Lecture 7:
Function approximation in reinforcement learning
(And deep reinforcement learning)
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Background

Sutton & Barto 2018, Chapters 9 + 10 (+ 11)
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» Reinforcement learning is the science of learning to make decisions

> Agents can learn a policy, value function and/or a model
» The general problem involves taking into account time and consequences

> Decisions affect the reward, the agent state, and environment state
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Why function approximation?
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Function approximation and deep reinforcement learning

vV v . vY

The policy, value function, model, and agent state update are all functions
We want to learn these from experience
If there are too many states, we need to approximate

This is often called deep reinforcement learning,
when using neural networks to represent these functions

The term is fairly new (+7-8 years) — the combination is fairly old (+50 years)
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Function approximation and deep reinforcement learning

This lecture

> We consider learning predictions (value functions; including value-based control)
Upcoming lectures

» Off-policy learning

> Approximate dynamic programming (theory with function approximation)

» Learn explicit policies (policy gradients)

» Model-based RL
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Large-Scale Reinforcement Learning

Reinforcement learning can be used to solve large problems, e.g.

020 states

» Backgammon: 1
> Go: 1070 states
> Helicopter: continuous state space
> Robots: real world

How can we apply our methods for prediction and control?
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Value function approximation
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Value Function Approximation

> So far we mostly considered lookup tables
> Every state s has an entry v(s)

> Or every state-action pair s, @ has an entry ¢(s, a)

» Problem with large MDPs:
> There are too many states and/or actions to store in memory

> It is too slow to learn the value of each state individually

» Individual environment states are often not fully observable
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Value Function Approximation

Solution for large MDPs:
> Estimate value function with function approximation

Vw($) = va(s) (or v.(s))
qw(s, a) = gx(s, a) (or q.(s, a))

> Update parameter w (e.g., using MC or TD learning)

» Generalise to unseen states
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Agent state update

When the environment state is not fully observable (Sf“" # 0)
> Use the agent state:
St = U (S-1, Ar—1, Oy)
with parameters w (typically w € R™)

» Henceforth, S; or s; denotes the agent state

» Think of this as either a vector inside the agent,
or, in the simplest case, just the current observation: S; = O,
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Function classes
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Classes of Function Approximation

» Tabular: a table with an entry for each MDP state
> State aggregation: Partition environment states (or observations) into a discrete set

> Linear function approximation
> Consider fixed agent state update (e.g., Sy = Oy)

> Fixed feature map x : S — R”
> Values are linear function of features: vy (s) = w' x(s)
> Note: state aggregation and tabular are special cases of linear FA

» Differentiable function approximation
> vw(s) is a differentiable function of w, could be non-linear

> E.g., a convolutional neural network that takes pixels as input

> Another interpretation: features are not fixed, but learnt
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Classes of Function Approximation

In principle, any function approximator can be used, but RL has specific properties:
» Experience is not i.i.d. — successive time-steps are correlated
> Agent’s policy affects the data it receives

> Regression targets can be non-stationary
> ...because of changing policies (which can change the target and the data!)

> ...because of bootstrapping
> ...because of non-stationary dynamics (e.g., other learning agents)
>

...because the world is large (never quite in the same state)

(o)



Classes of Function Approximation

Which function approximation should you choose?
This depends on your goals.

» Tabular: good theory but does not scale/generalise
> Linear: reasonably good theory, but requires good features

» Non-linear: less well-understood, but scales well
Flexible, and less reliant on picking good features first (e.g., by hand)

> (Deep) neural nets often perform quite well, and remain a popular choice
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Gradient-based algorithms

(o)



Gradient Descent

> Let J(w) be a differentiable function of parameter vector w

> Define the gradient of J(w) to be

aJ (w)
ow,

VwJ(w) =

aJ (w)
ow,

> Goal: to minimise of J(w)

