.apply_updates(params.disc, disc_update)

 for _ in range(num_gen_updates):

 rng, rng_gen = jax.random.split(rng, 2)

 gen_grads = jax.grad(gan.gen_loss)(params.gen, new_disc_params, data_batch, rng_gen)

 gen_update, gen_opt_state = optimizers.gen.update(gen_grads, opt_state.gen)

 new_gen_params = optax.apply_updates(params.gen, gen_update)

Gradient as first order citizens - easy tracking

Direct access to gradients (not hidden inside the optimizer)!
 Can easily track gradients at different layers, effect of regularizers on gradients, etc.

With haiku, disc_grads is a dictionary from module name to variables:
disc_grads= {

‘disc_net/layer1’: {‘w’: jnp.array(...)}, {‘b’: jnp.array(...)},

 ‘disc_net/layer2’: {‘w’: jnp.array(...)}, {‘b’: jnp.array(...)},

 for _ in range(num_disc_updates):

 rng, rng_disc = jax.random.split(rng, 2)

 disc_grads = jax.grad(gan.disc_loss)(params.disc, params.gen, data_batch, rng_disc)

 disc_update, disc_opt_state = optimizers.disc.update(disc_grads, opt_state.disc)

 new_disc_params = optax.apply_updates(params.disc, disc_update)

Having more control - easier to make the right decisions

def disc_loss(self, disc_params, gen_params, state, data_batch, rng):

 samples, gen_state = self.sample(gen_params, state.gen, rng, data_batch.shape[0])

 disc_inputs = jnp.concatenate((data_batch, samples), axis=0)

 disc_outpus, disc_state = self.disc.apply(disc_params, state.disc, disc_inputs)

 data_disc_output, samples_disc_output = jnp.split(disc_outpus, [data_batch.shape[0],], axis=0)

 loss = cross_entropy_disc_loss(data_disc_output, samples_disc_output)

 state = (disc_state, gen_state)

 return loss, state

Mihaela Rosca Join the discussion on Twitter (#JAXecosystem)

Having more control - easier to make the right decisions

 def disc_loss(self, disc_params, gen_params, state, data_batch, rng):

 samples, _ = self.sample(gen_params, state.gen, rng, data_batch.shape[0])

 disc_inputs = jnp.concatenate((data_batch, samples), axis=0)

 disc_outpus, disc_state = self.disc.apply(disc_params, state.disc, disc_inputs)

 data_disc_output, samples_disc_output = jnp.split(disc_outpus, [data_batch.shape[0],], axis=0)

 loss = cross_entropy_disc_loss(data_disc_output, samples_disc_output)

 state = (disc_state, state.gen)

 return loss, state

Mihaela Rosca Join the discussion on Twitter (#JAXecosystem)

Functional approach makes code close to math

Reparametrization trick (GANs, VAEs, etc):

def reparametrized_jacobians(function, params, dist_builder, rng, num_samples):

 def surrogate(params):

 dist = dist_builder(*params)

 return jax.vmap(function)(dist.sample((num_samples,), seed=rng))

 return jax.jacfwd(surrogate)(params)

Bonus! Easily to get jacobians - grad for each batch element!

4. Meta-gradients
Junhyuk Oh (@junh_oh)

Discovering RL Algorithms (Oh et al., NeurIPS 2020)

Goal: Meta-learn a RL update rule from a distribution of agents and environments.

● Parallel: Simulate independent learning agents, each of which is interacting with its own environment.

● Synchronous: Apply the same update rule (i.e., meta-learner) to all learning agents.

● Meta-gradient: Calculate meta-gradient over the update procedure.

● Scalability: Increase the number of learning agents without introducing extra cost.

Junhyuk Oh (@junh_oh) Join the discussion on Twitter (#JAXecosystem)

Technical Challenges

How did we implement?

Agent

JAX Env

Update Rule

[Step 1] Implement a single update rule / single agent / single JAX environment interactions.

Junhyuk Oh (@junh_oh) Join the discussion on Twitter (#JAXecosystem)

How did we implement?

Agent

Env

Update Rule

[Step 1] Implement a single update rule / single agent / single JAX environment interactions.

[Step 2] Add vmap to implement a single update rule / single agent / multi JAX environment interactions.

