Lecture 7: Function approximation in reinforcement learning (And deep reinforcement learning)

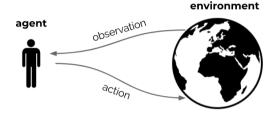
Hado van Hasselt

UCL, 2021

Background

Sutton & Barto 2018, Chapters 9 + 10 (+ 11)

Recap



- Reinforcement learning is the science of learning to make decisions
- Agents can learn a policy, value function and/or a model
- The general problem involves taking into account time and consequences
- Decisions affect the reward, the agent state, and environment state

Why function approximation?

Function approximation and deep reinforcement learning

- The policy, value function, model, and agent state update are all functions
- We want to learn these from experience
- If there are too many states, we need to approximate
- This is often called deep reinforcement learning, when using neural networks to represent these functions
- ▶ The term is fairly new (±7-8 years) the combination is fairly old (±50 years)

Function approximation and deep reinforcement learning

This lecture

We consider learning predictions (value functions; including value-based control)
 Upcoming lectures

- Off-policy learning
- Approximate dynamic programming (theory with function approximation)
- Learn explicit policies (policy gradients)
- Model-based RL

Large-Scale Reinforcement Learning

Reinforcement learning can be used to solve large problems, e.g.

- ▶ Backgammon: 10²⁰ states
- ▶ Go: 10¹⁷⁰ states
- Helicopter: continuous state space
- Robots: real world

How can we apply our methods for prediction and control?

Value function approximation

Value Function Approximation

So far we mostly considered lookup tables

- Every state *s* has an entry v(s)
- Or every state-action pair *s*, *a* has an entry q(s, a)
- Problem with large MDPs:
 - There are too many states and/or actions to store in memory
 - It is too slow to learn the value of each state individually
 - Individual environment states are often not fully observable

Value Function Approximation

Solution for large MDPs:

• Estimate value function with **function approximation**

$$v_{\mathbf{w}}(s) \approx v_{\pi}(s)$$
 (or $v_{*}(s)$)
 $q_{\mathbf{w}}(s, a) \approx q_{\pi}(s, a)$ (or $q_{*}(s, a)$)

- ▶ Update parameter **w** (e.g., using MC or TD learning)
- Generalise to unseen states

Agent state update

When the environment state is not fully observable $(S_t^{env} \neq O_t)$

Use the agent state:

$$\mathbf{s}_t = u_{\omega}(\mathbf{s}_{t-1}, A_{t-1}, O_t)$$

with parameters ω (typically $\omega \in \mathbb{R}^n$)

- Henceforth, S_t or \mathbf{s}_t denotes the agent state
- Think of this as either a vector inside the agent, or, in the simplest case, just the current observation: S_t = O_t

Function classes

Classes of Function Approximation

- **Tabular:** a table with an entry for each MDP state
- State aggregation: Partition environment states (or observations) into a discrete set
- Linear function approximation
 - Consider fixed agent state update (e.g., $S_t = O_t$)
 - Fixed feature map $\mathbf{x} : S \to \mathbb{R}^n$
 - ► Values are linear function of features: $v_{\mathbf{w}}(s) = \mathbf{w}^{\top} \mathbf{x}(s)$
 - Note: state aggregation and tabular are special cases of linear FA
- Differentiable function approximation
 - \triangleright $v_{\mathbf{w}}(s)$ is a differentiable function of \mathbf{w} , could be non-linear
 - E.g., a convolutional neural network that takes pixels as input
 - Another interpretation: features are not fixed, but learnt

Classes of Function Approximation

In principle, any function approximator can be used, but RL has specific properties:

- Experience is not i.i.d. successive time-steps are correlated
- Agent's policy affects the data it receives
- Regression targets can be non-stationary
 - ...because of changing policies (which can change the target and the data!)
 - …because of bootstrapping
 - ...because of non-stationary dynamics (e.g., other learning agents)
 - ...because the world is large (never quite in the same state)

Classes of Function Approximation

Which function approximation should you choose? This depends on your goals.

