
Reinforcement Learning
Lecture 1: Introduction

Hado van Hasselt
Senior Staff Research Scientist, DeepMind

Reinforcement learning
2021

Lecturers

Diana Borsa
Matteo Hessel

Background material

Background material
Reinforcement Learning: An Introduction, Sutton & Barto 2018
http://incompleteideas.net/book/the-book-2nd.html

http://incompleteideas.net/book/the-book-2nd.html

Admin for UCL students

I Check Moodle for updates
I Use Moodle for questions
I Grading: assignments

About this course

What is reinforcement learning?

Artificial Intelligence

Motivation

I First, automation of repeated physical solutions
I Industrial revolution (1750 - 1850) and Machine Age (1870 - 1940)

I Second, automation of repeated mental solutions
I Digital revolution (1950 - now) and Information Age

I Next step: allow machines to find solutions themselves
I Artificial Intelligence

I We then only needs to specify a problem and/or goal
I This requires learning autonomously how to make decisions

Can machines think?

– Alan Turing, 1950

In the process of trying to imitate an adult human mind we are bound to think a good deal about
the process which has brought it to the state that it is in. We may notice three components,
a. The initial state of the mind, say at birth,
b. The education to which it has been subjected,
c. Other experience, not to be described as education, to which it has been subjected.

Instead of trying to produce a programme to simulate the adult mind, why not rather try to produce
one which simulates the child’s? If this were then subjected to an appropriate course of education one
would obtain the adult brain. Presumably the child-brain is something like a note-book as one buys
it from the stationers. Rather little mechanism, and lots of blank sheets. (Mechanism and writing
are from our point of view almost synonymous.) Our hope is that there is so little mechanism in
the child-brain that something like it can be easily programmed.

– Alan Turing, 1950

What is artificial intelligence?

I We will use the following definition of intelligence:

To be able to learn to make decisions to achieve goals

I Learning, decisions, and goals are all central

What is Reinforcement Learning?

What is reinforcement learning?

I People and animals learn by interacting with our environment
I This differs from certain other types of learning

I It is active rather than passive
I Interactions are often sequential — future interactions can depend on earlier ones

I We are goal-directed
I We can learn without examples of optimal behaviour
I Instead, we optimise some reward signal

The interaction loop

Goal: optimise sum of rewards, through repeated interaction

The reward hypothesis

Reinforcement learning is based on the reward hypothesis:

Any goal can be formalized as the outcome of maximizing a cumulative reward

Examples of RL problems

I Fly a helicopter
I Manage an investment portfolio
I Control a power station
I Make a robot walk
I Play video or board games

→ Reward: air time, inverse distance, ...
→ Reward: gains, gains minus risk, ...
→ Reward: efficiency, ...
→ Reward: distance, speed, ...
→ Reward: win, maximise score, ...

If the goal is to learn via interaction, these are all reinforcement learning problems
(Irrespective of which solution you use)

What is reinforcement learning?

There are distinct reasons to learn:
1. Find solutions

I A program that plays chess really well
I A manufacturing robot with a specific purpose

2. Adapt online, deal with unforeseen circumstances
I A chess program that can learn to adapt to you
I A robot that can learn to navigate unknown terrains

I Reinforcement learning can provide algorithms for both cases
I Note that the second point is not (just) about generalization — it is about continuing to

learn efficiently online, during operation

What is reinforcement learning?

I Science and framework of learning to make decisions from interaction
I This requires us to think about

I ...time
I ...(long-term) consequences of actions
I ...actively gathering experience
I ...predicting the future
I ...dealing with uncertainty

I Huge potential scope
I A formalisation of the AI problem

Example: Atari

Formalising the RL Problem

Agent and Environment

I At each step t the agent:
I Receives observation Ot (and reward Rt)
I Executes action At

I The environment:
I Receives action At
I Emits observation Ot+1 (and reward Rt+1)

Rewards

I A reward Rt is a scalar feedback signal
I Indicates how well agent is doing at step t — defines the goal
I The agent’s job is to maximize cumulative reward

Gt = Rt+1 + Rt+2 + Rt+3 + ...

