Planning and models

Matteo Hessel

2021

Recap

In the previous lectures:
» Bandits: how to trade-off exploration and exploitation.

» Dynamic Programming: how to solve prediction and control given full knowledge
of the environment.

» Model-free prediction and control: how to solve prediction and control from
interacting with the environment.

» Function approximation: how to generalise what you learn in large state spaces.

Dynamic Programming and Model-Free RL

» Dynamic Programming

» Assume a model

» Solve model, no need to interact with the world at all.
» Model-Free RL

» No model
» Learn value functions from experience.

Model-Based RL

» Model-Based RL

» Learn a model from experience
» Plan value functions using the learned model.

Model-Free RL

value
functions
learning

acting

experience

Model-Based RL

value
functions
planning

acting

experience model

N~ A

learning

Model-Based RL

value
functions
planning
acting
learning
experience model

N~ A

learning

Why should we even consider this?

One clear disadvantage:

» First learn a model, then construct a value function
= two sources of approximation error

P Learn a value function directly
= only one source of approximation error

However:
> Models can efficiently be learned by supervised learning methods
» Reason about model uncertainty (better exploration?)

» Reduce the interactions in the real world (data efficiency? faster/cheaper?).

Learning a Model

Matteo Hessel

2021

What is a Model?

A model M,, is an approximate representation of an MDP (S, A, p),
» For now, we will assume the states and actions are the same as in the real problem
» That the dynamics , p, is parametrised by some set of weights 7

» The model directly approximates the state transitions and rewards p, ~ p:

Rit1, Se41 ~ ﬁn(r,s’ | St, At)

Model Learning - |

Goal: estimate model M,, from experience {S1, A1, Ro, ..., ST}

» This is a supervised learning problem

51,A1 = R, S

St_1,Ar—1 — R, 51

> over a dataset of state transitions observed in the environment.

Model Learning - Il

How do we learn a suitable function f,(s,a) = r,s’?
» Choose a functional form for f
» Pick loss function (e.g. mean-squared error),
» Find parameters 7 that minimise empirical loss
» This would give an expectation model
>

If f,(s,a) = r,s’, then we would hope s’ = E[S¢11 | s = S;,a = A{]

Expectation Models

> Expectation models can have disadvantages:

» Image that an action randomly goes left or right past a wall
» Expectation models can interpolate and put you in the wall

» But with linear values, we are mostly alright:
> Consider an expectation model f,(¢¢) = E[¢:+1] and value function vy(¢¢) = 0" ¢;

Elvo(¢er1) | Se =] =E[0 ¢y | Se = 3]
= 9TE[¢t+1 | St = 5]
= Vo(E[prs1 | S¢ = 9]).

» If the model is also linear: f,(¢¢) = P¢; for some matrix P.

» then we can even unroll an expectation model even multiple steps into the future,
> and still have E[vp(¢e1n) | St = s] = vo(E[ptsn | St = s])

Stochastic Models

> We may not want to assume everything is linear

» Then, expected states may not be right — they may not correspond to actual
states, and iterating the model may do weird things

> Alternative: stochastic models (also known as generative models)
Rt—l-la 5t+1 = ,6(51“7 As, w)

where w is a noise term
» Stochastic models can be chained, even if the model is non-linear
» But they do add noise

Full Models

> We can also try to model the complete transition dynamics

» It can be hard to iterate these, because of branching:

E[v(5t+1)|5t:s]zz (als) Zpsas (P(s,a,s") +yv(s))

E[v(5t+n)|5t:s]zz (a|s) Zpsas < (s,a,8') +
WZ a|s) Zps a,s (P(s',a’,s”)—i—

sll

S| T ())

a// S///

Examples of Models

We typically decompose the dynamics p, into separate parametric functions
» for transition and reward dynamics
For each of these we can then consider different options:
» Table Lookup Model
» Linear Expectation Model
» Deep Neural Network Model