- ► Tabular: good theory but does not scale/generalise
- Linear: reasonably good theory, but requires good features
- Non-linear: less well-understood, but scales well Flexible, and less reliant on picking good features first (e.g., by hand)
- (Deep) neural nets often perform quite well, and remain a popular choice

Gradient-based algorithms

Gradient Descent

- Let $J(\mathbf{w})$ be a differentiable function of parameter vector \mathbf{w}
- Define the gradient of $J(\mathbf{w})$ to be

$$\nabla_{\mathbf{w}} J(\mathbf{w}) = \begin{pmatrix} \frac{\partial J(\mathbf{w})}{\partial w_1} \\ \vdots \\ \frac{\partial J(\mathbf{w})}{\partial w_n} \end{pmatrix}$$

- Goal: to minimise of $J(\mathbf{w})$
- Method: move **w** in the direction of negative gradient

$$\Delta \mathbf{w} = -\frac{1}{2}\alpha \nabla_{\mathbf{w}} J(\mathbf{w})$$

where α is a step-size parameter

Approximate Values By Stochastic Gradient Descent

• Goal: find **w** that minimise the difference between $v_{\mathbf{w}}(s)$ and $v_{\pi}(s)$

$$J(\mathbf{w}) = \mathbb{E}_{S \sim d}[(\nu_{\pi}(S) - \nu_{\mathbf{w}}(S))^2]$$

where d is a distribution over states (typically induced by the policy and dynamics)

Gradient descent:

$$\Delta \mathbf{w} = -\frac{1}{2}\alpha \nabla_{\mathbf{w}} J(\mathbf{w}) = \alpha \mathbb{E}_d(v_{\pi}(S) - v_{\mathbf{w}}(S)) \nabla_{\mathbf{w}} v_{\mathbf{w}}(S)$$

Stochastic gradient descent (SGD), sample the gradient:

$$\Delta \mathbf{w} = \alpha (G_t - v_{\mathbf{w}}(S_t)) \nabla_{\mathbf{w}} v_{\mathbf{w}}(S_t)$$

Note: Monte Carlo return G_t is a sample for $v_{\pi}(S_t)$

• We often write $\nabla v(S_t)$ as short hand for

$$\nabla_{\mathbf{w}} v_{\mathbf{w}}(S_t)|_{\mathbf{w}=\mathbf{w}_t}$$

Linear function approximation

Feature Vectors

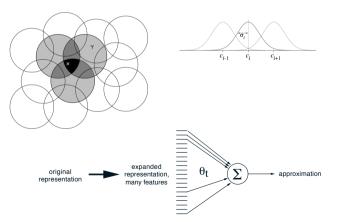
Represent state by a feature vector

$$\mathbf{x}(s) = \begin{pmatrix} x_1(s) \\ \vdots \\ x_n(s) \end{pmatrix}$$

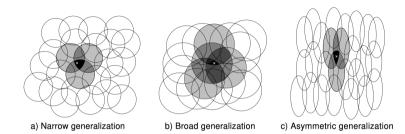
- ▶ $\mathbf{x} : S \to \mathbb{R}^n$ is a fixed mapping from state (e.g., observation) to features
- Short-hand: $\mathbf{x}_t = \mathbf{x}(S_t)$
- For example:
 - Distance of robot from landmarks
 - Trends in the stock market
 - Piece and pawn configurations in chess

Feature construction example: coarse coding

- Coarse coding provides large feature vector x(s)
- Parameter vector **w** gives a value to each feature



Generalization in Coarse Coding



- We aggregate multiple states
- This means the resulting feature vector/agent state is non-Markovian
- ▶ This is the common case when using function approximation
- Consider whether good solutions exist for given features + function approximation
- Neural networks tend to be more flexible

Linear model-free prediction

Linear Value Function Approximation

Approximate value function by a linear combination of features

$$v_{\mathbf{w}}(s) = \mathbf{w}^{\top} \mathbf{x}(s) = \sum_{j=1}^{n} \mathbf{x}_j(s) \mathbf{w}_j$$

Objective function ('loss') is quadratic in w

$$J(\mathbf{w}) = \mathbb{E}_{S \sim d}[(v_{\pi}(S) - \mathbf{w}^{\top}\mathbf{x}(S))^{2}]$$

- Stochastic gradient descent converges on global optimum
- Update rule is simple

$$\nabla_{\mathbf{w}} v_{\mathbf{w}}(S_t) = \mathbf{x}(S_t) = \mathbf{x}_t \qquad \implies \qquad \Delta \mathbf{w} = \alpha (v_{\pi}(S_t) - v_{\mathbf{w}}(S_t)) \mathbf{x}_t$$