> Method: move w in the direction of negative gradient
1
Aw = —Ea/VWJ(w)

where « is a step-size parameter
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Approximate Values By Stochastic Gradient Descent

> Goal: find w that minimise the difference between vy (s) and v, (s)

J(w) = Es-al(vx(S) = vw(S))*]

where d is a distribution over states (typically induced by the policy and dynamics)

» Gradient descent:
1
Aw = —2aVyuJ (W) = @Ba(v2(S) = vw(S) Vuru(S)
» Stochastic gradient descent (SGD), sample the gradient:

Aw = a/(Gt - Vw(St))VwVw(St)

Note: Monte Carlo return G; is a sample for v, (S;)

> We often write Vv (S;) as short hand for

VwVw(Sl)|w=wt
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Linear function approximation
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Feature Vectors

> Represent state by a feature vector

x1(s)
x(s) =

Xn(s)

> x: S — R"is a fixed mapping from state (e.g., observation) to features
» Short-hand: x; = x(S;)

» For example:
» Distance of robot from landmarks

» Trends in the stock market

> Piece and pawn configurations in chess
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Feature construction example: coarse coding

> Coarse coding provides large feature vector x(s)

> Parameter vector w gives a value to each feature

expanded

original —— representation,

representation many features

7

approximation
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Generalization in Coarse Coding
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a) Narrow generalization b) Broad generalization c) Asymmetric generalization

We aggregate multiple states

This means the resulting feature vector/agent state is non-Markovian

>

>

» This is the common case when using function approximation

> Consider whether good solutions exist for given features + function approximation
>

Neural networks tend to be more flexible
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Linear model-free prediction
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Linear Value Function Approximation

» Approximate value function by a linear combination of features

n

Vw(s) = wix(s) = Z x;(s)w;

j=1
» Objective function (‘loss‘) is quadratic in w
J(W) = Es~a[(va(S) — wx(5))*]

» Stochastic gradient descent converges on global optimum

» Update rule is simple
Vwvw(S:) = x(S;) = % = AW = a(vr(Sr) — vw(Se))x:

Update = step-size X prediction error X feature vector
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Incremental prediction algorithms

> We can’t update towards the true value function v,(s)

> We substitute a target for v,(s)
> For MC, the target is the return G

Awr = a(Gy — vi(5)) Vi vw(s)
> For TD, the target is the TD target Ry4+1 + yYvw(St+1)
Awy = @(Rev1 + yvw(Se+1) = vw(S)) Vwvw(St)
> TD(A):
Aw; = a(G = v (S1)) Vaevw(St)

G = Renn +7|(1 = Dvw(St41) + G}
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Monte-Carlo with Value Function Approximation

» The return G, is an unbiased sample of v, (s)

» Can therefore apply “supervised learning” to (online) “training data":

{(S09 GO)? LR (Sta Gl‘)}

» For example, using linear Monte-Carlo policy evaluation

Aw; = a(Gy — v (S1)) Vwvw(Sr)
= a(Gy — vw(81))x;

» Linear Monte-Carlo evaluation converges to the global optimum

> Even when using non-linear value function approximation it converges
(but perhaps to a local optimum)
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TD Learning with Value Function Approximation

> The TD-target R;11 + Yvw(S;+1) is a biased sample of true value v, (S;)

> Can still apply supervised learning to “training data":

{(So. Ry + yvw(S1)): - - - (Sts Resa + yvw(Si1))}

» For example, using linear TD
Aw; = @ (Rev1 + yvw(Se+1) — vw(Sr)) Vvw(Sr)

= d;, ‘TD error’

= aéle

» This is akin to a non-stationary regression problem

> But it’s a bit different: the target depends on our parameters!
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Control with value-function
approximation
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Control with Value Function Approximation

Starting 0

Policy evaluation Approximate policy evaluation, gy = g

Policy improvement E.g., e-greedy policy improvement
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Action-Value Function Approximation

