
Lecture 7:
Function approximation in reinforcement learning

(And deep reinforcement learning)

Hado van Hasselt

UCL, 2021

Background

Sutton & Barto 2018, Chapters 9 + 10 (+ 11)

Recap

I Reinforcement learning is the science of learning to make decisions
I Agents can learn a policy, value function and/or a model
I The general problem involves taking into account time and consequences
I Decisions affect the reward, the agent state, and environment state

Why function approximation?

Function approximation and deep reinforcement learning

I The policy, value function, model, and agent state update are all functions
I We want to learn these from experience
I If there are too many states, we need to approximate
I This is often called deep reinforcement learning,

when using neural networks to represent these functions
I The term is fairly new (±7-8 years) — the combination is fairly old (±50 years)

Function approximation and deep reinforcement learning

This lecture
I We consider learning predictions (value functions; including value-based control)

Upcoming lectures
I Off-policy learning
I Approximate dynamic programming (theory with function approximation)
I Learn explicit policies (policy gradients)
I Model-based RL

Large-Scale Reinforcement Learning

Reinforcement learning can be used to solve large problems, e.g.
I Backgammon: 1020 states
I Go: 10170 states
I Helicopter: continuous state space
I Robots: real world

How can we apply our methods for prediction and control?

Value function approximation

Value Function Approximation

I So far we mostly considered lookup tables
I Every state s has an entry v(s)
I Or every state-action pair s, a has an entry q(s, a)

I Problem with large MDPs:
I There are too many states and/or actions to store in memory

I It is too slow to learn the value of each state individually

I Individual environment states are often not fully observable

Value Function Approximation

Solution for large MDPs:
I Estimate value function with function approximation

vw(s) ≈ vπ(s) (or v∗(s))
qw(s, a) ≈ qπ(s, a) (or q∗(s, a))

I Update parameter w (e.g., using MC or TD learning)
I Generalise to unseen states

Agent state update

When the environment state is not fully observable (Senv
t , Ot)

I Use the agent state:
st = uω(st−1, At−1,Ot)

with parameters ω (typically ω ∈ Rn)
I Henceforth, St or st denotes the agent state
I Think of this as either a vector inside the agent,

or, in the simplest case, just the current observation: St = Ot

Function classes

Classes of Function Approximation

I Tabular: a table with an entry for each MDP state
I State aggregation: Partition environment states (or observations) into a discrete set
I Linear function approximation

I Consider fixed agent state update (e.g., St = Ot)

I Fixed feature map x : S → Rn

I Values are linear function of features: vw(s) = w>x(s)
I Note: state aggregation and tabular are special cases of linear FA

I Differentiable function approximation
I vw(s) is a differentiable function of w, could be non-linear

I E.g., a convolutional neural network that takes pixels as input

I Another interpretation: features are not fixed, but learnt

Classes of Function Approximation

In principle, any function approximator can be used, but RL has specific properties:
I Experience is not i.i.d. — successive time-steps are correlated
I Agent’s policy affects the data it receives
I Regression targets can be non-stationary

I ...because of changing policies (which can change the target and the data!)

I ...because of bootstrapping

I ...because of non-stationary dynamics (e.g., other learning agents)

I ...because the world is large (never quite in the same state)

Classes of Function Approximation

Which function approximation should you choose?
This depends on your goals.
I Tabular: good theory but does not scale/generalise
I Linear: reasonably good theory, but requires good features
I Non-linear: less well-understood, but scales well

Flexible, and less reliant on picking good features first (e.g., by hand)
I (Deep) neural nets often perform quite well, and remain a popular choice

Gradient-based algorithms

Gradient Descent

I Let J(w) be a differentiable function of parameter vector w
I Define the gradient of J(w) to be

∇wJ(w) =
©«
∂J(w)
∂w1
...

