Lecture 11: Off-policy and multi-step learning

Hado van Hasselt

UCL, 2021

(o)

Background

Sutton & Barto 2018, Chapter 5, 7, 11

(o)

Recap

(o)

Recap

environment

agent o Jaton

\o}=)
° /
k

» Reinforcement learning is the science of learning to make decisions

> Agents can learn a policy, value function and/or a model
» The general problem involves taking into account time and consequences

> Decisions affect the reward, the agent state, and environment state

(o)

High level

> Previous lectures:

>

vV v.v. vy

Model-free prediction & control

Multi-step updates (and eligibility traces)
Understanding dynamic programming operators
Predictions with function approximation
Model-based algorithms

Policy gradients and actor-critic algorithms

» This lecture:

>

Off-policy learning, especially when combined
with multi-step updates and function approximation

(o)

Motivation

(o)

Why learn off-policy?

Why learn off-policy?
> Off-policy learning is important to learn about hypothetical, counterfactual events (i.e,
“what if” question)

» Use cases include
> learning about the greedy policy

> learning about (many) other policies
> learning from observed data (e.g., stored logs / other agents)
» learning from past policies

» This is also important to correct for mismatch in data distributions, for instance for
policy gradients

(o)

One-step off-policy

With action values, one-step off-policy learning seems relatively straightforward:

q(St, Ar) — q(S1, Ar) + a(Req + Z n(alSi+1)q(St+1, a) — q(St, Ar))
a

For instance
> Q-learning: let 7 be greedy = ., Msaqsqa = MaXy §sq
> Expected Sarsa: let 7 be the current behaviour policy

> Sarsa: let 7 put all probability mass on the action the behaviour picked

(o)

Multi-step off-policy

For multi-step updates, we can use importance-sampling corrections
E.g., for a Monte Carlo return on a trajectory 7, = {S;, Az, Ry+1,..., 57}

A p(|m) _ N(At|St)”‘7T(AT|ST)
YT opmlw T T u(AdS) wArlSr)

then E[G, | u] = E[G, | 7]

(o)

Multi-step off-policy

> We know multi-step updates often more efficiency propagate information

> Neither full Monte Carlo, nor one-step bootstrapping, is typically the best trade-off

Action values increased Action values increased
Path taken by one-step Sarsa by 10-step Sarsa
— +
\J
- . Sl
: G G Gl [y] |
! f Hetel |

(o)

Off-policy corrections for policy gradients

> Recall: for policy gradient methods we want to sample/estimate
Elgx(S:, Ar)VIog m(A|S)] .

> On-policy can sample multi-step returns G, such that E[G; | 7] = (s, a)
» But what if the behaviour is y # 7?

> — we might not be following a gradient direction

(o)

Issues in off-policy learning

(o)

Issues with off-policy learning

The following issues (especially) arise when learning off-policy

> High variance (especially when using multi-step updates)

» Divergent and inefficient learning (especially when using one-step updates)
We will discuss both in this lecture

(o)

Issues in off-policy learning:
Variance

(o)

Variance of importance sampling corrections

> A big issue in using importance-sampling corrections is high variance
> First, consider a one-step reward

> Verify the expectation, for a given state s:

7T(At|5)
u(Aq]s)

O
= Zﬂ(als)r(s, a)
= |]E[Rl‘Jrl | Al‘ ~ 71']

> But typically the variance will be larger, sometimes greatly so

)

(o)

Variance example

(o)

Variance of importance sampling corrections

> In some cases the variance of an importance-weighting return can even be infinite

(see: Sutton & Barto, Example 5.5)

Monte-Carlo
estimate of
v (8) with
ordinary
importance
sampling
(ten runs)

1

1000 10,000 100,000
Episodes (log scale)

w(left]s) =1

B(left]s) = %

10,000,000 100,000,000

1 .UOIO,DOO

(o)

Mitigating variance

» There are multiple ways to reduce variance

> We will discuss three:
> Per-decision importance weighting

» Control variates

> (Adaptive) bootstrapping

(o)

Reducing variance:
Per-decision importance weighting

(o)

Mitigating variance: with per-decision importance weighting

Consider some state s. For any random X that does not correlate with (random) action A we

have
n(Als)

u(Als)

Intuition: the expectation does not depend on the policy, so we don’t need to correct

[E[Xlﬂ]=[E[XI#]=[E[X|#]

(o)

Mitigating variance: with per-decision importance weighting

Proof:

w(Als)
- [u(AIS)X | “]

=[E[X|ﬂ][E[

n(Als) | ﬂ]
u(Als)

X | Y ety)

hats)
= E[X |]) n(als)

a

= E[X | 4]

n(Als) | u

Similarly, in general, we have IE[”(Als)

=1

(Because X and f are uncorrelated)

(Because), m(als) = 1)

(o)

Notation

Shorthand notations:

(A S)) 1 (A |Sk)
P uA TS ””*"‘H”" Hy(AuSk)

Then the reweighted MC return from state S; terminating at time 7 can be written as

= Pr.T-1 =G,
T-1
7T(Ak|Sk) k—t k—t
R = p;7-1G; = T R
(H (AL |S) Z k+1 Pr:1-101 kZ:;Pz.T 1Y k+1

We can interpret the importance-weight p;.7_1 as applying to each reward

(o)

Mitigating variance: with per-decision importance weighting

T-1

pr7-1Gr = Z Pt;T—lyk_tR]H_l
k=t

Earlier rewards cannot depend on later actions. This means:

Elprr—1Ge | 1] = E[Y prr—17* " Ris1 | p]

~
iy

N o
—_

=E[> prky" " R | p]

=~
1l
~

Recursive definition of the latter:

Gf = pr(Risa + 7Gf+1)

(o)

Mitigating variance: with per-decision importance weighting

» Per-decision importance-weighted return
0 _ 0
Gz - pt(Rt+1 + VG,H)

We can use this to learn v, from data generated under u # 7

» To learn action values g,, we can use
0 _ o
Gt - Rt+1 + ypt+th+1

» How and why are these different?