> Approximate the action-value function gw(s, a) ~ g (s, a)

> For instance, with linear function approximation with state-action features
_ T
qW(S7 a) - X(S, Cl) w
» Stochastic gradient descent update

Aw = a(qz(s, a) — qw(s, a))Vwgw(s, a)
= a(qx (s, a) — qu(s, a))x(s, a)
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Action-Value Function Approximation

> Approximate the action-value function gw(s, @) = g (s, a)
> For instance, with linear function approximation with state features
qw(s) = Wx(s) (We R™" x(s) e R" = qeR™
gw(s, @) = qw(s)[a] = x(s) "wq (where w, = W)
> Stochastic gradient descent update
Awg = a(qn(s, a) = qu(s, a)) Vwgu(s, a)

= a(qx(s, a) — qu(s, a))x(s)
Ya#b: Aw, =0

Equivalently: AW = a(gx(s, a) — gw(s, a))igx(s)"

wherei, =(0,...,0,1,0,...,0) withig[a] =1,i4[b] =0forb # a
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Action-Value Function Approximation

» Should we use action-in, or action-out?

> Action in: gw(s, a) = w'x(s, a)

> Action out: qw(s) = Wx(s) such that gw(s, @) = qw(s)[a]
One reuses the same weights, the other the same features
Unclear which is better in general

If we want to use continuous actions, action-in is easier (later lecture)

vV v. vy

For (small) discrete action spaces, action-out is common (e.g., DQN)
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Action-Value Function Approximation

> SARSA is TD applied to state-action pairs
» — Inherits same properties

> But easier to do policy optimisation, and therefore policy iteration
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Linear Sarsa with Coarse Coding in Mountain Car
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Linear Sarsa with Tile Coding
300 n=1

280 -

Mountain Car

Steps per episode 260}

averaged over
first 50 episodes
and 100 runs 240 -

n=8
220 n=4

0 Ol.5 1
. x number of tilings (8)

Tile coding is similar to coarse coding:
Overlaying different discretisations of the state space
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Convergence and divergence
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Convergence Questions

» When do incremental prediction algorithms converge?
> When using bootstrapping (i.e. TD)?

> When using (e.g., linear) value function approximation?
> When using off-policy learning?
> Ideally, we would like algorithms that converge in all cases

> Alternatively, we want to understand when algorithms do, or do not, converge
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Convergence of MC

» With linear functions (and suitably decaying step size), MC converges to

Wy = argmin [Eﬂ[(Gt - Vw(St))z] = [En[xtxtT]_llEn[GtXt]
w

(Notation: here the state distribution implicitly depends on )

» Verifying the fixed point:

Vo ELG? — Vch(St))Z] = E[(Gr = vuue (Se))x/]
E[(G: - X:WMC)XI]

[E[Gtxt - th;erc]

[E[XtX;T]WMc = E[Gix]

Wyc = [E[XthT]_l[E[GtXt]

0
0
0

> Agent state S; does not have to be Markov:
the fixed point only depends on observed data (and features)
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Convergence of TD
» With linear functions, TD converges to

Wrp = [E[Xt(xt )’Xz+1) ] E[R;+1%/]

(in continuing problems with fixed y < 1, and with appropriately decaying a; — 0)

> Verify (assuming a; does not correlate with Ry, X;, X;41):

E[Awrp] = 0 = E[@;(Ri+1 + yX/,;Wrp — X; Wrp )X/ ]
0 = E[a; Ry+1%,] + E[ayx, (yx/,; — X, )wrp]
Efax;(x; — 7Xz+1)T]WTD = Ela; Ri1%,]
wrp = E[x(x; — YXt+1) ] E[R;+1%]

» This differs from the MC solution
> Typically, the asymptotic MC solution is preferred (smallest prediction error)

> TD often converges faster (especially intermediate A € [0,1] orn € {1,..., })
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Convergence of TD

