
Deep Reinforcement Learning

Matteo Hessel

UCL 2021

Recap: Value function approximation

I Tabular RL does not scale to large complex problems:

1. Too many states to store in memory
2. Too slow to learn the values of each state separately,

I We need to generalise what we learn across states.

Recap: Value function approximation

I Estimate values (or policies) in an approximate way:

1. Map states s onto a suitable ”feature” representation φ(s).
2. Map features to values through a parametrised function vθ(φ)
3. Update parameters θ so that vπ(s) ∼ vθ(φ(s))

Recap: Value function approximation

I Goal: find θ that minimises the difference between vπ and vθ

L(θ) = ES∼d [(vπ(S)− vθ(S))2]

Where d is the state visitation distribution induced by π and the dynamics p.

I Solution: use gradient descent to iteratively minimise this objective

∆θ = −1

2
α∇θL(θ) = αES∼d [(vπ(S)− vθ(S)∇θvθ(S)]

Recap: Value function approximation

I Problem: evaluating the expectation is going to be hard in general,

I Solution: use stochastic gradient descent, i.e. sample the gradient update,

∆θ = α(Gt − vθ(St))∇θvθ(St)

I where Gt is a suitable sampled estimate of the return,

I Monte Carlo Prediction → Gt = Rt + γRt+1 + γ2Rt+2 + ...

I TD Prediction → Gt = Rt + γvθ(St+1)

Deep value function approximation

I In past lectures, the feature representation was typically ”fixed”

I The parametrised function vθ was just a linear mapping

I Today, we will consider more complicated non-linear mappings vθ
I A popular choice is to use deep neural network to parametrise such mapping

I Known to discover useful feature representation tailored to the specific task
I We can leverage extensive research on architectures and optimisation from SL.

Deep value function approximation

I Parametrise vθ using a deep neural network.

I For instance as a multilayer perceptron:

vθ(S) = W2 tanh(W1 ∗ S + b1) + b2

I where θ = {W1, b1,W2, b2}
I when vθ was linear ∇vθ was trivial to compute

I how do we compute such gradient if vθ is parameterised by a deep neural net?

Computational graphs

I We can represent computation via direct acyclic graphs

I specifying the sequence of operations to compute some quantity

I e.g. we can represent the sequence of operations in a neural network,

Automatic differentiation

I If we know how to compute gradients for individual nodes wrt their inputs,

I we can compute gradients of any node wrt to any other, in one backward sweep,

I Accumulate the gradient products along paths, sum gradients when paths merge.

JAX

I There are many autodiff frameworks to compute gradients in deep networks

I In this course we will be using JAX:

JAX = Numpy + Autodiff + Accelerators

I Numpy: the canonical Python library for defining matrices and matrix operations,

I Autodiff: implemented via tracing by jax.grad,

I Accelerators (GPU/TPU): supported via just in time compilation with jax.jit.

Deep Q-learning

I Use a neural network to approximate qθ: Ot 7→ Rm for m actions:
I first map the input state to a h dimensional vector
I apply a non linear transformation, e.g. a tanh/relu
I map the hidden vector to the m action values

I We could also pass state *and* action as input to the network

Deep Q-learning in JAX

I First, we define the neural network qθ using Haiku:

Deep Q-learning

I Update parameters θ through the stochastic update:

∆θ = α(Gt − qθ(St ,At))∇θqθ(St ,At), Gt = Rt+1 + γmax
a

qθ(St+1, a)

I For consistency with DL notation you may write this as gradient of a pseudo-loss:

L(θ) =
1

2

(
Rt+1 + γJmax

a
qθ(St+1, a)K− qθ(St ,At)

)2
I Note: we ignore the dependency of the bootstrap target on θ,

I Note: this is not a true loss!

Deep Q-learning in JAX

I Next, we define the update to parameters θ:

Looking forward:

Next we will explore more deeply RL with deep function approximation:

I how do ideas from the previous lectures apply in this setting?

I how can we make RL algorithms more compatible with deep learning?

I how can we make deep learning models more suitable for RL?

Deep learning aware RL

Matteo Hessel

2021

Issues with online deep RL

We know from deep learning literature that

I Stochastic gradient descent assumes gradients are sampled i.i.d.

I Using mini-batches instead of single samples is typically better,

However in online reinforcement learning algorithm:

I We perform an update on every new update,

I Consecutive updates are strongly correlated.

Friendlier data distributions?

Can we make RL more deep learning friendly?

I In the planning lectures we discussed Dyna-Q and Experience Replay,
I these mix online updates with updates on data sampled from

1. a buffer of past experience
2. a learned model of the environment

I Both approaches can

1. reduce correlation between consecutive updates,
2. support mini-batch updates instead of vanilla SGD.

Other approaches to Online Deep RL

Experience replay / planning with learned models are not the only ways to address this:

I better online algorithms: e.g. eligibility traces,

I better optimisers: e.g. momentum

I change the problem setting itself: e.g. parallel environments

The deadly triad

I If we use Dyna-Q or experience replay (DQN), we are combining:

1. Function approximation: we are using a neural network to fit action values,
2. Bootstrapping: we bootstrap on maxaQθ(s, a) to construct the target,
3. Off-policy learning: the replay hold data from a mixture of past policies.