I We call this the return

Reinforcement learning is based on the reward hypothesis:

Any goal can be formalized as the outcome of maximizing a cumulative reward

Values

I We call the expected cumulative reward, from a state s, the value

v (s) = E [Gt | St = s]

= E [Rt+1 + Rt+2 + Rt+3 + ... | St = s]

I The value depends on the actions the agent takes
I Goal is to maximize value, by picking suitable actions
I Rewards and values define utility of states and action (no supervised feedback)
I Returns and values can be defined recursively

Gt = Rt+1 + Gt+1

v (s) = E [Rt+1 + v (St+1) | St = s]

Maximising value by taking actions

I Goal: select actions to maximise value
I Actions may have long term consequences
I Reward may be delayed
I It may be better to sacrifice immediate reward to gain more long-term reward
I Examples:

I Refueling a helicopter (might prevent a crash in several hours)
I Defensive moves in a game (may help chances of winning later)
I Learning a new skill (can be costly & time-consuming at first)

I A mapping from states to actions is called a policy

Action values

I It is also possible to condition the value on actions:

q(s, a) = E [Gt | St = s,At = a]

= E [Rt+1 + Rt+2 + Rt+3 + ... | St = s,At = a]

I We will talk in depth about state and action values later

Core concepts

The reinforcement learning formalism includes
I Environment (dynamics of the problem)
I Reward signal (specifies the goal)
I Agent, containing:

I Agent state
I Policy
I Value function estimate?
I Model?

I We will now go into the agent

Inside the Agent: the Agent State

Agent components

Agent components
I Agent state
I Policy
I Value functions
I Model

Environment State

I The environment state is the
environment’s internal state

I It is usually invisible to the agent
I Even if it is visible, it may contain lots of

irrelevant information

Agent State

I The history is the full sequence of observations, actions, rewards

Ht = O0,A0,R1,O1, ...,Ot−1,At−1,Rt ,Ot

I For instance, the sensorimotor stream of a robot
I This history is used to construct the agent state St

Fully Observable Environments

Full observability
Suppose the agent sees the full environment state
I observation = environment state
I The agent state could just be this observation:

St = Ot = environment state

Markov decision processes

Markov decision processes (MDPs) are a useful mathematical framework

Definition
A decision process is Markov if

p (r , s | St ,At) = p (r , s | Ht ,At)

I This means that the state contains all we need to know from the history
I Doesn’t mean it contains everything, just that adding more history doesn’t help
I =⇒ Once the state is known, the history may be thrown away

I The full environment + agent state is Markov (but large)
I The full historyHt is Markov (but keeps growing)

I Typically, the agent state St is some compression ofHt

I Note: we use St to denote the agent state, not the environment state

Partially Observable Environments

I Partial observability: The observations are not Markovian
I A robot with camera vision isn’t told its absolute location
I A poker playing agent only observes public cards

I Now using the observation as state would not be Markovian
I This is called a partially observable Markov decision process (POMDP)
I The environment state can still be Markov, but the agent does not know it
I We might still be able to construct a Markov agent state

Agent State

I The agent’s actions depend on its state
I The agent state is a function of the history
I For instance, St = Ot

I More generally:

St+1 = u(St ,At ,Rt+1,Ot+1)

where u is a ‘state update function‘
I The agent state is often much smaller than the

environment state

Agent State
The full environment state of a maze

Agent State
A potential observation

Agent State
An observation in a different location

Agent State
The two observations are indistinguishable

Agent State

These two states are not Markov

How could you construct a Markov agent state in this maze (for any reward signal)?

Partially Observable Environments

I To deal with partial observability, agent can construct suitable state representations
I Examples of agent states:

I Last observation: St = Ot (might not be enough)
I Complete history: St = Ht (might be too large)
I A generic update: St = u(St−1,At−1,Rt ,Ot) (but how to pick/learn u?)

I Constructing a fully Markovian agent state is often not feasible
I More importantly, the state should allow good policies and value predictions

Inside the Agent: the Policy

Agent components

Agent components
I Agent state
I Policy
I Value function
I Model

Policy

I A policy defines the agent’s behaviour
I It is a map from agent state to action
I Deterministic policy: A = π (S)

I Stochastic policy: π (A|S) = p (A|S)

Inside the Agent: Value Estimates

Agent components

Agent components
I Agent state
I Policy
I Value function
I Model

Value Function

I The actual value function is the expected return

vπ (s) = E [Gt | St = s,π]

= E
[
Rt+1 + γRt+2 + γ

2Rt+3 + ... | St = s,π
]

I We introduced a discount factor γ ∈ [0, 1]
I Trades off importance of immediate vs long-term rewards

I The value depends on a policy
I Can be used to evaluate the desirability of states
I Can be used to select between actions

Value Functions

I The return has a recursive form Gt = Rt+1 + γGt+1

I Therefore, the value has as well

vπ (s) = E [Rt+1 + γGt+1 | St = s,At ∼ π (s)]

= E [Rt+1 + γ vπ (St+1) | St = s,At ∼ π (s)]