Update = step-size × prediction error × feature vector

Incremental prediction algorithms

- We can't update towards the true value function $v_{\pi}(s)$
- We substitute a **target** for $v_{\pi}(s)$
 - For MC, the target is the return G_t

$$\Delta \mathbf{w}_t = \alpha (\mathbf{G}_t - v_{\mathbf{w}}(s)) \nabla_{\mathbf{w}} v_{\mathbf{w}}(s)$$

For TD, the target is the TD target $R_{t+1} + \gamma v_{\mathbf{w}}(S_{t+1})$

$$\Delta \mathbf{w}_{t} = \alpha(\mathbf{R}_{t+1} + \gamma v_{\mathbf{w}}(\mathbf{S}_{t+1}) - v_{\mathbf{w}}(\mathbf{S}_{t})) \nabla_{\mathbf{w}} v_{\mathbf{w}}(\mathbf{S}_{t})$$

TD(λ):

$$\Delta \mathbf{w}_{t} = \alpha (\mathbf{G}_{t}^{\lambda} - v_{\mathbf{w}}(S_{t})) \nabla_{\mathbf{w}} v_{\mathbf{w}}(S_{t})$$
$$G_{t}^{\lambda} = R_{t+1} + \gamma \left((1 - \lambda) v_{\mathbf{w}}(S_{t+1}) + \lambda G_{t+1}^{\lambda} \right)$$

Monte-Carlo with Value Function Approximation

• The return G_t is an **unbiased** sample of $v_{\pi}(s)$

Can therefore apply "supervised learning" to (online) "training data":

 $\{(S_0, G_0), \ldots, (S_t, G_t)\}$

► For example, using linear Monte-Carlo policy evaluation

$$\Delta \mathbf{w}_t = \alpha (\mathbf{G}_t - v_{\mathbf{w}}(S_t)) \nabla_{\mathbf{w}} v_{\mathbf{w}}(S_t)$$
$$= \alpha (\mathbf{G}_t - v_{\mathbf{w}}(S_t)) \mathbf{x}_t$$

- Linear Monte-Carlo evaluation converges to the global optimum
- Even when using non-linear value function approximation it converges (but perhaps to a local optimum)

TD Learning with Value Function Approximation

- ► The TD-target $R_{t+1} + \gamma v_{\mathbf{w}}(S_{t+1})$ is a **biased** sample of true value $v_{\pi}(S_t)$
- Can still apply supervised learning to "training data":

$$\{(S_0, R_1 + \gamma v_{\mathbf{w}}(S_1)), \dots (S_t, R_{t+1} + \gamma v_{\mathbf{w}}(S_{t+1}))\}$$

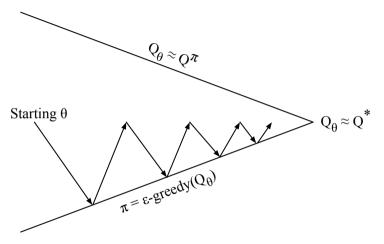
► For example, using linear TD

$$\Delta \mathbf{w}_{t} = \alpha \underbrace{(\mathbf{R}_{t+1} + \gamma v_{\mathbf{w}}(\mathbf{S}_{t+1}) - v_{\mathbf{w}}(S_{t}))}_{= \delta_{t}, \text{ `TD error'}} \nabla_{\mathbf{w}} v_{\mathbf{w}}(S_{t})$$
$$= \alpha \delta_{t} \mathbf{x}_{t}$$

- This is akin to a non-stationary regression problem
- But it's a bit different: the target depends on our parameters!