∂J(w)
∂wn

ª®®®¬
I Goal: to minimise of J(w)
I Method: move w in the direction of negative gradient

∆w = −
1
2
α∇wJ(w)

where α is a step-size parameter

Approximate Values By Stochastic Gradient Descent
I Goal: find w that minimise the difference between vw(s) and vπ(s)

J(w) = ES∼d[(vπ(S) − vw(S))2]

where d is a distribution over states (typically induced by the policy and dynamics)
I Gradient descent:

∆w = −
1
2
α∇wJ(w) = αEd(vπ(S) − vw(S))∇wvw(S)

I Stochastic gradient descent (SGD), sample the gradient:

∆w = α(Gt − vw(St))∇wvw(St)

Note: Monte Carlo return Gt is a sample for vπ(St)
I We often write ∇v(St) as short hand for

∇wvw(St)|w=wt

Linear function approximation

Feature Vectors

I Represent state by a feature vector

x(s) =
©«

x1(s)
...

xn(s)

ª®®¬
I x : S → Rn is a fixed mapping from state (e.g., observation) to features
I Short-hand: xt = x(St)
I For example:

I Distance of robot from landmarks

I Trends in the stock market

I Piece and pawn configurations in chess

Feature construction example: coarse coding

I Coarse coding provides large feature vector x(s)
I Parameter vector w gives a value to each feature

t
expanded

representation,
many features

original
representation

approximation

Generalization in Coarse Coding

I We aggregate multiple states
I This means the resulting feature vector/agent state is non-Markovian
I This is the common case when using function approximation
I Consider whether good solutions exist for given features + function approximation
I Neural networks tend to be more flexible

Linear model-free prediction

Linear Value Function Approximation

I Approximate value function by a linear combination of features

vw(s) = w>x(s) =
n∑
j=1

xj(s)wj

I Objective function (‘loss‘) is quadratic in w

J(w) = ES∼d[(vπ(S) − w>x(S))2]

I Stochastic gradient descent converges on global optimum
I Update rule is simple

∇wvw(St) = x(St) = xt =⇒ ∆w = α(vπ(St) − vw(St))xt

Update = step-size × prediction error × feature vector

Incremental prediction algorithms

I We can’t update towards the true value function vπ(s)
I We substitute a target for vπ(s)

I For MC, the target is the return Gt

∆wt = α(Gt − vw(s))∇wvw(s)

I For TD, the target is the TD target Rt+1 + γvw(St+1)

∆wt = α(Rt+1 + γvw(St+1) − vw(St))∇wvw(St)

I TD(λ):

∆wt = α(G
λ
t − vw(St))∇wvw(St)

Gλt = Rt+1 + γ

(
(1 − λ)vw(St+1) + λGλt+1

)

Monte-Carlo with Value Function Approximation

I The return Gt is an unbiased sample of vπ(s)
I Can therefore apply “supervised learning” to (online) “training data":

{(S0,G0), . . . , (St,Gt)}

I For example, using linear Monte-Carlo policy evaluation

∆wt = α(Gt − vw(St))∇wvw(St)
= α(Gt − vw(St))xt

I Linear Monte-Carlo evaluation converges to the global optimum
I Even when using non-linear value function approximation it converges

(but perhaps to a local optimum)

TD Learning with Value Function Approximation

I The TD-target Rt+1 + γvw(St+1) is a biased sample of true value vπ(St)
I Can still apply supervised learning to “training data":

{(S0, R1 + γvw(S1)), . . . (St, Rt+1 + γvw(St+1))}

I For example, using linear TD

∆wt = α (Rt+1 + γvw(St+1) − vw(St))︸ ︷︷ ︸
= δt , ‘TD error’

∇wvw(St)

= αδtxt

I This is akin to a non-stationary regression problem
I But it’s a bit different: the target depends on our parameters!