Table Lookup Models

» Model is an explicit MDP

» Count visits N(s, a) to each state action pair

pe(s' | s,a) =

Eﬁt[Rt+1 | St = S7At = a] =

=
(S, =5s, A, =a.§ =5
N(s. 2) 2 (Sk =5,Ak=2a,5k41=5")
=
/ =5 A, =a)R
N(s. 2) (Sk = s, Ak = a)Ri41

il
o

AB Example

Two states A, B; no discounting; 8 episodes of experience

B.,1

B, 1 r=20
B, 1 @W’
B.,1

B.,1

We have constructed a table lookup model from the experience

Linear expectation models

In linear expectation models
P> we assume some feature representation ¢ is given
» so that we can encode any state s as ¢(s)
P> we then parametrise separately rewards and transitions

» each as a linear function of the features

Linear expectation models

P> expected next states are parametrised by a square matrix T,, for each action a
s'(s,a) = Ta(s)

> the rewards are parametrised by a vector wj,, for each action a
P(s,a) = w; ¢(s)

» On each transition (s, a, r,s’) we can then apply a gradient descent step

P> to update w, and T, so as to minimise the loss:

L(Sv a, r,s') = (5, - Ta¢(5))2 + (r - WaT¢(S))2

Planning for Credit Assignment

Matteo Hessel

2021

Planning

In this section we investigate planning

>
>
|
>
>

>

This concept means different things to different communities

For us planning is the process of investing compute to improve values and policies
Without the need to interact with the environment

Dynamic programming is the best example we have seen so far

We are interested in planning algorithms that don't require privileged access to a
perfect specification of the environment

Instead, the planning algorithms we discuss today use learned models

Dynamic Programming with a learned Model

Once learned a model p,, from experience:

> Solve the MDP (S, A, p,)
» Using favourite dynamic programming algorithm

» Value iteration
» Policy iteration
> .

Sample-Based Planning with a learned Model

A simple but powerful approach to planning:
» Use the model only to generate samples

» Sample experience from model
S,R~pn(-|s,a)

» Apply model-free RL to samples, e.g.:

» Monte-Carlo control
» Sarsa
» Q-learning

Back to the AB Example

» Construct a table-lookup model from real experience

» Apply model-free RL to sampled experience

Real experience Sampled experience

A, 0, B, 0 B, 1
B, 1 r=1 B, 0
B, 1 = 0 75% B, 1
B, 1 10"00/ A, 0 B, 1
B, 1 0 r=0 B, 1
B 1 A, 0 B 1
B, 1 B, 1
5 0 [] B 0

e.g. Monte-Carlo learning: V(A) =1, V(B) =0.75

Limits of Planning with an Inaccurate Model - |

Given an imperfect model p,, # p:
» The planning process may compute a suboptimal policy
» Performance is limited to optimal policy for approximate MDP (S, A, p,)
> Model-based RL is only as good as the estimated model

Limits of Planning with an Inaccurate Model - Il

How can we deal with the inevitable inaccuracies of a learned model?
» Approach 1: when model is wrong, use model-free RL
» Approach 2: reason about model uncertainty over 1 (e.g. Bayesian methods)

» Approach 3: Combine model-based and model-free methods in a single algorithm.

Real and Simulated Experience

We consider two sources of experience

Real experience Sampled from environment (true MDP)
r,s' ~p
Simulated experience Sampled from model (approximate MDP)

! n
r,s ~ py

Integrating Learning and Planning

> Model-Free RL
> No model
» Learn value function (and/or policy) from real experience
» Model-Based RL (using Sample-Based Planning)
» Learn a model from real experience
» Plan value function (and/or policy) from simulated experience
> Dyna
» Learn a model from real experience
» Learn AND plan value function (and/or policy) from real and simulated experience
» Treat real and simulated experience equivalently. Conceptually, the updates from
learning or planning are not distinguished.