EnvEnvJAX Env

vmap

Junhyuk Oh (@junh_oh) Join the discussion on Twitter (#JAXecosystem)

How did we implement?

Update Rule

[Step 1] Implement a single update rule / single agent / single JAX environment interactions.

[Step 2] Add vmap to implement a single update rule / single agent / multi JAX environment interactions.

[Step 3] Add vmap to implement a single update rule / multi agent / multi JAX environment interactions.

Agent

EnvEnvEnvEnv

vmap

Agent

EnvEnvEnvEnv

vmap

Agent

EnvEnvEnvEnv

vmap

Agent

EnvEnvEnvJAX Env

vmap

vmap

Junhyuk Oh (@junh_oh) Join the discussion on Twitter (#JAXecosystem)

How did we implement?

[Step 1] Implement a single update rule / single agent / single JAX environment interactions.

[Step 2] Add vmap to implement a single update rule / single agent / multi JAX environment interactions.

[Step 3] Add vmap to implement a single update rule / multi agent / multi JAX environment interactions.

[Step 4] Add pmap to implement multiple copies of them across TPU cores with a shared update rule.

Update Rule

Agent

EnvEnvEnvEnv
vm
ap

Agent

EnvEnvEnvEnv
vm
ap

Agent

EnvEnvEnvEnv
vm
ap

Agent

EnvEnvEnvJAX Env

vmap

vmap

Update Rule

Agent

EnvEnvEnvEnv
vm
ap

Agent

EnvEnvEnvEnv
vm
ap

Agent

EnvEnvEnvEnv
vm
ap

Agent

EnvEnvEnvJAX Env

vmap

vmap

Update Rule

Agent

EnvEnvEnvEnv
vm
ap

Agent

EnvEnvEnvEnv
vm
ap

Agent

EnvEnvEnvEnv
vm
ap

Agent

EnvEnvEnvJAX Env

vmap

vmap

Update Rule

Agent

EnvEnvEnvEnv
vm
ap

Agent

EnvEnvEnvEnv
vm
ap

Agent

EnvEnvEnvEnv
vm
ap

Agent

EnvEnvEnvJAX Env

vmap

vmap

pmap

TPU core #1 TPU core #2 TPU core #3 TPU core #4

Junhyuk Oh (@junh_oh) Join the discussion on Twitter (#JAXecosystem)

Pseudocode and Result

def inner_update(params, meta_params, rng, env_state):

 def inner_loss(params, meta_params, rng, env_state):
 # Generate rollout and apply update rule.
 rollout = jax.vmap(do_rollout, in_axes=(None, 0, 0))(
 params, rng, env_state)
 return jax.vmap(apply_update_rule, in_axes=(None, 0))(
 meta_params, rollout)

 # Calulate gradient and update parameters.
 g = jax.grad(inner_loss)(params, rollout, meta_out)
 new_params = jax.tree_multimap(lambda p, g: p - g, params, g)
 return new_params

def meta_grad(meta_params, params, rng, env_state):

 def outer_loss(meta_params, params, rng, env_state):
 new_params = jax.vmap(inner_update, in_axes=(0, None, 0, 0))(
 params, meta_params, rng, env_state)
 return jax.vmap(validate, in_axes=(0, None))(new_params, meta_params)

 # Calulate meta-gradient.
 meta_g = jax.grad(outer_loss)(meta_params, params, rng, env_state)
 return jax.lax.pmean(meta_g, ‘i’)

Using 16-core TPUv2

1K parallel learning agents

60K parallel environments

1 shared update rule

3M steps per second

Junhyuk Oh (@junh_oh) Join the discussion on Twitter (#JAXecosystem)

Summary

Goal: Meta-learn a RL update rule from a distribution of agents and environments.

Technical Challenges

● Parallel: Simulate independent learning agents, each of which is interacting with its own environment.

● Synchronous: Apply the same update rule (i.e., meta-learner) to all learning agents.

● Meta-gradient: Calculate meta-gradient over the update procedure.

● Scalability: Increase the number of learning agents without introducing extra cost.

→ JAX + TPU helped address the above without requiring much engineering effort.

5. Search
{Fabio Viola (@fabiointheuk), Theophane Weber(@theophaneweber)}

So far, we have mostly looked at applications of Jax which leverage its gradient computation capabilities.

Is this all we can use Jax for?