Control with value-function approximation

Control with Value Function Approximation



Policy evaluation **Approximate** policy evaluation, $q_w \approx q_\pi$ Policy improvement E.g., ϵ -greedy policy improvement

- Approximate the action-value function $q_w(s, a) \approx q_{\pi}(s, a)$
- ► For instance, with linear function approximation with state-action features

$$q_{\mathbf{w}}(s,a) = \mathbf{x}(s,a)^{\top} \mathbf{w}$$

Stochastic gradient descent update

$$\Delta \mathbf{w} = \alpha (q_{\pi}(s, a) - q_{\mathbf{w}}(s, a)) \nabla_{\mathbf{w}} q_{\mathbf{w}}(s, a)$$
$$= \alpha (q_{\pi}(s, a) - q_{\mathbf{w}}(s, a)) \mathbf{x}(s, a)$$

• Approximate the action-value function $q_{\mathbf{w}}(s, a) \approx q_{\pi}(s, a)$

► For instance, with linear function approximation with state features

$$\mathbf{q}_{\mathbf{w}}(s) = \mathbf{W}\mathbf{x}(s) \qquad (\mathbf{W} \in \mathbb{R}^{m \times n}, \ \mathbf{x}(s) \in \mathbb{R}^{n} \implies \mathbf{q} \in \mathbb{R}^{m})$$
$$q_{\mathbf{w}}(s, a) = \mathbf{q}_{\mathbf{w}}(s)[a] = \mathbf{x}(s)^{\top}\mathbf{w}_{a} \qquad (\text{where } \mathbf{w}_{a} = \mathbf{W}_{a}^{\top}.)$$

Stochastic gradient descent update

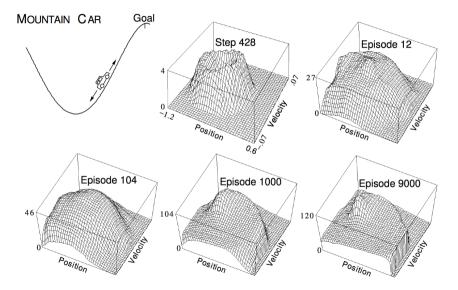
$$\Delta \mathbf{w}_{a} = \alpha (q_{\pi}(s, a) - q_{\mathbf{w}}(s, a)) \nabla_{\mathbf{w}} q_{\mathbf{w}}(s, a)$$
$$= \alpha (q_{\pi}(s, a) - q_{\mathbf{w}}(s, a)) \mathbf{x}(s)$$
$$\forall a \neq b : \Delta \mathbf{w}_{b} = 0$$
Equivalently:
$$\Delta \mathbf{W} = \alpha (q_{\pi}(s, a) - q_{\mathbf{w}}(s, a)) \mathbf{i}_{a} \mathbf{x}(s)^{\mathsf{T}}$$

where $i_a = (0, ..., 0, 1, 0, ..., 0)$ with $i_a[a] = 1$, $i_a[b] = 0$ for $b \neq a$

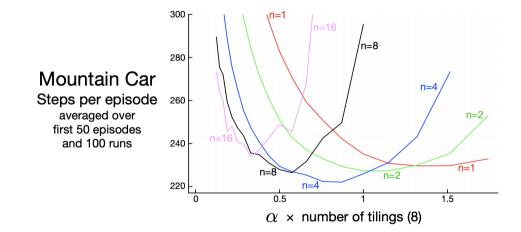
- Should we use action-in, or action-out?
 - Action in: $q_{\mathbf{w}}(s, a) = \mathbf{w}^{\top} \mathbf{x}(s, a)$
 - Action out: $\mathbf{q}_{\mathbf{w}}(s) = \mathbf{W}\mathbf{x}(s)$ such that $q_{\mathbf{w}}(s, a) = \mathbf{q}_{\mathbf{w}}(s)[a]$
- One reuses the same weights, the other the same features
- Unclear which is better in general
- ▶ If we want to use continuous actions, action-in is easier (later lecture)
- ► For (small) discrete action spaces, action-out is common (e.g., DQN)

- SARSA is TD applied to state-action pairs
- $\blacktriangleright \implies$ Inherits same properties
- But easier to do policy optimisation, and therefore policy iteration

Linear Sarsa with Coarse Coding in Mountain Car



Linear Sarsa with Tile Coding



Tile coding is similar to coarse coding: Overlaying different discretisations of the state space

Convergence and divergence

Convergence Questions

- When do incremental prediction algorithms converge?
 - ▶ When using **bootstrapping** (i.e. TD)?
 - When using (e.g., linear) value function approximation?
 - When using off-policy learning?
- Ideally, we would like algorithms that converge in all cases
- Alternatively, we want to understand when algorithms do, or do not, converge

