WELCOME TO THE

UCL x DeepMind
lecture series

In this lecture series, leading research scientists

from leading Al research lab, DeepMind, will give

12 lectures on an exciting selection of topics

in Deep Learning, ranging from the fundamentals

of training neural networks via advanced ideas around
memory, attention, and generative modelling to the
important topic of responsible innovation.

Please join us for a deep dive lecture series into
Deep Learning!

#UCLxDeepMind
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TODAY'S SPEAKERS

Irina Higgins + Mihaela Rosca

Irina is a Research Scientist at
DeepMind, where her work aims to
use multi-disciplinary insights from
fields like neuroscience and physics
to advance general artificial
intelligence through improved
representation learning.

Mihaela Rosca is a Research Engineer
at DeepMind and a PhD student at
UCL, focusing on generative models
research and probabilistic modelling,
from variational inference to
generative adversarial networks and
reinforcement learning.




TODAY'S LECTURE
Frontiers in
Deep Learning:
Unsupervised
Representation
Learning

Unsupervised learning is one of the three major branches of machine
learning (along with supervised learning and reinforcement learning).
It is also arguably the least developed branch. Its goal is to find a
parsimonious description of the input data by uncovering and
exploiting its hidden structures. This is presumed to be more
reminiscent of how the brain learns compared to supervised
learning. Furthermore, it is hypothesised that the representations
discovered through unsupervised learning may alleviate many known
problems with deep supervised and reinforcement learning.
However, lacking an explicit ground truth goal to optimise towards,
developmental progress in unsupervised learning has been slow. In
this talk we will overview the historical role of unsupervised
representation learning and difficulties with developing and
evaluating such algorithms. We will then take a multidisciplinary
approach to think about what might make a good representation and
why, before doing a broad overview of the current state of the art
approaches to unsupervised representation learning.
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Frontiers in Deep Learning:
Unsupervised
Representation Learning

Irina Higgins & Mihaela Rosca

UCL x DeepMind Lectures
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Plan for this Lecture

01

What is unsupervised
learning?

04

Evaluating the merit of a
representation

02

Why is it important?

05

Techniques
& Applications

Want to learn more?

L

03

What makes a good
representation?

06

Future
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DeepMind

What s
unsupervised
learning?
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Bird’s eye view
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Supervised Learning

Learn mapping from given input to
given output.

Reinforcement learning

Learn which action will give you more
reward in the future.

Unsupervised learning
Find structure in provided data.

No teaching signals (labels or
rewards).
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Unsupervised learning...
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—> How do we evaluate it?
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Unsupervised learning...

Do we need it?

- Clustering

uuuuu
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Unsupervised learning...

Do we need it?

- Clustering

uuuuu

legged robot

wheeled robot
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Unsupervised learning...

Do we need it?

- Clustering
- Dimensionality reduction

uuuuu
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Unsupervised learning...

- How do we evaluate it?

Finds clusters...
- by leg type?




Unsupervised learning...

- How do we evaluate it?

Finds clusters...

- by leg type?
- by arm number?




Unsupervised learning...

- How do we evaluate it?

Finds clusters...
- by leg type?
- by arm number?
- by height?
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Unsupervised learning...

How do we evaluate it?

Reduce dimensionality...
- by orthogonality?

Want to learn more?

LY Imaging Brain Dynamics Using
Independent Component
Analysis, Jung et al, IEEE 2001

O
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Unsupervised learning...

How do we evaluate it?

Reduce dimensionality...
- by orthogonality?
- by independence?

Want to learn more?

LY Imaging Brain Dynamics Using
Independent Component
Analysis, Jung et al, IEEE 2001

O
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Unsupervised learning...

How do we evaluate it?

Reduce dimensionality...
- by orthogonality?
- by independence?
- other?

154

Disentangling
p(height)
p(leg #)
p(arm #)
p(has wheels)




DeepMind

Why is
unsupervised
learning
important?

o



Want to learn more?

History of representation learning ls TSR

Samuel, IBM Journal 1959

—  Arthur Samuel coins the
term “machine learning”

O



History of representation learning

Arthur Samuel coins the
term “machine learning”

Feature engineering and
kernel methods

Want to learn more?

L

Kernel Methods in Machine
Learning, Hofmann et al, The
Annals of Statistics 2008
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2006

Input space
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History of representation learning

Arthur Samuel coins the
term “machine learning”

Feature engineering and
kernel methods

Restricted Boltzman
Machines used for
initialising deep
classifiers

Want to learn more?

LY Reducing the Dimensionality of
Data with Neural Networks, Hinton
and Salakhutdinov, Science 2006
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Want to learn more?

History of representation learning @

Krizhevsky et al, NeurIPS 2012

- B N

Arthur Samuel coins the ez

i . . ” - Cm ) |
term “machine learning = rE &
Feature engineering and ﬁ MMMMMM S =N
kernel methords @ —w—1 ™ R S
Restricted Boltzman
Machines used for o o
initialising deep > 1949 2006 2012

classifiers

AlexNet wins ImageNet
challenge by a large

margin with no Input space
i o
n rvi o o
unsupel .sed St
pre-training -




more data
+

deeper models
+

better hardware
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Want to learn more?

Is machine learning “solved”? e

5000
—  Data efficiency
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Want to learn more?

