
Planning and models

Matteo Hessel

2021

Recap

In the previous lectures:

I Bandits: how to trade-off exploration and exploitation.

I Dynamic Programming: how to solve prediction and control given full knowledge
of the environment.

I Model-free prediction and control: how to solve prediction and control from
interacting with the environment.

I Function approximation: how to generalise what you learn in large state spaces.

Dynamic Programming and Model-Free RL

I Dynamic Programming
I Assume a model
I Solve model, no need to interact with the world at all.

I Model-Free RL
I No model
I Learn value functions from experience.

Model-Based RL

I Model-Based RL
I Learn a model from experience
I Plan value functions using the learned model.

Model-Free RL

Model-Based RL

Model-Based RL

Why should we even consider this?

One clear disadvantage:

I First learn a model, then construct a value function
⇒ two sources of approximation error

I Learn a value function directly
⇒ only one source of approximation error

However:

I Models can efficiently be learned by supervised learning methods

I Reason about model uncertainty (better exploration?)

I Reduce the interactions in the real world (data efficiency? faster/cheaper?).

Learning a Model

Matteo Hessel

2021

What is a Model?

A model Mη is an approximate representation of an MDP 〈S,A, p̂〉,
I For now, we will assume the states and actions are the same as in the real problem

I That the dynamics , p̂η is parametrised by some set of weights η

I The model directly approximates the state transitions and rewards p̂η ≈ p:

Rt+1,St+1 ∼ p̂η(r , s ′ | St ,At)

Model Learning - I

Goal: estimate model Mη from experience {S1,A1,R2, ...,ST}
I This is a supervised learning problem

S1,A1 → R2,S2
...

ST−1,AT−1 → RT , ST

I over a dataset of state transitions observed in the environment.

Model Learning - II

How do we learn a suitable function fη(s, a) = r , s ′?

I Choose a functional form for f

I Pick loss function (e.g. mean-squared error),

I Find parameters η that minimise empirical loss

I This would give an expectation model

I If fη(s, a) = r , s ′, then we would hope s ′ ≈ E[St+1 | s = St , a = At]

Expectation Models

I Expectation models can have disadvantages:
I Image that an action randomly goes left or right past a wall
I Expectation models can interpolate and put you in the wall

I But with linear values, we are mostly alright:
I Consider an expectation model fη(φt) = E[φt+1] and value function vθ(φt) = θ>φt

E[vθ(φt+1) | St = s] = E[θ>φt+1 | St = s]

= θ>E[φt+1 | St = s]

= vθ(E[φt+1 | St = s]) .

I If the model is also linear: fη(φt) = Pφt for some matrix P.
I then we can even unroll an expectation model even multiple steps into the future,
I and still have E[vθ(φt+n) | St = s] = vθ(E[φt+n | St = s])

Stochastic Models

I We may not want to assume everything is linear

I Then, expected states may not be right — they may not correspond to actual
states, and iterating the model may do weird things

I Alternative: stochastic models (also known as generative models)

R̂t+1, Ŝt+1 = p̂(St ,At , ω)

where ω is a noise term

I Stochastic models can be chained, even if the model is non-linear

I But they do add noise

Full Models

I We can also try to model the complete transition dynamics

I It can be hard to iterate these, because of branching:

E[v(St+1) | St = s] =
∑
a

π(a | s)
∑
s′

p̂(s, a, s ′)(r̂(s, a, s ′) + γv(s ′))

E[v(St+n) | St = s] =
∑
a

π(a | s)
∑
s′

p̂(s, a, s ′)

(
r̂(s, a, s ′) +

γ
∑
a′

π(a′ | s ′)
∑
s′′

p̂(s ′, a′, s ′′)

(
r̂(s ′, a′, s ′′) +

γ2
∑
a′′

π(a′′ | s ′′)
∑
s′′′

p̂(s ′′, a′′, s ′′′)

(
r̂(s ′′, a′′, s ′′′) + . . .

)))

Examples of Models

We typically decompose the dynamics pη into separate parametric functions

I for transition and reward dynamics

For each of these we can then consider different options:

I Table Lookup Model

I Linear Expectation Model

I Deep Neural Network Model

Table Lookup Models

I Model is an explicit MDP

I Count visits N(s, a) to each state action pair

p̂t(s
′ | s, a) =

1

N(s, a)

t−1∑
k=0

I (Sk = s,Ak = a, Sk+1 = s ′)

Ep̂t [Rt+1 | St = s,At = a] =
1

N(s, a)

t−1∑
k=0

I (Sk = s,Ak = a)Rk+1

AB Example

Two states A,B; no discounting; 8 episodes of experience

A, 0, B, 0!
B, 1!
B, 1!
B, 1!
B, 1!
B, 1!
B, 1!
B, 0!