» With linear functions, TD converges to
wrp = E[x(x; — )’Xz+1)T]_1[E[Rz+1Xt]

> Let VE(w) denote the value error:

VEW) = [[vr = valla, = D de(s)(va(s) = vu(s))*

seS

» The Monte Carlo solution minimises the value error

Theorem

— 1 — 1 —
VE(Wrp) < ——VE(wyc) = —— minVE(w)
1-vy -y w
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TD is not a gradient

v

The TD update is not a true gradient update:
W — W+ a(r + yvu(s") — v (5))Vu(s)

That’s okay: it is a stochastic approximation update
Stochastic approximation algorithms are a broader class than just SGD
SGD always converges (with bounded noise, decaying step size, stationarity, ...)

TD does not always converge...
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Example of divergence

What if we use TD only on this transition?

2w
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Example of divergence

Wir1 = wp + @ (r + yv(s’) — v(s))Vv(s)
we + a (r +yv(s’) = v(s))x(s)
wr + @ (0 + y2w; — wy)

Wy + (1/,(2’)/ - 1)Wt

Consider w; > 0. If y > %, then wypq1 > wy.
- llm,_mo Wy = 00
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Example of divergence

> Algorithms that combine
> bootstrapping

> off-policy learning, and

> function approximation
...may diverge

» This is sometimes called the deadly triad
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Deadly triad

> Consider sampling on-policy, over an episode. Update:

Aw = a0+ 2yw —w) + @(0 + y0 — 2w)

=a2y —3)w

> The multiplier is negative, for all y € [0, 1]

» — convergence (W goes to zero, which is optimal here)
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Deadly triad

v =w[0] v =w[1]

> With tabular features, this is just regression
> Answer may be sub-optimal, but no divergence occurs

> Specifically, if we only update v(s) (=left-most state):
> v(s) = w[0] will converge to yv(s’)

> v(s”) = w[1] will stay where it was initialised

v=0
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Deadly triad

> What if we use multi-step returns?

» Still consider only updating the left-most state

Aw = a(r + y(G;l —v(s))
a(r + y(1 = Av(s") + A0 +v(s")) — v(s))

=ay(1-2)-1)w

» The multiplier is negative when 2y(1 - 1) <1 = A1 >1- %

> E.g., wheny = 0.9, then we need A > 4/9 ~ 0.45

r=r"=v(s")=0)
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Residual Bellman updates

v

v

v

v

v

TD: Aw, = a6Vvy(S;) where Or = Rey1 + yvw(Srs1) — vw(Sy)

This update ignores dependence of Vi (S;+1) on w

Alternative: Bellman residual gradient update
loss: E[67] update: Aw; = @6, Viy (Vi (Sy) — Yvw(St+1))

This tends to work worse in practice
Bellman residuals smooth, whereas TD methods predict

Smoothed values may lead to suboptimal decisions
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Residual Bellman updates

» Alternative: minimise the Bellman error
loss: E[6,]> update: Aw; = a6, V(v (Sr) — yvw(S;41))

> ...but requires a second independent sample S’. , which could (randomly) differ from S;,1

t+1
(So we can’t use this online)



Convergence of Prediction Algorithms

On/Off-Policy ~Algorithm Table Lookup Linear Non-Linear
. MC v v v
On-Policy ™ % % X
. MC 4 v v
Off-Policy ™ % X X
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Convergence of Control Algorithms

» Tabular control learning algorithms (e.g., Q-learning) can be extended to FA
(e.g., Deep Q Network — DQN)

» The theory of control with function approximation is not fully developed

» Tracking is often preferred to convergence
(Le., continually adapting the policy instead of converging to a fixed policy)

(o)



Batch Methods
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Batch Reinforcement Learning

» Gradient descent is simple and appealing
> But it is not sample efficient

> Batch methods seek to find the best fitting value function for a given a set of past
experience (“training data")
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Least Squares Temporal Difference