Is machine learning “solved”? |§ i it

et al, ICLR 2015

—  Data efficiency

- Robustness

O
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Is machine learning “solved”?

Data efficiency

Robustness

Want to learn more?

LY Why Deep-Learning Als are so
Easy to Fool, Heaven, nature.com
2019

FOOLING THEAI |

Deep neural networks (DNNs) are brilliant at image
recognition — but they can be easily hacked.

These stickers made an Speed limit 45
artificial-intelligence : ‘
system read this stop

sign as 'speed limit 45'.

O



Want to learn more?

Is machine learning “solved”? @ oo Lo Cabbe

OpenAl Blog 2018

Nature-CNN agents IMPALA-CNN agents

—  Data efficiency oo LT Tl LI | H—=F A rriis

80

- Robustness 70
- Generalisation

50

40

Percentage of Levels Solved

30

20

Number of Training Levels

@ Train @ Test
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Is machine learning “solved”?

Data efficiency
Robustness
Generalisation

Transfer

middle wall

offset paddle

original

Want to learn more?

B Schema Networks: Zero-shot
Transfer with a Generative Causal
Model of Intuitive Physics, Kansky

et al, ICML 2017

random target juggling

Standard Breakout

Offset Paddle

Middle Wall

A3C Image Only

(36.33£6.17)

0.60 £ 20.05

9.55 £ 17.44

Random Target Juggling
6.83 +£5.02 —39.35 £ 14.57
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Want to learn more?

Is machine learning “solved”? | i

Behavioural and Brain Sciences 2017

Data efficiency

Robustness

Generalisation

Transfer : ' BT, - o
a woman riding a horse on a an airplane is parked on the a group of people standing on

“Common Sense" dirt road tarmac at an airport top of a beach

o



Solving many tasks efficiently

‘g
10085424 TPt

Visual Task Adaptation CoinRun (OpenAl) DMLab-30 (DeepMind)
Benchmark (Google) Procedurally generated levels with 30 varied tasks in a 3D environment,
19 visual tasks split into three different degrees of difficulty and a testing navigation, language abilities,
groups: natural, specialised and high variability in the game visuals. multi-agent interactions, long-term

structured. Allowance of 1000 planning and more.

adaptation examples per task.
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Task 1

Task 2

Task 3

Task N
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Turing Award winners at AAAI 2020

66

| always knew unsupervised
learning was the right thing to do

— Geoff Hinton

66

Basically it's the idea of
learning to represent the world
before learning a task — and

this is what babiesdo Yann LeCun

66

And so if we can build

models of the world where we
have the right abstractions,
where we can pin down those
changes to just one or a few
variables, then we will be able to
adapt to those changes because
we don’t need as much data, as
much observation in order to
figure out what has changed.

— Yoshua Bengio

Jérémy Barande / Ecole
polytechnique Université
Paris-Saclay / CC BY-SA 2.0

Eviatar Bach / CC BY-SA

Jérémy Barande / Ecole
polytechnique Université
Paris-Saclay / CC BY-SA 2.0

https://creativecommons.org/licenses/by-sa/3.0
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Task 1

Task 2

Task 3

Task N

Representation

O



DeepMind

What
makes a good
representation?

o



neuroscience

O



66

Formal system for
making explicit certain
entities or types of
information, together
with a specification of
how the system does
this.

— Marr and Nishihara, 1978

Want to learn more?

L

- —

Representation and Recognition
of the Spatial Organization of
Three-Dimensional Shapes, Marr
& Nishihara, Proc. R. Soc. Lond.
1978



Want to learn more?

What is a representation? e

Processing? Thompson et al,
arxiv 2018

XXXVII 37 0b100101

—>  Representational form orthogonal to information content
=  Useful abstraction to make different computations more efficient

=  Not defined by a single piece of information but rather by the shape of the
manifold on which the data lie within the representational space

O



Want to learn more?

Untangling representations @ e sesseion oore

al, Neuron 2012

neuronal population
-

— —~ populatlop
1 N representation

2 3 4
AAAA-~A

|, @

Wi |
. Lall-a

s
Fyi s B B e
response of each neuron
(spikes/s)
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Want to learn more?

Untangling representations @ e sesseion oore

al, Neuron 2012

neuronal population

car manifold
q .
-
A
A4 " n
¥ ’car

ventral stream
transform
(unknown)

.hJJ_l}

Fys s B B
response of each neuron
(spikes/s)
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Want to learn more?

A Learning Task-State
Representations, Niv, Nature
Neuroscience 2019




Want to learn more?

Alternative representations for the same task W=

Neuroscience 2019

] (v
[A1:go] s2:north_ [AT:g0]

p=0.6 S|dewalk

S3: hospital
r=-100

A2: wait

/81 south

\deww

/‘S1a: south
| sidewalk,

o

S2: north
sidewalk

e s E R AN

S1b: south
( sidewalk, car

\.approaching
\\ /

S3: hospital
r=-100



Want to learn more?
LY Learning Task-State
Representations, Niv, Nature
Neuroscience 2019

Solving tasks requires...