Here a ∼ π (s) means a is chosen by policy π in state s (even if π is deterministic)
I This is known as a Bellman equation (Bellman 1957)
I A similar equation holds for the optimal (=highest possible) value:

v∗(s) = max
a

E [Rt+1 + γ v∗(St+1) | St = s,At = a]

This does not depend on a policy
I We heavily exploit such equalities, and use them to create algorithms

Value Function approximations

I Agents often approximate value functions
I We will discuss algorithms to learn these efficiently
I With an accurate value function, we can behave optimally
I With suitable approximations, we can behave well, even in intractably big domains

Inside the Agent: Models

Agent components

Agent components
I Agent state
I Policy
I Value function
I Model

Model

I A model predicts what the environment will do next
I E.g., P predicts the next state

P(s, a, s ′) ≈ p (St+1 = s ′ | St = s,At = a)

I E.g., R predicts the next (immediate) reward

R(s, a) ≈ E [Rt+1 | St = s,At = a]

I A model does not immediately give us a good policy - we would still need to plan
I We could also consider stochastic (generative) models

An Example

Maze Example

Start

Goal

I Rewards: -1 per time-step
I Actions: N, E, S, W
I States: Agent’s location

Maze Example: Policy

Start

Goal

I Arrows represent policy π (s) for each state s

Maze Example: Value Function

-14 -13 -12 -11 -10 -9

-16 -15 -12 -8

-16 -17 -6 -7

-18 -19 -5

-24 -20 -4 -3

-23 -22 -21 -22 -2 -1

Start

Goal

I Numbers represent value vπ (s) of each state s

Maze Example: Model

-1 -1 -1 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1

-1

-1 -1

-1 -1

Start

Goal

I Grid layout represents partial transition model Pa
ss′

I Numbers represent immediate reward Ra
ss′ from each state s (same for all a and s ′ in this

case)

Agent Categories

Agent Categories

I Value Based
I No Policy (Implicit)
I Value Function

I Policy Based
I Policy
I No Value Function

I Actor Critic
I Policy
I Value Function

Agent Categories

I Model Free
I Policy and/or Value Function
I No Model

I Model Based
I Optionally Policy and/or Value Function
I Model

Subproblems of the RL Problem

Prediction and Control

I Prediction: evaluate the future (for a given policy)
I Control: optimise the future (find the best policy)
I These can be strongly related:

π∗(s) = argmax
π

vπ (s)

I If we could predict everything do we need anything else?

Learning and Planning

Two fundamental problems in reinforcement learning
I Learning:

I The environment is initially unknown
I The agent interacts with the environment

I Planning:
I A model of the environment is given (or learnt)
I The agent plans in this model (without external interaction)
I a.k.a. reasoning, pondering, thought, search, planning

Learning Agent Components

I All components are functions
I Policies: π : S → A (or to probabilities over A)
I Value functions: v : S → R
I Models: m : S → S and/or r : S → R
I State update: u : S × O → S

I E.g., we can use neural networks, and use deep learning techniques to learn
I Take care: we do often violate assumptions from supervised learning (iid, stationarity)
I Deep learning is an important tool
I Deep reinforcement learning is a rich and active research field

Examples

Atari Example: Reinforcement Learning

observation

reward

action

at

rt

ot

I Rules of the game are unknown
I Learn directly from interactive

game-play
I Pick actions on joystick, see

pixels and scores

Gridworld Example: Prediction

3.3 8.8 4.4 5.3 1.5

1.5 3.0 2.3 1.9 0.5

0.1 0.7 0.7 0.4 -0.4

-1.0 -0.4 -0.4 -0.6 -1.2

-1.9 -1.3 -1.2 -1.4 -2.0

A B

A’

B’+10

+5

Actions

(a) (b)
Reward is −1 when bumping into a wall, γ = 0.9

What is the value function for the uniform random policy?

Gridworld Example: Control

a) gridworld b) V* c) *

22.0 24.4 22.0 19.4 17.5

19.8 22.0 19.8 17.8 16.0

17.8 19.8 17.8 16.0 14.4

16.0 17.8 16.0 14.4 13.0

14.4 16.0 14.4 13.0 11.7

A B

A’

B’+10

+5

π
What is the optimal value function over all possible policies?
What is the optimal policy?

Course

I In this course, we discuss how to learn by interaction
I The focus is on understanding core principles and learning algorithms

Topics include
I Exploration, in bandits and in sequential problems
I Markov decision processes, and planning by dynamic programming
I Model-free prediction and control (e.g., Q-learning)
I Policy-gradient methods
I Deep reinforcement learning
I Integrating learning and planning
I ...

Example: Locomotion

End of Lecture