Dyna Architecture

value
functions
planning
acting
learning
experience model

N~ A

learning

Dyna-Q Algorithm

Initialize Q(s,a) and Model(s,a) for all s € S and a € A(s)
Do forever:
(a) s < current (nonterminal) state
(b) a « e-greedy(s, Q)
(c) Execute action a; observe resultant state, s’, and reward, r
(d) Q(s,a) — Q(s,a) + alr + ymaxy Q(s',a') — Q(s, a)]
(e) Model(s,a) < s',r (assuming deterministic environment)
(f) Repeat N times:
s « random previously observed state
a < random action previously taken in s
s',r «— Model(s,a)
Q(s,a) — Q(s,a) + afr + ymax, Q(s',ad') — Q(s, a)]

Advantages of combining learning and planning.

What are the advantages of this architecture?
» We can sink in more compute in order to learn more efficiently.

» This is especially important when collecting real data is

> expensive / slow (e.g. robotics)
» unsafe (e.g. autonomous driving)

Dyna-Q on a Simple Maze

800+
600+
Steps
per 400+
episode
200+
144

q T -+
H actions

0 planning steps
(direct RL only)

5 planning steps

50 planning steps

T
10 20 30 40 50

Episodes

Dyna-Q on a Simple Maze

800+

S Hit.il

600-

Steps 0 planning steps
per 4004 | (direct RLonly)
epISOde 5 planning steps
50 planning steps

200+ |

\
141 T T T T |
2 10 20 30 40 50
Episodes
WITHOUT PLANNING (7=0) WITH PLANNING (n=50
L G Bainab ik A

t t=

SRR I
-~ 4

'
*4—-—4—

~lt 1
*————

Dyna-Q with an Inaccurate Model

» The changed environment is harder

G ' G
1504
Cumulative
reward
01; : T .
0 1000 2000 3000

Time steps

Dyna-Q with an Inaccurate Model (2)

» The changed environment is easier
HE ¢ e

[TIsT T TTT] [TIs T 1]

4001
Dyna-Q
Cumulative Dyna-AC
reward :
01 : ,
0 3000 6000

Time steps

Planning and Experience Replay

Matteo Hessel

2021

Conventional model-based and model-free methods

Traditional RL algorithms did not explicitly store their experiences,
It was easy to place them into one of two groups.
» Model-free methods update the value function and/or policy and do not have
explicit dynamics models.
> Model-based methods update the transition and reward models, and compute a
value function or policy from the model.

Moving beyond model-based and model-free labels

The sharp distinction between model-based and model-free is now less useful:
1. Often agents store transitions in an experience replay buffer

2. Model-free RL is then applied to experience sampled from the replay buffer,
3. This is just Dyna, with the experience replay as a non-parametric model
» we plan by sampling an entire transition (s, a, r,s’),
> instead of sampling just a state-action (s, a) and inferring r, s’ from the model.
» we can still sink in compute to make learning more efficient,
» by making many updates on past data for every new step we take in the environment.

Scalability

The maze

Total steps (log. scale)

3e4 |

led

3e3 1

Scalability

ﬁbq?
qu

Rep 5,

0.1 0.3 1.0 3.0
Updates per real step

Comparing parametric model and experience replay - |

» For tabular RL there is an exact output equivalence between some conventional
model-based and model free algorithms.

» If the model is perfect, it will give the same output as a non-parametric replay
system for every (s, a) pair

» In practice, the model is not perfect, so there will be differences
» Could model inaccuracies lead to better learning?

» Unlikely if we only use the model to sample imagined transitions from the actual
past state-action pairs.