Control with value-function
approximation

Control with Value Function Approximation

Starting θ

π = ε-greedy(Q θ)

Q
θ ≈ Q π

Qθ ≈ Q*

Policy evaluation Approximate policy evaluation, qw ≈ qπ
Policy improvement E.g., ε -greedy policy improvement

Action-Value Function Approximation

I Approximate the action-value function qw(s, a) ≈ qπ(s, a)
I For instance, with linear function approximation with state-action features

qw(s, a) = x(s, a)>w

I Stochastic gradient descent update

∆w = α(qπ(s, a) − qw(s, a))∇wqw(s, a)
= α(qπ(s, a) − qw(s, a))x(s, a)

Action-Value Function Approximation

I Approximate the action-value function qw(s, a) ≈ qπ(s, a)
I For instance, with linear function approximation with state features

qw(s) = Wx(s) (W ∈ Rm×n , x(s) ∈ Rn =⇒ q ∈ Rm)

qw(s, a) = qw(s)[a] = x(s)>wa (where wa = W>a ·)

I Stochastic gradient descent update

∆wa = α(qπ(s, a) − qw(s, a))∇wqw(s, a)
= α(qπ(s, a) − qw(s, a))x(s)

∀a , b : ∆wb = 0

Equivalently: ∆W = α(qπ(s, a) − qw(s, a))iax(s)>

where ia = (0, . . . , 0, 1, 0, . . . , 0) with ia[a] = 1, ia[b] = 0 for b , a

Action-Value Function Approximation

I Should we use action-in, or action-out?
I Action in: qw(s, a) = w>x(s, a)
I Action out: qw(s) = Wx(s) such that qw(s, a) = qw(s)[a]

I One reuses the same weights, the other the same features
I Unclear which is better in general
I If we want to use continuous actions, action-in is easier (later lecture)
I For (small) discrete action spaces, action-out is common (e.g., DQN)

Action-Value Function Approximation

I SARSA is TD applied to state-action pairs
I =⇒ Inherits same properties
I But easier to do policy optimisation, and therefore policy iteration

Linear Sarsa with Coarse Coding in Mountain Car

Linear Sarsa with Tile Coding

Tile coding is similar to coarse coding:
Overlaying different discretisations of the state space

Convergence and divergence

Convergence Questions

I When do incremental prediction algorithms converge?
I When using bootstrapping (i.e. TD)?

I When using (e.g., linear) value function approximation?

I When using off-policy learning?

I Ideally, we would like algorithms that converge in all cases
I Alternatively, we want to understand when algorithms do, or do not, converge

Convergence of MC

I With linear functions (and suitably decaying step size), MC converges to

wMC = argmin
w

Eπ[(Gt − vw(St))2] = Eπ[xtx>t]
−1Eπ[Gtxt]

(Notation: here the state distribution implicitly depends on π)
I Verifying the fixed point:

∇wMCE[(Gt − vwMC(St))
2] = E[(Gt − vwMC(St))xt] = 0

E[(Gt − x>t wMC)xt] = 0

E[Gtxt − xtx>t wMC] = 0

E[xtx>t]wMC = E[Gtxt]

wMC = E[xtx>t]
−1E[Gtxt]

I Agent state St does not have to be Markov:
the fixed point only depends on observed data (and features)

Convergence of TD

I With linear functions, TD converges to

wTD = E[xt (xt − γxt+1)>]−1E[Rt+1xt]

(in continuing problems with fixed γ < 1, and with appropriately decaying αt → 0)
I Verify (assuming αt does not correlate with Rt+1, xt, xt+1):

E[∆wTD] = 0 = E[αt (Rt+1 + γx>t+1wTD − x>t wTD)xt]

0 = E[αtRt+1xt] + E[αtxt (γx>t+1 − x>t)wTD]

E[αtxt (xt − γxt+1)>]wTD = E[αtRt+1xt]

wTD = E[xt (xt − γxt+1)>]−1E[Rt+1xt]

I This differs from the MC solution
I Typically, the asymptotic MC solution is preferred (smallest prediction error)
I TD often converges faster (especially intermediate λ ∈ [0, 1] or n ∈ {1, . . . ,∞})

Convergence of TD

I With linear functions, TD converges to

wTD = E[xt (xt − γxt+1)>]−1E[Rt+1xt]

I Let VE(w) denote the value error:

VE(w) = ‖vπ − vw‖dπ =
∑
s∈S

dπ(s)(vπ(s) − vw(s))2

I The Monte Carlo solution minimises the value error

Theorem

VE(wTD) ≤
1

1 − γ
VE(wMC) =

1
1 − γ

min
w

VE(w)

TD is not a gradient

I The TD update is not a true gradient update:

w← w + α(r + γvw(s′) − vw(s))∇vw(s)

I That’s okay: it is a stochastic approximation update
I Stochastic approximation algorithms are a broader class than just SGD
I SGD always converges (with bounded noise, decaying step size, stationarity, ...)
I TD does not always converge...