Acquisition cluster (state)

PiTi) Y

New cluster
=

p
S
?
WA
C * ) E‘;Iim:’liunmal
A
Attention Clustering Latent states
Representation should support easy Experiences should be easily and Not all information may be present in
attentional attenuation of aspects not dynamically clustered together or perceptual input. Representations
relevant to the task. apart. should include information about

latent aspects of the state too.
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Compositionality

“the meaning of a complex
expression is determined by
the meanings of its
constituent expressions and

the rules used to combine
them”

Leads to open-endedness --
can construct

arbitrarily large number of

meaningful complex expressions
from a

finite number of constituent

saw the man with the binoculars saw the man with the binoculars

expressions
and
combination rules.

Bolhuis et al, 2018

O
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physics

&3

neuroscience

Untangled
Attention
Clustering

Latent information

Compositionality @

N 2 2 2NN



Symmetry transformations

Why symmetry matters
Mario Livio celebrates the guiding light for modern physics.
“It is only slightly overstating the case
to say that physics is the study of

symmetry.”
- Philip Anderson, 1972

o



Want to learn more?

Symmetry transformations [l s

Why symmetry matters

Mario Livio celebrates the guiding light for modern physics.

“To a physicist, symmetry is a broader
concept than the reflective form of
butterfly wings... Symmetry represents
those stubborn cores that remain
unaltered even under transformations
that could change them”

- Mario Livio, 2012

O



Symmetry transformations

Why symmetry matters

Mario Livio celebrates the guiding light for modern physics.

“To a physicist, symmetry is a broader
concept than the reflective form of
butterfly wings... Symmetry represents
those stubborn cores that remain
unaltered even under transformations
that could change them”

- Livio, 2012

.ml

translate

forward
time

.ml

forward
time

Conservation laws,

Noether 1918

-l////

translate

-l////

Want to learn more?

A Invariante Variationsprobleme,
Noether, Gesellschaft der
Wissenschaften zu Géttingen, 1918

Studying symmetries of a
system helps:

%

Unify existing theories
(e.g. electromagnetism)

Categorise physical objects
(e.g. elementary particles)

Discover new physical objects
(e.g. particle Q- predicted in
1962, discovered in 1964)

O



Symmetry transformations

Why symmetry matters
Mario Livio celebrates the guiding light for modern physics.

“To a physicist, symmetry is a broader
concept than the reflective form of

butterfly wings... Symmetry represents
those stubborn cores that remain

unaltered even under transformations

that could change them”
- Livio, 2012

{ ftransate [ h scale '

Conservation laws,
Noether 1917

‘ scale translate

Studying symmetries of a
system helps:

%

Unify existing theories
(e.g. electromagnetism)

Categorise physical objects
(e.g. elementary particles)

Discover new physical objects
(e.g. particle Q- predicted in
1962, discovered in 1964)

O
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3y

physics

Symmetries

&3

neuroscience

Untangled
Attention
Clustering

Latent information

N 2 2 2NN

Compositionality
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Information bottleneck

Goal of supervised learning:

“find a maximally
compressed mapping of the
input variable

that preserves as much as
possible the information on
the output variable.”

Want to learn more?

L) Learning and the
Information Bottleneck
Principle, Tishby & Zaslavsky,

IEEE ITW 2015

I(Y;X)>I(Y;h)>I(Y;h)>1 (Y;Y)

Data processing inequality (Shannon, 1948) —- @
post-processing cannot increase information.



Invariance vs equivariance

Y

01

Y

04

Invariance

- representation remains unchanged when a certain
type of transformation is applied to the input

flg-x) = f(z)

Equivariance

- representation reflects the transformation applied
to the input

flg-z)=g- f(z)

O



Invariance vs equivariance

Y

01

Y

04

Invariance

- representation remains unchanged when a certain
type of transformation is applied to the input

flg-x) = f(z)

Equivariance

- representation reflects the transformation applied
to the input

flg-z)=g- f(z)
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Want to learn more?

Disentangled representation learning -
Y Y
> & S A g
Q06 Q06 é\/@ «O’@ S * oo\o Q06 Q06 é\/@ «0@ > & oo\o

) O
oOnaEE oOnaEE

pl=) = I (=) p(x,z) =px, 2)
| o

Generative process Inference process



Want to learn more?

B Towards a Definition of Disentangled
Representations, Higgins, Amos et al,
ICML Workshop on Theoretical

Physics for Deep Learning 2019

W W

-:GxW->W

(x=5, y=6, c=yellow) (x=3, y=6, c=yellow)

b

Want to find an

A
' equivariant map f, s.t.:

A

g'f(W):f(g-W) ngG,WEW OO,

h h
| |
Z Z @

z,=09.2 03,z =01]  --------oto- B CeCTE LR EEEEEEEEEEEELELEEee > [2,=0.3,z =03,z =01]
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DeepMind

Evaluating the
merit of a
representation

o



Evaluating representations (example)

To support efficient solving of
numerous diverse held-out tasks,
representation should
be/support:

1) position X
< position Y

0 colou

symmetry group
G =G x Gy X GuC

f >
— f— 7|3
a
AN
>3
A 3
r e - (e}
_ (8]
O ©

equivariant map
g - f(w) =f(g - w)

posY

O



Evaluating representations (example)

To support efficient solving of
numerous diverse held-out tasks,
representation should

be/support:

—  Symmetries ) position X
< position Y
0 colou

symmetry group
G =G x Gy X GuC

equivariant map
g - f(w) =f(g - w)

posY

f >
— f— 7|3
a
AN
>3
A 3
r e - (e}
_ (8]
O ©
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Evaluating representations (example)