Convergence of MC

▶ With linear functions (and suitably decaying step size), MC converges to

$$\mathbf{w}_{\mathrm{MC}} = \operatorname*{argmin}_{\mathbf{w}} \mathbb{E}_{\pi}[(G_t - v_{\mathbf{w}}(S_t))^2] = \mathbb{E}_{\pi}[\mathbf{x}_t \mathbf{x}_t^{\top}]^{-1} \mathbb{E}_{\pi}[G_t \mathbf{x}_t]$$

(Notation: here the state distribution implicitly depends on π)

Verifying the fixed point:

$$\nabla_{\mathbf{w}_{MC}} \mathbb{E}[(G_t - v_{\mathbf{w}_{MC}}(S_t))^2] = \mathbb{E}[(G_t - v_{\mathbf{w}_{MC}}(S_t))\mathbf{x}_t] = 0$$
$$\mathbb{E}[(G_t - \mathbf{x}_t^\top \mathbf{w}_{MC})\mathbf{x}_t] = 0$$
$$\mathbb{E}[G_t \mathbf{x}_t - \mathbf{x}_t \mathbf{x}_t^\top \mathbf{w}_{MC}] = 0$$
$$\mathbb{E}[\mathbf{x}_t \mathbf{x}_t^\top] \mathbf{w}_{MC} = \mathbb{E}[G_t \mathbf{x}_t]$$
$$\mathbf{w}_{MC} = \mathbb{E}[\mathbf{x}_t \mathbf{x}_t^\top]^{-1} \mathbb{E}[G_t \mathbf{x}_t]$$

Agent state S_t does not have to be Markov: the fixed point only depends on observed data (and features)

Convergence of TD

With linear functions, TD converges to

$$\mathbf{w}_{\text{TD}} = \mathbb{E}[\mathbf{x}_t(\mathbf{x}_t - \gamma \mathbf{x}_{t+1})^\top]^{-1}\mathbb{E}[R_{t+1}\mathbf{x}_t]$$

(in continuing problems with fixed *γ* < 1, and with appropriately decaying *α_t* → 0)
Verify (assuming *α_t* does not correlate with *R_{t+1}*, **x_t**, **x_{t+1}**):

$$\mathbb{E}[\Delta \mathbf{w}_{\text{TD}}] = 0 = \mathbb{E}[\alpha_t (R_{t+1} + \gamma \mathbf{x}_{t+1}^\top \mathbf{w}_{\text{TD}} - \mathbf{x}_t^\top \mathbf{w}_{\text{TD}})\mathbf{x}_t]$$

$$0 = \mathbb{E}[\alpha_t R_{t+1} \mathbf{x}_t] + \mathbb{E}[\alpha_t \mathbf{x}_t (\gamma \mathbf{x}_{t+1}^\top - \mathbf{x}_t^\top) \mathbf{w}_{\text{TD}}]$$

$$\mathbb{E}[\alpha_t \mathbf{x}_t (\mathbf{x}_t - \gamma \mathbf{x}_{t+1})^\top] \mathbf{w}_{\text{TD}} = \mathbb{E}[\alpha_t R_{t+1} \mathbf{x}_t]$$

$$\mathbf{w}_{\text{TD}} = \mathbb{E}[\mathbf{x}_t (\mathbf{x}_t - \gamma \mathbf{x}_{t+1})^\top]^{-1} \mathbb{E}[R_{t+1} \mathbf{x}_t]$$

- This differs from the MC solution
- Typically, the asymptotic MC solution is preferred (smallest prediction error)
- TD often converges faster (especially intermediate $\lambda \in [0, 1]$ or $n \in \{1, ..., \infty\}$)

Convergence of TD

▶ With linear functions, TD converges to

$$\mathbf{w}_{\text{TD}} = \mathbb{E}[\mathbf{x}_t(\mathbf{x}_t - \gamma \mathbf{x}_{t+1})^\top]^{-1}\mathbb{E}[R_{t+1}\mathbf{x}_t]$$

• Let $\overline{\text{VE}}(\mathbf{w})$ denote the value error:

$$\overline{\mathrm{VE}}(\mathbf{w}) = \|v_{\pi} - v_{\mathbf{w}}\|_{d_{\pi}} = \sum_{s \in \mathcal{S}} d_{\pi}(s)(v_{\pi}(s) - v_{\mathbf{w}}(s))^2$$