Here we showcase another application where Jax enables fast research iteration:

Monte-Carlo Tree Search in a model-based RL setting, as seen in alphazero/muzero

Challenges:

● Integration of control logic and neural network machinery (tricky to debug!)

● Scalability and parallelism

● Typical model-based RL issues around data (use of replay, synthetic data, use of data for policy vs model, etc)

Shifting gears a bit: search and model-based RL in jax

Why implement a model/search-based RL
algorithm?

“Model-based planning is an essential
ingredient of human intelligence, enabling
flexible adaptation to new tasks and
goals”

-Lake et al. (2016)

“...a flexible and general strategy such as
mental simulation allows us to reason
about a wide range of scenarios, even
novel ones...”

-Hamrick (2017)

“Model-free algorithms are in turn far from
the state of the art in domains that
require precise and sophisticated
lookahead, such as chess and Go”

-Schrittwieser et al. (2019)

“By employing search, we can find strong
move sequences potentially far away
from the apprentice policy, accelerating
learning in complex scenarios”

-Anthony et al. (2017)

“...[models] enable better generalization
across states, remain valid across tasks in
the same environment, and exploit
additional unsupervised learning signals...”

-Weber et al. (2017)

“....predictive models can enable a real
robot to manipulate previously unseen
objects and solve new tasks”

-Ebert et al. (2018)

{Fabio Viola (@fabiointheuk), Theophane Weber} Join the discussion on Twitter (#JAXecosystem)

Abraham (2020). The Cambridge Handbook of the Imagination.
Agostinelli et al. (2019). Solving the Rubik's Cube with Deep Reinforcement Learning and Search. NMI.
Allen et al. (2019). The tools challenge: Rapid trial-and-error learning in physical problem solving. CogSci 2019
Amos et al (2018). Differentiable MPC for End-to-end Planning and Control. NeurIPS 2018.
Amos et al (2019). The Differentiable Cross-Entropy Method. arXiv.
Anthony et al (2017). Thinking Fast and Slow with Deep Learning and Tree Search. NeurIPS.
Bellemare et al (2016). Unifying count-based exploration and intrinsic motivation. NeurIPS.
Buesing et al. (2018). Learning and Querying Fast Generative Models for Reinforcement Learning. ICML 2018.
Burgess et al. (2019). MONet: Unsupervised Scene Decomposition and Representation. arXiv.
Byravan et al (2019). Imagined Value Gradients. CoRL 2019.
Chiappa, Racaniere, Wierstra, Mohamed (2017). Recurrent environment simulators. ICLR 2017.
Choromanski et al (2019). Provably Robust Blackbox Optimization for Reinforcement Learning. CoRL 2019.
Chua, Calandra, McAllister, & Levine (2018). Deep reinforcement learning in a handful of trials using probabilistic
dynamics models. NeurIPS 2018.
Corneil et al. (2018). Efficient Model-Based Deep Reinforcement Learning with Variational State Tabulation. ICML.
Depeweg et al. (2017). Learning and policy search in stochastic dynamical systems with bayesian NNs. ICLR 2017.