To support efficient solving of
numerous diverse held-out tasks,
representation should

be/support:

—  Symmetries ) position X
< position Y

- Untangled U colou

symmetry group
G =G x Gy X GuC

group operator
(8, h)e(g, h,) = (g°g, hieh,)

- Compositionality

equivariant map >
g - f(w) =f(g-w) a
>
— f— 7|3
an N
o\ 3
-~ &~ 8

O, O

O



Evaluating representations (example)

To support efficient solving of
numerous diverse held-out tasks,
representation should

be/support:
equivariant map >
- g - f(w) = f(g-w) gl |°
Symmetries () positionX I
< position Y
" W — f— Z 3| |
0 colou a
Untangled X — =
symmetry group n 5 5
. G=G xG xG, rar % i ng
Attention / oo -
group operator at'tention
(g, h)e(g, h,) = (g8, heh,) (e.g. binary mask)

- Compositionality

O



Evaluating representations (example)

To support efficient solving of
numerous diverse held-out tasks,
representation should

be/support:

N 2 2N N

Symmetries
Untangled
Attention
Clustering

Compositionality

0

< position Y

0

position X

colou

symmetry group
G =G x Gy X GuC

group operator
(8, h)e(g, h,) = (g°g, hieh,)

vector space
(e.g. L2, Manhattan)

equivariant map > o
g - f(w) =f(g - w) a
>
W — f— 7 ]3| |-
A ][]
o\ sl |- —2
m— 8 8
O, O L

attention
(e.g. binary mask)

O



Want to learn more?

Evaluating representations (example) Q A e

2014

Such a representation should
help with:

Task: what is the colour?

> > 1
>
8 o
A Q . red
=
W f Z 8 o . green
a
— ] ] blue
/R ®
n 3 3
o - e e}
ra - © © .
| o o . pink
O O

linear mapping

O



Evaluating representations (example)

Such a representation should

help with:
| &
—  Data efficiency % ; 1 ]
—  Robustness A =
W f Z %] |°
ﬁ'l —_— —_—
o 1k
oo -

Want to learn more?

LY Achieving Robustness in the
Wild via Adversarial Mixing with
Disentangled Representations,

Gowal et al, CoRR 2019

Task: what is the colour?

colou

J-[1<=> o

red
green
blue

pink

O



Evaluating representations (example)

Such a representation should
help with:

—  Data efficiency

- Robustness

Want to learn more?

A Towards Robust Image
Classification Using Sequential
Attention Models, Zoran et al,

CVPR 2020

ResNet-152
250 PGD steps

source: wallet
target: beaver

1 N

S3TA-8 (Ours)
250 PGE steps

W

l":* -C'"y 2
top-1: beaver

»,‘.. "

'y ',.-‘
top-1: wallet

top-1: beaver

O



Evaluating representations (example)

Such a representation should
help with:

—  Data efficiency
- Robustness

- Generalisation

I‘

posY

posX

colou

Want to learn more?

A DARLA: Improving Zero-Shot
Transfer in Reinforcement
Learning, Higgins, Pal et al, ICML

2017

Task: go to bottom left corner?

up
down
left

right

O



Want to learn more?

Evaluating representations (example) @

NeurlPS 2018
Such a representation should
help with:
—  Data efficiency Task: go to bottom left corner?
A
—  Robustness O -
> > > . up
—  Generalisation 3 postionx : RN ® -
position
< position Y - | f I Z >§ _ . left
—  Transfer 0 coou : & ®
AR 5| |
oo °] L

O



Evaluating representations (example)

Such a representation should
help with:

Data efficiency
Robustness

Generalisation

NN 2NN 2

Transfer

Want to learn more?

B Schema Networks: Zero-shot
Transfer with a Generative Causal
Model of Intuitive Physics, Kansky

et al, ICML 2017

(a) A3C (b) Schema Networks

Standard Breakout  Offset Paddle  Middle Wall Random Target Juggling

A3C Image Only N/A 0.60 £20.05 9.55 £ 17.44 6.83 £5.02 —39.35 £ 14.57
A3C Image + Entities N/A 11.10 £17.44  8.00 £ 14.61 6.88+6.19 —17.52+17.39
Schema Networks 36.33 £6.17 41.42+6.29 35.22+1223 21.38+5.02 —0.11+0.34

O



Want to learn more?

Evaluating representations (example) Q Campona Vi et

Higgins et al, ICLR 2018

Such a representation should

help with: Task: if rainbow elephants live in big cities, are you
likely to meet a rainbow elephant in London?

—  Data efficiency
—  Robustness — —
>U_’ (@]
—  Generalisation ] L
>
- Transfer W f Z|&] |°
u n a 5
- “Common sense s s~ £
o_o o L [
§ .

abstract
imagination ‘G'



Such a representation should

Evaluating representations (example)

help with:

N 2N 2N N/

Data efficiency
Robustness
Generalisation
Transfer

“Common sense”

B |~

Want to learn more?