Example of divergence

x=1 x=2

v = w

r = 0

v = 2w

What if we use TD only on this transition?

Example of divergence

x=1 x=2

v = w

r = 0

v = 2w

wt+1 = wt + αt (r + γv(s′) − v(s))∇v(s)
= wt + αt (r + γv(s′) − v(s))x(s)
= wt + αt (0 + γ2wt − wt)

= wt + αt (2γ − 1)wt

Consider wt > 0. If γ > 1
2 , then wt+1 > wt .

=⇒ limt→∞ wt = ∞

Example of divergence

x=1 x=2

v = w

r = 0

v = 2w

I Algorithms that combine
I bootstrapping

I off-policy learning, and

I function approximation
...may diverge

I This is sometimes called the deadly triad

Deadly triad

x=1 x=2

v = w

r = 0

v = 2w

r = 0

v = 0

I Consider sampling on-policy, over an episode. Update:

∆w = α(0 + 2γw − w) + α(0 + γ0 − 2w)
= α(2γ − 3)w

I The multiplier is negative, for all γ ∈ [0, 1]
I =⇒ convergence (w goes to zero, which is optimal here)

Deadly triad

x=(1 ,0) x=(0, 1)

v = w[0]

r = 0

v = w[1]

r = 0

v = 0

I With tabular features, this is just regression
I Answer may be sub-optimal, but no divergence occurs
I Specifically, if we only update v(s) (=left-most state):

I v(s) = w[0] will converge to γv(s′)
I v(s′) = w[1] will stay where it was initialised

Deadly triad

x=1 x=2

v = w

r = 0

v = 2w

r = 0

v = 0

I What if we use multi-step returns?
I Still consider only updating the left-most state

∆w = α(r + γ(Gλ
t − v(s))

= α(r + γ((1 − λ)v(s′) + λ(r ′ + v(s′′)) − v(s)) (r = r ′ = v(s′′) = 0)
= α(2γ(1 − λ) − 1)w

I The multiplier is negative when 2γ(1 − λ) < 1 =⇒ λ > 1 − 1
2γ

I E.g., when γ = 0.9, then we need λ > 4/9 ≈ 0.45

Residual Bellman updates

TD: ∆wt = αδ∇vw(St) where δt = Rt+1 + γvw(St+1) − vw(St)

I This update ignores dependence of vw(St+1) on w
I Alternative: Bellman residual gradient update

loss: E[δ2t] update: ∆wt = αδt∇w(vw(St) − γvw(St+1))

I This tends to work worse in practice
I Bellman residuals smooth, whereas TD methods predict
I Smoothed values may lead to suboptimal decisions

Residual Bellman updates

I Alternative: minimise the Bellman error

loss: E[δt]2 update: ∆wt = αδt∇w(vw(St) − γvw(S′t+1))

I ...but requires a second independent sample S′t+1 which could (randomly) differ from St+1
(So we can’t use this online)

Convergence of Prediction Algorithms

On/Off-Policy Algorithm Table Lookup Linear Non-Linear

On-Policy MC 3 3 3
TD 3 3 7

Off-Policy MC 3 3 3
TD 3 7 7

Convergence of Control Algorithms

I Tabular control learning algorithms (e.g., Q-learning) can be extended to FA
(e.g., Deep Q Network — DQN)

I The theory of control with function approximation is not fully developed
I Tracking is often preferred to convergence

(I.e., continually adapting the policy instead of converging to a fixed policy)

Batch Methods

Batch Reinforcement Learning

I Gradient descent is simple and appealing
I But it is not sample efficient
I Batch methods seek to find the best fitting value function for a given a set of past

experience (“training data")