The Monte Carlo solution minimises the value error

Theorem

$$\overline{\text{VE}}(\mathbf{w}_{\text{TD}}) \leq \frac{1}{1-\gamma} \overline{\text{VE}}(\mathbf{w}_{\text{MC}}) = \frac{1}{1-\gamma} \min_{\mathbf{w}} \overline{\text{VE}}(\mathbf{w})$$

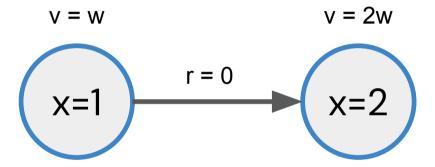
TD is not a gradient

The TD update is not a true gradient update:

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha(r + \gamma v_{\mathbf{w}}(s') - v_{\mathbf{w}}(s)) \nabla v_{\mathbf{w}}(s)$$

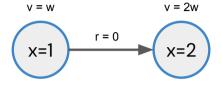
- That's okay: it is a stochastic approximation update
- Stochastic approximation algorithms are a broader class than just SGD
- ▶ SGD always converges (with bounded noise, decaying step size, stationarity, ...)
- TD does not always converge...

Example of divergence



What if we use TD only on this transition?

Example of divergence

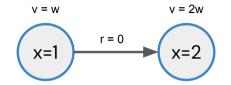


$$w_{t+1} = w_t + \alpha_t (r + \gamma v(s') - v(s)) \nabla v(s)$$

= $w_t + \alpha_t (r + \gamma v(s') - v(s)) x(s)$
= $w_t + \alpha_t (0 + \gamma 2 w_t - w_t)$
= $w_t + \alpha_t (2\gamma - 1) w_t$

Consider $w_t > 0$. If $\gamma > \frac{1}{2}$, then $w_{t+1} > w_t$. $\implies \lim_{t \to \infty} w_t = \infty$

Example of divergence

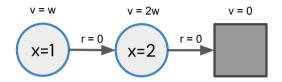


- Algorithms that combine
 - bootstrapping
 - off-policy learning, and
 - function approximation

...may diverge

This is sometimes called the deadly triad

Deadly triad

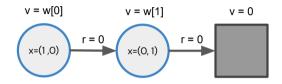


Consider sampling on-policy, over an episode. Update:

$$\Delta w = \alpha(0 + 2\gamma w - w) + \alpha(0 + \gamma 0 - 2w)$$
$$= \alpha(2\gamma - 3)w$$

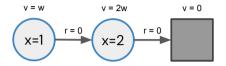
- The multiplier is negative, for all $\gamma \in [0, 1]$
- $\blacktriangleright \implies$ convergence (*w* goes to zero, which is optimal here)

Deadly triad



- With tabular features, this is just regression
- Answer may be sub-optimal, but no divergence occurs
- Specifically, if we only update v(s) (=left-most state):
 - v(s) = w[0] will converge to $\gamma v(s')$
 - v(s') = w[1] will stay where it was initialised

Deadly triad



- What if we use multi-step returns?
- Still consider only updating the left-most state

$$\Delta w = \alpha (r + \gamma (G_t^{\lambda} - v(s)))$$

= $\alpha (r + \gamma ((1 - \lambda)v(s') + \lambda (r' + v(s'')) - v(s))$ (r = r' = $v(s'') = 0$)
= $\alpha (2\gamma (1 - \lambda) - 1)w$

- The multiplier is negative when $2\gamma(1-\lambda) < 1 \implies \lambda > 1 \frac{1}{2\gamma}$
- E.g., when $\gamma = 0.9$, then we need $\lambda > 4/9 \approx 0.45$

Residual Bellman updates

TD: $\Delta \mathbf{w}_t = \alpha \delta \nabla v_{\mathbf{w}}(S_t)$ where $\delta_t = R_{t+1} + \gamma v_{\mathbf{w}}(S_{t+1}) - v_{\mathbf{w}}(S_t)$

- ► This update ignores dependence of $v_{\mathbf{w}}(S_{t+1})$ on \mathbf{w}
- Alternative: Bellman residual gradient update

loss: $\mathbb{E}[\delta_t^2]$ update: $\Delta \mathbf{w}_t = \alpha \delta_t \nabla_{\mathbf{w}} (v_{\mathbf{w}}(S_t) - \gamma v_{\mathbf{w}}(S_{t+1}))$