A Human-Level Concept Learning
Through Probabilistic Program
Induction, Lake et al, Science

2015

Task: if rainbow elephants live in big cities, are you
likely to meet a rainbow elephant in London?

reasoning
~
™
Ly
=
Q
c yes
— I —_
ol ~
o
2 o no
o - o
Q =
Q
> o
Z |3 |- :
a 2| &
©
— < | L—
— %_
z of | @
5 3 °ll's
N 5 < =
- . LS 5598
— —>
cC C
E ‘T QO
[0} © -0
Q. — < [0}
@© Q
G <
@ o

abstract
imagination ‘G'



Is all machine learning ultimately
about representation learning?

%

Crucial early role of representations for ML (hand crafted
feature engineering)

Success of supervised deep learning on single tasks may
be attributed to good implicit representation learning
(information bottleneck principle)

Lack of understanding and control over the nature of
learnt representations may be behind current problems
with deep learning

Recent advances in deep learning may be attributed to
learning better representations (e.g. Devlin et al, 2018;
Chen et al, 2019; Lyle et al, 2019)

Further advancement of deep learning may benefit from
explicit/unsupervised representation learning

Advancing explicit/unsupervised representation learning
may benefit from interdisciplinary insights

THIS 15 YOUR MACHINE (EARNING SYSTEM?

YOP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSWERS ON THE OTHER SIDE.

WHAT IF THE ANSWERS ARE LIRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

xkcd.com/1838 ‘Gi



DeepMind

Representation
learning
techniques

o



Representation learning with deep neural networks

T

JC]

Generative modeling

Learn the data distribution using
generative modeling, often through
reconstructions.

Contrastive losses

Use classification losses to learn
representations that preserve
temporal or spatial data consistency.

Self-supervision

Exploit knowledge of data to
design learning tasks which lead to
useful representations.

O



Downstream tasks for representation learning

Semi supervised learning

Use the learned representations
for classification.

Aim: data efficiency, generalization.

standard benchmark: Imagenet.

L
TA
P, A
: e — 1;, N
o Adapton D, Test | &
L | i S }
A1 EHEE

Reinforcement learning Model analysis

Use the learned representations Use the learned representation to
for model based RL or model free analyse what the model learns.
RL.

Aim: data efﬁCienCY, transfer. Aim: |nterpretab|e models.




Keep in mind that we want....

Discrete and continuous representations
Online learning (representations adapt with experience)
Consistency and temporal abstractions

Data efficiency

N 2 2N N2

Downstream tasks

O



Generative modeling

O



Generative modelling for
representation learning

N2

model the underlying data distribution
unsupervised learning (task agnostic)

Intuition: the most efficient way to model
a distribution is to extract common
patterns (representations)

O






Inference in latent variable
models

Inference: Find p(zlIx)

Intuition: Find the underlying factors which
generated the data (with uncertainty
estimates).

Finding p(zlx) is often intractable, and we
thus have to resort to approximations.

inference

generation

O



Generation Inference

| |

N AN J
Y Y

discrete: continuous:
glasses hair colour
eye colour
nose shape




Variational autoencoders

Maximum likelihood

o+ (%) log pg(x)]

Latent variable model log Do (X) — log /pe (X‘Z)p(Z)dZ

o



Variational autoencoders

Lower bound on maximum likelihood objective (ELBO):

Want to learn more?
Auto-Encoding Variational

Y
|. Bayes, Kingma et al., ICLR 2017

log po(x) > Ey, (2/x) log pe(x|z) — KL(%(ZIX)HP(ZE)

Approximate posterior

N

J

N

reconstruct

Gn(z|x)

N

~

stay close to prior

o



Want to learn more?

Auto-Encoding Variational

VAE:s - the role of the prior (I oo

The KL term regularises the approximate
posterior to the prior.

Use the prior to specify properties we K L [qn ( / ‘ X) ] ‘ | [p ( 7 ) ]

would like the posterior to have, such as
disentanglement.

O



VAEs and neural networks

qn(z[x) po(x|z)

Both the inference and generation
model are deep neural networks.

qn(2[x)

Want to learn more?

Auto-Encoding Variational

Y
|. Bayes, Kingma et al.,, ICLR 2017

KL
- vV N
Z \ Z
Encoder Generator
Lreal xrec

R N

¥ polxlz)

O



a beta-VAE : Learning Basic Visual
beta_VAE L. Concepts with a Constral ined
Variational Framework,
Higgins et al., ICLR 2017

g, (21x) 108 Po(x|2) — BKL(gy (2[x)[|p(2))

Change the weight of the KL term to
encourage disentangled representations.

O



Want to learn more?

beta-VAE: Learning Basic Visual
beta—VAE Concepts with a Constrained

Variational Framework,

Higgins et al., ICLR 2017

- Disentangled e
Learns disentangled Continuous roomidnvtlxrreklrgf[nteu[r]\triqht distance Ief!ob(izctjgosatuon object id

representations encoding semantic B o S S SV SRy S
information: R o e

Entangled
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u

o S SHEY SO S S

location, object, distance to object, —a R s AL S
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beta-VAE in reinforcement
learning

Integrating beta-VAEs into
reinforcement learning agents
improves generalization and transfer.

arm
left/right up/close

sim2sim

Want to learn more?

