
Lecture 11: Off-policy and multi-step learning

Hado van Hasselt

UCL, 2021

Background

Sutton & Barto 2018, Chapter 5, 7, 11

Recap

Recap

I Reinforcement learning is the science of learning to make decisions
I Agents can learn a policy, value function and/or a model
I The general problem involves taking into account time and consequences
I Decisions affect the reward, the agent state, and environment state

High level

I Previous lectures:
I Model-free prediction & control

I Multi-step updates (and eligibility traces)

I Understanding dynamic programming operators

I Predictions with function approximation

I Model-based algorithms

I Policy gradients and actor-critic algorithms

I This lecture:
I Off-policy learning, especially when combined

with multi-step updates and function approximation

Motivation

Why learn off-policy?

Why learn off-policy?
I Off-policy learning is important to learn about hypothetical, counterfactual events (i.e,

“what if” question)
I Use cases include

I learning about the greedy policy

I learning about (many) other policies

I learning from observed data (e.g., stored logs / other agents)

I learning from past policies

I This is also important to correct for mismatch in data distributions, for instance for
policy gradients

One-step off-policy

With action values, one-step off-policy learning seems relatively straightforward:

q(St, At) ← q(St, At) + αt (Rt+1 +
∑
a

π(a|St+1)q(St+1, a) − q(St, At))

For instance
I Q-learning: let π be greedy =⇒

∑
a πsaqsa = maxa qsa

I Expected Sarsa: let π be the current behaviour policy
I Sarsa: let π put all probability mass on the action the behaviour picked

Multi-step off-policy

For multi-step updates, we can use importance-sampling corrections
E.g., for a Monte Carlo return on a trajectory τt = {St, At, Rt+1, . . . , ST }

Ĝt ≡
p(τt |π)
p(τt |µ)

Gt =
π(At |St)
µ(At |St)

· · ·
π(AT |ST)
µ(AT |ST)

Gt ,

then E[Ĝt | µ] = E[Gt | π]

Multi-step off-policy

I We know multi-step updates often more efficiency propagate information
I Neither full Monte Carlo, nor one-step bootstrapping, is typically the best trade-off

Off-policy corrections for policy gradients

I Recall: for policy gradient methods we want to sample/estimate

E[qπ(St, At)∇ log π(At |St)] .

I On-policy can sample multi-step returns Gt such that E[Gt | π] ≈ qπ(s, a)
I But what if the behaviour is µ , π?
I =⇒ we might not be following a gradient direction

Issues in off-policy learning

Issues with off-policy learning

The following issues (especially) arise when learning off-policy
I High variance (especially when using multi-step updates)
I Divergent and inefficient learning (especially when using one-step updates)

We will discuss both in this lecture

Issues in off-policy learning:
Variance

Variance of importance sampling corrections

I A big issue in using importance-sampling corrections is high variance
I First, consider a one-step reward
I Verify the expectation, for a given state s:

E

[
π(At |s)
µ(At |s)

Rt+1 | At ∼ µ

]
=

∑
a

µ(a|s)
π(a|s)
µ(a|s)

r(s, a)

=
∑
a

π(a|s)r(s, a)

= E[Rt+1 | At ∼ π]

I But typically the variance will be larger, sometimes greatly so

Variance example

Variance of importance sampling corrections
I In some cases the variance of an importance-weighting return can even be infinite

(see: Sutton & Barto, Example 5.5)

Mitigating variance

I There are multiple ways to reduce variance
I We will discuss three:

I Per-decision importance weighting

I Control variates

I (Adaptive) bootstrapping

Reducing variance:
Per-decision importance weighting

Mitigating variance: with per-decision importance weighting

Consider some state s. For any random X that does not correlate with (random) action A we
have

E[X | π] = E

[
π(A|s)
µ(A|s)

X | µ
]
= E[X | µ]

Intuition: the expectation does not depend on the policy, so we don’t need to correct

Mitigating variance: with per-decision importance weighting

Proof:

E

[
π(A|s)
µ(A|s)

X | µ
]

= E[X | µ]E
[
π(A|s)
µ(A|s)

| µ

]
(Because X and π

µ are uncorrelated)

= E[X | µ]
∑
a

���µ(a|s)
π(a|s)
���µ(a|s)

= E[X | µ]
∑
a

π(a|s)

= E[X | µ] (Because
∑

a π(a|s) = 1)

Similarly, in general, we have E[π(A|s)µ(A|s) | µ] = 1

Notation

Shorthand notations:

ρt ≡
π(At | St)
µ(At | St)

ρt:t+n ≡
t+n∏
k=t

ρk =

t+n∏
k=t

π(Ak |Sk)
µ(Ak |Sk)

Then the reweighted MC return from state St terminating at time T can be written as

= ρt:T−1︷ ︸︸ ︷(
T−1∏
k=t

π(Ak |Sk)
µ(Ak |Sk)

) = Gt︷ ︸︸ ︷(
T−1∑
k=t

γk−tRk+1

)
= ρt:T−1Gt =

T−1∑
k=t

ρt:T−1γ
k−tRk+1

We can interpret the importance-weight ρt:T−1 as applying to each reward

Mitigating variance: with per-decision importance weighting

ρt:T−1Gt =

T−1∑
k=t

ρt:T−1γ
k−tRk+1

Earlier rewards cannot depend on later actions. This means:

E[ρt:T−1Gt | µ] = E[

T−1∑
k=t

ρt:T−1γ
k−tRk+1 | µ]

= E[

T−1∑
k=t

ρt:kγ
k−tRk+1 | µ]

Recursive definition of the latter:

Gρ
t = ρt (Rt+1 + γGρ

t+1)

Mitigating variance: with per-decision importance weighting

I Per-decision importance-weighted return

Gρ
t = ρt (Rt+1 + γGρ

t+1)

We can use this to learn vπ from data generated under µ , π
I To learn action values qπ , we can use

Gρ
t = Rt+1 + γρt+1Gρ

t+1

I How and why are these different?

