
Deep Reinforcement Learning - Part 2

Matteo Hessel

Reinforcement learning, 2021



Learning about many thing

I Many deep RL algorithms only optimise for a very narrow objective
I Narrow objectives induce narrow state representations,
I Narrow representation can’t support good generalisation,
I Deadly triad, leakage propagation, ...

I Our agents should strive to build rich knowledge about the world
I Learn about more than just the main task reward.



Learning about many thing

I But what kind of knowledge should an agent learn about?
I There are many possible choices, we will discuss two main families of ideas:

I GVFs and UVFAs
I Distributional value predictions



General Value Functions



The reward hypothesis (Sutton and Barto 2018)

I All goals can be represented as maximization of a scalar reward,
I All useful knowledge may be encoded as predictions about rewards
I For instance in the form of "general" value functions (GVFs),



General value functions (Sutton et al. 2011)

I A GVF is conditioned on more than just state and actions

qc ,γ ,π (s, a) = E [Ct+1 + γt+1Ct+2 + γt+1γt+2Ct+3 + . . . | St = s,At+i ∼ π (St+i )]

where Ct = c(St) and γt = γ (St) where St could be the environment state
I c : S → R is the cumulant

I Predict many things, including — but not limited to — reward
I γ : S → R is the discount or termination

I Predict for different time horizons γ
I π : S → A is the target policy

I Predict under many different (hypothetical) policies π



Example: Simple predictive questions

I Policy Evaluation
I Ct = Rt , under the agent’s policy π and discount γ

I Reward prediction:

I Ct = Rt , γ = 0, under the agent’s policy π

I Next state prediction:

I {C i
t = S i

t }i , γ = 0, under the agent’s policy π
I {C i

t = ϕI (St )}i , γ = 0, under the agent’s policy π



Example: Simple predictive questions

I Policy Evaluation
I Ct = Rt , under the agent’s policy π and discount γ

I Reward prediction:
I Ct = Rt , γ = 0, under the agent’s policy π

I Next state prediction:

I {C i
t = S i

t }i , γ = 0, under the agent’s policy π
I {C i

t = ϕI (St )}i , γ = 0, under the agent’s policy π



Example: Simple predictive questions

I Policy Evaluation
I Ct = Rt , under the agent’s policy π and discount γ

I Reward prediction:
I Ct = Rt , γ = 0, under the agent’s policy π

I Next state prediction:
I {C i

t = S i
t }i , γ = 0, under the agent’s policy π

I {C i
t = ϕI (St )}i , γ = 0, under the agent’s policy π



Predictive state representations (Littman et al. 2002)

I A large diverse set of GVF predictions
I will be a sufficient statistics for any other prediction,
I including the value estimates for the main task reward.

I In predictive state representations (PSR):
I Use the predictions themselves as representation of state,
I Learn policy and values as a linear function of these predictions,



GVFs as Auxiliary Tasks



GVFs as auxiliary tasks (Jaderberg et al., 2016)

I GVFs can also be used as auxiliary tasks,
I that share part of the neural network,
I minimise jointly the losses for the main task reward and the auxiliary GVFs
I force the shared hidden layers to be more robust,



Example: Pixel Control (Jaderberg et al. 2016)



Example: Feature Control (Jaderberg et al. 2016)



The effect of auxiliary tasks



GVFs as auxiliary tasks



Value-Improvement Path (Dabny et al. 2020)

I Why regularise the representation?
I During learning we need to approximate many value functions,
I As we are tracking a continuously improving agent policy,
I Must support all functions in the value improvement path from Qπ0 to Qπ ∗



Value-Improvement Path (Dabny et al. 2020)

I Which GVFs best regularise the representation?



Trade-offs in multi-task learning



Learning about many things: trade-offs

I We want to learn as much as possible about the world,
I We only have limited resources (e.g. capacity, computation, ...),
I Different tasks compete for these resources,
I How do we trade-off between competing needs?