LY DARLA: Improving Zero-Shot
Transfer in Reinforcement
Learning

Higgins et al., ICML 2017

simZ2real

camera
vertical horizontal

object
left/right  close/far

JAcO (A3C0)

VISION TYPE SIM2SIM SIM2REAL
BASELINE AGENT  97.64 + 9.02 94.56 4+ 3.55
UNREAL - -
DARLAFT 86.59 +£5.53 99.25+2.3
DARLAGgNT 84.77 + 4.42 59.99 £+ 15.05
DARLApaE 85.15 £7.43 100.72 + 4.7
DARLA 100.85 +2.92 108.2 + 5.97

O



Want to learn more?

Sequential VAEs - ConvDraw -

—  VAE (reconstruction and KL loss)

Layer 2

— . Inference

—= Appr. Posterior

. Latent (Information)

—  Recurrent component

Layer 1




Want to learn more?

Conv-Draw

/'ﬁ" ? SN
AREGS Wl
sl ey
/*?' ,""#'S N

e Recurrence helps: iteratively
refine and add details.

e Inference: powerful
autoregressive posteriors.

e Latents: spatial and temporal.
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Want to learn more?
MONet: Unsupervised

Layered models - Monet | i ol

Burgess et al., arxiv 2019

gl steps Step2 StepK-1 / Attention network

VAE and segmentation network

Attention
network

VAE input learned using attention

Compositional: adding masks L
leads to final image

attention
mask

[55 _______

g
)

Component X1 |
reconstruction | .# " F o - (x|z ) N
&mask | Nk k O Po\X\Zk) I
L L L L N_TTT [T 4
- - - - - - ——
masked
reconstruction L =log Zk Ly

Figure from Burgess et al. (2019)



Want to learn more?
MONet: Unsupervised

MONE I Scene Decomposition and
representation

Burgess et al., arxiv 2019

Learned
representation

Using attention in a multi level process
leads to a generative model which

learns concepts (objects) £
unsupervised.

Latent traversed
"y pos" "colour"

background

Latent traversals show that Monet
learns to encode the position of an
object into a single latent.

blue
object
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MONET in reinforcement
learning

After unsupervised exploration phase,
agent to learn tasks quickly.

Given scene representation, transition
model, and exploration policy, agent
must only learn a reward function,
then can do model-based search.

Goal-finding

1 distractor

2 distractors

Want to learn more?
MONet: Unsupervised

= Scene Decomposition and
representation

Burgess et al., arxiv 2019

Sorting Clustering

all pairs \ red-blue green & blue

red & yellow




Want to learn more?

Eslami et al.,, Neural scene

Generative Query networks (GON) W e

Learn a representation by
providing examples angle scene
pairs

Use learned representation to
condition a (recurrent) generative
model to generate how the scene
looks like from a different angle

Neural scene
representation

Latent

r
A Rendering steps

r! _<{>— r2 hy b—»{ hy }— - —| h_

b |

&
a4

Que 3
Y Predicted
view

Representation network f

O

Slides thanks to Ali Eslami.



Want to learn more?
Eslami et al,, Neural scene

GON - accurate generation I s

LLJE:LJH
SN
W[ (W
RERPT

Observations Generation steps Pred  Truth

O

Slides thanks to Ali Eslami.



Want to learn more?

Eslami et all, Neural scene

GON - capturing uncertainty | It

Observation Samples

O

Slides thanks to Ali Eslami.



GON in reinforcement learning

Fixed camera Moving camera
] 100 A 100 A
; — GQN representation
—— Raw pixels
80 4 80 4 Oracle
40

0 5 10 15 20 25 30
Observation Prediction Truth Training epochs (millions)

Pretraining views

60 -

Reward

0 5 10 15 20 25 30
Training epochs (millions)

O

Slides thanks to Ali Eslami.



Want to learn more?

Neural Discrete

Vector quantized VAEs (VQ-VAE) W i

2017

Learning discrete latent variables is challenging (high variance gradient estimation).

17273 - - T K
Embedding
Space

D 27
.‘v\ sz L

. q(zlx)  SlE

CNN ! f [ [ %

[ = 11} [ legt |

z,(x) z [ [ [2[] Z,(x)

53
8 L I \ J
Y Y
Encoder Decoder

Solution: reconstruct by using discrete latent variables to index into a learned continuous embedding space.

Figure from van den Oord et al. (2017)



Want to learn more?

Neural Discrete
V _VAE i Representation Learning
L van den Oord et all, NIPS
2017

Discrete latent variables can be used
to capture high and low level
information from the data.

Figure from van den Oord et al. (2017)



Want to learn more?

Goodfellow, et al. Generative

Generative adversarial networks |

Processing Systems (2014)

Generator

make the teacher happy by
making generated data look real

I ~P
real data x ~ P(x) D real or generated?

generator G generated data

G

Discriminator
distinguish between real and
generated data, so that | can tell the
generator how to improve




Adversarially learned
inference

Generation with GANSs:

e No reconstruction loss.
e |earned model is implicit.

Inference with GANSs:

e New model required.

e No uncertainty around learned
representations.




Want to learn more?

° ° - Donahue, et al. Large Scale
Adversarial Representation

BlgBlGAN L. Learning. Neural Information
Processing Systems (2019)

data
discriminator D

»
2
"
>
2
Q
S

5 SCOres
‘ loss
>
DO 0

o]

Figure from Donahue et al. (2017)
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Want to learn more?