Reducing variance: Control variates

Example: control variates

Control variates for multi-step returns

The idea of control variates can be extended to multi-step returns
I First, recall

δλt ≡ Gλ
t − v(St)

= Rt+1 + γ((1 − λ)v(St+1) + γλGλ
t+1) − v(St)

= Rt+1 + γv(St+1) − v(St)︸ ︷︷ ︸
= δt

+γλ (Gλ
t+1 − v(St+1))︸ ︷︷ ︸
= δλt+1

= δt + γλδ
λ
t+1

Control variates for multi-step returns

The idea of control variates can be extended to multi-step returns
I Now, lets add per-decision importance weights

δλt = δt + γλδ
λ
t+1

δ
ρλ
t = ρt (δt + γλδ

ρλ
t+1)

I By design this includes the (1 − ρt)v(St) control variate terms
I Sometimes called ’error weighting’ (to contrast to ’reward weighting’)

Control variates for multi-step returns

δ
ρλ
t = ρt (δt + γλδ

ρλ
t+1)

I One can show that
E[δ

ρλ
t | µ] = E[Gρλ

t − v(St) | µ]

where

Gρλ
t = ρt

(
Rt+1 + γ

(
(1 − λ)v(St+1) + λGρλ

t+1

))
is the per-decision importance-weighted λ-return.

I But δρλt can have lower variance than Gρλ
t − v(St)

Reducing variance: Adaptive
Bootstrapping

Reducing variance: bootstrapping

I For our last technique, we consider bootstrapping

I This amounts to picking λ < 1 when using either δρλt or Gρλ
t

I Note that to learn action values, we can use

Gρλ
t = Rt+1 + γ

(
(1 − λ)

∑
a

π(a | St+1)q(St+1, a) + ρt+1λGρλ
t+1

)
Then, if λ = 0, we get

Gt = Rt+1 + γ
∑
a

π(a | St+1)q(St+1, a)

=⇒ no more importance weighted =⇒ low variance
I However, bootstrapping too much may open us to the deadly triad!

Recap: Deadly triad

I Recall, the deadly triad refers to the possibility of divergence when we combine
I Bootstrapping

I Function approximation

I Off-policy learning

Recap: Deadly triad

x=1 x=2

v = w

r = 0

v = 2w

What if we use TD only on this transition?

Recap: Deadly triad

x=1 x=2

v = w

r = 0

v = 2w

wt+1 = wt + αt (r + γv(s′) − v(s))∇v(s)
= wt + αt (2γ − 1)wt

Suppose γ > 1
2 . Then,

When wt > 0 and , then wt+1 > wt

When wt < 0 and , then wt+1 < wt =⇒ wt diverges to +∞ of −∞

Recap: Deadly triad

x=1 x=2

v = w

r = 0

v = 2w

r = 0

v = 0

I What if we use multi-step returns?
I Still consider only updating the left-most state

∆w = α(r + γ(Gλ
t − v(s))

= α(2γ(1 − λ) − 1)w

I The multiplier is negative when 2γ(1 − λ) < 1 =⇒ λ > 1 − 1
2γ

I E.g., when γ = 0.9, then we need λ > 4/9 ≈ 0.45
I Conclusion: if we do not bootstrap too much, we can learn better

Reducing variance: adaptive bootstrapping

I We don’t want to bootstrap too much =⇒ deadly triad
I We don’t want to bootstrap too little =⇒ high variance
I Can we adaptively bootstrap ‘just enough’?
I Idea: bootstrap adaptively only in as much as you go off-policy

Reducing variance: adaptive bootstrapping

I Recall δρλt = ρt (δt + γλδ
ρλ
t+1)

I Let’s add an initial bootstrap parameter, and make these time-dependent

δ
ρλ
t = λt ρt (δt + γδ

ρλ
t+1)

(If λt = 1, we obtain the previous version)
I We can pick λt separately on each time step
I Idea: pick it such that, for all t, λt ρt ≤ 1:

λt = min(1, 1/ρt)

I Intuition: when we are too off-policy (ρ is far from one) truncate the sum of errors
I This is the same as bootstrapping there

Reducing variance: adaptive bootstrapping

λt = min(1, 1/ρt)

I This is known as ABTD (Mahmood et al. 2017) or v-trace (Espeholt et al. 2018)
I We are free to choose different ways to bootstrap: in the tabular case all these methods

will be updating towards some mixture of multi-step returns, and therefore converge
I In deep RL this really helps, especially for policy gradients

(Policy gradients do not like biased return estimates – we will get back to that)
I This is used a lot these days

Reducing variance: tree backup
I Picking λt = min(1, 1/ρt) is not the only way to adaptively bootstrap
I One more option, consider the Bellman operator for action values

qπ(s, a) = E[Rt+1 + γ
∑
a

π(a|St+1)qπ(St+1, a) | At = a, St = s]

I Note: the expectation does not depend on π, because we condition on the action a
I Idea: sample this, then replace only the action you selected:

Gt = Rt+1 + γ
∑

a,At+1

π(a|St+1)q(St+1, a) + γπ(At+1 |St+1)Gt+1

I We remove only the expectation q(St+1, At+1) of the action actually selected, and replace
it with the return

I This is unbiased, and low variance! (π(At+1 |St+1) plays a role similar to λ)
I It might bootstrap too early though — beware of deadly triads!

Lecture End