> But a parametric model is more flexible than a replay buffer

Comparing parametric model and experience replay - |l

» Plan for action-selection!
» query a model for action that you *could* take in the future
» Counterfactual planning.
» query a model for action that you *could* have taken in the past, but did not

Comparing parametric model and experience replay - |l

» Backwards planning

» model the inverse dynamics and assign credit to different states that *could* have
led to a certain outcome

» Jumpy planning for long-term credit assignment,
» plan at different timescales

Comparing parametric model and experience replay - IV

Computation:
» Querying a replay buffer is very cheap!
P> Generating a sample from a learned model can be very expensive
> E.g. if the model is large neural network based generative model.
Memory:
» The memory requirements of a replay buffer scale linearly with its capacity

» A parametric model can achieve goods accuracy with a fixed and comparably
small memory footprint

Planning for Action Selection

Matteo Hessel

2021

Planning for Action Selection

v

We considered the case where planning is used to improve a global value function
Now consider planning for the near future, to select the next action

The distribution of states that may be encountered from now can differ from the
distribution of states encountered from a starting state

The agent may be able to make a more accurate local value function (for the
states that will be encountered soon) than the global value function

Inaccuracies in the model may result in interesting exploration rather than in bad
updates.

Forward Search
» Forward search algorithms select the best action by lookahead
» They build a search tree with the current state s; at the root
» Using a model of the MDP to look ahead

S

N / /7 N T A 1
v ;SN S A |

> No need to solve whole MDP, just sub-MDP starting from now

Simulation-Based Search

» Sample-based variant of Forward search
» Simulate episodes of experience from now with the model
» Apply model-free RL to simulated episodes

S

t

Prediction via Monte-Carlo Simulation

» Given a parameterized model M, and a simulation policy 7

» Simulate K episodes from current state S;
k k pk k k1K N
{5 = 5, A¢, Rt+17 St+17 e ST}k:1 ~ Py, T
» Evaluate state by mean return (Monte-Carlo evaluation)

K
1
v(5e) = K Z GfWVw(St)
k=1

Control via Monte-Carlo Simulation

» Given a model M, and a simulation policy
» For each action a € A
> Simulate K episodes from current (real) state s

k k k1K
{5 =5, A = a, Rt+175t+1v t+17""ST}k:1NMV’7T

» Evaluate actions by mean return (Monte-Carlo evaluation)

K
Z ~x(s, a)

> Select current (real) action with maximum value

Ay = argmax q(St, a)
acA

Monte-Carlo Tree Search - |

In MCTS, we incrementally build a search tree containing visited states and actions,
Together with estimated action values g(s, a) for each of these pairs
» Repeat (for each simulated episode)

» Select Until you reach a leaf node of the tree, pick actions according to ¢(s, a).
» Expand search tree by one node

» Rollout until episode termination with a fixed simulation policy

» Update action-values q(s,a) for all state-action pairs in the tree

K T
1
N(s.2) ZZ 1(Sk, Ak = 5,3)Gr~q, (s, a)

k=1 u=t

q(s,a) =

» Output best action according to g(s, a) in the root node when time runs out.

Monte-Carlo Tree Search - |l

Note that we effectively have two simulation policies:
P a Tree policy that improves during search.

» a Rollout policy that is held fixed: often this may just be picking actions randomly.

Applying Monte-Carlo Tree Search (1)

Current state — ¢ Tree Policy

Default Policy

Applying Monte-Carlo Tree Search (2)

Current state — &

I Tree Policy

Default Policy

Applying Monte-Carlo Tree Search (3)

Current state — &
* ® Tree Policy

Default Policy

Applying Monte-Carlo Tree Search (4)

Current state — &3

Tree Policy

Default Policy

Applying Monte-Carlo Tree Search (5)

Current state — &

Tree Policy

Default Policy

Advantages of Monte-Carlo Tree Search

Highly selective best-first search

Evaluates states dynamically (unlike e.g. DP)

>

| 4

» Uses sampling to break curse of dimensionality

» Works for “black-box” models (only requires samples)
>

Computationally efficient, anytime, parallelisable

Search tree and value function approximation - |

> Search tree is a table lookup approach

> Based on a partial instantiation of the table

» For model-free reinforcement learning, table lookup is naive
» Can't store value for all states
» Doesn't generalise between similar states

» For simulation-based search, table lookup is less naive

» Search tree stores value for easily reachable states
» But still doesn't generalise between similar states
» In huge search spaces, value function approximation is helpful