- This tends to work worse in practice
- Bellman residuals smooth, whereas TD methods predict
- Smoothed values may lead to suboptimal decisions

Residual Bellman updates

Alternative: minimise the **Bellman error**

loss: $\mathbb{E}[\delta_t]^2$ update: $\Delta \mathbf{w}_t = \alpha \delta_t \nabla_{\mathbf{w}} (v_{\mathbf{w}}(S_t) - \gamma v_{\mathbf{w}}(S'_{t+1}))$

...but requires a second independent sample S'_{t+1} which could (randomly) differ from S_{t+1} (So we can't use this online)

Convergence of Prediction Algorithms

On/Off-Policy	Algorithm	Table Lookup	Linear	Non-Linear
On-Policy	MC	✓	1	✓
	TD	\checkmark	\checkmark	×
Off-Policy	MC	✓	1	✓
	TD	\checkmark	×	×

Convergence of Control Algorithms

- Tabular control learning algorithms (e.g., Q-learning) can be extended to FA (e.g., Deep Q Network — DQN)
- > The theory of control with function approximation is not fully developed
- Tracking is often preferred to convergence (I.e., continually adapting the policy instead of converging to a fixed policy)

Batch Methods

Batch Reinforcement Learning

- Gradient descent is simple and appealing
- But it is not sample efficient
- Batch methods seek to find the best fitting value function for a given a set of past experience ("training data")

Least Squares Temporal Difference

▶ Which parameters **w** give the **best fitting** linear value function $v_{\mathbf{w}}(s) = \mathbf{w}^{\top}\mathbf{x}(s)$? Recall:

$$\mathbb{E}[(R_{t+1} + \gamma v_{\mathbf{w}}(S_{t+1}) - v_{\mathbf{w}}(S_{t}))\mathbf{x}_{t}] = \mathbf{0}$$
$$\implies \mathbf{w}_{\text{TD}} = \mathbb{E}[\mathbf{x}_{t}(\mathbf{x}_{t} - \gamma \mathbf{x}_{t+1})^{\top}]^{-1}\mathbb{E}[R_{t+1}\mathbf{x}_{t}]$$

We can use a closed-form empirical loss:

$$\frac{1}{t} \sum_{i=0}^{t} (R_{i+1} + \gamma v_{\mathbf{w}}(S_{i+1}) - v_{\mathbf{w}}(S_i)) \mathbf{x}_i = \mathbf{0}$$
$$\implies \mathbf{w}_{\text{LSTD}} = \left(\sum_{i=0}^{t} \mathbf{x}_i (\mathbf{x}_i - \gamma \mathbf{x}_{i+1})^{\top}\right)^{-1} \left(\sum_{i=0}^{t} R_{i+1} \mathbf{x}_i\right)$$

This is called least-squares TD (LSTD)

Least Squares Temporal Difference

$$\mathbf{w}_{t} = \underbrace{\left(\sum_{i=0}^{t} \mathbf{x}_{i} (\mathbf{x}_{i} - \gamma \mathbf{x}_{i+1})^{\top}\right)^{-1}}_{= \mathbf{A}_{t}^{-1}} \underbrace{\left(\sum_{i=0}^{t} R_{i+1} \mathbf{x}_{i}\right)}_{= \mathbf{b}_{t}}$$

(LSTD estimate)

- We can update \mathbf{b}_t and \mathbf{A}_t^{-1} incrementally online
- ▶ Naive approach $(O(n^3))$

$$\mathbf{A}_{t+1} = \mathbf{A}_t + \mathbf{x}_t (\mathbf{x}_t - \gamma \mathbf{x}_{t+1})^\top \qquad \qquad \mathbf{b}_{t+1} = \mathbf{b}_t + R_{t+1} \mathbf{x}_t$$