Donahue, et al. Large Scale

= 9 Adversarial Representation
lg 1 Learning. Neural Information

Processing Systems (2019)

e No pixel loss reconstruction —
reconstructions capture high
level information — latents
capture high level information

e Latent representations extract
meaningful features for semi
supervised learning

o Imagenet SOTA at time of
publishing

Figure from Donahue et al. (2017)



Want to learn more?
Radford, et al.Language

3 Models are Unsupervised
Multitask Learners (2019)

Large scale generative models learn representations used for multiple downstream tasks.

Key: Neural architecture, billions of parameters and large amounts of data

Reading Comprehension Translation Summarization 55 Question Answering
90 {Human--------- : 1 25 [Unsupervised Statistical MT 32 iLead-3-
80 = 301 81 T Open Domain QA Systems T 1
20 1 ~ 8 PGNet
70 w
DrQA+PGNet o S 2 g 6
5 15 Denoising + Backtranslate 2 b
~ 60 w et 5
DrQA-- a 5 24 {Seq2seq + Attn S J
50 10 {Embed Nearest Neighbor-- -1 % 22 =
PGNet- -—=- s © Random-3
Denoising ~---------—_&%-- % 50
= 51 2 2
30 18 ~~_most freq Q-type answer
, Seq2seq 0 16 o
117M 345M 762M  1542M117M 345M 762M  1542M117M 345M 762M  1542M 117M 345M 762M  1542M
# of parameters in LM # of parameters in LM # of parameters in LM # of parameters in LM

Figure from Radford et al. (2019)



Latent variable models are a powerful
tool for representation learning.




Contrastive learning

O



o



Contrastive losses - word2vec

N

Predict which words appear next.

Contrastive: provide positive examples
of future words.

Contrastive: provide negative examples
of words which won’t come next.

k
. _
logo(vy,, Vw;)+ Z Eipites) [log o(—vy, Vuw, )]

=1

0.5

Country and Capital Vectors Projected by PCA

Want to learn more?
Mikoloy, et al Distributed

a
. Representations of Words
and Phrases and their

Compositionality. NIPS (2013)

T T T T T T
China¢
"Beijing
B Russia« 4
Japanx
*Moscow |
Turkey Ankara ~J0kyo
Polandk
- Germany« E
Francé AWarsaw
x Berlin
- Italy< Paris 1
Greecex x ~Athens
L. Spain¢ Rome i
% '
- Portugal L sb::ad"d 1
1 1 1 1 1 1 L
1.5 1 -05 0 0.5 1 1.5 2

Figure from Mikolov et al. (2013)



Want tp learn mpre?
Few shot machine W e
translation with word2vec

English word | Computed Spanish
Learn a dictionary: Translation Entry

pets mascotas mascotas
e Use word2vec to learn word mines minas minas
representations unacceptable | inaceptable inaceptable
e Use a few hundred examples to learn a prayers oraciones rezo
linear mapping between words shortstop shortstop campocorto

e Can now translate! interaction interaccion interaccion
ultra ultra muy
beneficial beneficioso beneficioso
beds camas camas
connectivity | conectividad conectividad
transform transformar transformar
motivation motivacion motivacion

)

Table from Mikolov et al. (2013)




Want to learn more?

van den Oord, et al

Contrastive predictive coding R

Coding arxiv(2018)

— maximize mutual information between
data and learned representations

fk:(xt+k:> Ct)

Za;jeX fk(xﬁ Ct)

£N2—§ log

— uses supervised learning to model
density ratios

O



Want to learn more?

a vanden Oord, et al
. Representation Learning with
Contrastive Predictive
Coding arxiv(2018)

Contrastive predictive coding

Predictions
h N .\‘\
N N N
\ N \
Y X \
\ '\- \‘ \
Zt+1 Zt+42 Zt+3 Zt+44
genc genc genc genc
Tey2 | Te43 | Ti4a |

Figure from van den Oord et al. (2018)



Want to learn more?

Hénaff, et al Data-efficient

Contrastive predictive L_Jesoncts N
coding

/. ojs
Learning from contrastive = /50% fewer
representations (learned / / Iabjets

>
(6]
©
unsupervised) is more efficient in the 30.8- /
. . [&]
low data regime compared to learning g /
from pixels. 2 0.74 80% fewer
g labels
‘»
n
S
G 0.6 o
A
o
ke
0.5-
-8~ ResNet trained on CPC
@ -8~ ResNet trained on pixels
0.4 T T Ll Ll 1 Ll Ll
1 2 5 10 20 50 100

Percentage of labeled data

O

Figure from Hénaff et al. (2019)




Want to learn more?
Chen, et al A Simple

° a
Framework for Contrastive
lm Learning of Visual

Representations arxiv(2020)

Maximize agreement

Z; = > Zj
Use contrastive losses to maximize g(')T Tg( )
mutual information between hi «— Representation — h;
representations of data under different £0) £0)

transformations.

o

Figure from Chen et al. (2020)



Want to learn more?

° a Chen, etal ASimple
. Framework for Contrastive
lm Learning of Visual

Representations arxiv(2020)

(f) Rotate {90°,180°,270°} (g) Cutout (h) Gaussian noise (1) Gaussian blur (j) Sobel filtering

O

Figure from Chen et al. (2020)



Want to learn more?
Chen, et al A Simple

° a
Framework for Contrastive
lm Learning of Visual

Representations arxiv(2020)

Linear classifier with input given by learned representations.

