Deep Reinforcement Learning - Part 2

Matteo Hessel

Reinforcement learning, 2021

(o)

Learning about many thing

» Many deep RL algorithms only optimise for a very narrow objective
> Narrow objectives induce narrow state representations,
> Narrow representation can’t support good generalisation,
> Deadly triad, leakage propagation, ...

» Our agents should strive to build rich knowledge about the world
> Learn about more than just the main task reward.

(o)

Learning about many thing

» But what kind of knowledge should an agent learn about?
» There are many possible choices, we will discuss two main families of ideas:

> GVFs and UVFAs
> Distributional value predictions

(o)

General Value Functions

(o)

The reward hypothesis (Sutton and Barto 2018)

» All goals can be represented as maximization of a scalar reward,

» All useful knowledge may be encoded as predictions about rewards
> For instance in the form of "general" value functions (GVFs),

(o)

General value functions (sutton et al. 2011)

» A GVF is conditioned on more than just state and actions

Gey,n(5,@) = E[Cer1 + Ver1Craz + YerrVer2Cerz + oo | St = 5, Apyi ~ m(Se4i)]

where C; = ¢(S;) and y; = y(S;) where S; could be the environment state
» ¢: S — Ris the cumulant
> Predict many things, including — but not limited to — reward
> y: S — Ris the discount or termination
> Predict for different time horizons y
> 1 :8 — A is the target policy
> Predict under many different (hypothetical) policies 7

(o)

Example: Simple predictive questions

> Policy Evaluation
» C: = R:, under the agent’s policy 7 and discount y

(o)

Example: Simple predictive questions

» Policy Evaluation

» C: = R:, under the agent’s policy 7 and discount y
» Reward prediction:

» C: = R:, y = 0, under the agent’s policy

(o)

Example: Simple predictive questions

» Policy Evaluation

» C: = R:, under the agent’s policy 7 and discount y
» Reward prediction:

» C: = R:, y = 0, under the agent’s policy
> Next state prediction:

> {le = Sé},-, y = 0, under the agent’s policy

> {C; = ¢!(5:)}i, y = 0, under the agent’s policy

(o)

Predictive state representations (Littman et al. 2002)

» A large diverse set of GVF predictions

> will be a sufficient statistics for any other prediction,
> including the value estimates for the main task reward.

» In predictive state representations (PSR):

> Use the predictions themselves as representation of state,
> Learn policy and values as a linear function of these predictions,

(o)

GVFs as Auxiliary Tasks

(o)

GVFs as auxiliary tasks aderberg et al., 2016)

» GVFs can also be used as auxiliary tasks,

> that share part of the neural network,
> minimise jointly the losses for the main task reward and the auxiliary GVFs
» force the shared hidden layers to be more robust,

Value

CNN —»‘ CNN ’—»‘ FC ’—{ FC Policy

Auxiliary Task

(o)

Example: Pixel Control @aderberg et al. 2016)

R°=|o

t+1

spatial grid of sudo rewards
proportional to the average
change of intensity of pixels.

-o)=

c=1, ...

(o)

Example: Feature Control (aderberg et al. 2016)

| Linear | | Linear |

R=lp.,-ol= { LTI }

vector of sudo rewards
proportional feature change

c=1, ...,

(o)

The effect of auxiliary tasks

Avg. TOP 3 agents

90%
’ 87% UNREAL
N 81% A3C+PC
80% ©79% A3C+RP+VR
0,
o 70% ©72% A3C+RP
c
©
£
E 609
5 60% ©57% A3CHVR
& ©54% A3C
2 50%
K]
g 40%
5
=2
= 30%
E
£ 20%
10%
0%
0.0 0.5 1.0 15 2.0 2.5

Steps x107

(o)

GVFs as auxiliary tasks

Linear RL Deep RL Deep RL
(with auxiliary)

™V AT v 4 eV
1,77V 11, TV -.

(o)

Value-Improvement Path (pabny et al. 2020

» Why regularise the representation?

> During learning we need to approximate many value functions,
> As we are tracking a continuously improving agent policy,
> Must support all functions in the value improvement path from Q7 to Q7

Q™
Qe

Q™

(o)

Value-Improvement Path (pabny et al. 2020

» Which GVFs best regularise the representation?

Value-Only Cumulant Value ~ Cumulant Policy

Q™

Past Policies
0]
Q™
Qﬂ't<k

(o)

Trade-offs in multi-task learning

(o)

Learning about many things: trade-offs

> We want to learn as much as possible about the world,

» We only have limited resources (e.g. capacity, computation, ...),
» Different tasks compete for these resources,

» How do we trade-off between competing needs?

