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Learning about many thing

» Many deep RL algorithms only optimise for a very narrow objective
> Narrow objectives induce narrow state representations,
> Narrow representation can’t support good generalisation,
> Deadly triad, leakage propagation, ...

» Our agents should strive to build rich knowledge about the world
> Learn about more than just the main task reward.
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Learning about many thing

» But what kind of knowledge should an agent learn about?
» There are many possible choices, we will discuss two main families of ideas:

> GVFs and UVFAs
> Distributional value predictions

(o)



General Value Functions
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The reward hypothesis (Sutton and Barto 2018)

» All goals can be represented as maximization of a scalar reward,

» All useful knowledge may be encoded as predictions about rewards
> For instance in the form of "general" value functions (GVFs),
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General value functions (sutton et al. 2011)

» A GVF is conditioned on more than just state and actions

Gey,n(5,@) = E[Cer1 + Ver1Craz + YerrVer2Cerz + oo | St = 5, Apyi ~ m(Se4i)]

where C; = ¢(S;) and y; = y(S;) where S; could be the environment state
» ¢: S — Ris the cumulant
> Predict many things, including — but not limited to — reward
> y: S — Ris the discount or termination
> Predict for different time horizons y
> 1 :8 — A is the target policy
> Predict under many different (hypothetical) policies 7
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Example: Simple predictive questions

> Policy Evaluation
» C: = R:, under the agent’s policy 7 and discount y
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Example: Simple predictive questions

» Policy Evaluation

» C: = R:, under the agent’s policy 7 and discount y
» Reward prediction:

» C: = R:, y = 0, under the agent’s policy
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Example: Simple predictive questions

» Policy Evaluation

» C: = R:, under the agent’s policy 7 and discount y
» Reward prediction:

» C: = R:, y = 0, under the agent’s policy
> Next state prediction:

> {le = Sé},-, y = 0, under the agent’s policy

> {C; = ¢!(5:)}i, y = 0, under the agent’s policy
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Predictive state representations (Littman et al. 2002)

» A large diverse set of GVF predictions

> will be a sufficient statistics for any other prediction,
> including the value estimates for the main task reward.

» In predictive state representations (PSR):

> Use the predictions themselves as representation of state,
> Learn policy and values as a linear function of these predictions,
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GVFs as Auxiliary Tasks
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GVFs as auxiliary tasks aderberg et al., 2016)

» GVFs can also be used as auxiliary tasks,

> that share part of the neural network,
> minimise jointly the losses for the main task reward and the auxiliary GVFs
» force the shared hidden layers to be more robust,

Value

CNN —»‘ CNN ’—»‘ FC ’—{ FC Policy

Auxiliary Task
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Example: Pixel Control @aderberg et al. 2016)

R°=|o

t+1

spatial grid of sudo rewards
proportional to the average
change of intensity of pixels.

-o)=

c=1, ...
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Example: Feature Control (aderberg et al. 2016)

| Linear | | Linear |

R=lp.,-ol= { LTI }

vector of sudo rewards
proportional feature change

c=1, ...,
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The effect of auxiliary tasks
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GVFs as auxiliary tasks

Linear RL Deep RL Deep RL
(with auxiliary)

™V AT v 4 eV
1,77V 11, TV -.
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Value-Improvement Path (pabny et al. 2020

» Why regularise the representation?

> During learning we need to approximate many value functions,
> As we are tracking a continuously improving agent policy,
> Must support all functions in the value improvement path from Q7 to Q7

Q™
Qe

Q™
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Value-Improvement Path (pabny et al. 2020

» Which GVFs best regularise the representation?

Value-Only Cumulant Value ~ Cumulant Policy

Q™

Past Policies
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Qﬂ't<k
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Trade-offs in multi-task learning
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Learning about many things: trade-offs

> We want to learn as much as possible about the world,

» We only have limited resources (e.g. capacity, computation, ...),
» Different tasks compete for these resources,

» How do we trade-off between competing needs?
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Learning about many things: trade-offs

v

There is always a trade-off,

v

Even if you don’t do anything explicit

v

The magnitude of the updates to shared weight differs across tasks,
> e.g. scales linearly with the frequency and size of per-task rewards,

v

Different tasks contribute to different degrees to representation learning,
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Gradient norms
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Update normalization

» In supervised learning we know before hand the dataset we will learn from,
> We can normalise inputs and targets so that they have appropriate scales

» Many deep learning models do not work well without this

» In reinforcement learning we do not access to the "full dataset”
> The scale of the values we predict also changes over time.