Du et al (2019). Model-Based Planning with Energy Based Models. CoRL 2019
Dubey, Agrawal, Pathak, Griffiths, & Efros (2018). Investigating human priors for playing video games. ICML 2018.
Ebert, Finn, et al. (2018). Visual foresight: Model-based deep RL for vision-based robotic control. arXiv.
Ecoffet et al. (2019). Go-explore: a new approach for hard-exploration problems. arXiv.
Edwards, Downs, & Davidson (2018). Forward-Backward Reinforcement Learning. arXiv.
Ellis et al. (2019). Write, Execute, Assess: Program Synthesis with a REPL. NeurIPS.
Eysenbach, Salakhutdinov, & Levine (2019). Search on the replay buffer: Bridging planning and RL. NeurIPS.
Farquhar et al (2017). TreeQN and ATreeC: Differentiable Tree-Structured Models for Deep RL. ICLR 2018.
Fazeli et al. (2019). See, feel, act: Hierarchical learning for complex manipulation skills with multisensory fusion.
Science Robotics, 4(26).
Finn & Levine (2017). Deep visual foresight for planning robot motion. ICRA.
Finn, Goodfellow, & Levine (2016). Unsupervised learning for physical interaction through video prediction. NeurIPS.
Fisac et al. (2019). A General Safety Framework for Learning-Based Control in Uncertain Robotic Systems. IEEE
Transactions on Automatic Control.
Gal et al. (2016). Improving PILCO with Bayesian neural network dynamics models. In Data-Efficient Machine Learning
workshop, ICML.
Grill et al. (2020). Monte-Carlo tree search as regularized policy optimization. ICML.
Gu, Lillicrap, Sutskever, & Levine (2016). Continuous Deep Q-Learning with Model-based Acceleration. ICML 2016.
Guez et al (2019). An Investigation of Model-Free Planning. ICML 2019.
Ha & Schmidhuber (2018). World Models. NeurIPS 2018.
Hafner et al (2020). Dream to Control: Learning Behaviors by Latent Imagination. ICLR 2020.
Hamrick (2019). Analogues of mental simulation and imagination in deep learning. Current Opinion in Behavioral
Sciences, 29, 8-16.
Hamrick et al (2020). Combining Q-Learning and Search with Amortized Value Estimates. ICLR 2020.
Hamrick et al. (2017). Metacontrol for adaptive imagination-based optimization. ICLR 2017.
Heess et al (2015). Learning Continuous Control Policies by Stochastic Value Gradients. NeurIPS 2015.
Houthooft et al (2016). VIME: Variational Information Maximizing Exploration. NeurIPS 2016.
Jaderberg et al. (2017). Reinforcement learning with unsupervised auxiliary tasks. ICLR 2017.
Jang, Gu, & Poole (2017). Categorical Reparameterization with Gumbel-Softmax. ICLR 2017.
Janner et al (2019). When to Trust Your Model: Model-Based Policy Optimization. NeurIPS 2019.
Jurgenson et al. (2019). Sub-Goal Trees -- A Framework for Goal-Directed Trajectory Prediction and Optimization.
arXiv.
Kidambi et al (2020). MOReL: Model-Based Offline Reinforcement Learning. arXiv.
Konidaris, Kaelbling, & Lozano-Pérez (2018). From Skills to Symbols: Learning Symbolic Representations for Abstract
High-Level Planning. JAIR.
Kurutach et al. (2018). Learning Plannable Representations with Causal InfoGAN. NeurIPS.