> Which parameters w give the best fitting linear value function vy(s) = w' x(s)? Recall:

E[(Ri+1 + Yvw(Si41) — vw(S:))x,] = 0
= wpp = E[x;(x; - )’Xt+1)T]_1[E[Rt+1Xz]

> We can use a closed-form empirical loss:

1 t
n Z(Rm + YVw(Sit1) — vw(Si))x; = 0
0
t

-1t
= WLSTD = (Z x;i(x; — 7Xi+1)T) (Z Ri+1xi)
i=0

=0

» This is called least-squares TD (LSTD)
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Least Squares Temporal Difference

t -1 t
w; = ( Z x;(X; — ')’Xi+1)T) ( Z(; Ri+lxi) (LSTD estimate)
=

i=0

:At_1 = b,

> We can update b; and A, ! incrementally online
> Naive approach (O(n®))

A1 = A +x(% — th+1)T b;11 =bs + Re1x;
> Faster approach (O(n?)): directly update A~ with Sherman-Morrison:

At_lx,(xt - 7Xt+l)TAz_1

-1 _ A-1
At+1 - At

- - b;y1 = by + Rep1x;
1+ (x — VXt+1)TAt X

> Still more compute per step than TD (O(n))
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Least Squares Temporal Difference

» In the limit, LSTD and TD converge to the same fixed point
» We can extend LSTD to multi-step returns: LSTD(A)
» We can extend LSTD to action values: LSTDQ

> We can also interlace with policy improvement:
least-squares policy iteration (LSPI)
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Experience Replay

Given experience consisting of trajectories of experience
Z) = {SO’AO’Rl’Sla .. '7St}

Repeat:
1. Sample transition(s), e.g., (S,;, Ay, Rys1, Sna1) forn <t

2. Apply stochastic gradient descent update

AW = a(Ry41 + Yvw(Sn+1) — vw(Sn)) Vv (Sn)

3. Can re-use old data

This is also a form of batch learning
Beware: the data may be off-policy if the policy changes
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Deep reinforcement learning

(briefly, more later)
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Deep neural networks
(blackboard)
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Deep reinforcement learning

> Many ideas immediately transfer when using deep neural networks:
» TD and MC

> Double learning (e.g., double Q-learning)
> Experience replay

» eee

> Some ideas do not easily transfer
> UCB

> Least squares TD/MC
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Example: neural Q-learning

» Online neural Q-learning may include:
» Neural network: Oy — gy (action-out)

> Exploration policy: ; = e-greedy(q; ), and then A; ~ m;

> Weight update: for instance Q-learning
Aw o (Rpan + y max (i1, @) = Guw(Sp, A)) Vuwaw(Sr, Ar)

> An optimizer to minimize the loss (e.g., SGD, RMSProp, Adam)

> Often, we implement the weight update via a ‘loss’

2
1
L(W) = 5 (Rz+1 + 7|[ mjlx qW(Sz+1, a)]l - qW(Sz, At))

where [-]| denotes stopping the gradient, so that the semi-gradient is Aw

> Note that L(w) is not a real loss, it just happens to have the right gradient
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Example: DQN

> DQN (Mnih et al. 2013, 2015) includes:
> A neural network: O; — qy (action-out)

> An exploration policy: 1; = e-greedy(qy), and then A; ~ 7y

> A replay buffer to store and sample past transitions (S;, A;, Rj+1, Si+1)
> Target network parameters w—
>

A Q-learning weight update on w (uses replay and target network)
B = (Rivt +y max gu-(S141, @) = Gu(Si A1) V(S A)

> Update w, <« w; occasionally (e.g., every 10000 steps)

> An optimizer to minimize the loss (e.g., SGD, RMSprop, or Adam)
> Replay and target networks make RL look more like supervised learning
> Neither is strictly necessary, but they helped for DQN

» “DL-aware RL”
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End of Lecture
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