Faster approach ($O(n^2)$): directly update A^{-1} with Sherman-Morrison:

$$\mathbf{A}_{t+1}^{-1} = \mathbf{A}_{t}^{-1} - \frac{\mathbf{A}_{t}^{-1} \mathbf{x}_{t} (\mathbf{x}_{t} - \gamma \mathbf{x}_{t+1})^{\mathsf{T}} \mathbf{A}_{t}^{-1}}{1 + (\mathbf{x}_{t} - \gamma \mathbf{x}_{t+1})^{\mathsf{T}} \mathbf{A}_{t}^{-1} \mathbf{x}_{t}} \qquad \mathbf{b}_{t+1} = \mathbf{b}_{t} + R_{t+1} \mathbf{x}_{t}$$

▶ Still more compute per step than TD (*O*(*n*))

Least Squares Temporal Difference

- ▶ In the limit, LSTD and TD converge to the same fixed point
- We can extend LSTD to multi-step returns: $LSTD(\lambda)$
- ▶ We can extend LSTD to action values: LSTDQ
- We can also interlace with policy improvement: least-squares policy iteration (LSPI)

Experience Replay

Given experience consisting of trajectories of experience

$$\mathcal{D} = \{S_0, A_0, R_1, S_1, \ldots, S_t\}$$

Repeat:

- 1. Sample transition(s), e.g., $(S_n, A_n, R_{n+1}, S_{n+1})$ for $n \le t$
- 2. Apply stochastic gradient descent update

$$\Delta \mathbf{w} = \alpha (R_{n+1} + \gamma v_{\mathbf{w}}(S_{n+1}) - v_{\mathbf{w}}(S_n)) \nabla_{\mathbf{w}} v_{\mathbf{w}}(S_n)$$

3. Can re-use old data

This is also a form of batch learning Beware: the data may be off-policy if the policy changes

Deep reinforcement learning

(briefly, more later)

Deep neural networks (blackboard)

Deep reinforcement learning

Many ideas immediately transfer when using deep neural networks:

- TD and MC
- Double learning (e.g., double Q-learning)
- Experience replay
- ▶ ...
- Some ideas do not easily transfer
 - UCB
 - Least squares TD/MC

Example: neural Q-learning

- Online neural Q-learning may include:
 - Neural network: $O_t \mapsto \mathbf{q}_{\mathbf{w}}$ (action-out)
 - **Exploration policy:** $\pi_t = \epsilon$ -greedy(\mathbf{q}_t), and then $A_t \sim \pi_t$
 - Weight update: for instance Q-learning

$$\Delta \mathbf{w} \propto \left(R_{t+1} + \gamma \max_{a} q_{\mathbf{w}}(S_{t+1}, a) - q_{\mathbf{w}}(S_{t}, A_{t}) \right) \nabla_{\mathbf{w}} q_{\mathbf{w}}(S_{t}, A_{t})$$

An optimizer to minimize the loss (e.g., SGD, RMSProp, Adam)

Often, we implement the weight update via a 'loss'

$$L(\mathbf{w}) = \frac{1}{2} \left(R_{t+1} + \gamma \left[\max_{a} q_{\mathbf{w}}(S_{t+1}, a) \right] - q_{\mathbf{w}}(S_t, A_t) \right)^2$$

where [[·]] denotes stopping the gradient, so that the semi-gradient is ∆w
Note that L(w) is not a real loss, it just happens to have the right gradient

Example: DQN

- DQN (Mnih et al. 2013, 2015) includes:
 - A neural network: $O_t \mapsto \mathbf{q}_{\mathbf{w}}$ (action-out)
 - An exploration policy: $\pi_t = \epsilon$ -greedy(\mathbf{q}_t), and then $A_t \sim \pi_t$
 - A replay buffer to store and sample past transitions $(S_i, A_i, R_{i+1}, S_{i+1})$
 - ► Target network parameters w⁻
 - A Q-learning weight update on w (uses replay and target network)

$$\Delta \mathbf{w} = \left(R_{i+1} + \gamma \max_{a} q_{\mathbf{w}^-}(S_{i+1}, a) - q_{\mathbf{w}}(S_i, A_i) \right) \nabla_{\mathbf{w}} q_{\mathbf{w}}(S_i, A_i)$$

- ▶ Update $\mathbf{w}_t^- \leftarrow \mathbf{w}_t$ occasionally (e.g., every 10000 steps)
- An optimizer to minimize the loss (e.g., SGD, RMSprop, or Adam)
- Replay and target networks make RL look more like supervised learning
- Neither is strictly necessary, but they helped for DQN
- "DL-aware RL"

End of Lecture