Laskin, Emmons, Jain, Kurutach, Abbeel, & Pathak (2020). Sparse Graphical Memory for Robust Planning. arXiv.
Levine, Wagener, & Abbeel (2015). Learning Contact-Rich Manipulation Skills with Guided Policy Search. ICRA 2015.
Levine et al (2020). Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems. arXiv.
Lin et al (2020). Model-based Adversarial Meta-Reinforcement Learning. arXiv.
Lowrey et al. (2019). Plan Online, Learn Offline: Efficient Learning and Exploration via Model-Based Control. ICLR 2019.
Lu, Mordatch, & Abbeel (2019). Adaptive Online Planning for Continual Lifelong Learning. NeurIPS Deep RL Workshop.
Maddison, Mnih, & Teh (2017). The Concrete Distribution. ICLR 2017.
Mordatch et al (2015). Ensemble-CIO: Full-body dynamic motion planning that transfers to physical humanoids. IROS 2015.
Mordatch et al (2015). Interactive Control of Diverse Complex Characters with Neural Networks. NeurIPS 2015.
Nagabandi et al (2019). Deep Dynamics Models for Learning Dexterous Manipulation. CoRL 2019.
Nagabandi et al. (2019). Learning to Adapt in Dynamic, Real-World Environments through Meta-Reinforcement Learning. ICLR.
Nair, Babaeizadeh, Finn, Levine & Kumar (2020). Time Reversal as Self-Supervision. ICRA 2020.
Nair, Pong, et al. (2018). Visual Reinforcement Learning with Imagined Goals. NeurIPS.
Nasiriany et al. (2019). Planning with Goal-Conditioned Policies. NeurIPS.
Oh, Guo, Lee, Lewis, & Singh (2015). Action-Conditional Video Prediction using Deep Networks in Atari Games. NIPS 2015.
Oh et al. (2017). Value Prediction Network. NeurIPS.
OpenAI et al. (2020). Learning Dexterous In-Hand Manipulation. International Journal of Robotics Research, 39(1), 3-20.
OpenAI et al. (2019). Solving Rubik's Cube with a Robot Hand. arXiv.
Osband et al (2018). Randomized Prior Functions for Deep Reinforcement Learning. NeurIPS 2018.
Parascandolo, Buesing, et al. (2020). Divide-and-Conquer Monte Carlo Tree Search For Goal-Directed Planning. arXiv.
Pascanu, Li, et al. (2017). Learning model-based planning from scratch. arXiv.
Pathak et al. (2017). Curiosity-driven exploration by self-supervised prediction. ICML.
Peters, Mulling, & Altun (2010). Relative Entropy Policy Search. AAAI 2010.
Rajeswaran et al. (2017). EPOpt: Learning Robust Neural Network Policies Using Model Ensembles. ICLR 2017.
Rajeswaran et al. (2020). A Game Theoretic Framework for Model Based Reinforcement Learning. arXiv.
Sadigh et al. (2016). Planning for autonomous cars that leverage effects on human actions. RSS 2016.
Sanchez-Gonzalez et al. (2018). Graph Networks as Learnable Physics Engines for Inference and Control. ICML 2018.
Savinov, Dosovitskiy, & Koltun (2018). Semi-parametric topological memory for navigation. ICLR 2018.
Schrittwieser et al. (2019). Mastering Atari, Go, Chess and Shogi by planning with a learned model. arXiv.
Segler, Preuss, & Waller (2018). Planning chemical syntheses with deep neural networks and symbolic AI. Nature, 555(7698).
Sharma et al. (2020). Dynamics-Aware Unsupervised Discovery of Skills. ICLR.
Shen et al. (2019). M-Walk: Learning to Walk over Graphs using Monte Carlo Tree Search. NeurIPS.
Silver, van Hasselt, Hessel, Schaul, Guez, Harley, Dulac-Arnold, Reichert, Rabinowitz, Barreto, Degris (2017). The Predictron:
End-To-End Learning and Planning. ICML 2017.
Silver et al. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484.
Silver et al. (2017). Mastering the game of Go without human knowledge. Nature, 550, 354-359.
Silver et al. (2018). A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science.
Sutton and Barto (2018). Reinforcement Learning: An Introduction.
Tamar et al. (2016). Value iteration networks. NeurIPS 2016.
Tamar et al. (2017). Learning from the Hindsight Plan – Episodic MPC Improvement. ICRA 2017.
Tzeng et al. (2017). Adapting Deep Visuomotor Representations with Weak Pairwise Constraints.
van den Oord, Li, & Vinyals (2019). Representation Learning with Contrastive Predictive Coding. arXiv.
van Hasselt, Hessel, & Aslanides (2019). When to use parametric models in reinforcement learning? NeurIPS 2019.
Veerapaneni, Co-Reyes, Chang, et al. (2019). Entity Abstraction in Visual Model-Based Reinforcement Learning. CoRL 2019.
Watter, Springenberg, Boedecker, & Riedmiller (2015). Embed to Control: A Locally Linear Latent Dynamics Model for Control
from Raw Images. NeurIPS 2015.
Weber et al. (2017). Imagination-augmented agents for deep reinforcement learning. NeurIPS 2017.
Williams et al. (2017). Information Theoretic MPC for Model-Based Reinforcement Learning. ICRA 2017.
Wu et al. (2015). Galileo: Perceiving Physical Object Properties by Integrating a Physics Engine with Deep Learning. NeurIPS 2015.
Yu et al (2020). MOPO: Model-based Offline Policy Optimization. arXiv.
Zhang, Lerer, et al. (2018). Composable Planning with Attributes. ICML 2018.