(o)

Learning about many things: trade-offs

v

There is always a trade-off,

v

Even if you don’t do anything explicit

v

The magnitude of the updates to shared weight differs across tasks,
> e.g. scales linearly with the frequency and size of per-task rewards,

v

Different tasks contribute to different degrees to representation learning,

(o)

Gradient norms

108

. gradient norm (log scale)
[=}

unclipped clipped

510152025 5 10152025

frames (x 1,000,000)

Pop-Art

5 1015 20 25

(o)

Update normalization

» In supervised learning we know before hand the dataset we will learn from,
> We can normalise inputs and targets so that they have appropriate scales

» Many deep learning models do not work well without this

» In reinforcement learning we do not access to the "full dataset”
> The scale of the values we predict also changes over time.

» Solution: adaptive normalization of updates

(o)

Adaptive target normalization (van Hasselt et al. 2016)

1. Observe target, e.g., Trr1 = Rer1 + ¥ max, go(Sit1, @)
2. Update normalization parameters:

He1 = He + (Teg1 — pt) (first moment / mean)
Ver1 = Ve + (thﬂ - V) (second moment)
Opr1 = Vi — ,uf (variance)

where 7 is a step size (e.g., = 0.001)
3. Network outputs §g(s, a), update with

Tiv1 — Hest

Af; - de(St, At) Vec"le(St, At)

Ot+1

4. Recover unnormalized value: qy(s, a) = 0:Gy(s, a) + p: (used for bootstrapping)

(o)

Preserve outputs

v vy

v

v

Every update to the normalisation changes all outputs
This seems bad: we should not update values of unrelated states
We can avoid this. Typically:

Gw.po(s) = Wee(s)+b.

Idea: define
o oib: + 1y —
W;z tW b;ztt Ht — He+1
Ot+1 Ot+1
Then
Or+18w p,0,(S) T Hee1 = Ot@Qw, b,,60,(S) + it
Then update W3, b; and 6; as normal (e.g., SGD)

(o)

Multi-task PopArt

120
w== POpArt-IMPALA
=== MultiHead-IMPALA
100 == [MPALA

o]
o

Median Human Normalised Score
B [=)]
o o

N
o

Atari-57 (clipped)

6
Environment Frames

10

12
1e9

(o)

Open problems in GVF learning

(o)

Off-policy learning

> We can learn about one cumulant off policy

» using data from a policy that maximises a different cumulant

----- glutton baseline
— key
20 = lock
= door
= chest

e |

relative unicorn performance

200 400 600 800
million frames

‘Unicorn’ (Mankowitz et al., 2018)
Learn about many things to learn to do the hard thing

(o)

Generalisation (Schaul et al. 2015)

GVFs-based auxiliary tasks help each other by sharing the representations,
otherwise, each prediction is learnt independently

Can we generalise what we learn about one GVF to other GVFs?

Idea: feed a representation of (c, y) is as input

Allows generalization across goals/tasks within an environment

vV VvV vy VvYyVvyy

This kind of GVFs are referred to as universal value functions

(o)

DiSCOVQI'y (Veeriah et al. 2019)

Which GVFs best regularise the representation?
The notion of value improvement path seeks a general answer,
Instead, we can learn from experience what cumulants to predict,

Using a suitable form of meta-learning

vV vyyvyy

Meta-gradient RL provides a concrete mechanism to do so

(o)

Distributional RL

(o)

Distributional reinforcement learning

> GVFs still represent predictive knowledge in the form of expectations

> We could also move towards learning the distribution of returns,
> instead of just approximating its expected value,

» This also provides a richer learning signal
> Can help learn more robust representations

(o)

Categorical Return Distributions (sellemare et al, 2017)

> A specific instance is Categorical DQN
» Goal: learn a good categorical approximation or the true return distribution
> Consider a fixed ‘comb’ distribution on z = (=10, -9.9,...,9.9,10)"
> For each point of support, we assign a ‘probability’ pé (St, At)
> The approximate distribution of the return s and a is the tuple (z, pg(s, a))
> Our estimate of the expectation is: z" pyg(s, a) ~ g(s, a) — use this to act

Categorical Return Distributions

1. Find max action:
5" = argmax 27 py(Sis1, 2)
a
(use, e.g., 0~ for double Q)
2. Update support:
z' =Ry +yz
3. Project distribution (z’, pg(St+1, a*)) onto
support z
= (2.p) = TI(2, py(Sis1, a*)) where
IT denotes projection
4. Minimize divergence

, B log p!
KL(d'ld) = = X Pl igor 5oy

Pz 'yP’*
(@
R+~yP"Z OT"Z
(©

Bottom-right: target distribution

(Res1 + y2, po(Sts1,a"))
Update py(S;, A;) towards this

(o)

Quantile Return Distributions (pabney 2017)

» There are many other ways to model return distributions,
» In Quantile Regressions we transpose the parametrisation:

> instead of adjusting the probabilities of a fixed support... (C51)
> .. we can adjust the support associated to a fixed set of probabilities (QR)

(o)

End of lecture

(o)