We have constructed a table lookup model from the experience

Linear expectation models

In linear expectation models

I we assume some feature representation φ is given

I so that we can encode any state s as φ(s)

I we then parametrise separately rewards and transitions

I each as a linear function of the features

Linear expectation models

I expected next states are parametrised by a square matrix Ta, for each action a

ŝ ′(s, a) = Taφ(s)

I the rewards are parametrised by a vector wa, for each action a

r̂(s, a) = wT
a φ(s)

I On each transition (s, a, r , s ′) we can then apply a gradient descent step

I to update wa and Ta so as to minimise the loss:

L(s, a, r , s ′) = (s ′ − Taφ(s))2 + (r − wT
a φ(s))2

Planning for Credit Assignment

Matteo Hessel

2021

Planning

In this section we investigate planning

I This concept means different things to different communities

I For us planning is the process of investing compute to improve values and policies

I Without the need to interact with the environment

I Dynamic programming is the best example we have seen so far

I We are interested in planning algorithms that don’t require privileged access to a
perfect specification of the environment

I Instead, the planning algorithms we discuss today use learned models

Dynamic Programming with a learned Model

Once learned a model p̂η from experience:

I Solve the MDP 〈S,A, p̂η〉
I Using favourite dynamic programming algorithm

I Value iteration
I Policy iteration
I ...

Sample-Based Planning with a learned Model

A simple but powerful approach to planning:

I Use the model only to generate samples

I Sample experience from model

S ,R ∼ p̂η(· | s, a)

I Apply model-free RL to samples, e.g.:
I Monte-Carlo control
I Sarsa
I Q-learning

Back to the AB Example

I Construct a table-lookup model from real experience

I Apply model-free RL to sampled experience

Real experience
A, 0, B, 0
B, 1
B, 1
B, 1
B, 1
B, 1
B, 1
B, 0

Sampled experience
B, 1
B, 0
B, 1
A, 0, B, 1
B, 1
A, 0, B, 1
B, 1
B, 0

e.g. Monte-Carlo learning: V (A) = 1,V (B) = 0.75

Limits of Planning with an Inaccurate Model - I

Given an imperfect model p̂η 6= p:

I The planning process may compute a suboptimal policy

I Performance is limited to optimal policy for approximate MDP 〈S,A, p̂η〉
I Model-based RL is only as good as the estimated model

Limits of Planning with an Inaccurate Model - II

How can we deal with the inevitable inaccuracies of a learned model?

I Approach 1: when model is wrong, use model-free RL

I Approach 2: reason about model uncertainty over η (e.g. Bayesian methods)

I Approach 3: Combine model-based and model-free methods in a single algorithm.

Real and Simulated Experience

We consider two sources of experience

Real experience Sampled from environment (true MDP)

r , s ′ ∼ p

Simulated experience Sampled from model (approximate MDP)

r , s ′ ∼ p̂η

Integrating Learning and Planning

I Model-Free RL
I No model
I Learn value function (and/or policy) from real experience

I Model-Based RL (using Sample-Based Planning)
I Learn a model from real experience
I Plan value function (and/or policy) from simulated experience

I Dyna
I Learn a model from real experience
I Learn AND plan value function (and/or policy) from real and simulated experience
I Treat real and simulated experience equivalently. Conceptually, the updates from

learning or planning are not distinguished.

Dyna Architecture

Dyna-Q Algorithm

Advantages of combining learning and planning.

What are the advantages of this architecture?

I We can sink in more compute in order to learn more efficiently.
I This is especially important when collecting real data is

I expensive / slow (e.g. robotics)
I unsafe (e.g. autonomous driving)

Dyna-Q on a Simple Maze

Dyna-Q on a Simple Maze

Dyna-Q with an Inaccurate Model

I The changed environment is harder

Dyna-Q with an Inaccurate Model (2)

I The changed environment is easier

Planning and Experience Replay

Matteo Hessel

2021

Conventional model-based and model-free methods

Traditional RL algorithms did not explicitly store their experiences,
It was easy to place them into one of two groups.

I Model-free methods update the value function and/or policy and do not have
explicit dynamics models.

I Model-based methods update the transition and reward models, and compute a
value function or policy from the model.

Moving beyond model-based and model-free labels

The sharp distinction between model-based and model-free is now less useful:

1. Often agents store transitions in an experience replay buffer

2. Model-free RL is then applied to experience sampled from the replay buffer,

3. This is just Dyna, with the experience replay as a non-parametric model
I we plan by sampling an entire transition (s, a, r , s ′),
I instead of sampling just a state-action (s, a) and inferring r , s ′ from the model.
I we can still sink in compute to make learning more efficient,
I by making many updates on past data for every new step we take in the environment.

Scalability

Comparing parametric model and experience replay - I

I For tabular RL there is an exact output equivalence between some conventional
model-based and model free algorithms.