Achieves SOTA on Imagenet ‘ ¥%Supervissd . %SimCLR (4x)
benchmarks, both on a linear classifier i | *SimCLR (2x)
trained on input representations as > ; oCPCv2-L
well as semi supervised learning (10% % 7OF %sSimCLR oomc  ¢VoCe 4
improvement over previous state of 2 . '3“'6'0(22") AMDIM

~— 5 oMoL O (£X
the art). o 65 qcPCv2 PIRL-ens.

2 PIRL oBigBiGAN

3 go} §MoCo 9

- LA

&

= L eRotation

92 e|nstDisc
25 50 700 200 400 626

Number of Parameters (Millions)

O

Figure from Chen et al. (2020)




Contrastive losses use classifiers to learn
representations which are temporally or spatially
consistent.




Self supervised learning

O



Self supervised learning

Design tasks based on data modalities
Easy to obtain data

Representations are deterministic, often
features of neural networks

¥y~ W
N uns P
fc9 (8) = E D L
fc8 (4096) A e A

P Tee et

| fc7 (4096)
il i,
fc6 (4096) F--------; fc6 (4096)

pool5 (3x3,256,2)

conv5 (3x3,256,1)

conv4 (3x3,384,1)

conv3 (3x3,384,1)

LRN2

pool2 (3x3,384,2)

conv?2 (5x5,384,2)

LRN1

pooll (3x3,96,2)

convl (11x11,96,4)

ol

/ Patch 1 /

pool5 (3x3,256,2)

1 conv5 (3x3,256,1)

1 conv4 (3x3,384,1)

1 conv3 (3x3,384,1)

LRN2

pool2 (3x3,384,2)

1 conv2 (5x5,384,2)

LRN1

pooll (3x3,96,2)

{conv1 (11x11,96,4)

=N

| Patch2 /

O

Figure from Dorech et al. (2015)



Want to learn more?

° ° a Zhang., et ?I Colqrful Image
Colorful Image Colorization W cooreeneon

— Task: colourize image.

— Easy to obtain supervised data.

—> Representations useful for semi

supervised learning (Imagenet).

Figure from Zhang et al. (2016)



Want to learn more?

Doersch, et al Unsupervised

Unsupervised Visual Representation W e

Learning by Context Prediction

N2

N2

N2

Prediction ICCV (2015)

Task: predict selected patches.

Features useful in semi supervised
learning.
Unsupervised object discovery.

);Y=3

Figure from Doersch et al. (2015)



Unsupervised Representation

Want to learn more?

a Leeetal Unsupervised
. Representation Learning by
Sorting Sequences IEEE (2017)

Learning by Sorting Sequences

— Learn temporal coherence from
video.

—> Avoids data generation in pixel
space.

— Used for semi supervised learning
- object recognition, action
recognition.

Shufﬂed Sequence

#36 D #39 : #42
-
| Original Video } |

S (a) (b) (c) i (d)

Ordered Sequence

(b)

#30

Sequence Sorting

Figure from Lee et all (2017)



BERT

N

Representations learned with
multiple tasks (self supervision
meets generative modelling)
Predict missing tokens (past and
present)

Classify which sentence order
Sparked a revolution in NLP

ﬁ@ Mask LM Mask LM
D 2+

Masked Sentence A Masked Sentence B
*
Unlabeled Sentence A and B Pair
Pre-training

Want to learn more?

b Devlin, et al BERT: Pre-training of Deep
Bidirectional Transformers for
Language Understanding ACL(2019)

StaryEnd Sph

=
k\\ Question f Paragraph j
Question Answer Pair

BERT

Fine-Tuning

O

Figure from Devlin et al. (2019)



Want to learn more?

BER I b Devlin, et al BERT: Pre-training of Deep
Bidirectional Transformers for

Language Understanding ACL(2019)

2019 brazil traveler to usa need a visa

Used for multiple downstream tasks:

BEFORE AFTER

—> Summarization.

— Named entity recognition. e v 48 e T
google.com google.com

—> Spam detection. 9 Washingion Post» 20190321 © .

U.S. citizens can travel to Brazil without the red Tourism & Visitor | U.S. Embassy & Consulates

— In production: Part of Google e i
Mar 21 " In general, lourists trav
search. e

without a visa and ... Australia, Japan and Canada will

ling to the Unite

States require

) - Starting on June 17, you can go to Brazil
vle to travel

nger need a visa t washingtonpost

O

Figure from Google blogpost by Nayak et al. (2019)



Self supervised learning exploits domain knowledge to
build tasks useful for representation learning.



Keep in mind that....

Task design for learning representations is important
Modality is important

Context is important

NN 2N N/

Learning generative models is hard, might be able to get away
without it (contrastive losses, self supervision)

N2

Crucial benefits by incorporating changes in neural architectures

O



DeepMind

6 Future

o



Next...

N 2 2N N2

Generative models: Powerful posteriors and better priors.
Contrastive learning: going beyond temporal and spatial coherence.
Self supervised learning: more task design.

Incorporating changes in neural representations.

Causality.

O
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Upcoming lecture

a Attention and Memory in Deep Learning
a Generative Latent Variable Models and Variational Inference

e Responsible innovation

O