» Solution: adaptive normalization of updates
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Adaptive target normalization (van Hasselt et al. 2016)

1. Observe target, e.g., Trr1 = Rer1 + ¥ max, go(Sit1, @)
2. Update normalization parameters:

He1 = He + (Teg1 — pt) (first moment / mean)
Ver1 = Ve + ( thﬂ - V) (second moment)
Opr1 = Vi — ,uf (variance)

where 7 is a step size (e.g., = 0.001)
3. Network outputs §g(s, a), update with

Tiv1 — Hest

Af; - de(St, At) Vec"le(St, At)

Ot+1

4. Recover unnormalized value: qy(s, a) = 0:Gy(s, a) + p: (used for bootstrapping)
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Preserve outputs

v vy

v

v

Every update to the normalisation changes all outputs
This seems bad: we should not update values of unrelated states
We can avoid this. Typically:

Gw.po(s) = Wee(s)+b.

Idea: define
o oib: + 1y —
W;z tW b;ztt Ht — He+1
Ot+1 Ot+1
Then
Or+18w p,0,(S) T Hee1 = Ot@Qw, b,,60,(S) + it
Then update W3, b; and 6; as normal (e.g., SGD)
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Multi-task PopArt
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Open problems in GVF learning
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Off-policy learning

> We can learn about one cumulant off policy

» using data from a policy that maximises a different cumulant

----- glutton baseline
— key
20 = lock
= door
= chest

e |

relative unicorn performance

200 400 600 800
million frames

‘Unicorn’ (Mankowitz et al., 2018)
Learn about many things to learn to do the hard thing
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Generalisation (Schaul et al. 2015)

GVFs-based auxiliary tasks help each other by sharing the representations,
otherwise, each prediction is learnt independently

Can we generalise what we learn about one GVF to other GVFs?

Idea: feed a representation of (c, y) is as input

Allows generalization across goals/tasks within an environment

vV VvV vy VvYyVvyy

This kind of GVFs are referred to as universal value functions
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DiSCOVQI'y (Veeriah et al. 2019)

Which GVFs best regularise the representation?
The notion of value improvement path seeks a general answer,
Instead, we can learn from experience what cumulants to predict,

Using a suitable form of meta-learning

vV vyyvyy

Meta-gradient RL provides a concrete mechanism to do so
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Distributional RL
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Distributional reinforcement learning

> GVFs still represent predictive knowledge in the form of expectations

> We could also move towards learning the distribution of returns,
> instead of just approximating its expected value,

» This also provides a richer learning signal
> Can help learn more robust representations
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Categorical Return Distributions (sellemare et al, 2017)

> A specific instance is Categorical DQN
» Goal: learn a good categorical approximation or the true return distribution
> Consider a fixed ‘comb’ distribution on z = (=10, -9.9,...,9.9,10)"
> For each point of support, we assign a ‘probability’ pé (St, At)
> The approximate distribution of the return s and a is the tuple (z, pg(s, a))
> Our estimate of the expectation is: z" pyg(s, a) ~ g(s, a) — use this to act



Categorical Return Distributions

1. Find max action:
5" = argmax 27 py(Sis1, 2)
a
(use, e.g., 0~ for double Q)
2. Update support:
z' =Ry +yz
3. Project distribution (z’, pg(St+1, a*)) onto
support z
= (2.p) = TI(2, py(Sis1, a*)) where
IT denotes projection
4. Minimize divergence

, B log p!
KL(d'ld) = = X Pl igor 5oy

Pz 'yP’*
(@
R+~yP"Z OT"Z
(©

Bottom-right: target distribution

(Res1 + y2, po(Sts1,a"))
Update py(S;, A;) towards this

(o)



Quantile Return Distributions (pabney 2017)

» There are many other ways to model return distributions,
» In Quantile Regressions we transpose the parametrisation:

> instead of adjusting the probabilities of a fixed support... (C51)
> .. we can adjust the support associated to a fixed set of probabilities (QR)
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End of lecture
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