I If the model is perfect, it will give the same output as a non-parametric replay
system for every (s, a) pair

I In practice, the model is not perfect, so there will be differences

I Could model inaccuracies lead to better learning?

I Unlikely if we only use the model to sample imagined transitions from the actual
past state-action pairs.

I But a parametric model is more flexible than a replay buffer

Comparing parametric model and experience replay - II

I Plan for action-selection!
I query a model for action that you *could* take in the future

I Counterfactual planning.
I query a model for action that you *could* have taken in the past, but did not

Comparing parametric model and experience replay - III

I Backwards planning
I model the inverse dynamics and assign credit to different states that *could* have

led to a certain outcome

I Jumpy planning for long-term credit assignment,
I plan at different timescales

Comparing parametric model and experience replay - IV

Computation:

I Querying a replay buffer is very cheap!

I Generating a sample from a learned model can be very expensive

I E.g. if the model is large neural network based generative model.

Memory:

I The memory requirements of a replay buffer scale linearly with its capacity

I A parametric model can achieve goods accuracy with a fixed and comparably
small memory footprint

Planning for Action Selection

Matteo Hessel

2021

Planning for Action Selection

I We considered the case where planning is used to improve a global value function

I Now consider planning for the near future, to select the next action

I The distribution of states that may be encountered from now can differ from the
distribution of states encountered from a starting state

I The agent may be able to make a more accurate local value function (for the
states that will be encountered soon) than the global value function

I Inaccuracies in the model may result in interesting exploration rather than in bad
updates.

Forward Search
I Forward search algorithms select the best action by lookahead

I They build a search tree with the current state st at the root

I Using a model of the MDP to look ahead

T! T! T! T!T!

T! T! T! T! T!

st

T! T!

T! T!

T!T! T!

T! T!T!

I No need to solve whole MDP, just sub-MDP starting from now

Simulation-Based Search

I Sample-based variant of Forward search

I Simulate episodes of experience from now with the model

I Apply model-free RL to simulated episodes

T! T! T! T!T!

T! T! T! T! T!

st

T! T!

T! T!

T!T! T!

T! T!T!

Prediction via Monte-Carlo Simulation

I Given a parameterized model Mη and a simulation policy π

I Simulate K episodes from current state St

{Sk
t = St ,A

k
t ,R

k
t+1,S

k
t+1, ...,S

k
T}Kk=1 ∼ p̂η, π

I Evaluate state by mean return (Monte-Carlo evaluation)

v(St) =
1

K

K∑
k=1

G k
t vπ(St)

Control via Monte-Carlo Simulation

I Given a model Mη and a simulation policy π
I For each action a ∈ A

I Simulate K episodes from current (real) state s

{Sk
t = s,Ak

t = a,Rk
t+1,S

k
t+1,A

k
t+1, ...,S

k
T}Kk=1 ∼Mν , π

I Evaluate actions by mean return (Monte-Carlo evaluation)

q(s, a) =
1

K

K∑
k=1

G k
t qπ(s, a)

I Select current (real) action with maximum value

At = argmax
a∈A

q(St , a)

Monte-Carlo Tree Search - I

In MCTS, we incrementally build a search tree containing visited states and actions,
Together with estimated action values q(s, a) for each of these pairs
I Repeat (for each simulated episode)

I Select Until you reach a leaf node of the tree, pick actions according to q(s, a).
I Expand search tree by one node
I Rollout until episode termination with a fixed simulation policy
I Update action-values q(s,a) for all state-action pairs in the tree

q(s, a) =
1

N(s, a)

K∑
k=1

T∑
u=t

1(Sk
u ,A

k
u = s, a)G k

u qπ(s, a)

I Output best action according to q(s, a) in the root node when time runs out.

Monte-Carlo Tree Search - II

Note that we effectively have two simulation policies:

I a Tree policy that improves during search.

I a Rollout policy that is held fixed: often this may just be picking actions randomly.

Applying Monte-Carlo Tree Search (1)

Applying Monte-Carlo Tree Search (2)

Applying Monte-Carlo Tree Search (3)

Applying Monte-Carlo Tree Search (4)

Applying Monte-Carlo Tree Search (5)

Advantages of Monte-Carlo Tree Search

I Highly selective best-first search

I Evaluates states dynamically (unlike e.g. DP)

I Uses sampling to break curse of dimensionality

I Works for “black-box” models (only requires samples)

I Computationally efficient, anytime, parallelisable

Search tree and value function approximation - I

I Search tree is a table lookup approach

I Based on a partial instantiation of the table
I For model-free reinforcement learning, table lookup is naive

I Can’t store value for all states
I Doesn’t generalise between similar states

I For simulation-based search, table lookup is less naive
I Search tree stores value for easily reachable states
I But still doesn’t generalise between similar states
I In huge search spaces, value function approximation is helpful