Least Squares Temporal Difference

I Which parameters w give the best fitting linear value function vw(s) = w>x(s)? Recall:

E[(Rt+1 + γvw(St+1) − vw(St))xt] = 0

=⇒ wTD = E[xt (xt − γxt+1)>]−1E[Rt+1xt]

I We can use a closed-form empirical loss:

1
t

t∑
i=0

(Ri+1 + γvw(Si+1) − vw(Si))xi = 0

=⇒ wLSTD =

(t∑
i=0

xi(xi − γxi+1)>
)−1 (

t∑
i=0

Ri+1xi

)
I This is called least-squares TD (LSTD)

Least Squares Temporal Difference

wt =

(t∑
i=0

xi(xi − γxi+1)>
)−1

︸ ︷︷ ︸
= A−1t

(t∑
i=0

Ri+1xi

)
︸ ︷︷ ︸
= bt

(LSTD estimate)

I We can update bt and A−1t incrementally online
I Naive approach (O(n3))

At+1 = At + xt (xt − γxt+1)> bt+1 = bt + Rt+1xt

I Faster approach (O(n2)): directly update A−1 with Sherman-Morrison:

A−1t+1 = A−1t −
A−1t xt (xt − γxt+1)>A−1t
1 + (xt − γxt+1)>A−1t xt

bt+1 = bt + Rt+1xt

I Still more compute per step than TD (O(n))

Least Squares Temporal Difference

I In the limit, LSTD and TD converge to the same fixed point
I We can extend LSTD to multi-step returns: LSTD(λ)
I We can extend LSTD to action values: LSTDQ
I We can also interlace with policy improvement:

least-squares policy iteration (LSPI)

Experience Replay

Given experience consisting of trajectories of experience

D = {S0, A0, R1, S1, . . . , St }

Repeat:
1. Sample transition(s), e.g., (Sn, An, Rn+1, Sn+1) for n ≤ t

2. Apply stochastic gradient descent update

∆w = α(Rn+1 + γvw(Sn+1) − vw(Sn))∇wvw(Sn)

3. Can re-use old data
This is also a form of batch learning
Beware: the data may be off-policy if the policy changes

Deep reinforcement learning
(briefly, more later)

Deep neural networks
(blackboard)

Deep reinforcement learning

I Many ideas immediately transfer when using deep neural networks:
I TD and MC

I Double learning (e.g., double Q-learning)

I Experience replay

I ...

I Some ideas do not easily transfer
I UCB

I Least squares TD/MC

Example: neural Q-learning

I Online neural Q-learning may include:
I Neural network: Ot 7→ qw (action-out)

I Exploration policy: πt = ε -greedy(qt), and then At ∼ πt

I Weight update: for instance Q-learning

∆w ∝
(
Rt+1 + γmax

a
qw(St+1, a) − qw(St, At)

)
∇wqw(St, At)

I An optimizer to minimize the loss (e.g., SGD, RMSProp, Adam)

I Often, we implement the weight update via a ‘loss’

L(w) =
1
2

(
Rt+1 + γ

�
max
a

qw(St+1, a)
�
− qw(St, At)

)2
where n·o denotes stopping the gradient, so that the semi-gradient is ∆w

I Note that L(w) is not a real loss, it just happens to have the right gradient

Example: DQN

I DQN (Mnih et al. 2013, 2015) includes:
I A neural network: Ot 7→ qw (action-out)

I An exploration policy: πt = ε -greedy(qt), and then At ∼ πt

I A replay buffer to store and sample past transitions (Si, Ai, Ri+1, Si+1)
I Target network parameters w−

I A Q-learning weight update on w (uses replay and target network)

∆w =
(
Ri+1 + γmax

a
qw− (Si+1, a) − qw(Si, Ai)

)
∇wqw(Si, Ai)

I Update w−t ← wt occasionally (e.g., every 10000 steps)

I An optimizer to minimize the loss (e.g., SGD, RMSprop, or Adam)

I Replay and target networks make RL look more like supervised learning
I Neither is strictly necessary, but they helped for DQN
I “DL-aware RL”

End of Lecture