I What about the deadly triad?

I Is this a sane thing to do?

The deadly triad in deep RL (van Hasselt et al. 2018)

I Empirically we actually find that unbounded divergence is rare,

I More common are value explosions that recover after an initial phase,

0.5 1.0 1.5 2.0 2.5 3.0 3.5

Million of frames

10-2
10-1
100
101
102
103
104
105
106
107
108 large

99%

95%

90%

75%

50%

0.5 1.0 1.5 2.0 2.5 3.0

Million of frames

small

99%

95%

90%

75%

50%

I This phenomenon is also referred to as ”soft-divergence”.

Target networks

I Soft divergence still cause value estimates to be quite poor for extended periods.

I We can address this in our deep RL agents using a separate target network:

1. Hold fixed the parameters used to compute the bootstrap targets maxaQθ(s, a),
2. Only update them periodically (every few hundreds or thousands of updates).

I This breaks the feedback loop that sits at the heart of the deadly triad.

Deep double Q-learning (van Hasselt et al. 2016)

I Q-learning has an overestimation bias, that can be corrected by double Q-learning

L(θ) =
1

2

(
Ri+1 + γJqθ−(Si+1, argmax

a
qθ(Si+1, a))K− qθ(Si ,Ai)

)2

I Great combination with target networks: we can use the frozen params as θ−.

I What is the effect of double Q-learning on the likelihood of soft divergence?

The deadly triad in deep RL - estimators

I The form of the statistical estimator of the return matters for divergence!

Q Target Q Inverse
Double Q

Double Q

Bootstrap types

0.01

0.1

1

10

100

1000

10000

100000

m
a
x
 a

b
s

Q 61% 14% 33% 10%

Prioritized replay (Schaul et al. 2016)

I DQN samples uniformly from replay

I Idea: prioritize transitions on which we can learn much

I Basic implementation:
priority of sample i = |δi | ,

where δi was the TD error on the last this transition was sampled

I Sample according to priority

I Typically involves some additional design choices

The deadly triad in deep RL - state distribution

I We bias sampled states away from the state visitation under the agent policy,

I Our updates are going to be even more off-policy!

0.0 0.5 1.0 1.5 2.0

α

25

30

35

40

45

50

#
e
x
p
e
ri

m
e
n
ts

 w
it

h
 m

a
x
|Q

|
>

 1
0

0

β= 0

β= 0. 5

I We can use importance sampling to correct at least partially.

Multi-step control

I Define the n-step Q-learning target

G
(n)
t = Rt+1 + γRt+2 + ...+ γn−1Rt+n + γn qθ−(Si+1, argmax

a
qθ(Si+1, a))︸ ︷︷ ︸

Double Q bootstrap target

I Multi-step deep Q-learning

∆θ = α(G
(n)
t − qθ(St ,At))∇θqθ(St ,At)

I Return is partially on-policy, bootstrap is off-policy

I A well-defined target: “On-policy for n steps, and then act greedy”

I That’s okay — less greedy, but still a policy improvement.

The deadly triad in deep RL - multi step targets

I Multi-step targets allow to trade-off bias and variance,

I They also reduce our reliance on bootstrapping,

I As a result they also reduce the likelihood of divergence.

1

3

10

0.001

0.01

0.1

1

10

100

1000

10000

100000

m
a
x
 a

b
s

Q

82% 43% 9%

RL aware Deep learning

Matteo Hessel

2021

RL aware deep learning: architectures

I Much of the successes of deep learning have come from encoding the right
inductive bias in the network structure:
I Translational invariance in image recognition → convolutional nets,
I Long term memory → gating in LSTMs,

I We shouldn’t just copy architectures designed for supervised problems,

I What are the right architectures to encode inductive biases that are good for RL?

Dueling networks (Wang et al. 2016)

I We can decompose qθ(s, a) = vξ(s) + Aχ(s, a), where θ = ξ ∪ χ
I Here Aχ(s, a) is the advantage for taking action a

Dueling networks

RL aware deep learning: capacity

I In supervised deep learning we often find that:

More Data + More capacity = Better performance

I The loss is easier to optimise, there is less interference, etc ...

I How does network capacity affect value function approximation?

The deadly triad in deep RL - network capacity

I Larger networks do typically perform better overall,

I But... they are however more susceptible to the deadly triad,

RL aware deep learning: generalisation

I The deadly triad shows that generalization in RL can be tricky

I Consider the problem of value learning in presence of sharp discontinuities of vπ

RL aware deep learning: generalisation

I TD learning with deep function approximation leads to ”leakage propagation”

Learning about many things

I Behind ”deadly triad” / ”leakage propagation” is inappropriate generalisation,

I Better representations can help with these issues,
I E.g. we can share the state representation across many tasks

1. Predict the value of different policies,
2. Predict future observations,
3. Predict/control other ”cumulants”, different from the main task reward.

	Deep Reinforcement Learning
	Deep learning aware RL
	RL aware Deep learning