(o)

Reducing variance: Control variates

(o)

Example: control variates

(o)

Control variates for multi-step returns

The idea of control variates can be extended to multi-step returns
> First, recall
ot =Gl -v(S;)
= Rev1 +7((1 = Dv(Se41) + V/IG?H -v(S)
= Rys1 + yv(Sp41) = v(S;) +y4 (G;l+1 —v(S1+1))

:6t :6/1

t+1

=6, +yAst,

(o)

Control variates for multi-step returns

The idea of control variates can be extended to multi-step returns
> Now, lets add per-decision importance weights
1 A
0; = 0; +yAd; 4
A A
" = p(6; +yAS,

t+1

> By design this includes the (1 — p;)v(S;) control variate terms

> Sometimes called ’error weighting’ (to contrast to 'reward weighting’)

(o)

Control variates for multi-step returns

St = pi(6; +yA6°)

t

» One can show that R |
E[67" | u]l = E[GY" = v(S)) | 1]

where
A A
Gf =Pt (Rt+1 + 7’((1 = AV(Sp41) + /leH))
is the per-decision importance-weighted A-return.

> But 6’,0 1 can have lower variance than G’;) 1 v(Sy)

(o)

Reducing variance: Adaptive
Bootstrapping

(o)

Reducing variance: bootstrapping

> For our last technique, we consider bootstrapping

. - . . A A
» This amounts to picking 4 < 1 when using either 6f or Gf

» Note that to learn action values, we can use
A A
GP' = Ry + y((l =)) 7@ | Si)q(Sis, @) + pradGyy
a

Then, if A = 0, we get

Gi =R +y Z n(a | St41)q(St+1, @)
a

= no more importance weighted = low variance

> However, bootstrapping too much may open us to the deadly triad!

(o)

Recap: Deadly triad

> Recall, the deadly triad refers to the possibility of divergence when we combine
> Bootstrapping

> Function approximation

» Off-policy learning

(o)

Recap: Deadly triad

What if we use TD only on this transition?

2w

(o)

Recap: Deadly triad

Wee1 = wp + @ (r +yv(s”) = v(s))Vv(s)
=w; + a2y — Dw,
Suppose y > % Then,

When w; > 0 and , then w;,1 > wy
When w; < 0 and , then w; 11 < w; = w, diverges to +oo0 of —c0

(o)

Recap: Deadly triad

> What if we use multi-step returns?
» Still consider only updating the left-most state
Aw = a(r + y(G = v(s))
=ay1-2)-1)w

1

> The multiplier is negative when 2y(1 - 1) <1 = A >1- 3

> E.g., when y = 0.9, then we need 4 > 4/9 ~ 0.45

» Conclusion: if we do not bootstrap too much, we can learn better

(o)

Reducing variance: adaptive bootstrapping

> We don’t want to bootstrap too much = deadly triad
> We don’t want to bootstrap too little = high variance
> Can we adaptively bootstrap ‘just enough’?

> Idea: bootstrap adaptively only in as much as you go off-policy

(o)

Reducing variance: adaptive bootstrapping

> Recall 6" = p,(6; + yA5”,

1+1
> Let’s add an initial bootstrap parameter, and make these time-dependent

5}0/1 = A0 + Vép/l

t+1
(If A; = 1, we obtain the previous version)
> We can pick A; separately on each time step

» Idea: pick it such that, for all ¢, 4;p; < 1:
A = min(1,1/p;)

» Intuition: when we are too off-policy (p is far from one) truncate the sum of errors

» This is the same as bootstrapping there

(o)

Reducing variance: adaptive bootstrapping

Ay = min(1, 1/ p;)

» This is known as ABTD (Mahmood et al. 2017) or v-trace (Espeholt et al. 2018)

> We are free to choose different ways to bootstrap: in the tabular case all these methods
will be updating towards some mixture of multi-step returns, and therefore converge

> In deep RL this really helps, especially for policy gradients
(Policy gradients do not like biased return estimates — we will get back to that)

» This is used a lot these days

(o)

Reducing variance: tree backup

> Picking A, = min(1, 1/p;) is not the only way to adaptively bootstrap

» One more option, consider the Bellman operator for action values

qn(s,a) = E[Rr11 +y Z m(alSi+1)qx(S+1,a) | Ar = a,§; = 5]
a

> Note: the expectation does not depend on 7, because we condition on the action a
> Idea: sample this, then replace only the action you selected:

Gi =R +y D, m(al$i1)q(Sis1, @) + 77 (Ars1lSi41)Gran
a£A¢i

> We remove only the expectation ¢(Sy.1, As+1) of the action actually selected, and replace
it with the return

> This is unbiased, and low variance! (7(A;+1|S;+1) plays a role similar to 1)

» It might bootstrap too early though — beware of deadly triads! @

Lecture End

(o)