Learning about many things: trade-offs

I There is always a trade-off,
I Even if you don’t do anything explicit
I The magnitude of the updates to shared weight differs across tasks,

I e.g. scales linearly with the frequency and size of per-task rewards,
I Different tasks contribute to different degrees to representation learning,



Gradient norms



Update normalization

I In supervised learning we know before hand the dataset we will learn from,
I We can normalise inputs and targets so that they have appropriate scales

I Many deep learning models do not work well without this
I In reinforcement learning we do not access to the "full dataset"

I The scale of the values we predict also changes over time.
I Solution: adaptive normalization of updates



Adaptive target normalization (van Hasselt et al. 2016)

1. Observe target, e.g., Tt+1 = Rt+1 + γ maxa qθ (St+1, a)

2. Update normalization parameters:

µt+1 = µt + η(Tt+1 − µt) (first moment / mean)

νt+1 = νt + η(T
2
t+1 − νt) (second moment)

σt+1 = νt − µ
2
t (variance)

where η is a step size (e.g., η = 0.001)
3. Network outputs q̃θ (s, a), update with

∆θt ∝

(
Tt+1 − µt+1

σt+1
− q̃θ (St,At)

)
∇θ q̃θ (St,At)

4. Recover unnormalized value: qθ (s, a) = σt q̃θ (s, a) + µt (used for bootstrapping)



Preserve outputs

I Every update to the normalisation changes all outputs
I This seems bad: we should not update values of unrelated states
I We can avoid this. Typically:

q̃W ,b,θ (s) =Wϕθ (s) + b .

I Idea: define

W ′
t =

σt
σt+1

W b′t =
σtbt + µt − µt+1

σt+1

Then
σt+1q̃W ′

t ,b
′
t ,θt (s) + µt+1 = σt q̃W t ,bt ,θt (s) + µt

I Then update W ′
t , b
′
t and θt as normal (e.g., SGD)



Multi-task PopArt



Open problems in GVF learning



Off-policy learning

I We can learn about one cumulant off policy
I using data from a policy that maximises a different cumulant

‘Unicorn’ (Mankowitz et al., 2018)
Learn about many things to learn to do the hard thing



Generalisation (Schaul et al. 2015)

I GVFs-based auxiliary tasks help each other by sharing the representations,
I otherwise, each prediction is learnt independently
I Can we generalise what we learn about one GVF to other GVFs?
I Idea: feed a representation of (c,γ ) is as input
I Allows generalization across goals/tasks within an environment
I This kind of GVFs are referred to as universal value functions



Discovery (Veeriah et al. 2019)

I Which GVFs best regularise the representation?
I The notion of value improvement path seeks a general answer,
I Instead, we can learn from experience what cumulants to predict,
I Using a suitable form of meta-learning
I Meta-gradient RL provides a concrete mechanism to do so



Distributional RL



Distributional reinforcement learning

I GVFs still represent predictive knowledge in the form of expectations
I We could also move towards learning the distribution of returns,
I instead of just approximating its expected value,

I This also provides a richer learning signal
I Can help learn more robust representations



Categorical Return Distributions (Bellemare et al, 2017)

I A specific instance is Categorical DQN
I Goal: learn a good categorical approximation or the true return distribution

I Consider a fixed ‘comb’ distribution on z = (−10,−9.9, . . . , 9.9, 10)>
I For each point of support, we assign a ‘probability’ piθ (St ,At )
I The approximate distribution of the return s and a is the tuple (z, pθ (s, a))
I Our estimate of the expectation is: z>pθ (s, a) ≈ q(s, a) – use this to act



Categorical Return Distributions

1. Find max action:
a∗ = argmax

a
z>pθ (St+1, a)

(use, e.g., θ− for double Q)
2. Update support:

z ′ = Rt+1 + γz
3. Project distribution (z ′, pθ (St+1, a∗)) onto

support z
d ′ = (z, p′) = Π(z ′, pθ (St+1, a∗)) where

Π denotes projection
4. Minimize divergence

KL(d ′‖d) = −
∑

i p
′
i

log p′i
log piθ (St ,At )

Bottom-right: target distribution
Π(Rt+1 + γz, pθ (St+1, a∗))
Update pθ (St,At) towards this



Quantile Return Distributions (Dabney 2017)

I There are many other ways to model return distributions,
I In Quantile Regressions we transpose the parametrisation:

I instead of adjusting the probabilities of a fixed support... (C51)
I ... we can adjust the support associated to a fixed set of probabilities (QR)



End of lecture