MuZero (Schrittwieser et al., 2019)

{Fabio Viola (@fabiointheuk), Theophane Weber (@theophaneweber)}Join the discussion on Twitter (#JAXecosystem)

Neural-network guided MCTS in muzero

Neurally-guided MCTS:

1. Traverse tree using chosen heuristic
In (alpha/mu)-zero, we use PUCT,
which picks nodes with highest
score, where the score combines
policy prior, action values, and
exploration bonus (derived from visit
counts)

{Fabio Viola (@fabiointheuk), Theophane Weber (@theophaneweber)}Join the discussion on Twitter (#JAXecosystem)

Neural-network guided MCTS in muzero

Neurally-guided MCTS:

1. Traverse tree using chosen heuristic
In (alpha/mu)-zero, we use PUCT,
which picks nodes with highest
score, where the score combines
policy prior, action values, and
exploration bonus (derived from visit
counts)

{Fabio Viola (@fabiointheuk), Theophane Weber (@theophaneweber)}Join the discussion on Twitter (#JAXecosystem)

Neural-network guided MCTS in muzero

Neurally-guided MCTS:

1. Traverse tree using chosen heuristic
In (alpha/mu)-zero, we use PUCT,
which picks nodes with highest
score, where the score combines
policy prior, action values, and
exploration bonus (derived from visit
counts)

{Fabio Viola (@fabiointheuk), Theophane Weber (@theophaneweber)}Join the discussion on Twitter (#JAXecosystem)

Neural-network guided MCTS in muzero

Neurally-guided MCTS:

1. Traverse tree using chosen heuristic
In (alpha/mu)-zero, we use PUCT,
which picks nodes with highest
score, where the score combines
policy prior, action values, and
exploration bonus (derived from visit
counts)

{Fabio Viola (@fabiointheuk), Theophane Weber (@theophaneweber)}Join the discussion on Twitter (#JAXecosystem)

Neural-network guided MCTS in muzero

Neurally-guided MCTS:

1. Traverse tree using chosen heuristic
In (alpha/mu)-zero, we use PUCT,
which picks nodes with highest
score, where the score combines
policy prior, action values, and
exploration bonus (derived from visit
counts)

2. Expand node:
a. Compute state transition, state

value, and policy prior by
calling model (neural network)

b. Add node to tree

{Fabio Viola (@fabiointheuk), Theophane Weber (@theophaneweber)}Join the discussion on Twitter (#JAXecosystem)

Neural-network guided MCTS in muzero

Neurally-guided MCTS:

1. Traverse tree using chosen heuristic
In (alpha/mu)-zero, we use PUCT,
which picks nodes with highest
score, where the score combines
policy prior, action values, and
exploration bonus (derived from visit
counts)

2. Expand node:
a. Compute state transition, state

value, and policy prior by
calling model (neural network)

b. Add node to tree
3. Backward step: propagate

information from new leaf node to all
ancestors in tree

{Fabio Viola (@fabiointheuk), Theophane Weber (@theophaneweber)}Join the discussion on Twitter (#JAXecosystem)

Why is implementing efficient MCTS a
challenging task?

● Some researchers don't want to use C++ day-to-day, and prefer higher
level languages, like python

● Performing MCTS in batch in plain python can be slow

● Furthermore, vanilla MCTS is a essentially a sequential algorithm - each
sim depends on the results of the previous sims - putting further
constraints on how to parallelize computation*

One possible approach:

● Rely on just in time compilation to bridge the gap between interpreted and

compiled languages - well aligned with the programming paradigm of JAX!

{Fabio Viola (@fabiointheuk), Theophane Weber (@theophaneweber)}Join the discussion on Twitter (#JAXecosystem)

Private & ConfidentialWhy implementing search in JAX?

Expected advantages:

● Still performant once jitted and applied to batched data
● Save costs of moving data in and out of the accelerators
● Allows to easily jit and batch both acting and learning of RL agents
● Easiness to write and modify search components*

○ it’s just JAX numpy
○ write for single batch element, use vmap to vectorize
○ nice to be able to inspect your algorithm with python workflow

● Potentially differentiable all the way through

*mileage may vary

Private & ConfidentialWhy implementing search in JAX?

Expected disadvantages:

● Likely less efficient if no batches (e.g. if deploying a trained RL agent in a single
environment setup)

● Use some of the accelerator compute and memory is used for the search
(rather than just reserving all of it for inference)

● Search depth limited by accelerator memory
● Performance of concurrently running multiple searches will be constrained by

slowest instance

*mileage may vary

Code snippets: search

{Fabio Viola (@fabiointheuk), Theophane Weber (@theophaneweber)}Join the discussion on Twitter (#JAXecosystem)

Code snippet: node expansion

{Fabio Viola (@fabiointheuk), Theophane Weber (@theophaneweber)}Join the discussion on Twitter (#JAXecosystem)

6. Questions &
Debate

Please make sure to share your
JAX projects on social media
using the hashtag:

#JAXecosystem

Thank you! 🙌

